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Quantum-secure covert communication
on bosonic channels
Boulat A. Bash1,2, Andrei H. Gheorghe1,3,w, Monika Patel1,w, Jonathan L. Habif1, Dennis Goeckel4,

Don Towsley2 & Saikat Guha1

Computational encryption, information-theoretic secrecy and quantum cryptography offer

progressively stronger security against unauthorized decoding of messages contained in

communication transmissions. However, these approaches do not ensure stealth—that the

mere presence of message-bearing transmissions be undetectable. We characterize the

ultimate limit of how much data can be reliably and covertly communicated over the lossy

thermal-noise bosonic channel (which models various practical communication channels).

We show that whenever there is some channel noise that cannot in principle be controlled by

an otherwise arbitrarily powerful adversary—for example, thermal noise from blackbody

radiation—the number of reliably transmissible covert bits is at most proportional to the

square root of the number of orthogonal modes (the time-bandwidth product) available in the

transmission interval. We demonstrate this in a proof-of-principle experiment. Our result

paves the way to realizing communications that are kept covert from an all-powerful quantum

adversary.
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E
ncryption prevents unauthorized access to transmitted
information—a security need critical to modern-day
electronic communication. Conventional computationally

secure encryption1,2, information-theoretic secrecy3–5 and
quantum cryptography6 offer progressively higher levels of
security. Quantum key distribution (QKD) allows two distant
parties to generate shared secret keys over a lossy–noisy channel
that are secure from the most powerful adversary allowed
by physics. This shared secret, when subsequently used to
encrypt data using the one-time-pad cipher7, yields the most
powerful form of encryption. However, encryption does not
mitigate the threat to the users’ privacy from the discovery of the
very existence of the message itself, nor does it provide the means
to communicate when the adversary forbids it. Thus, low
probability of detection/intercept, or covert communication
systems are desirable, which not only protect the message
content but also prevent the detection of the transmission
attempt.

Covert communication is an ancient discipline revived by the
communication revolution of the last century. Modern develop-
ments include spread-spectrum radiofrequency communication8,
where the signal power is suppressed below the noise floor by
bandwidth expansion, and steganography9, where messages are
hidden in fixed-size, finite-alphabet cover text objects such as
digital images. Performance of classical communication is
typically quantified using Shannon capacity10: the maximum
rate (in bits/channel use) at which classical data can be
reliably transmitted over a noisy channel in the limit of infinite
channel uses. However, our recent work on classical covert
communication over the additive white Gaussian noise (AWGN)
channels (the standard model for radiofrequency channels) shows
that the sender Alice can reliably transmit Oð

ffiffiffi
n

p
Þ bits to the

intended receiver Bob in n AWGN channel uses with arbitrarily
low probability of detection by the adversary Willie, who receives
Alice’s transmissions over a separate AWGN channel11,12.
Therefore, the communication rate approaches zero as n-N.
Shannon capacity is thus inadequate for characterizing the
limits of covert communication over the AWGN channel, and
we developed new techniques to prove this square-root law (SRL).
Since then, alternative techniques and insights, as well as
further refinements to the SRL, have been found13,14. Even
though the asymptotic rate of covert communication is zero

(as limn!1
Oð

ffiffi
n

p
Þ

n ¼ 0), a non-trivial burst of covert bits can be
transmitted when n is large. Our work was generalized to other
classical channel settings13–18. Similar SRLs were also found in
steganography, where it was shown that Alice can modify Oð

ffiffiffi
n

p
Þ

symbols in a cover text of size n, embedding Oð
ffiffiffi
n

p
lognÞ hidden

bits9,19–23. The log n improvement in the steganographic
application versus covert communication over a noisy channel
is attributable to the noiseless Alice-to-Bob channel. Recent work
shows that an empirical model of cover text suffices to break the
steganographic SRL24; however, these results do not apply to the
covert communication channels discussed here.

The lossy thermal-noise bosonic channel is the quantum
mechanical description of the transmission of a single (spatio-
temporal polarization) mode of the electromagnetic field at a
given transmission wavelength (such as optical or microwave)
over linear loss and additive Gaussian noise (such as noise
stemming from blackbody radiation). Modern high-sensitivity
communication components—such as sources and detectors—are
primarily limited by noise of quantum-mechanical origin, in
particular at optical frequencies. Thus, recent studies quantified
the ultimate rate of reliable and secure communication using
tools from quantum information theory25–28. Our analysis of
covert communication over AWGN channels already applies to

communication over lossy thermal-noise bosonic channels when
Alice uses laser-light modulation and both Bob and Willie use
coherent-detection (homodyne or heterodyne) receivers, as these
choices of transmitter and receiver structures induce AWGN
channels.

However, quantum mechanics permits a much wider class of
transmitter and receiver measurements. Therefore, delineating
the ultimate limits of covert communications on the lossy
thermal-noise bosonic channel that is secure against the most
powerful adversary physically permissible requires quantum
information-theoretic analysis. Here we establish these limits.
We demonstrate that covert communication is impossible when
the adversary has full control over the noise in the channel.
However, any excess noise that is not controlled by the adversary
(for example, the unavoidable thermal noise from the blackbody
radiation at the operating temperature) allows Alice to reliably
transmit Oð

ffiffiffi
n

p
Þ covert bits to Bob using n bosonic modes, even if

Willie intercepts all the photons not reaching Bob and employs
arbitrary quantum memory and measurements. Furthermore,
this is achievable using standard laser-light modulation and
homodyne detection (that is, the Alice–Bob channel is still an
AWGN channel). Thus, noise enables stealth. Indeed, if Willie’s
detector contributes excess noise (for example, dark counts in
photon-counting detectors), Alice can covertly communicate to
Bob, even when the channel itself is pure loss. We also show that
the SRL cannot be circumvented. Thus, the covert communica-
tion rate is zero and the Holevo capacity29—the generalization of
the Shannon capacity for the classical capacity of quantum
channels—is inadequate for our analysis. We corroborate our
theoretical results with a proof-of-concept experiment done at
1.55 mm, where the adversary-uncontrolled excess noise is
emulated by dark current of Willie’s detector. We thus
demonstrate a truly information-theoretically secure covert
communication system that allows communication
when all transmissions are prohibited. Finally, we employ a
realistic model of loss and noise in atmospheric propagation to
calculate the achievable volume of data transmissible covertly
over a 1-km-range line-of-sight channel as a function of the
transmission wavelength and the transceiver contact
duration, where the covertness solely relies on the minimum
amount of thermal noise that must arise from blackbody and
solar radiation at the operating temperature and wavelength.
Our analysis provides evidence for optimality of long-wave
infrared (LWIR) wavelengths for quantum-secure covert
communication.

Results
Information-theoretically covert communication. Quantum
and classical information-theoretic analyses of covert
communication consider the reliability and detectability of a
transmission. We introduce these concepts next.

We consider a scenario where Alice attempts to transmit M
bits to Bob using n bosonic modes, whereas Willie attempts to
detect her transmission attempt. We treat a single spatio-
temporal polarization mode of the electromagnetic field as the
fundamental transmission unit over the channel (a more formal
description of modes is provided in the Supplementary Note 1).
Each of the 2M possible M-bit messages maps to an n-mode
codeword and their collection forms a codebook. Desirable
codebooks ensure that the codewords, when corrupted by the
channel, are distinguishable from one another. This provides
reliability: a guarantee that the probability of Bob’s error in
decoding Alice’s message PðbÞ

e od with arbitrarily small d40 for
large n. In practice, error-correction codes are used to enable
reliability.
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Willie’s detector reduces to a binary hypothesis test of Alice’s
transmission state given his observations of the channel. Denote
by PFA the probability that Willie raises a false alarm when Alice
does not transmit and by PMD the probability that Willie misses
the detection of Alice’s transmission. Under the assumption of
equal prior probabilities on Alice’s transmission state, Willie’s
detection error probability is PðwÞ

e ¼ ðPFA þPMDÞ=2. Alice
desires a reliable signalling scheme that is covert; in other words,
ensures PðwÞ

e � 1=2� E for an arbitrarily small E40 regardless of
Willie’s quantum measurement choice (as PðwÞ

e ¼ 1=2 for a
random guess). We show in the Supplementary Note 2 that
unequal prior probabilities do not affect our asymptotic results.
By decreasing her transmission power, Alice can decrease the
effectiveness of Willie’s hypothesis test at the expense of reducing
the reliability of Bob’s decoding. Information-theoretically secure
covert communication is provably both reliable and covert. To
achieve it, before transmission Alice and Bob share a secret, the
cost of which we assume to be substantially less than that of being
detected by Willie. Secret sharing is consistent with other
information-hiding systems8,9,11,12,19–23 and can be done when
Alice and Bob meet in a location that is physically secure from
Willie (just as soldiers synchronize the spreading codes and
frequency-hopping patterns on their spread-spectrum radios8

before leaving the base). The secret can also be generated using
standard classical5 or quantum6 methods if there are periods of
time when Willie allows Alice and Bob to communicate.
However, as evidenced by recent results for a restricted class of
channels13,16,17, we believe that certain scenarios (for example,
Willie’s channel from Alice being worse than Bob’s) will allow
secret-less covert communication on bosonic channels.

Analysis of covert communication on bosonic channels. Here
we outline the theoretical development of quantum information-
theoretically secure covert communication on the lossy–noisy
bosonic channel. Formal statements are deferred to the Methods,
with detailed proofs in the Supplementary Note 3.

Consider a single-mode lossy bosonic channel E�nT
Zb

of
transmissivity ZbA(0, 1] and thermal noise mean photon number
per mode �nT � 0, as depicted in Fig. 1. Willie collects fraction
Zw¼ 1� Zb of Alice’s photons that do not reach Bob. Willie is
otherwise passive, as we later argue that actively injecting noise
into the channel does not help him detect Alice’s transmissions.
For a pure loss channel �nT ¼ 0ð Þ, the environment input is in the
vacuum state r̂E0 ¼ 0j i 0h jE , corresponding to the minimum noise
the channel must inject to preserve the Heisenberg inequality of
quantum mechanics.

Regardless of Alice’s strategy, reliable and covert communica-
tion over a pure-loss channel to Bob �nT ¼ 0ð Þ is impossible.
Theorem 1 in the Methods demonstrates that Willie can
effectively use an ideal single photon detector (SPD) on each
mode to discriminate between an n-mode vacuum state and any
non-vacuum state in Alice’s codebook. Willie avoids false alarms,
as no photons impinge on his SPD when Alice is silent. However,
a single click—detection of one or more photons—gives away
Alice’s transmission attempt regardless of the actual quantum
state of Alice’s signalling photons. Alice is thus constrained to
codewords that are nearly indistinguishable from vacuum,
rendering unreliable any communication attempt that is designed
to be covert. Furthermore, any communication attempt that is
designed to be reliable cannot remain covert, as Willie detects it
with high probability for large n. This is true even when Alice and
Bob have access to an infinitely large pre-shared secret. Thus,
if Willie controls the environment (as assumed in QKD
security proofs), by setting it to vacuum, he can deny covert
communication between Alice and Bob. However, some amount

of non-adversarial excess noise—whether from the thermal
background or the detector itself—is unavoidable, which enables
covert communication.

Consider the lossy bosonic channel E�nT
Zb
, where the

environment mode is in a thermal state with mean photon
number �nT40. A thermal state is represented by a mixture
of coherent states |ai—quantum descriptors of ideal laser
light—weighted by a Gaussian distribution over the field
amplitude a 2 C; r̂E�nT ¼ 1

p�nT

R
e� j a j 2=�nT aj i ah jEd2a. This thermal

noise masks Alice’s transmission attempt, enabling covert
communication even when Willie has arbitrary resources, such
as access to all signalling photons not received by Bob and any
quantum-limited measurement. Theorem 2 in the Methods
demonstrates that in this scenario Alice can reliably transmit
Oð

ffiffiffi
n

p
Þ covert bits using n modes to Bob, who needs only a

conventional homodyne-detection receiver. Alice achieves this
using mean photon number per mode �n ¼ Oð1=

ffiffiffi
n

p
Þ. Conversely,

Theorem 5 states that if Alice exceeds the limit of Oð
ffiffiffi
n

p
Þ covert

bits in n modes, transmission is either detected or unreliable.
Three comments are in order here (with details deferred to the

remarks following the proof of Theorem 2 in the Supplementary
Note 3). First, we note that only a lower bound on �nT is needed
for reliable transmission of Oð

ffiffiffi
n

p
Þ covert bits using n bosonic

modes. One can use Planck’s law to obtain such a bound given
the transmitter’s centre frequency and an estimate of Willie’s
receiver temperature. However, if such a lower bound is
unavailable, then oð

ffiffiffi
n

p
Þ covert bits can be transmitted. Second,

actively injecting noise into the channel does not help Willie
reduce the scaling in the SRL, even though he can reduce the
number of covert bits that Alice can reliably transmit to Bob by
reducing Bob’s received signal-to-noise ratio. Finally, thermal
noise power plays a critical role in determining how many covert
bits can be transmitted. Specifically, we show that, when �nT � 1,

approximately at least
ffiffi
n

p
EZb

ffiffiffiffiffiffiffi
Zb�nT

p

ð1� ZbÞln2
� log2ðdÞ quantum-secure

covert bits can be transmitted, where d and E are the parameters
governing the reliability and detectability of the transmission
described in the previous section. Thus, low thermal noise power
at Willie implies low covert communication volume even when
the channel loss is low. On the other hand, high loss on the
channel from Alice to Bob implies low covert communication
volume, as we assume that all the transmitted photons that do not
reach Bob are captured by Willie. The relationships between loss,
noise and covert communication volume are analysed over a wide
range of centre frequencies in the next section.

Secret

�b

�w = 1 – �b

Alice

Willie

Bob

Environment �∧EnT

Channel �nT
�b

Figure 1 | Channel model. The input–output relationship is captured by a

beamsplitter of transmissivity Zb, with the transmitter Alice at one of the

input ports and the intended receiver Bob at one of the output ports, and Zb
being the fraction of Alice’s signalling photons that reach Bob. The other

input and output ports of the beamsplitter correspond to the environment

and the adversary Willie. Willie collects fraction Zw¼ 1-Zb of Alice’s

photons that do not reach Bob. This lossy–noisy bosonic channel accurately

models single-spatial-mode free space and single-mode fibre optical

channels. Alice and Bob share a secret before the transmission.
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Although the lossy thermal-noise bosonic channel is arguably
the most important quantum communication channel, to meet
the benchmark set by QKD for cryptography, it is necessary to
find the conditions for reliable covert communication over a
general quantum channel. Even though we defer this problem to
future work, here we state it formally, linking it to the theorems
proved in this paper.

A trace-preserving completely positive input–output map
N A!B models a general quantum channel between Alice and
Bob. We believe that one can show that, if the ‘environment’ of
this quantum channel is assumed to be controlled by an adversary
in its entirety as is done in the theory of QKD, then covert and
reliable communication is impossible. This would generalize our
Theorem 1. We also believe that quantum-secure covert
communication is possible only if there is a subsystem of the
channel’s isometric extension that is inaccessible to Willie (this
would be the part of the channel noise that no physical adversary
can control). This would generalize our SRL. To further illustrate
this point, let us consider an Alice-to-Bob bosonic channel with
additive thermal noise, but also assume that Willie possesses a
‘purification’ of that noise. The joint state held by Willie is an
entangled two-mode squeezed vacuum state, each mode of which
is locally in a zero-mean thermal state. Then, even though the half
of the two-mode squeezed vacuum that gets injected into the
channel looks like thermal noise to Alice and Bob, we believe that
one can show that covert communication in this case is
impossible. This scenario is similar to the one in Theorem 1. It
is only when there is some amount of that noise that is not
controlled by Willie—which, for instance, is the case for thermal
noise from blackbody at the given transmission wavelength and
operating temperature—that the SRL for covert communication
applies.

Experimental demonstration of covert communication. Any
form of excess noise that is uncontrollable by Willie can be used
to hide transmissions for covert communication. In addition to
the thermal environment at the operating temperature, this
includes, for example, noise from the detector dark current and
Johnson noise. We chose to use a laser transmitter at 1.55 mm and
SPDs for a proof-of-concept demonstration of the square-root
scaling for covert communication over a bosonic channel. As �nT
is very small at 1.55 mm, to obtain a statistically significant data
set we emulate the adversary uncontrollable excess noise using
the dark counts—erroneous detection events stemming from an
internal spontaneous emission process and thermal blackbody.
First, we extend our theoretical framework for covert commu-
nication to when the excess noise stems from dark counts in
Willie’s detector. The formal theorem statements are in the
Methods and their mathematical proofs are in the Supplementary
Note 3. We consider the (hypothetical) pure-loss channel, for
which Willie’s optimal receiver is an ideal SPD on each mode
(as discussed in the remark following the proof of Theorem 1 in
the Supplementary Note 3). If Willie’s detector has a non-zero
dark count probability, we show (Theorem 3 in Methods)
that using an on–off keying (OOK) coherent state modulation
where Alice transmits the ‘on’ symbol aj i with probability
q ¼ Oð1=

ffiffiffi
n

p
Þ and the ‘off’ symbol |0i with probability 1� q

allows her to reliably transmit Oð
ffiffiffi
n

p
Þ covert bits using n OOK

symbols. We also note that our techniques can be used to derive
the SRL for other sources/statistics of noise as well.

The skewed on–off duty cycle of OOK modulation makes
construction of efficient error correction codes (ECCs)
challenging. Constraining OOK signalling to Q-ary pulse position
modulation (PPM) addresses this issue by sacrificing a small
constant fraction of throughput. Each PPM symbol uses a PPM

frame to transmit a sequence of Q coherent state pulses,
0j i . . . aj i . . . 0j i, encoding message iA{1, 2,y, Q} by transmit-
ting aj i in the ith mode of the PPM frame. Thus, instead of OðnÞ
bits allowed by OOK, PPM lets O

�n logQ
Q

�
bits be transmitted in n

optical modes. However, PPM performs well in the low photon
number regime30 and the symmetry of its symbols enables the use
of many efficient ECCs.

To communicate covertly, Alice and Bob use a fraction
z ¼ Oð

ffiffiffiffiffiffiffiffiffi
Q=n

p
Þ of n/Q available PPM frames on average,

effectively using �n ¼ Oð1=
ffiffiffi
n

p
Þ photons per mode. By keeping

secret which frames they use, Alice and Bob force Willie to
examine them all, increasing the likelihood of dark counts. An
ECC, even one that is known to Willie, ensures reliability.
However, the transmitted pulse positions are scrambled within
the corresponding PPM frames via an operation resembling one-
time pad encryption7, preventing Willie’s exploitation of the
ECC’s structure for detection (rather than protecting the message
content). Theorem 4 demonstrates that, using this protocol, Alice

reliably transmits O
� ffiffiffi

n
Q

q
logQ

�
covert bits at the cost of pre-

sharing O
� ffiffiffi

n
Q

q
log n

�
secret bits.

To demonstrate the square-root scaling of covert communica-
tions we employed the protocol from the proof of Theorem 4 in a
proof-of-concept test-bed implementation. Alice and Bob engage
in an n-mode communication session consisting of n/Q Q-ary
PPM frames, Q¼ 32. Alice transmits zn=Q PPM symbols on
average, using a first-order Reed–Solomon (RS) code for error
correction. RS codes perform well on channels dominated by
erasures, which occur in low receive-power scenarios, for
example, covert and deep space communication31. Alice and
Bob use a (31, 15) RS code. Other modulation/coding schemes
may deliver a constant factor improvement in the volume of
reliably transmissible covert bits; however, in our experiments
RS-over-PPM performs well enough. Optimizing the constant
factor in the big-O notation is outside the scope of this work.
The specifics of the generation of the transmitted signal are
in the Methods. We varied n from 3.2� 106 to 3.2� 107 in
several communication regimes: ‘careful Alice’ ðz ¼ 0:25

ffiffiffiffiffiffiffiffiffi
Q=n

p
Þ,

‘careless Alice’ ðz ¼ 0:03
ffiffiffiffiffiffiffiffiffi
Q=n4

p
Þ and ‘dangerously careless Alice’

(z ¼ 0:003 and z ¼ 0:008). For each ðn; zÞ pair we conducted 100

Laser driver

Alice
(laser) Variable

attenuator Linear
polarizer

PBSC Bob
(SPD)

Detection
eventsWillie

(SPD)

HWP

PCle 6537
DAQ

Electrical links
Fibre optical links
Free-space optical links

Codeword
generation

Figure 2 | Experimental setup. A National Instruments PCIe-6537 data

acquisition card (DAQ), driven by a 1-MHz clock, controlled the experiment,

generating transmissions and reading detection events. Alice generated 1 ns

optical pulses using a temperature-stabilized laser diode with centre

wavelength 1550.2 nm. The pulses were sent into a free-space optical

channel, where a half-wave plate (HWP) and polarizing beamsplitter cube

(PBSC) sent a fraction Zb of light to Bob and the remaining light to Willie.

Bob and Willie’s receivers operated InGaAs Geiger-mode avalanche

photodiode SPDs that were gated with 1 ns reverse bias triggered to match

the arrival of Alice’s pulses.
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experiments and 105 Monte-Carlo simulations, measuring Bob’s
total number of bits received and Willie’s detection error
probability.

The experiment was conducted using a mixture of fibre-based
and free-space optical elements implementing channels from
Alice to both Bob and Willie (see Fig. 2 for a schematic).
Although we recognize that this wavelength does not generally
enable covert practical communications (owing to the lack of
natural noise sources such as solar or thermal background
radiation), this was a convenient wavelength at which to conduct
proof-of-concept laboratory experiments. We provided noise only
during the gating period of the detectors, as continuous wave light
irradiating Geiger-mode avalanche photodiodes suppresses detec-
tion efficiency32. As a substitute to providing external optical
noise we emulated optical noise at the detectors by increasing the
detector gate voltage, thus increasing the detector’s dark click
probability. Although the avalanche photodiode dark counts are
Poisson distributed with mean rate �nN photons per mode, when
�nN � 1 the dark click probability 1� e� �nN is close to �nN

1þ �nN
, the

probability that an incoherent thermal background with mean
photon number per mode �nN produces a click. Thus, the
statistical characteristics of our emulated noise match those of the
noise produced by a thermal environment. Table 1 reports the
experimentally observed estimates and targeted values of dark

click probabilities pðbÞD and pðwÞD of Bob’s and Willie’s detectors, as

well as the mean number of photons detected by Bob �nðbÞdet ¼
ZbZ

ðbÞ
QE�n and Willie �nðwÞdet ¼ ð1� ZbÞZ

ðwÞ
QE �n, where �n ¼ 5 is the mean

photon number of Alice’s pulses, Zb¼ 0.97 is the fraction of light

sent to Bob and ZðbÞQE and ZðwÞQE are the quantum efficiencies of
Bob’s and Willie’s detectors, which we do not explicitly calculate.
We provide additional implementation details in the Methods.

The amount of transmitted information, with other parameters

fixed, is proportional to �nðbÞdet=�n
ðwÞ
det . Our use of emulated noise in

Willie’s detector as well as a choice of �nðbÞdet � �nðwÞdet resulted in
Bob’s signal-to-noise ratio being substantially higher than
Willie’s. This allowed the experiment to gather a statistically
meaningful data sample to validate the SRL in an experimentally
tractable time duration. In an operational free-space laser
communication system, a directional transmitter will probably
yield such an asymmetry in coupling between Bob and Willie;
however, we note that the only fundamental requirement for
implementing information-theoretically secure covert commu-

nication is pðwÞD 40, or �nT40.
Figure 3 reports the number of bits received by Bob from Alice

(with the caption reporting the corresponding symbol error rate)
in our experiments and the theoretical maximum he could receive
(calculated for each regime using the experimentally observed
values from Table 1). Details of our analysis are in the Methods.
Our relatively short RS code achieves between 45% and 60% of
the maximum in the ‘careful Alice’ regime and between 55% and
75% of the maximum in other regimes at reasonable error rates,

showing that even a basic code demonstrates our theoretical
scaling.

Willie’s detection problem can be reduced to a test between
two simple hypotheses where the log-likelihood ratio test
minimizes PðwÞ

e (ref. 33). Figure 4 illustrates Willie’s probability
of error estimates from the experiments and the Monte-Carlo
study, as well as its analytical Gaussian approximation;
implementation details are found in the Methods. Monte-Carlo
simulations show that the Gaussian approximation is accurate.
More importantly, Fig. 4 highlights Alice’s safety when she obeys
SRL and her peril when she does not. When z ¼ Oð1=

ffiffiffi
n

p
Þ, PðwÞ

e
remains constant as n increases. However, for asymptotically
larger z, PðwÞ

e drops at a rate that depends on Alice’s carelessness.
The drop at z ¼ 0:008 vividly demonstrates our converse.

Our choice of 1.55 mm for centre wavelength was driven by the
availability of a laser source and SPDs at that wavelength in our

Table 1 | Optical channel characteristics.

Experimental estimates Willie Bob

p
ðwÞ
D

�n
ðwÞ
det p

ðbÞ
D

�n
ðbÞ
det

z ¼ 0:25
ffiffiffiffiffiffiffiffi
Q=n

p
9.15� 10� 5 0.036 2.99� 10� 6 1.52

z ¼ 0:03
ffiffiffiffiffiffiffiffi
Q=n4

p
9.11� 10� 5 0.032 2.55� 10�6 1.14

z ¼ 0:003 9.29� 10� 5 0.032 2.65� 10�6 1.07
z ¼ 0:008 9.27� 10� 5 0.028 2.68� 10� 6 1.05
Target: 9� 10� 5 0.03 3� 10� 6 1.4
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p
, 8.3� 10� 3 for

z ¼ 0:03
ffiffiffiffiffiffiffiffi
Q=n4

p
, 4.5� 10� 3 for z ¼ 0:003 and 1.8� 10� 1 for z ¼ 0:008.

We also report the maximum number of covert bits that can be decoded by

Bob Cszn
Q , which is computed in the Methods using the experimentally

observed values from Table 1, where Cs is the per-symbol Shannon

capacity10. Given the low observed symbol error rate for z ¼ 0:25
ffiffiffiffiffiffiffiffi
Q=n

p
,

we note that square-root scaling is achievable even using a relatively short

RS code; Fig. 4 demonstrates that this is achieved covertly.
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(computed in the Methods) for the experimental estimates are±0.136; for

the Monte-Carlo simulations, they are ±0.014. Alice transmits zn=Q PPM

symbols on average and Willie’s error probability remains constant when

Alice obeys SRL and uses z ¼ Oð
ffiffiffiffiffiffiffiffi
Q=n

p
Þ; it drops as n increases if Alice

breaks SRL by using an asymptotically larger z.
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laboratory. However, the thermal noise power at 1.55 mm is very
low. If Alice desires to hide her transmissions against the most
powerful adversary permissible by quantum mechanics, she must
rely solely on the background radiation at the operating
wavelength and not on the non-zero dark click probability of
Willie’s detector. Thus, longer wavelengths may be more
attractive for such quantum-secure covert communication.
Consider both Alice and Bob using identical apertures with
10 cm radii and communicating over a 1-km line-of-sight free-
space optical channel. Let us make an extremely conservative
assumption that all the transmitted photons that do not reach
Bob—either because of diffraction-limited loss or the loss from
scattering and absorption by atmospheric aerosols—are available
to Willie. In Fig. 5 we present the performance of quantum-secure
covert communication under these assumptions as a function of
the transmitter’s centre wavelength and transceiver contact
duration. Our calculation spanned the range of wavelengths
from 1 mm to 20 cm. We employ a detailed model of the
atmosphere34 that includes wavelength-dependent loss from
absorption and scattering, as well as wavelength-dependent
noise from solar and blackbody radiation. We calculate the
number of quantum-secure covert bits transmissible using an
infinite set of orthogonal spatial modes, as well as under a
practical restriction to a single focused Gaussian beam. The
details of the calculation are in the Methods.

The results of our analysis illustrated in Fig. 5 support the
optimality of LWIR wavelengths l � 10mmð Þ for quantum-
secure covert communication. We note that at those wavelengths,
the performance of a single focused Gaussian beam almost
matches that of the full orthogonal spatial mode set, thereby
showing that employing multiple spatial beams yields only a
modest benefit. This arises because quantum-secure covert
communication is highly sensitive to the losses of transmitted
photons, as those photons are assumed to be captured by Willie.
As the higher-order spatial modes have progressively higher
diffraction-limited loss (see the Supplementary Note 1), their
benefit to covert communication is not significant. Diffraction-
limited loss also precludes covert communication at longer

wavelengths, even though the amount of background noise is
substantially greater. On the other hand, although shorter
wavelengths support smaller diffraction-limited loss and a greater
number of orthogonal spatial modes with suitable input–output
power transfer, the power of background noise is insufficient to
hide a significant amount of covert data. That being said, relaxing
the assumptions on Willie’s capabilities (for example, allowing
him to capture only a fraction of transmitted photons that are not
received by Bob) will certainly benefit covert communication and
may change the optimal centre wavelength. However, we defer
this to future work.

Discussion
We determined that quantum-secure covert communication is
achievable over a lossy–noisy bosonic channel, provided that the
adversary’s measurement is subject to non-adversarial excess
noise. Excess noise that is not controlled by the adversary is
crucial, as we show that an adversary with full control over all
noise sources can prevent covert communication, in contrast to
the QKD scenario. Excess noise affecting practical detectors
(for example, blackbody radiation and dark counts) allows
covert communication, as demonstrated for the first time in
our proof-of-concept optical covert communication experiment.

Our contributions motivate exploration of many open
questions in quantum-secure covert communication. We stated
the problem of generalizing the quantum-secure covert commu-
nication results of this paper to arbitrary quantum channels.
Furthermore, even for the bosonic channel, exact characterization
of the covert communication volume is a significant open
problem. The analysis in the remark following the proof of
Theorem 2 in the Supplementary Note 3 provides insight into the
relationship between the maximum quantum-secure covert
communication throughput, the system parameters (reliability
and detectability) and channel parameters (noise power level and
transmissivity). However, establishing the exact relationship,
as was done for classical covert communication13,14, would
yield the equivalent of the channel capacity in standard reliable
communication and enable characterization of the structured
receivers that attain this maximum.

The success of our proof-of-concept demonstration naturally
calls for a full experimental validation of quantum-secure
covert communication that only relies on naturally occurring
background noise from the blackbody and solar radiance. Optical
signalling at shorter wavelengths is usually deemed particularly
attractive for covert communication in free space because of its
narrow diffraction-limited beam spread in free space35,36 (which
leads to smaller loss compared with longer wavelengths for a
given channel geometry). However, we show that the amount of
transmissible covert data critically depends on the channel’s
thermal noise, which is much stronger at longer wavelengths.
Therefore, wavelength-dependent atmospheric loss and
scattering, as well as wavelength-dependent total thermal
radiation afflicting all receivers must be taken into account
when analysing covert communication. Our calculations of
quantum-secure covert communication throughput indicate
that the LWIR regime provides the optimal balance of noise
from blackbody radiation and diffraction-limited losses. We also
show the feasibility of implementing quantum-secure covert
communication using standard laser equipment, and that a single
Gaussian focused beam achieves performance close to that of a
system employing an infinite set of orthogonal spatial modes.
That said, our analysis assumes the most powerful adversary
imaginable and the impact of relaxing the assumptions on
adversary’s capabilities should be investigated.

Finally, our recent results on jammer-assisted covert commu-
nication37 also motivate the extension of this work to networked
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Figure 5 | Quantum-secure covert communication performance. Alice

and Bob are separated by an L¼ 1 km line-of-sight channel and use equal-

sized r¼ 10 cm aperture radii. We assume aW¼ 10GHz source bandwidth.

Although we calculate the number of covertly transmitted bits for centre

wavelength l ranging from 1mm to 20 cm, it is 0 for l � 25mm and thus not

plotted. The details of the calculation are in the Methods. We use the

MODTRAN ‘Mid-Latitude Summer (MLS)’ atmospheric model34 at a 10-m

elevation from the ground level with 23 km visibility in clear weather

propagation for estimating the atmospheric extinction due to scattering and

absorption. For thermal background estimation, we use the total radiance at

a 60� solar elevation from the same MODTRAN model. The optimal centre

wavelength is 9.58mm, where the use of all available spatial modes results

in only 10% increase in covert information transmitted.
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settings, where friendly jammers aid stealthy communication by
generating uncoordinated random chatter.

Methods
Covert communication theorems. Here we state our theorems, with proofs in the
Supplementary Note 3. Each theorem can be classified as either an ‘achievability’ or
a ‘converse’. Achievability theorems (2, 3 and 4) establish the lower limit on the
amount of information that can be covertly transmitted from Alice to Bob, whereas
the converse theorems (1 and 5) demonstrate the upper limit. In essence, the
achievability results are obtained by the following steps: fixing Alice’s and Bob’s
communication system and revealing its construction in entirety (except the shared
secret) to Willie; showing that, even with such information, any detector Willie can
choose within some natural constraints is ineffective at discriminating Alice’s
transmission state; and demonstrating that the transmission can be reliably
decoded by Bob using the shared secret. On the other hand, converses are
established by: fixing Willie’s detection scheme (and revealing it to Alice and Bob)
and demonstrating that no amount of resources allows Alice to both remain
undetected by Willie and exceed the upper limit on the amount of
information that is reliably transmitted to Bob. We start by claiming the inability
to instantiate covert communication in the absence of excess noise.

Theorem 1. Suppose Willie has a pure-loss channel from Alice and is limited
only by the laws of physics in his receiver measurement choice. Then Alice cannot
communicate to Bob reliably and covertly even if Alice and Bob have access to a
pre-shared secret of unbounded size, an unattenuated observation of the
transmission and a quantum-optimal receiver.

Next, we claim the achievability of the SRL when Willie’s channel is subject to
excess noise. We first consider a lossy bosonic channel with additive thermal noise
and claim achievability even when Willie has arbitrary resources such as any
quantum-limited measurement on the isometric extension of the Alice-to-Bob
quantum channel (that is, access to all signalling photons not captured by Bob).

Theorem 2. Suppose Willie has access to an arbitrarily complex receiver
measurement as permitted by the laws of quantum physics and can capture all the
photons transmitted by Alice that do not reach Bob. Let Willie’s channel from
Alice be subject to noise from a thermal environment that injects �nT40 photons
per mode on average and let Alice and Bob share a secret of sufficient length before
communicating. Then Alice can lower bound Willie’s detection error probability
PðwÞ

e � 1
2 � E for any E40, while reliably transmitting Oð

ffiffiffi
n

p
Þ bits to Bob in n

modes even if Bob only has access to a (sub-optimal) coherent detection receiver,
such as an optical homodyne detector.

In the remaining theorems, Willie’s detector is a noisy photon number resolving
(PNR) receiver. An ideal PNR receiver is an asymptotically optimal detector
for Willie in the pure-loss regime (as discussed in the remark following the
proof of Theorem 1 in the Supplementary Note 3). However, any practical
implementation of a PNR receiver has a non-zero dark current. It is also worth
noting that a PNR receiver can be used to mimic an SPD (but not vice versa).
Theorems 3 and 4 show that noise from the resulting dark counts enables covert
communication even over a pure-loss channel. We model the dark counts per
mode in Willie’s PNR detector as a Poisson process with average number of dark
counts per mode lw.

Theorem 3. Suppose that Willie has a pure-loss channel from Alice, captures all
photons transmitted by Alice that do not reach Bob, but is limited to a receiver
with a non-zero dark current. Let Alice and Bob share a secret of sufficient length
before communicating. Then Alice can lower bound Willie’s detection error
probability PðwÞ

e � 1
2 � E for any E40, while reliably transmitting Oð

ffiffiffi
n

p
Þ bits to

Bob in n modes.
The proof of Theorem 3 demonstrates that Oð

ffiffiffi
n

p
Þ covert bits can be reliably

transmitted using OOK coherent state modulation where Alice transmits the ‘on’
symbol aj i with probability q ¼ Oð1=

ffiffiffi
n

p
Þ and the ‘off’ symbol |0i with probability

1� q. However, the skewed on–off duty cycle of OOK modulation makes
construction of efficient ECCs challenging. We thus consider PPM, which
constrains the OOK signalling scheme, enabling the use of many efficient ECCs by
sacrificing a constant fraction of throughput. Each PPM symbol uses a PPM frame
to transmit a sequence of Q coherent state pulses, 0j i . . . aj i . . . 0j i, encoding
message iA{1, 2,y, Q} by transmitting aj i in the ith mode of the PPM frame. Next,
we claim that the square-root scaling is achievable under this structural constraint.

Theorem 4. Suppose that Willie has a pure-loss channel from Alice, can capture
all photons transmitted by Alice that do not reach Bob, but is limited to a PNR
receiver with a non-zero dark current. Let Alice and Bob share a secret of sufficient
length before communicating. Then Alice can lower bound Willie’s detection error

probability PðwÞ
e � 1

2 � E for any E40, while reliably transmitting Oð
ffiffiffi
n
Q

q
logQÞ bits

to Bob using n modes and a Q-ary PPM constellation.
Finally, we claim the unsurmountability of the SRL. We assume non-zero

thermal noise �nT40ð Þ in the channel and non-zero dark count rate lw40ð Þ in
Willie’s detector. Setting lw ¼ 0 yields the converse for Theorem 2 and setting
�nT ¼ 0 yields the converse for Theorems 3 and 4. Setting lw ¼ 0 and �nT ¼ 0 yields
the conditions for Theorem 1. To state the theorem, we use the following
asymptotic notation38: we say f ðnÞ ¼ oðgðnÞÞ when g(n) is a lower bound that is
not asymptotically tight.

Theorem 5. Suppose Alice only uses n-mode codewords with total photon
number variance s2x ¼ OðnÞ. Then, if she attempts to transmit oð

ffiffiffi
n

p
Þ bits in n

modes, as n-N, she is either detected by Willie with arbitrarily low detection
error probability or Bob cannot decode with arbitrarily low decoding error
probability.

The restriction on the photon number variance of Alice’s input states is not
onerous, as it subsumes all well-known quantum states of a bosonic mode.
However, proving this theorem for input states with unbounded photon number
variance per mode remains an open problem.

Next, we provide details of the experimental methodology.

Alice’s encoder. Before communication, Alice and Bob secretly and jointly select a
random subset S of PPM frames to use for transmission: each of the n/Q available
PPM frames is selected independently with probability z. Alice and Bob then
secretly generate a vector k containing Sj j integers selected independently and
uniformly at random from {0, 1,y, Q-1}, where Sj j denotes the cardinality of S.
Alice encodes a message into a codeword of size Sj j using an RS code. She adds k
modulo-Q to this message and transmits it on the PPM frames in S. We note that
this is almost identical to the construction of the coding scheme in the proof of
Theorem 4 (see the Supplementary Note 3), with the exception of the use of an RS
code for error correction.

Generation of transmitted symbols. Alice generates the length-n binary sequence
describing the transmitted signal, with a ‘1’ at a given location indicating a pulse in
that mode and a ‘0’ indicating the absence of a pulse. First, Alice encodes random
data, organized into Q-ary symbols, with an RS code and modulo-Q addition of k
to produce a coded sequence of Q-ary symbols. The value of the ith symbol in this
sequence indicates which mode in the ith PPM symbol in the set S contains a
pulse, whereas all modes of the PPM frames not in S remain empty. Mapping
occupied modes to ‘1’ and unoccupied modes to ‘0’ results in the desired length-n
binary sequence.

To accurately estimate Willie’s detection error probability in the face of optical
power fluctuations, the above binary sequence is alternated with a sequence of n
‘0’s, to produce a final length-2n sequence that is passed to the experimental setup.
Willie gets a ‘clean’ look at the channel when Alice is silent using these interleaved
‘0’s, thus allowing the estimation of both the false alarm and the missed detection
probabilities under the same conditions. Bob simply discards the interleaved ‘0’s.

Additional implementation details. Geiger-mode photodiodes have to reset after
each detection event, resulting in a deterministic number of no-clicks always
following a click39. This is known as the dead time td of a detector, and, in our
experiment, td¼ 16 observation periods.

We used the following maximum likelihood estimator of the dark click
probability to calculate the estimates of pD in Table 1:

p̂D ¼
PnD

i¼1 xi
nD � td

PnD
i¼1 xi

; ð1Þ

where x1; . . . ; xnD is the sequence of nD observations where only the dark clicks
can be observed, that is, it is the experimental click record that excludes the
observations of Alice’s transmissions as well as the dead time following the detected
transmissions. We provide extensive analysis of detector dark clicks in the
Supplementary Note 7. Although Supplementary Figs 1 and 2 show that, during
our experiments, the dark click probability varied with time, Supplementary Fig. 3
demonstrates that the effect of this variation on our analysis is minimal.

Bob’s decoder. Bob examines only the PPM frames in S. If two or more pulses are
detected in a PPM frame, one of them is selected uniformly at random. If no pulses
are detected, it is labelled as an erasure. After subtracting k modulo-Q from this
vector of PPM symbols (subtraction is not performed on erasures), the resultant
vector is passed to the RS decoder.

For each experiment we record the total number of bits in the successfully
decoded codewords; the undecoded codewords are discarded. For each pair of
parameters ðz; nÞ we report the mean of the total number of decoded bits over 100
experiments. The reported symbol error rate is the total number of lost data
symbols during all the experiments at the specified communication regime divided
by the total number of data symbols transmitted during these experiments. The
calculation of the maximum number of covert bits that can be received by Bob is
presented in the Supplementary Note 4.

Willie’s detector. Willie’s detection problem can be reduced to a test between two
simple hypotheses where the log-likelihood ratio test minimizes PðwÞ

e (ref. 33). The
test statistic for the log-likelihood ratio test is derived in the Supplementary Note 5
and is simply the total number of clicks Y observed by Willie. Willie compares Y
with a threshold S, accusing Alice if YZS. Willie chooses the value of S that
minimizes Willie’s detection error probability PðwÞ

e .
For each pair of parameters ðn; zÞ as well as Alice’s transmission state,

we perform m experiments, recording the observed number of clicks Y.

We denote by fY ð0Þ
i gmi¼1 and fYð1Þ

i gmi¼1 the sequences of experimentally observed
click counts when Alice does not transmit and transmits, respectively. To estimate
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Willie’s detection error probability PðwÞ
e , we construct empirical distribution

functions F̂ð0Þ
m ðxÞ ¼ 1

n

Pm
i¼1 1Y ð0Þ

i �x
ðxÞ and F̂ð1Þ

m ðxÞ ¼ 1
m

Pm
i¼1 1Yð1Þ

i �x
ðxÞ, where

1AðxÞ ¼ 1 if x 2 A; 0 if x=2Af g denotes the indicator function. The estimated
probability of error is then

P̂ðwÞ
e ¼ 1

2
min
S
ð1� F̂ð0Þ

m ðSÞþ F̂ð1Þ
m ðSÞÞ: ð2Þ

We perform a Monte-Carlo study using 105 simulations per ðn; zÞ pair. We
generate, encode and detect the messages as in the physical experiment and use
equation (2) to estimate Willie’s probability of error, but simulate the optical
channel induced by our choice of a laser-light transmitter and an SPD using its
estimated characteristics reported in Table 1. Similarly, we use the values in Table 1
for our analytical Gaussian approximation of PðwÞ

e described in the Supplementary
Note 6.

We compute the confidence intervals for the estimate in equation (2) using
Dvoretzky–Keifer–Wolfowitz inequality40,41, which relates the distribution
function FX(x) of random variable X to the empirical distribution function
F̂mðxÞ ¼ 1

m

Pm
i¼1 1Xi�xðxÞ associated with a sequence fXigmi¼1 of m i.i.d. draws of

the random variable X as follows:

Pðsup
x

j F̂mðxÞ� FXðxÞ j 4xÞ � 2e� 2mx2 ; ð3Þ

where x40. For x0, the (1� a) confidence interval for the empirical estimate of

F(x0) is given by ½maxfF̂mðx0Þ� x; 0g;minfF̂mðx0Þþ x; 1g	 where x ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
logð2=aÞ

2m

q
.

Thus, 
 x is used for reporting the confidence intervals in Fig. 4.

Calculation of the number of quantum-secure covert bits. We employ all the
degrees of freedom of the photon, as described in the Supplementary Note 1. We
could calculate covert communication volume for any aperture shape. However, we
assume that Alice and Bob use soft Gaussian-attenuated apertures in the trans-
mitter and receiver pupil, respectively. This makes the input–output eigenmodes
either Laguerre–Gaussian or Hermite–Gaussian spatial modes, whose input–output
power transmissivities have simple analytically tractable expressions. Thus, the set
of parallel channels available to Alice and Bob is countably infinite and contains q
independent channels, q¼ 1, 2,y, with diffraction-limited
transmissivity Zq, whose expression is given by equation (4) in the Supplementary
Note 1. Transmissivity decays exponentially with increasing q and, as we assume
that Willie captures all the photons not received by Bob, the potential benefit from
using modes with higher indices (and low transmissivity) may be outweighed by
the increased risk of detection.

In the proof of Theorem 2 in the Supplementary Note 3, Alice ensures
ineffectiveness of Willie’s detector by upper bounding the quantum relative entropy
(QRE) between states r̂� n

0 and r̂� n
1 corresponding to Willie’s observations when

Alice is quiet and transmitting, respectively. Effectively, equations (42), (43) and
(45) in the Supplementary Note 3 establish a quadratic constraint on Alice’s mean
photon number per mode �n. The proof of Theorem 2 assumes n orthogonal modes
corresponding to n identical parallel channels each with transmissivity Z. The
additivity of QRE allows a trivial extension to orthogonal modes corresponding to
parallel channels with different transmissivities. However, finding the maximum
number of reliably transmissible covert bits requires solving the following
constrained optimization problem:

Maximize
ð�nqÞq2Zþ

2TW
X1
q¼1

qRð�nq; gq; �nTÞ ð4Þ

Subject to 2TW
X1
q¼1

qDð�nq; gq; �nTÞ � 8E2 ð5Þ

�nq � 0; ð6Þ

where Zþ denotes the set of positive integers, �nq is the mean photon number per
mode transmitted on all q channels with transmissivity gq , Rð�nq; gq; �nTÞ denotes
transmitted bits per mode and Dð�nq; gq; �nTÞ is the per-mode contribution to the
total QRE by the transmission. Transmissivity is the product gq ¼ ZqZc, where Zq is
the diffraction-limited transmissivity given by equation (4) in the Supplementary
Note 1 and Zc accounts for the loss from scattering and absorption by the
environment provided by the MODTRAN model. The thermal noise mean photon
number per mode �nT is calculated using equation (40) in ref. 42, from the total
solar and blackbody radiance provided by the MODTRAN model. Thus, Zq, Zc and
�nT depend on the transmission centre wavelength l. It is worth noting that solving
the optimization problem is not necessary to calculate the covert volume using a
single Gaussian beam, as this only employs a single channel (q¼ 1). The remaining
details, including the solution to the optimization problem in equations (4) to (6),
are in the Supplementary Note 8.

References
1. Menezes, A. J., Vanstone, S. A. & Oorschot, P. C. V. Handbook of Applied

Cryptography 1st edn (CRC Press, Inc., 1996).

2. Talbot, J. & Welsh, D. Complexity and Cryptography: An Introduction
(Cambridge University Press, 2006).

3. Wyner, A. D. The wiretap channel. Bell Syst. Tech. J. 54, 1355 (1975).
4. Csiszár, I. & Körner, J. Broadcast channels with confidential messages. IEEE T

Inform Theory 24, 339–348 (1978).
5. Bloch, M. & Barros, J. Physical-Layer Security (Cambridge Univ. Press,

2011).
6. Bennett, C. H. & Brassard, G. in Proceedings of IEEE International Conference

On Computers, Systems, and Signal Processing 175–179 (Bangalore, India,
1984).

7. Shannon, C. E. Communication theory of security. Bell Syst. Tech. J. 28,
656–715 (1949).

8. Simon, M. K., Omura, J. K., Scholtz, R. A. & Levitt, B. K. Spread Spectrum
Communications Handbook revised edn (McGraw-Hill, 1994).

9. Fridrich, J. Steganography in Digital Media: Principles, Algorithms, and
Applications 1st edn (Cambridge Univ. Press, 2009).

10. Shannon, C. E. A mathematical theory of communication. Bell Syst. Tech. J. 27,
379–423, 623–656 (1948).

11. Bash, B. A., Goeckel, D. & Towsley, D. Limits of reliable communication with
low probability of detection in AWGN channels. IEEE J. Sel. Areas Commun.
31, 1921–1930 (2013).

12. Bash, B. A., Goeckel, D. & Towsley, D. in Proceedings of IEEE International
Symposium on Information Theory (ISIT) 448–452 (Cambridge, MA, USA,
2012).

13. Bloch, M. in Proceedings of IEEE International Symposium on Information
Theory (ISIT) (Hong Kong, China, 2015).

14. Wang, L., Wornell, G. W. & Zhang, L. in Proceedings of IEEE International
Symposium on Information Theory (ISIT) (Hong Kong, China, 2015).

15. Bash, B. A., Goeckel, D. & Towsley, D. in Proceedings of IEEE International
Symposium on Information Theory (ISIT) 606–610 (Honolulu, HI, USA, 2014).

16. Che, P. H., Bakshi, M. & Jaggi, S. in Proceedings of IEEE International
Symposium on Information Theory (ISIT) 2945–2949 (Istanbul, Turkey, 2013).

17. Kadhe, S., Jaggi, S., Bakshi, M. & Sprintson, A. in Proceedings of IEEE
International Symposium on Information Theory (ISIT) 611–615 (Honolulu,
HI, USA, 2014).

18. Hou, J. & Kramer, G. in Proceedings of IEEE International Symposium on
Information Theory (ISIT) 601–605 (Honolulu, HI, USA, 2014).

19. Ker, A. D. Lecture Notes in Computer Science vol. 4437, 265–281 (Springer,
2007).

20. Filler, T., Ker, A. D. & Fridrich, J. in Proceedings of SPIE 7254, Media Forensics
and Security (eds Delp, E. J., Dittmann, J., Memon, N. D. & Wong, P. W.)
725408 (2009).

21. Ker, A. D. in Proceedings of the 11th ACM Workshop on Multimedia and
Security 85–92 (Princeton, NJ, USA, 2009).

22. Ker, A. D. in Proceedings of the 12th ACM Workshop on Multimedia and
Security 213–224 (Rome, Italy, 2010).

23. Shaw, B. A. & Brun, T. A. Quantum steganography with noisy quantum
channels. Phys. Rev. A 83, 022310 (2011).

24. Craver, S. & Yu, J. in Proceedings of SPIE 7541, Media Forensics and Security II
(eds Memon, M. D., Dittmann, J., Alattar, A. M. & Delp III, E. J.) 754103
(2010).

25. Giovannetti, V. et al. Classical capacity of the lossy bosonic channel: the exact
solution. Phys. Rev. Lett. 92, 027902 (2004).
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