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Three alternative forms of harmonic spectra, based on the dipole moment, dipole velocity, and dipole

acceleration, are compared by a numerical solution of the Schrödinger equation for a hydrogen atom interact-

ing with a linearly polarized laser pulse, whose electric field is given by E�t�=E0f�t�cos��0t+�� with Gaussian

carrier envelope f�t�=exp�−t2
/�2�. The carrier frequency �0 is fixed to correspond to a wavelength of 800 nm.

Spectra for a selection of pulses, for which the intensity I0=c�0E0
2, duration T��, and carrier-envelope phase

� are systematically varied, show that, depending on �, all three forms are in good agreement for “weak”

pulses with I0� Ib, the over-barrier ionization threshold, but that marked differences among the three appear as

the pulse becomes shorter and stronger �I0� Ib�. Except for scalings by powers of the harmonic frequency, the

three forms differ from one another only by “limit contributions” proportional to the expectation values of the

dipole moment �z�t f�� or dipole velocity �ż�t f�� at the end �t f� of the pulse. For long, weak pulses the limit

contributions are negligible, whereas for short, strong ones they are not. In the short, strong limit, where

�ż�t f���0 and therefore �z�t�� may increase without bound �i.e., the atom may ionize�, depending on �, an

“infinite-time” spectrum based on the acceleration form provides a convenient computational pathway to the

corresponding infinite-time dipole-velocity spectrum, which is related directly to the experimentally measured

“harmonic photon number spectrum” �HPNS�. For short, intense pulses the HPNS is quite sensitive to � and

exhibits not only the usual odd harmonics but also even ones. The analysis also reveals that most of the

harmonic photons are emitted during the passage of the pulse. Because of the divergence of �z�t�� the dipole-

moment form does not provide a numerically reliable route to the harmonic spectrum for very short �few-

cycle�, very intense laser pulses.

DOI: 10.1103/PhysRevA.79.023403 PACS number�s�: 42.65.Ky, 32.80.Wr, 42.50.Hz

I. INTRODUCTION

High-harmonic generation �HHG�—the phenomenon in

which low-frequency �infrared� radiation is converted, by the

interaction of a laser pulse with a low-density gas, for ex-

ample, to higher frequencies that are integer multiples �har-

monics� of the low frequency—holds promise as a source of

intense, coherent, short-wavelength radiation for such new

practical applications as time-dependent x-ray scattering �1�
and attosecond pulse generation �2�. Most theoretical de-

scriptions of HHG consider a single atom �or molecule�,
which is usually assumed to have a single “active” valence

electron driven by an external electric field representing the

laser pulse �see, however, Ref. �3��. The frequency distribu-

tion of the harmonic radiation, to which we shall henceforth

loosely refer in the present context as the “harmonic spec-

trum,” is variously described for single atoms as being pro-

portional to the squared magnitude of the Fourier transform

�FT� of the expectation value of either the dipole moment

�4–12�, the dipole acceleration �1,8,9,11–19�, or the dipole

velocity �12,20�. We are aware of just a single previous com-

parison of dipole, dipole-velocity, and dipole-acceleration

forms based on accurate solutions of the time-dependent

Schrödinger equation, but this was restricted to rates of har-

monic generation by periodic, or continuous-wave fields at

low intensity and infinite duration �21�. Expressions for the

harmonic spectrum that are proportional to the �double� FT

of the time-autocorrelation function of the dipole moment

�4� or the dipole velocity �20� scale as the square of the

density of the gas, reflecting the cooperativity of HHG, as

observed, for example, by Lorin et al. �22�, who employed

coupled Maxwell-Schrödinger equations to simulate HHG in

a one-dimensional model of H2
+ gas.

An important work in the present context is that of Bur-

nett et al. �13�. Alluding to a remark by Sundaram and

Milonni �4� that the total power radiated by an atomic dipole

is proportional to the expectation value of the squared accel-

eration, they questioned the use of the dipole form of the

harmonic spectrum, implying that the correct form is propor-

tional to the FT of the squared magnitude of the expectation

value of the dipole acceleration. By means of integration by

parts, they derived a relationship between the FTs of the

dipole and dipole acceleration, which involve limit contribu-

tions depending on the expectation values of the dipole mo-

ment and dipole velocity at the end of the laser pulse. They

compared “power spectra” for a one-dimensional model

atom, finding good agreement between dipole and dipole-

acceleration spectra at low intensity, but marked differences

between them at high intensity. Stating that it is impractical

to compute the dipole-acceleration spectrum by correcting

the dipole-moment spectrum with the limit contributions,

Burnett et al. recommended calculating the acceleration

spectrum directly. Some researchers have subsequently fol-

lowed their advice, while others have adhered to the dipole
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form, or in some cases have used both. For example, numeri-
cally accurate simulations of HHG for the three-dimensional
�3D� hydrogen-molecular ion show that the acceleration
form is preferable for the strong-field approximation to an-
gular distributions of the harmonic radiation �9�. However,

other simulations of HHG for a one-electron 3D diatomic

molecule, based on the strong-field approximation �7�, indi-

cated that the dipole-velocity form of the strong-field limit

“gives the closest agreement with exact results” �12�.
The purpose of this paper is to explore the connections

among the three forms �i.e., dipole-moment, dipole-velocity,

and dipole-acceleration� of the harmonic spectrum that have

been considered previously �1,3–19�. We present and com-

pare the three forms computed from accurate numerical so-

lutions of the Schrödinger equation for the interaction of a

hydrogen atom �H� with a linearly polarized laser pulse.

Note that for the present purpose we invoke no approxima-

tions �e.g., the strong-field approximation �7,12��, because

they may affect the results for the three forms differently. We

fix the carrier frequency of the pulse. We vary the intensity

from “low” �I0� Ib, the over-barrier ionization threshold� to

“high” �I0� Ib�. Motivated by recent experimental advances

in the production of single-cycle pulses �23�, we vary the

duration from 16 down to 3 optical cycles. Likewise, results

of a “double-slit” experiment in the attosecond time domain

�24�, which are quite sensitive to the carrier-envelope phase

�CEP� of the laser pulse, have induced us to examine the

influence of the CEP on the harmonic spectra. Special atten-

tion is paid to the dipole-velocity form, which is directly

related to the “harmonic photon number spectrum” �HPNS�
�20� measured experimentally for dilute atomic gases.

II. THEORY

Consider a linearly �z-� polarized laser pulse with z com-

ponent of the electric field E�t� interacting with an H atom.

The Hamiltonian governing the motion of the electron rela-

tive to the nucleus can be expressed as

H�t� =
p2

2
−

1

r
+ zE�t� = Ha + W�t� , �2.1�

where Ha�p2
/2−1 /r refers to the isolated atom. The form

of the matter-radiation interaction indicates that the descrip-

tion is cast in the length gauge in the long-wavelength ap-

proximation. Here and below, except where it is stated oth-

erwise, we employ atomic units: a0, � /mea0, and �2
/me

2a0
3

for length, velocity, and acceleration, respectively; Eh /ea0

for the electric field; and �ea0�2 for harmonic spectra. �me

stands for the mass of the electron, e for the magnitude of its

charge, a0 for the Bohr radius, and � for Planck’s �modified�
constant; Eh��2

/mea0
2.�

The wave packet describing the relative motion in spheri-

cal polar coordinates satisfies the Schrödinger equation

i
�	�r,
,�,t�

�t
= �−

1

2r2

�

�r
	r2

�

�r

 +

L2

2r2
−

1

r

+ r cos 
 E�t��	�r,
,�,t� , �2.2�

where L is the orbital angular momentum. We assume that

the H atom occupies the ground state �1s� initially �i.e., at

t= ti�. Since the potential energy to which the electron is

subject is cylindrically symmetric, as is the initial state of the

atom, the wave packet must remain cylindrically symmetric

as it evolves. The z component of L therefore vanishes; that

is, the magnetic quantum number m is restricted to zero. As

a consequence, the wave function can be represented in the

�restricted� basis of normalized eigenfunctions of L2 as

	�r,t� = 	�r,
,�,t� = �
l

Rl�r,t�Y l0�
,�� , �2.3�

where

Y l0�
,�� = �2l + 1�/4�Pl�cos 
� . �2.4�

Substituting Eq. �2.3� into Eq. �2.2� and projecting both

members of the resulting equation onto Y l0 �i.e., multiplying

both sides by the operator �dY
l0
* . . ., where d

=sin 
d
d� represents the element of solid angle�, we obtain

the following set of coupled second-order partial differential

equations for the radial wave functions

i
�Rl�r,t�

�t
= �−

1

2r2

�

�r
	r2

�

�r

 +

l�l + 1�
2r2

−
1

r
�Rl�r,t�

+
lrE�t�Rl−1�r,t�

�2l − 1��2l + 1�
+

�l + 1�rE�t�Rl+1�r,t�
�2l + 1��2l + 3�

,

l = 0,1,2 . . . , �2.5�

where we have used Eq. �A2� of Appendix A. The �Rl�r , t��
are subject to the initial conditions

Rl�r,ti� = �2e−r, l = 0

0, l � 1,
� �2.6�

where 2e−r is the normalized radial factor of the 1s wave

function.

We describe the harmonic spectrum D��� in three alter-

native forms: D��� is equal to the squared magnitude of the

FT of the expectation value of either the dipole moment �−z�,
the dipole velocity �−ż�, or the dipole acceleration �−z̈�.
Thus, we set

D���� = ������2, �2.7�

where

���� � �
ti

tf

dt exp�− i�t����t�� , �2.8�

and

���t�� = �	�t����	�t��, � = − z,− ż,− z̈ . �2.9�

As indicated by Eq. �2.9�, in atomic units the dipole moment

�=−z is the negative of the z coordinate of the electron rela-

tive to the nucleus. Since the harmonic spectra defined by

Eqs. �2.7� and �2.8� do not depend on the sign of �, for

notational economy we suppress the minus sign, although we

continue to refer to the coordinate z loosely as the dipole

moment, bearing in mind the absent minus sign.
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Using Eqs. �2.3�, �2.4�, and �2.9�, we can write the expec-

tation value of the dipole moment itself as

�z�t�� = �
l

�
k

�
0

�

drr3R
l
*�r,t�Rk�r,t�� dY

l0
* cos 
Yk0

= 2�
l

�l + 1�
�2l + 1��2l + 3�

Re��
0

�

drr3R
l
*�r,t�Rl+1�r,t�� ,

�2.10�

where the second line of Eq. �2.10� follows from the prop-

erties of the Legendre polynomials �see Appendix A, Eq.

�A2��.
The dipole velocity is given by

ż = �i�−1�z,H� = �H/�pz = pz, �2.11�

where pz is the z component of the relative momentum and

the last member of Eq. �2.11� depends on Eq. �2.1�. Hence

the expectation value of the dipole velocity can be written

�ż�t�� = �	�t��pz�	�t�� = − i� dr	*�r,t�
�

�z
	�r,t� .

�2.12�

Using Eq. �2.3� and the relation

�

�z
= cos 


�

�r
−

sin 


r

�

�

, �2.13�

we can rewrite Eq. �2.12� as

�ż�t�� = − i�
l

�
k

�
0

�

drr2� dR
l
*�r,t�Y

l0
*

��cos 

�

�r
−

sin 


r

�

�

�Rk�r,t�Yk0. �2.14�

A lengthy analysis �see Appendix B� yields

�ż�t�� = 2�
l

�l + 1�
�2l + 1��2l + 3�

��Im��
0

�

drr2
�Rl�r,t�

dr
R

l+1
* �r,t��

− l Im��
0

�

drrRlRl+1
* �� . �2.15�

In analogy with Eq. �2.11�, we can express the dipole

acceleration as

z̈ = �i�−1�ż,H� = �i�−1�pz,H� = − �H/�z . �2.16�

From the last member of Eq. �2.16� and Eq. �2.1� we deduce

z̈ =
�r−1

�z
− E�t� = − zr−3 − E�t� . �2.17�

Combining Eqs. �2.3� and �2.17�, we get

�z̈�t�� = − �	�t��zr−3�	�t�� − E�t�

= − �
l

�
k

�
0

�

drR
l
*�r,t�Rk�r,t�

�� dY
l0
* cos 
Yk0 − E�t�

= − 2�
l

�l + 1�
�2l + 1��2l + 3�

�Re��
0

�

drR
l
*�r,t�Rl+1�r,t�� − E�t� , �2.18�

where we utilize Eq. �A2� to obtain the third line of Eq.

�2.18�.
The three forms of harmonic spectra we are considering

can be related to one another as follows. Using the defini-

tions in Eqs. �2.8� and �2.9�, we write the FT of ż explicitly

as

ż��� = �
ti

tf

dte−i�t�ż�t�� . �2.19�

Integrating by parts, we obtain

ż��� = ei�tf�z�t f�� + i�z��� , �2.20�

where the condition �z�ti��=0, which follows from the

spherical symmetry of the initial state, is implicit. From Eqs.

�2.7� and �2.20� we deduce the relationship between the di-

pole and dipole-velocity forms of the harmonic spectrum

Dż��� = �z�t f��
2 − 2��z�t f��Im�ei�tfz���� + �2Dz��� ,

�2.21�

where the limit contribution of the dipole moment �z�t f�� is

manifest. The alternative integration by parts of ż��� yields

z̈��� = i�ż��� − ei�tf�ż�t f�� , �2.22�

where we have invoked the symmetry-dictated condition

�ż�ti��=0. �Note that this condition differs from that imposed

in the tunneling-ionization model �25�, which assumes the

instantaneous initial condition ż�ti�=0; see the discussion

just above Eq. �4.1�.� Using Eqs �2.7� and �2.22�, we obtain

the following relationship between the dipole-velocity and

dipole-acceleration forms of the harmonic spectrum:

Dz̈��� = − �ż�t f��
2 + 2�ż�t f��Re�ei�tfz̈���� + �2Dż��� .

�2.23�

In Eq. �2.23� the limit contribution of the dipole velocity

appears, in analogy with that of the dipole itself in Eq.

�2.21�.
From Eqs. �2.21� and �2.23� it is clear that the three forms

of harmonic spectra �with proper scalings by powers of ��
may be identical, or nearly so, or may differ radically, de-

pending on the values of �z�t f�� and �ż�t f�� �i.e., whether

these values are zero, or nearly so, or are quite different from

zero�. We show that �z�t f�� and �ż�t f�� depend significantly on

the parameters that specify the laser pulse �e.g., the duration,

intensity, and CEP�. Suppose, for example, that �z�t f��
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��ż�t f���0. Then the three forms are simply related by the

expression

Dz̈��� � �2Dż��� � �4Dz��� . �2.24�

The expression Dz̈�����4Dz��� is implicit in relations

given by Burnett et al. �13�. We note that all members of Eq.

�2.24� have dimensions Q2L2T−2 �where Q stands for charge,

L for length, and T for time�. Following a previously estab-

lished convention �19�, we define the various harmonic spec-

tra by

Pz��� � Dz���/T2, �2.25a�

Pż��� � Dż���/T2�2, �2.25b�

Pz̈��� � Dz̈���/T2�4, �2.25c�

where T� t f − ti is the pulse duration. All of the harmonic

spectra now have dimensions Q2L2. Note that Pż��� corre-

sponds to the HPNS �20�, whereas Pz��� and Pz̈��� refer to

complementary, albeit related, dynamic properties based on

�z�t�� and �z̈�t��, respectively �26�.
We take the electric field of the laser pulse to be

E�t� = �E0f�t�cos��0t + �� , ti � t � t f

0, elsewhere,
� �2.26�

where the carrier envelope is of Gaussian form

f�t� = exp�− t2
/�2� . �2.27�

Note that f is symmetric about t=0. We set t f �−ti and

choose the CEP � so that the condition

�
ti

tf

dtE�t� = 0 �2.28�

holds �27�. The duration of one optical cycle is �=2� /�0;

the wavelength is �=�c, where c is the speed of light.

We note that the maximum electric field given by Eq.

�2.26� and the corresponding maximum intensity �I=c�0E2,

where �0 is the electric permittivity of vacuum� �28� depend

on �. �Here and for the remainder of this Section we use SI

units.� Likewise, the ponderomotive energy

Up = e2E2
/4me�0

2, �2.29�

and hence the so-called Keldysh limit for ionization �29�

� = Ip/2Up, �2.30�

where Ip is the ionization potential �=0.5Eh for the ground

state of the H atom�, as well as the cutoff number �25�

Nm = �Ip + 3.17Up�/��0 �2.31�

�i.e., the number of the harmonic beyond which Pz̈��� rap-

idly falls off� depend on �. For reference, we characterize the

intensity of a given pulse in terms of the maximum electric

field �E0� by

I0 = c�0E0
2 �2.32�

for �=0. The full width at half maximum of the carrier en-

velope of the intensity �i.e., �f�t��2� is

FWHM = ��2 ln 2�1/2. �2.33�

III. NUMERICAL METHODS

For convenience we rewrite Eq. �2.5� in terms of auxiliary

radial wave functions defined by

Rl�r,t� � r−1�l�r,t� . �3.1�

Substitution of Eq. �3.1� into Eq. �2.5� yields

i
��l�r,t�

�t
= �−

1

2

�
2

�r2
+

l�l + 1�
2r2

−
1

r
��l�r,t�

+
lrE�t��l−1�r,t�

�2l − 1��2l + 1�
+

�l + 1�rE�t��l+1�r,t�
�2l + 1��2l + 3�

,

l = 0,1,2 . . . . �3.2�

Equation �3.2� can be recast compactly in matrix form as

i
���r,t�

�t
= H�r,t���r,t� = �Ha�r� + W�r,t����r,t� .

�3.3�

Here � is the column vector whose lth element is �l�r , t�; Ha

is the diagonal matrix with elements

�Ha�ll = −
1

2

�
2

�r2
+

l�l + 1�
2r2

−
1

r
. �3.4�

The elements of the tridiagonal matrix W, which represents

the interaction of the electric field with the dipole, are given

by

�W�r,t��kl = �lrE�t�/�2l − 1��2l + 1� , k = l − 1

�l + 1�rE�t�/�2l + 1��2l + 3� , k = l + 1

0 otherwise.
�

�3.5�

The solution of Eq. �3.3� can be written formally as

��r,t + �t� = U�t + �t,t���r,t� . �3.6�

The time-evolution operator U is given by

U�t + �t,t� = P�exp	− i�
t

t+�t

dt��Ha + W�t���
� ,

�3.7�

where P signifies the Dyson chronological operator �30�. To

second order in �t, U can be approximated by �31�

U�t + �t,t� � e−iHa�t/2e−iW�t��te−iHa�t/2. �3.8�

The vector ��r , t� is propagated one step in time from t to

t+�t in three stages corresponding to the successive action

of the three exponential operators in Eq. �3.8� �32,33�. In the

first stage ��r , t� evolves to ��1��r� according to the relation
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��1��r�=e−iHa�t/2��r , t�, which can be recast �approximately�
in the Crank-Nicholson form �34�

�1 + iHa�t/4���1��r� = �1 − iHa�t/4���r,t� . �3.9�

Note that since Ha is diagonal, Eqs. �3.9� decouple. We then

solve each implicit differential equation for �l
�1��r� by the

finite-difference method �35�. The second derivative in Ha is

approximated by the three-point central-difference formula.

The ��l
�1��r�� are required to vanish at r=0 and r=rmax.

In the second stage ��1��r� evolves to ��2��r� through the

electric-field-dipole interaction according to

��2��r� = e−iW�r,t��t��1��r� . �3.10�

We diagonalize W�r , t� by the unitary transformation �36�

S†�r,t�W�r,t�S�r,t� = wdiag�r,t� , �3.11�

and substitute the “inverse” of Eq. �3.11�, W�r , t�
=S�r , t�wdiag�r , t�S†�r , t�, into Eq. �3.10� to get

��2��r� = S�r,t�e−iwdiag�r,t��tS†�r,t���1��r� . �3.12�

Thus, we obtain ��2��r� by multiplying ��1��r� successively

by the matrices S†, e−iwdiag�r,t��t, and S. In the third and final

stage we propagate ��2��r� to ��r , t+�t� by a second appli-

cation of the Crank-Nicholson finite-difference technique.

The radial finite-difference grid contains nr points, separated

by distance �r, so that rmax=nr�r; �r is fixed at 0.125a0.

The choice of nr is dictated essentially by the parameters of

the laser pulse. The time step is fixed at �t=0.025� /Eh

=0.025�24.2 attoseconds.

To avoid spurious effects due to the reflection of the wave

packet from the boundary at r=rmax, we multiply 	�r , t� by

a “mask function” �33�

g�r� = �1, r � r0

�cos���r − r0�/2�rmax − r0���1/8, r0 � r � rmax.
�

�3.13�

For all results reported here we set rmax−r0=32a0. The con-

sequence of the wave packet’s entering the “absorber” do-

main �r0 ,rmax� is that the probability of presence of the sys-

tem in the complementary domain �0,r0�, which is given by

Pr0
�t� = �

0

r0

drr2� d�	�r,
,�,t��2 = �
l

�
0

r0

drr2�Rl�r,t��2,

�3.14�

falls below unity. We set the maximum value of l to 80 and

monitor Pr0
�t� to assure that it remains equal to one.

Once the wave packet has been propagated to time t, the

expectation values �z�t��, �ż�t��, and �z̈�t�� are computed by

Eqs. �2.10�, �2.15�, and �2.18�. �We note that for �z�t�� and

�z̈�t�� the angular integrals are evaluated by means of 81-

point Gauss-Legendre quadrature �37�, whereas �ż�t�� is cal-

culated directly from the expression given in Eq. �2.15�.� The

radial integrations, as well as the time integrations in the FTs

�Eqs. �2.8��, are done by the trapezoidal rule.

As additional checks on the reliability of the numerical

methods, we have verified that �ż�t�� and �z̈�t�� computed

using the expressions given in Eqs. �2.15� and �2.18� agree

with the corresponding numerical first and second deriva-

tives of �z�t��. We have also verified that the numerical so-

lutions satisfy the relations in Eqs. �2.21� and �2.23�.

IV. RESULTS

We have computed harmonic spectra for a selection of

laser pulses at fixed wavelength �=800 nm �optical cycle

time �=2.67 fs�. We examine the influence of variations of
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FIG. 1. �Color online� Electric field �in units of maximum am-

plitude E0, defined in terms of the intensity by Eq. �2.32�� versus

time t �in units of optical-cycle time �� for selection of laser pulses

specified by Eqs. �2.26�–�2.33�. All pulses have wavelength �

=800 nm, corresponding to optical-cycle time �=2.67 fs. Durations

of pulses shown in panels �a�–�c� are, respectively, T=16�, 6�, and

3�, corresponding to FWHM=9.33, 3.99, and 2.05 fs, respectively.

Continuous and dashed lines correspond to CEPs �=0 and −� /2,

respectively. Electric-field amplitudes E0=0.0377Eh /a0e for weak

�see Figs. 2–4� and E0=0.119Eh /a0e for strong �see Figs. 5–8�
pulses correspond, respectively, to maximum intensities I0

=1014 W cm−2 ��Ib=1.4�1014 W cm−2, the threshold for over-

barrier ionization� and I0=1015 W cm−2 ��Ib�. Respective Keldysh

parameters for weak and strong pulses are �=1.5 and �=0.48.
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intensity I0, duration T= t f − ti, and CEP �. Plots of the elec-

tric field versus t for the considered pulses are displayed in

Fig. 1. The results, namely �z�t��, �ż�t��, and �z̈�t�� and the

corresponding harmonic spectra Pz���, Pż���, and Pz̈��� are

presented in Figs. 2–7. We consider two sets of results cor-

responding to �1� “weak” pulses �I0=1014 W cm−2, below the

over-barrier ionization threshold Ib=1.4�1014 W cm−2� with

durations that correspond to 16, 6 and 3 optical cycles �; �2�
“strong” pulses �I0=1015 W cm−2� Ib� of the same dura-

tions. For each of these six pulses we look at two CEPs, �
=0 and �=−� /2.

Figure 2 shows the results for the longest weak pulses

�T=16�, FWHM=9.33 fs, �=0, −� /2�. These pulses cause

transient oscillations of rather low amplitude in �z�t��, �ż�t��,
and �z̈�t��, as indicated in panels 2�c�, 2�b�, and 2�a�, respec-

tively. We note that the maxima in �z�t�� occur at the minima

of the electric field, in accordance with adiabatic following at

low intensity. After the passage of the pulse, �z�t�� remains

oscillating with small amplitude about nearly constant values

depending on �, which are close to, but not necessarily iden-

tical to, the initial value �z�ti��=0. Consequently, both �ż�t��
and �z̈�t�� oscillate about zero with small amplitude. This

allows us to define the final time t f as the time after −ti when

�ż�t f�� first vanishes �i.e., the pulse duration T= t f − ti is taken

to be just slightly larger than −2ti, which is 16� for the
present case�.

The resulting harmonic spectra for the three forms are
nearly identical, except for some significant deviations of
Pz��� for �=−� /2. Moreover, they are nearly insensitive to
�, again with the exception of Pz���. The near identity of
Pz̈��� and Pż��� may be understood as a consequence of the
vanishing of the dipole-velocity limit contribution �i.e.,
�ż�t f��=0� in Eq. �2.23�. Likewise, relation �2.21� suggests
that Pż��� and Pz��� would be identical if �z�t f�� were equal
to zero. Figure 2�c� shows that this condition is satisfied for
�=0, in contrast with small negative deviations of �z�t f��
from zero for �=−� /2. As a consequence, Pz��� for �
=−� /2 no longer exhibits the pronounced “falloff” �i.e., the
precipitous drop in the magnitude of the spectrum for har-
monics beyond Nm defined by Eq. �2.31�� beginning at Nm

=15 that is evident in the other two spectra, regardless of �.
The results for the next shorter weak pulse �T=6�,

FWHM=3.99 fs� are illustrated in Fig. 3. The main findings
are similar to those for the weak T=16� pulse, except for a
significant influence of �, which is due to the fact that as �
departs from zero, the maximum in the electric field �see Fig.

1�b�� declines, causing Up and hence Nm to decrease. The

influence of � becomes even more apparent for the shortest,

weak pulse �T=3�, FWHM=2.05 fs, see Fig. 1�c��. Equa-
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FIG. 2. �Color online� Expec-

tation values �in atomic units� of

dipole-acceleration �z̈�t�� �e�2
/

a0
3me

2� �a�, dipole-velocity �ż�t��
�e� /a0me� �b�, and dipole moment

�z�t�� �ea0� �c� versus time t �in
units of optical cycles ��, along

with respective harmonic spectra

Pz̈��� �d�, Pż��� �e�, and Pz��� �f�
�in atomic units of �ea0�2� as a

function of frequency �in units of

carrier frequency �0�, for longest

weak pulse �I0=1014 W cm−2, E0

=0.0377Eh /a0e�. Solid and

dashed lines refer to CEPs �=0

and �=−� /2, respectively �see

Fig. 1�a��. Initial time ti of pulse is

set to −8�; final time t f is chosen

close to, but slightly larger than

−ti such that �ż�t f��=0. Actual du-

ration of pulse is therefore slightly

longer than T=16�.
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tions �2.29� and �2.31� imply that Nm=15 for �=0 compared
with Nm=13 for �=−� /2. The harmonic spectra plotted in
Fig. 4 bear this out. For the purpose of this paper, however,
the most important conclusion is that for the weak pulse
�I0� Ib, the domain of tunneling ionization� the harmonic
spectra for all three forms are in agreement, and this is
mainly a consequence of the nearly vanishing mean dipole

velocity and also rather small shifts of the mean dipole mo-

ment at the end of the laser pulse.

We now present results for the series of strong pulses

�I0=1015 W cm−2� Ib�, starting with the longest �T=16�,

FWHM=9.33 fs, �=0,−� /2 �see Fig. 5��. We note first that

the influence of � is not very pronounced, for the same rea-

sons as in the case of the longest weak pulse �see Fig. 2�.
Second, we observe that the amplitudes of the oscillations in

�z�t��, �ż�t��, and �z̈�t�� are much greater than for the corre-

sponding weak pulses. The high electric field associated with

the strong pulse induces sudden large-amplitude movement

in �z�t�� �see Fig. 5�c��, not from the very beginning of the

pulse, but only rather close to its maximum intensity, when

the effective potential-energy �Coulombic+electric-

dipole interactions� is suppressed below the energy of the

initial �1s� state, so that the electron can escape over the

barrier. The �ż�t�� and �z̈�t�� exhibit corresponding sudden

large-amplitude oscillations, compared with those induced

by the weak pulse. The much larger amplitudes of �z�t��,
�ż�t��, and �z̈�t�� naturally correlate with large increases in
the magnitudes of the harmonic spectra. Another conse-
quence of the higher intensity of the strong pulse is a dra-
matic increase from Nm=15 for the weak pulse to Nm=70 for
the strong pulse.

Regardless of the substantial influence of intensity evident
in Fig. 5, the most important conclusion, for the present pur-
pose, is that Pż��� and Pz̈��� are again very similar, at least

for the domain of the harmonics below Nm. This can again be

explained by Eq. �2.23� �i.e., the two spectra should agree for

the ideal case �ż�t f��=0�. The apparent discrepancy between

Pż��� and Pz̈��� in the falloff domain may be a real effect, or

a numerical artifact, for the following reason: close analysis

reveals that it is almost impossible to realize numerically the

constraint �ż�t f��=0. In the present case, we could achieve

�ż�t f��=8�10−6�e� /a0me�, which is very small, yet still suf-

ficiently large that the two �ż�t f��-dependent terms in Eq.

�2.23� appear to be dominant, compared to Dz̈���, as � en-

ters the falloff domain. For numerical reasons it is therefore

essentially impossible to decide whether Pż��� should also

exhibit a falloff �as implied by Eq. �2.23� for the ideal case

�ż�t f��=0� for the case where �ż�t f�� is very small but still not

zero. We demonstrate below for the case of the shortest

strong pulse that the apparent discrepancy between Pz̈���
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FIG. 3. �Color online� Same as

Fig. 2, except for the pulse of

nominal duration 6�; ti=−3� and

t f determined as described in Fig.

2, such that actual duration is

slightly longer than 6�.
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and Pż��� can be resolved. We note, however, that Pz��� is
definitely different from either Pż��� or Pz̈��� in almost all
domains. This is a consequence of the rather large deviations
of the limit contribution �z�t f�� from zero �see Eq. �2.21��.
Thus, the plots of Figs. 1�a� and 5 suggest an important
hypothesis: the HPNS �20� should be derivable from either
the dipole-velocity or dipole-acceleration forms in the do-
mains n�Nm, but not from the dipole form.

Results for the next shorter strong pulse �T=6�, FWHM
=3.99 fs� are documented in Fig. 6, where it can be seen that
� has a heavy impact on �z�t f��. This is also reflected in
�ż�t f��, which oscillates with small amplitude about zero for
�=−� /2, but about a negative value for �=0. Therefore,
Pż��� depends markedly on �. A prominent qualitative dif-

ference is that for �=−� /2, Pż��� should fall off for n

�Nm, whereas for �=0 it should not. At the same time the

magnitude of Pż��� for the higher harmonics is greater for

�=0 than for �=−� /2. This observation supports a working

hypothesis: the previous finding of no falloff for the longer

pulse �see Fig.5�e�� may also be a real effect. Moreover, the

application of Eq. �2.23� for �=−� /2, with �ż�t f���0, im-

plies that Pż��� and Pz̈��� should be similar, whereas for �
=0, with �ż�t f���0, Pż��� and Pz̈��� should differ �compare

Figs. 6�d� and 6�e��. We note again that Pz��� differs drasti-

cally from both Pż��� and Pz̈���.

Results for the shortest strong pulse �T=3�, FWHM
=2.05 fs� are displayed in Fig. 7, where it is clear that the
radically different asymptotic behavior of �z�t�� for �=0 and
�=−� /2 results in �ż�t f���0. It follows that Pż��� and
Pz̈��� differ substantially for the two phases �see Figs. 7�d�
and 7�e��. Most prominent is that Pż���� Pz̈���. Moreover,
Pz̈��� exhibits the expected falloff for both CEPs, with dif-
ferent cutoffs close to Nm=70 for �=0 versus Nm=52 for
�=−� /2, in accord with Eq. �2.31�. In sharp contrast, Pż���
exhibits no such falloff.

It is instructive to analyze the results in Fig. 7 in terms of
the two-step quasistatic tunneling model �38�. In the first step
the H atom is ionized, predominantly during a short time
about the maximum of the electric-field amplitude, where the
carrier envelope remains approximately constant. It is as-
sumed that the electron is liberated at t= t0 with dipole mo-

ment r�t0� and dipole velocity ṙ�t0�=0 �25�. In the second

step the electron moves classically under the action of only

the field of the pulse. Its Coulombic attraction to the proton

is ignored. Newton’s second law then yields

z�t� = z�t0� + zosc + żd�t0��t − t0� , �4.1a�

ż�t� = żd�t0� − �E0/�0�sin��0t + �� , �4.1b�

where
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FIG. 4. �Color online� Same as

Fig. 2, except for pulse of nominal

duration 3�; ti=−1.5� and t f deter-

mined as described in Fig. 2, such

that actual duration is slightly

longer than 3�.
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zosc � �E0/�0
2��cos��0t + �� − cos��0t0 + ��� , �4.2a�

żd�t0� � �E0/�0�sin��0t0 + �� . �4.2b�

At long times the last term on the right side of Eq. �4.1a�
dominates. The electron drifts away from the proton with

approximately constant velocity żd�t0�. From Eq. �4.2b� it

follows that żd�−t0�=−żd�t0� when �=0 and żd�−t0�= żd�t0�
when �=−� /2. Hence, since the ionization rate is approxi-

mately symmetric in time about the maximum, the average

drift �dipole� velocity of the electron should vanish when �
=0, whereas it should be either negative or positive when

�=−� /2. In other words, when �=0, electrons are emitted

in the positive and negative z directions with equal likeli-

hood, whereas when �=−� /2, they are emitted preferen-

tially in either the negative or the positive z direction. The

two CEPs �=0 and �=−� /2, respectively, correspond to

symmetric and asymmetric photoelectron kinetic-energy

spectra �38�. The plots in Figs. 7�b� and 7�c� are roughly in

accord with the model. Although �ż�t f���0 when �=0, it is

much smaller than �ż�t f�� for �=−� /2. We note that since

the �mean� drift, or postpulse, velocity is constant, the

�mean� postpulse acceleration vanishes �see Fig. 7�a��.

The predicted harmonic spectra depend on the length of

the period over which photons are collected. Until now we

have regarded this period to be the same as the duration T of

the pulse. We now consider the extreme case of collecting

photons forever �i.e., from ti to ��. For this purpose we em-

ploy a numerical trick: we define t f not by �ż�t f��=0, as for

the results shown in Figs. 2–5, but rather by choosing t f

slightly greater than −ti so that �z̈�t f��=0. Furthermore, we

set �z̈�t��=0 for times t� t f, assuming that there are no sig-

nificant effects of accelerations after the passage of the pulse.

Thus, in the FT �see Eq. �2.8�� the upper limit can be ex-

tended to � for the acceleration form, simply because there is

no contribution beyond t= t f. We refer to the acceleration

form of the spectrum thus calculated as the infinite-time

form, denoted by Pz̈
inf���. It is numerically advantageous

since it can be calculated rigorously from the numerically

generated �z̈�t�� and then used in Eq. �2.23� to compute a

corresponding infinite-time dipole-velocity spectrum Pż
inf���.

A comparison of Pż��� and Pż
inf��� is made in Fig. 8 for �

=0 �see Fig. 7�b��. The agreement is nearly quantitative.

Similar results are obtained for the case represented by Fig.

6. We conclude that most of the photons are produced during

T and that collecting photons for longer times will not sig-

nificantly alter the harmonic spectra.
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FIG. 5. �Color online� Same as

Fig. 2, except for strong pulse �I0

=1015 W cm−2, E0=0.119Eh /a0e�
of nominal duration 16�. ti=−8�

and t f determined as described in

Fig. 2, such that actual duration is

slightly longer than 16�.
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Finally, we note that harmonic spectra corresponding to

the long pulses �see Figs. 2 and 5� manifest the “rule” that

only odd harmonics appear in the domain n�Nm �33�, in

stark contrast to the spectra produced by the shortest pulses

�Figs. 4 and 7�, which disobey the rule. The reason for this

breakdown is that the single carrier frequency �0 dominates

the long pulses, whereas many frequencies effectively con-

tribute to the short ones. In the extreme limit of ultrashort

�few-attosecond� pulses, the distinction between odd and

even harmonics disappears and the HHG spectrum becomes

continuous �24,39�. This is also reflected in the strong asym-

metry seen in simulations of photoelectron kinetic-energy

spectra �40�.

V. CONCLUSION

In this paper we have presented comparisons of three

forms of the harmonic spectrum, based on dipole, dipole

velocity, and dipole acceleration, by solving the Schrödinger

equation numerically for the hydrogen atom interacting with

a laser pulse whose electric field is specified by E�t�
=E0f�t�cos��0t+��, where f�t�=exp�−t2

/�2�. We have ex-

amined the influence of intensity I0 �proportional to E0
2�, du-

ration T �proportional to ��, and the phase � of the carrier

envelope. We have considered two sets of pulses: �1� “weak”
�I0=1014 W cm−2� Ib=1.4�1014 W cm−2, the threshold in-
tensity for over-barrier ionization� with durations T between
3 and 16 optical cycles; �2� “strong” �I0=1015 W cm−2� Ib�
with the same durations. The carrier frequency �0 corre-
sponds to the wavelength 800 nm for all pulses.

The principal finding is that for long, weak pulses the
three forms of the harmonic spectrum are in good agreement.
This is so because the limit contributions by which the forms
differ �except for scalings by powers of frequency� in gen-
eral, according to Eqs. �2.21� and �2.23�, are negligible when
the pulse is long and weak. This confirms previous findings
by Telnov and Chu �21� for HHG rates based on weak, pe-
riodic, or continuous-wave fields. On the other hand, as the
pulse becomes stronger and shorter, the limit contributions
increase gradually and the three spectral forms tend to di-
verge.

Following the passage of a short �few-cycle�, intense

pulse that ionizes the H atom, �z�t�� increases without bound

�corresponding to unidirectional ionization �41,42�� while

�ż�t�� oscillates about a nonzero value, whereas �z̈�t�� decays

to zero. By a mathematical artifice we can exploit this be-

havior to reconcile the divergent forms. In particular, for the

strongest, shortest pulse studied here, we demonstrate explic-

itly how the infinite-time dipole-velocity spectrum Pż
inf���
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FIG. 6. �Color online� Same as

Fig. 5, except nominal duration is

6�. ti=−3�; t f chosen close to, but

slightly larger than −ti, such that

�z̈�t f��=0. Actual duration is

slightly longer than 6�.
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can be computed from the infinite-time acceleration spec-

trum Pz̈
inf���. Pż

inf��� is shown to agree almost quantitatively

with the spectrum Pż��� computed for the finite time T= t f

− ti, namely, the pulse duration. Apparently most of the pho-

tons that contribute to the spectrum are produced during the

passage of the pulse. Hence, even though the �idealized� ex-

perimental spectrum �HPNS� �20� is expressed in terms of

the dipole-velocity form, the acceleration form affords a con-

venient numerical route to the HPNS.

The relations in Eqs. �2.21� and �2.23� are especially use-

ful for calculating and interpreting harmonic spectra cur-

rently being generated with intense, few—to single-cycle la-

ser pulses �23,24�. We emphasize the extreme sensitivity of

spectra to the CEP � for intense, ultrashort pulses, which was

also observed in previous simulations �43�. One needs the

precise formulation represented by Eqs. �2.21� and �2.23� in

order to handle such pulses, which give rise to nonvanishing

final �mean� dipole moment �z�t f�� and �mean� dipole veloc-

ity �ż�t f��. These postpulse “residues” have a critical impact

on the symmetry of photoelectron kinetic-energy spectra �a
signature of the CEP �27,38,40,41,44��, as well as on the

“parity” of the harmonics �i.e., both odd and even harmonics

appear in the spectra �39��. It is particularly noteworthy that,

since the postpulse �mean� dipole velocity is constant and the

�mean� dipole acceleration vanishes, the acceleration form of

the harmonic spectrum provides a superior computational

pathway to the number of harmonic photons. Finally, we

note that our results are also relevant to the analysis of
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of the carrier frequency �0� �dashed line, computed as described in

text� with finite-time spectrum Pż��� �solid line, displayed in Fig.
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than 3�. The inset in �c� displays

�z�t�� on fine scale.
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orientation-dependent molecular high-harmonic spectra in

orbital tomography �17�, which leads to confirmation of the

three-step recollision model �25� for molecules �7�.
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APPENDIX A

For the convenience of the reader in following the devel-

opments in Sec. II, we summarize here relevant properties of

the �spherical� Legendre polynomials Pl�cos 
� �45�.

�
0

�

d
 sin 
Pl�cos 
�Pk�cos 
�

= �
−1

1

dxPl�x�Pk�x� = 2�lk/�2l + 1� , �A1�

�
0

�

d
 sin 
Pl�cos 
�cos 
Pk�cos 
�

= �
−1

1

dxPl�x�xPk�x�

= 2l�l,k+1/��2l + 1��2l − 1��

+ 2k�k,l+1/��2k + 1��2k − 1�� , �A2�

�1 − x2�
dPk�x�

dx
= − kxPk�x� + kPk−1�x� . �A3�

APPENDIX B

Equation �2.14� can be rewritten as

�ż�t�� = − i�
l

�
k
��

0

�

drr2R
l
*�r,t�

�Rk�r,t�
�r

�� dY
l0
* �
,��cos 
Yk0�
,��

− �
0

�

drrR
l
*�r,t�

Rk�r,t�
r

�� dY
l0
* �
,��sin 


�Yk0�
,��
�
 � . �B1�

Substituting Eq. �2.4� into Eq. �B1� and making the change

of variables x=cos 
, we get

�ż�t�� = −
i

2
�

l

�
k

��2l + 1��2k + 1��1/2

���
0

�

drr2R
l
*�r,t�

�Rk�r,t�
�r

�
−1

1

dxPl�x�xPk�x�

+ �
0

�

drrR
l
*�r,t�Rk�r,t��

−1

1

dxPl�x��1 − x2�
dPk�x�

dx
� ,

�B2�

where we have performed the integration on the azimuthal

angle. Utilizing the differential relation �A3�, we can rewrite

Eq. �B2� as

�ż�t�� = −
i

2
�

l

�
k

��2l + 1��2k + 1��1/2

���
0

�

drr2R
l
*�r,t�

�Rk�r,t�
�r

�
−1

1

dxPl�x�xPk�x�

+ �
0

�

drrR
l
*�r,t�Rk�r,t�

� �− k�
−1

1

dxPl�x�xPk�x� + k�
−1

1

dxPl�x�Pk−1�x��� .

�B3�

Inserting the relations in Eqs. �A1� and �A2� into Eq. �B3�
yields

�ż�t�� = −
i

2
�

l

�
k

��2l + 1��2k + 1��1/2��
0

�

drr2R
l
*
�Rk

�r

� �2l�l,k+1/

��2l + 1��2l − 1�� + 2k�k,l+1/��2k + 1��2k − 1���

+ �
0

�

drrR
l
*Rk�− k�2l�l,k+1/��2l + 1��2l − 1��

+ 2k�k,l+1/��2k + 1��2k − 1��� + k2�l,k−1/�2l + 1��� ,

�B4�

which can be expanded in detail as
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�ż�t�� = −
i

2��
l

�
k

��2l + 1��2k + 1��1/2�
0

�

drr2R
l
*
�Rk

�r
	 2l�l,k+1

��2l + 1��2l − 1��

 + �

l

�
k

��2l + 1��2k + 1��1/2

��
0

�

drr2R
l
*
�Rk

�r
	 2k�k,l+1

��2k + 1��2k − 1��

 − �

l

�
k

��2l + 1��2k + 1��1/2�
0

�

drrR
l
*Rk	 2kl�l,k+1

��2l + 1��2l − 1��



− �
l

�
k

��2l + 1��2k + 1��1/2�
0

�

drrR
l
*Rk	 2k2�k,l+1

��2k + 1��2k − 1��

 + �

l

�
k

��2l + 1��2k + 1��1/2�
0

�

drrR
l
*Rk	2k�l,k−1

�2l + 1�

� .

�B5�

Carrying out the summations on l in the first and third terms and on k in the second, fourth, and fifth terms, respectively, in Eq.

�B5�, we obtain

�ż�t�� = −
i

2��
k

��2k + 1��2k + 3��1/2

�2k + 1��2k + 3�
2�k + 1��

0

�

drr2R
k+1
*

�Rk

�r
+ �

l

��2l + 1��2l + 3��1/2

�2l + 1��2l + 3�
2�l + 1�

��
0

�

drr2R
l
*
�Rl+1

�r
− �

k

��2k + 1��2k + 3��1/2

�2k + 1��2k + 3�
2k�k + 1��

0

�

drrR
k+1
* Rk − �

l

��2l + 1��2l + 3��1/2

�2l + 1��2l + 3�
2�l + 1�2

��
0

�

drrR
l
*Rl+1 + �

l

��2l + 1��2l + 3��1/2

�2l + 1��2l + 3�
2�l + 1��2l + 3��

0

�

drrR
l
*Rl+1� . �B6�

By redefining dummy indices and combining terms we can simplify Eq. �B6� to

�ż�t�� = − i��
l

�l + 1�
��2l + 1��2l + 3��1/2��

0

�

drr2R
l
*
�Rl+1

�r
+ �

0

�

drr2R
l+1
*

�Rl

�r
�

− �
l

l�l + 1�
��2l + 1��2l + 3��1/2�

0

�

drrRlRl+1
* + �

l

�l + 1��l + 2�
��2l + 1��2l + 3��1/2�

0

�

drrR
l
*Rl+1� . �B7�

Now consider the integral

I � �
0

�

drr2R
l
*

dRl+1

dr
, t fixed, �B8�

which appears in the first term on the right side of Eq. �B7�. Integration by parts yields

I = �r2R
l
*Rl+1�0

� − �
0

�

dr�2rR
l
* + r2

dR
l
*

dr
�Rl+1. �B9�

The first term on the right side of Eq. �B9� vanishes by virtue of the boundary conditions. Substitution of Eq. �B9� into Eq.

�B7� gives

�ż�t�� = − i��
l

�l + 1�
��2l + 1��2l + 3��1/2�− 2�

0

�

drrR
l
*Rl+1 − �

0

�

drr2Rl+1

�R
l
*

�r
+ �

0

�

drr2R
l+1
*

�Rl

�r
�

− �
l

l�l + 1�
��2l + 1��2l + 3��1/2�

0

�

drrRlRl+1
* + �

l

l�l + 1� + 2�l + 1�
��2l + 1��2l + 3��1/2�

0

�

drrR
l
*Rl+1� . �B10�

Combining like terms in Eq. �B10�, we obtain

�ż�t�� = − i��
l

�l + 1�
��2l + 1��2l + 3��1/2��

0

�

drr2
�Rl

�r
R

l+1
* − �

0

�

drr2
�R

l
*

�r
Rl+1�

− �
l

l�l + 1�
��2l + 1��2l + 3��1/2��

0

�

drrRlRl+1
* − �

0

�

drrR
l
*Rl+1�� . �B11�

Now observing that the pairs of terms in brackets are complex conjugates of each other, we can recast Eq. �B11� as
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�ż�t�� = − i��
l

�l + 1�
��2l + 1��2l + 3��1/2

2i Im��
0

�

drr2
�Rl

�r
R

l+1
* � − �

l

l�l + 1�
��2l + 1��2l + 3��1/2

2i Im��
0

�

drrRlRl+1
* ��

= 2�
l

�l + 1�
��2l + 1��2l + 3��1/2�Im��

0

�

drr2
�Rl

�r
R

l+1
* � − l Im��

0

�

drrRlRl+1
* �� . �B12�

�1� T. Brabec and F. Krausz, Rev. Mod. Phys. 72, 545 �2000�.
�2� P. B. Corkum and F. Krausz, Nat. Phys. 3, 381 �2007�.
�3� S. Patchkovskii, Z. Zhao, T. Brabec, and D. M. Villeneuve,

Phys. Rev. Lett. 97, 123003 �2006�.
�4� B. Sundaram and P. W. Milonni, Phys. Rev. A 41, 6571

�1990�.
�5� J. L. Krause, K. J. Schafer, and K. C. Kulander, Phys. Rev.

Lett. 68, 3535 �1992�.
�6� H. Xu, X. Tang, and P. Lambropoulos, Phys. Rev. A 46,

R2225 �1992�.
�7� M. Lewenstein, Ph. Balcou, M. Yu. Ivanov, A. L’Huillier, and

P. B. Corkum, Phys. Rev. A 49, 2117 �1994�.
�8� X.-M. Tong and S.-I. Chu, Chem. Phys. 217, 119 �1997�.
�9� G. Lagmago Kamta and A. D. Bandrauk, Phys. Rev. A 71,

053407 �2005�.
�10� J. Chen and S. G. Chen, Phys. Rev. A 75, 041402�R� �2007�.
�11� A. D. Bandrauk, S. Barmaki, and G. Lagmago Kamta, in

Progress in Ultrafast Intense Laser Science, edited by K. Ya-

manouchi �Springer, New York, 2007�, Vol. 3.

�12� C. C. Chirilă and M. Lein, J. Mod. Opt. 54, 1039 �2007�.
�13� K. Burnett, V. C. Reed, J. Cooper, and P. L. Knight, Phys. Rev.

A 45, 3347 �1992�.
�14� A. Sanpera, P. Jönsson, J. B. Watson, and K. Burnett, Phys.

Rev. A 51, 3148 �1995�.
�15� J. Prager, S. X. Hu, and C. H. Keitel, Phys. Rev. A 64, 045402

�2001�.
�16� S. X. Hu and L. A. Collins, Phys. Rev. A 69, 033405 �2004�.
�17� J. Itatani, J. Levesque, D. Zeidler, H. Niikura, H. Pépin, J. C.

Kieffer, P. B. Corkum, and D. M. Villeneuve, Nature �London�
432, 867 �2004�.

�18� M. Lein, J. Phys. B 40, R135 �2007�.
�19� J. J. Carrera, X. M. Tong, and Shih-I. Chu, Phys. Rev. A 74,

023404 �2006�.
�20� D. J. Diestler, Phys. Rev. A 78, 033814 �2008�.
�21� D. A. Telnov and Shih-I. Chu, Phys. Rev. A 71, 013408

�2005�.
�22� E. Lorin, S. Chelkowski, and A. D. Bandrauk, New J. Phys.

10, 025033 �2008�.
�23� E. Goulielmakis, M. Schultze, M. Hofstetter, V. S. Yakovlev, J.

Gagnon, M. Uiberacker, A. L. Aquila, E. M. Gullikson, D. T.

Attwood, R. Kienberger, F. Krausz, and U. Kleineberg, Sci-

ence 320, 1614 �2008�.
�24� F. Lindner, M. G. Schätzel, H. Walther, A. Baltuška, E. Goul-

ielmakis, F. Krausz, D. B. Milošević, D. Bauer, W. Becker, and

G. G. Paulus, Phys. Rev. Lett. 95, 040401 �2005�.
�25� P. B. Corkum, Phys. Rev. Lett. 71, 1994 �1993�.
�26� See, for example, Y.-S. Huang and K.-H. Lu, Found. Phys. 38,

151 �2008�.
�27� D. B. Milošević, G. G. Paulus, D. Bauer, and W. Becker, J.

Phys. B 39, R203 �2006�.
�28� W. H. Flygare, Molecular Structure and Dynamics �Prentice-

Hall, Englewood Cliffs, New Jersey, 1978�, Chap. 1.

�29� L. V. Keldysh, Sov. Phys. JETP 20, 1307 �1965�.
�30� See, for example, W. H. Louisell, Quantum Statistical Proper-

ties of Radiation �Wiley, New York, 1973�, p. 64ff.

�31� M. D. Feit and J. A. Fleck, Jr., J. Chem. Phys. 78, 301 �1983�.
�32� P. L. DeVries, J. Opt. Soc. Am. B 7, 517 �1990�.
�33� J. L. Krause, K. J. Schafer, and K. C. Kulander, Phys. Rev. A

45, 4998 �1992�.
�34� See, for example, S. Chelkowski and A. D. Bandrauk, Phys.

Rev. A 41, 6480 �1990�.
�35� See, for example, W. H. Press, S. A. Teukolsky, W. T. Vetter-

ling, and B. P. Flannery, Numerical Recipes in FORTRAN 77

�Cambridge University Press, Cambridge, 1986�, Chap. 19.

�36� Ref. �35�, Chap. 11.

�37� Ref. �35�, p. 140.

�38� S. Chelkowski, M. Zamojski, and A. D. Bandrauk, Phys. Rev.

A 63, 023409 �2001�.
�39� A. Baltuška, Th. Udem, M. Uiberacker, M. Hentschel, E.

Goulielmakis, Ch. Gohle, R. Holzwarth, V. S. Yakovlev, A.

Scrinzi, T. W. Hänsch, and F. Krausz, Nature �London� 421,

611 �2003�.
�40� S. Chelkowski, A. D. Bandrauk, and A. Apolonski, Phys. Rev.

A 70, 013815 �2004�.
�41� S. X. Hu and A. F. Starace, Phys. Rev. A 68, 043407 �2003�.
�42� A. D. Bandrauk, S. Chelkowski, D. J. Diestler, J. Manz, and

K.-J. Yuan, Int. J. Mass. Spectrom. 277, 189 �2008�.
�43� A. deBohan, P. Antoine, D. B. Milošević, and B. Piraux, Phys.

Rev. Lett. 81, 1837 �1998�.
�44� G. G. Paulus, F. Lindner, H. Walther, A. Baltuška, E. Gouliel-

makis, M. Lezius, and F. Krausz, Phys. Rev. Lett. 91, 253004

�2003�.
�45� M. Abramowitz and I. A. Stegun, Handbook of Mathematical

Functions �Dover Publications, Inc., New York, 1972�, Chap.

22.

BANDRAUK et al. PHYSICAL REVIEW A 79, 023403 �2009�

023403-14




