
PHYSICAL REVIEW RESEARCH 4, 023216 (2022)

Quantum simulation of the Lindblad equation using a unitary decomposition of operators
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Accurate simulation of the time evolution of a quantum system under the influence of an environment is
critical to making accurate predictions in chemistry, condensed-matter physics, and materials sciences. Whereas
there has been a recent surge in interest in quantum algorithms for the prediction of nonunitary time evolution
in quantum systems, few studies offer a direct quantum analog to the Lindblad equation. Here, we present
a quantum algorithm—utilizing a decomposition of nonunitary operators approach—that models dynamic
processes via the unraveled Lindblad equation. This algorithm is employed to probe both a two-level system in
an amplitude damping channel as well as the transverse field Ising model in a variety of parameter regimes; the
resulting population dynamics demonstrate excellent agreement with classical simulation, showing the promise
of predicting population dynamics utilizing quantum devices for a variety of important systems in molecular
energy transport, quantum optics, and other open quantum systems.

DOI: 10.1103/PhysRevResearch.4.023216

I. INTRODUCTION

Emerging quantum technologies have recently generated
interest in open quantum system (OQS) methods that predict
environmentally driven dynamics because of the environmen-
tal interactions inherent in quantum hardware. Classically, a
plethora of methods has been developed to treat the dynamics
of open quantum systems, including master equation ap-
proaches and numerically exact methods [1]. Another widely
used class of OQS methods relies on the reduced density ma-
trix formalism where the environmental degrees of freedom
are integrated out with a master equation being utilized to treat
the subsystem dynamics under the influence of an environ-
ment. Two commonly used master equation approaches are
Redfield [2] and Gorini–Kossakowski–Sudarshan–Lindblad
[3,4], with the latter being derived from the completely
positive Kraus map formulation and, hence, retaining the
positivity of the system density matrix. As the positivity of
the reduced density matrix relates to the probability of find-
ing an electron in a given state, positivity is required for
the reduced density matrix to retain physical meaning or N
representability [5–8]. This formalism has also been adapted
for the treatment of accurate fermionic statistics [9] and for
non-Markovian dynamics [10,11]. The Lindblad formalism
has proven to be a powerful tool in predicting the dynamics
of a variety of open quantum system dynamics under the
Born-Markov approximation in quantum optics [12], quantum
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transport [13], excitonic energy transport [14–19], and spin
dynamics [20–23].

In recent years, substantial progress has been made
in quantum computation in terms of both hardware and
algorithm development. Noisy intermediate-scale quantum
(NISQ) computers are now publicly accessible, allowing for
the recent explosion of quantum computing studies with con-
siderable work being dedicated to using these devices to
model, probe, and solve physically relevant problems [24–30].
In quantum chemistry, these devices have been used to make
predictions in materials, periodic systems [31–34], as well
as many molecular properties including electron correlation
[35,36], ground-state energies [37–42], and excited-state ener-
gies [43–46]. Moreover, research has been dedicated to using
quantum devices to predict superconductivity and long-range
order [47,48] as well as create excitonic condensates [49].
The biggest challenge faced by these hardware platforms con-
tinues to be the detrimental effects of environmental noise
[50,51], thus, limiting the scope and size of problems that can
be tackled on NISQ hardware.

There has been a recent surge in interest in using quantum
computers to model and predict the dynamics of open quan-
tum systems. Whereas mapping the inherently nonunitary
dynamics into the unitary framework of gate-based quantum
algorithms presents challenges, much progress has been made
towards this goal [52–55]. Examples include algorithms based
on imaginary-time evolution [56–58], the time-dependent
variational principle [59], and duality quantum algorithms
[60,61]. A popular method of approach is through explicit
dilation, taking the nonunitary dynamics and mapping them
into a larger Hilbert space where they become unitary [62–67].
Whereas these methods have shown to be efficient for several
test systems in a variety of regimes of dynamics, they are
restricted by the requirement that the evolving map must be
a contraction mapping. We presented an alternative approach
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that relies on the basic decomposition of any evolving operator
bypassing the requirement of utilizing contraction mappings
[54]. However, most of this previous work has relied on the
Kraus operator formalism [54,62,63,65–67], which can be
limited because the Kraus operators are not always known.
Lindbladian operators are often better known and more phys-
ically motivated, making algorithms that can work directly
with the Lindblad equation appealing. Despite its success
in classical simulation, to date there have been few studies
dedicated to the development of a robust quantum algorithm
directly analogous to the Lindblad equation [57].

In this paper we develop an algorithm using Lindbladian
operators directly, instead of utilizing the Kraus framework as
was shown in previous work [54]. We demonstrate this algo-
rithm on a two-level system in an amplitude damping channel
and on the transverse field Ising model in different param-
eter regimes. The close agreement with classical simulation
demonstrates the promise of such a unitary decomposition of
Lindbladian operators with this algorithm having potentially
far reaching applicability to problems in quantum chemistry,
physics, and control theory.

II. THEORY AND METHODS

The Lindblad equation describes the dynamics of an open
quantum system under the Born-Markov approximation,

dρ

dt
= −i[Ĥ, ρ] +

∑
k

γk

(
ĈkρĈ†

k − 1

2
{Ĉ†

k Ĉk, ρ}
)

, (1)

where ρ is the system density matrix, Ĥ is the system Hamil-
tonian, γk is the decay rate, Ĉks are the Lindbladian operators,
and the summation is over k channels of environmental inter-
action [1,3,4]. The Lindbladian operators are often physically
motivated, which combined with the guaranteed positivity
makes this master equation form quite powerful.

Another way of writing the Lindblad equation is in the
vectorized form, also called the unraveled master equa-
tion (UME),

d|ρ〉
dt

= L̂|ρ〉, (2)

with,

L̂ = −iI ⊗ Ĥ + iĤT ⊗ I

+
∑

k

Ĉ∗
k ⊗ Ĉk − 1

2
I ⊗ (Ĉ†

k Ĉk ) − 1

2
ĈT

k Ĉ∗
k ⊗ I, (3)

where the superscripts ∗, T, and † represent the complex
conjugate, transpose, and adjoint operators, respectively, |ρ〉
is the vectorized density matrix, and L̂ is the Lindbladian
superoperator generating the dynamics [68]. This form of the
Lindblad equation can be directly integrated where the time
propagator is given by

|ρ(t )〉 = eL̂t |ρ(0)〉. (4)

The vectorization operator is defined by stacking the columns
of ρ resulting in a column vector,

|ρ〉 = vec(ρ) =

⎛
⎜⎜⎝

ρ00

ρ10
...

ρnn

⎞
⎟⎟⎠. (5)

If the density matrix is size m, then the vectorized density
matrix will be length m2.

In general the propagator in Eq. (4) is nonunitary, and
we implement this exponential operator as a sum of unitary
operators. The vectorized Lindblad equation has been used to
study systems, such as non-Hermitian Hamiltonians and dis-
sipations [69], spontaneous emission [70], and Ising models
[57].

In order to implement this nonunitary propagation on a
quantum circuit, we decompose the operator into unitary com-
ponents. As shown in previous work, any operator can be
decomposed into Hermitian and anti-Hermitian components
through the relation,

M̂ = Ŝ + Â, (6)

where Ŝ is a Hermitian operator and Â is an anti-Hermitian
operator [54]. In the context of the unraveled master equation,
we define M̂ = eL̂t and simulate the entire dynamics using
one operator and one quantum circuit, whereas previously
we decomposed each Kraus operator individually. Ŝ and Â
are approximated using first-order Taylor expansions in an
expansion parameter ε,

Ŝ = lim
ε→0

1

2ε
(ie−iεŜ − ieiεŜ )

Â = lim
ε→0

1

2ε
(eεÂ − e−εÂ). (7)

Both the Hermitian and the anti-Hermitian operators have
been written in terms of unitaries. The operators have error
O(ε2), and the error can be systematically improved with
Richardson extrapolation [54,71].

The propagation can be performed with unitary gates on a
dilated space by

R̂Û (t )|ρ(0) ⊕ ρ(0) ⊕ ρ(0) ⊕ ρ(0)〉
= |ρ(t ) ⊕ d1 ⊕ d2 ⊕ d3〉, (8)

where ⊕ indicates the direct sum of vectors and where

Û =

⎛
⎜⎜⎝

Ŝm 0 0 0
0 −Ŝp 0 0
0 0 −Âm 0
0 0 0 Âp

⎞
⎟⎟⎠. (9)

R̂ is a rotation operator to perform linear combinations of the
propagated density matrices as described in Ref. [54], and the
vectors d1, d2, d3 are other linear combinations of propagated
vectors on the dilated Hilbert space but are, in general, not
equal to the propagated density matrix ρ(t ). Other approaches
for the linear combination of unitaries are also known [72,73].
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The operators on the diagonal of Û are as follows:

Ŝm = −Ŝ†
p = ie−iεŜ

Âm = Â†
p = e−εÂ. (10)

Each of these operators is representable by a k × k matrix
with k being the length of the vectorized density matrix. In
this fashion, any nonunitary operator can be implemented on
a quantum device as a sum of unitary operators. The block-
diagonal gate Û can be implemented as uniform controlled
rotations or a multiplexed gate [74–78]. Here we implement
Û using QISKIT’s gate transpiler for general gates [79].

The UME propagates the vectorized density matrix with
a nonunitary propagator. In contrast to the operator-sum ap-
proach using Kraus operators, the propagation of the UME
results in a propagated vectorized density matrix. Hence, upon
observation of the state on a quantum simulator or device, the
measured quantity yields the outer product of the propagated
density-matrix vector with itself, i.e., |ρ(t )〉〈ρ(t )|. The imple-
mentation of the nonunitary operator is the same in both cases,
but in the case of the UME, the Z-basis measurement yields
the square of the populations. The measurement of observ-
ables can be achieved by either density-matrix reconstruction
or the Hadamard test circuit [57].

The dilation required by the decomposition presented here
requires quantum circuits which are too deep to use on
currently available quantum devices; therefore, we utilize
QISKIT’s QASM simulator for all emulation results. For all
simulations, the expansion parameter is fixed, ε = 0.1, and we
simulate 219 shots to obtain quality statistics. In the systems
studied here, ε = 0.1 was found to give near-exact results
using the Taylor expansion above. The accuracy of the quan-
tum algorithm is sensitive to the magnitude of ε due to noise
on quantum devices; however, the convergence of Eq. (7)
is second order in ε, and techniques, such as Richardson’s
extrapolation can be used on NISQ devices to accelerate the
convergence [54,71].

Due to the vectorized density matrix, the qubit scaling in
this implementation is less favorable than a wave-function-
based propagation. If the density matrix is size m × m, then
the vectorized density matrix is length m2, and the operator U
is size 4m2 × 4m2. The dilation presented in Eq. (8) bounds
the number of qubits n with the relation n � log2 4m2. For
example, a two-level system requires four qubits, and a four-
level system requires six qubits in the present algorithm. This
scaling can be reduced to n � log2 2m2 by exploiting the
block-diagonal structure of U as presented in Ref. [54]. In that
case several circuits are required to reconstruct the complete
dynamics of a given operator.

The major cost of the algorithm comes from the imple-
mentation of the operator Û in Eq. (8). Here we use QISKIT’s
operator decomposer for general gates which assumes no
structure in the operator; however, the form of Û is a product
of uniform controlled rotations, or a multiplexor. A general
n-qubit unitary can be implemented with O(n24n) one- and
two-qubit gates, where n � log2 4m2 [80]. The unitary U
has a block-diagonal structure and can be implemented as
controlled rotations [74–78]. Uniform controlled rotations are
typically nontrivial to implement in quantum circuits; strate-

FIG. 1. Ground (black) and excited (green) state populations of
a two-level system with an amplitude damping channel using QASM

with 219 shots, ε = 0.1, γ = 1.0 with various values for δ and �.

gies and techniques to efficiently implement these controlled
gates would result in a circuit depth reduction in the algorithm
presented here. We use the general circuit decomposition from
QISKIT for ease of implementation; a device-based experiment
would require a more careful preparation of the desired cir-
cuits.

III. RESULTS

We apply this unitary decomposition of operators to the
quantum simulation of two models of open-system dynamics
propagated according to the unraveled master equation. First,
we study the dynamics of a two-level system with an ampli-
tude damping channel under the Hamiltonian,

Ĥ = − δ

2
σ̂z − �

2
σ̂x, (11)
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with a damping Lindbladian Ĉ = √
γ σ̂−. Figure 1 shows the

dynamics in several different parameter regimes. We fix the
amplitude damping γ = 1.0 for all simulations, whereas vary-
ing the detuning parameter δ and the Rabi frequency � to
achieve qualitatively different dynamics. The exact solution
is shown with the solid lines, and the simulation of the dy-
namics using QISKIT’s QUASM simulator is shown by the dots.
The quantum simulation obtains excellent agreement with the
exact solution for the populations in all parameter regimes.

We also apply the present method to the transverse-field
Ising model (TFIM) with two sites, resulting in a four-level
system. The TFIM Hamiltonian has parameters describing the
nearest-neighbor coupling strength (J) as well as the trans-
verse magnetic-field strength (h),

Ĥ = J
∑

i

σ̂ i
z σ̂

i+1
z − h

∑
i

σ̂ i
x. (12)

A single damping Lindbladian is also associated with each
site Ĉ = √

γ σ̂ i
−. The four-level TFIM has a twoold degenerate

excited state as well as a nondegenerate excited state. We set
the initial state to be the nondegenerate excited state, and
for all simulations, we fix J = 1 and study the dynamics
whereas differing h and γ . Inserting the Hamiltonians and
Lindbladians into Eq. (3) generates the operators to perform
the propagation.

Figure 2 shows the different dynamics under a range of
magnetic-field strengths with the exact solution (solid lines),
and results from the QASM simulator (markers). We omit one
of the degenerate excited states for clarity, and we fix J = 1.0,
γ = 0.1, ε = 1.0, and utilize 219 shots in the QASM simula-
tor. With no magnetic field, there are no oscillations in the
populations. As the field strength increases, the frequency of
the oscillations also increases; however, the resulting steady
state is not sensitive to the field strength. The QASM simulation
results are in excellent agreement with the exact solution in all
regimes of the magnetic-field parameter.

To further test the robustness of the algorithm, we also vary
the damping parameter γ in the model. Figure 3 shows the
population dynamics of the ground state in increasing damp-
ing regimes with fixed J = h = 1.0 and ε = 0.1 using 219

shots for the QASM simulator. The simulation (markers) obtain
excellent agreement with the exact results (solid lines) in all
regimes. As expected, as the damping parameter increases, the
oscillations in the population are more quickly damped. In
contrast to varying the magnetic-field strength, the resulting
steady-state population is different for each choice of damping
parameter.

IV. CONCLUSIONS AND OUTLOOK

Here we presented a general unitary decomposition of
operators to implement the nonunitary evolution of an open
quantum system by the Lindblad equation in a quantum sim-
ulation. We demonstrated the robustness of the algorithm by
investigating the parameter spaces of two-level and four-level
model systems. The results of the simulator are highly ac-
curate in all regimes of the parameter spaces studied, and
the algorithm can be immediately implemented for other
open quantum-system problems. The algorithm is completely

FIG. 2. Exact and simulated dynamics for the TFIM using var-
ious values of h, γ = 0.1, J = 1.0, and ε = 0.1. The exact results
are the solid lines, whereas the simulated results are denoted by the
markers. We only include one copy of the degenerate excited states,
states 1 and 2.

general and can be used to implement any operator of interest
in the framework of current quantum architecture.

Our current algorithm extends much of the recent work on
modeling and predicting open quantum system evolution on
quantum devices. The intersection of open quantum system
dynamics with quantum computation shows much promise,
both due to the potential exponential savings in the cost of
the initial wave function or density matrix and due to the
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FIG. 3. QASM simulation of the TFIM ground state with 219 shots
using various γ ’s, ε = 0.1, and J = h = 1.0. The exact classical
solutions are the solid lines, whereas the QASM simulation results
are denoted with the markers.

natural openness of the quantum hardware itself. Other studies
have characterized the noise in the quantum hardware [51] and
utilized it as a resource for the dynamics of an open quantum
system [81]. Combining these novel algorithms for simulating
open quantum systems whereas using the device noise as a re-
source for the dynamics offers a potential physical advantage
to using quantum hardware for these types of processes.

The decomposition presented here dilates the nonunitary
operator of interest and implements this operator in the form
of controlled rotations. The multiqubit controlled gates can
result in relatively deep circuits, which may lead to significant
errors in its application on current NISQ devices. Nonethe-
less, as more efficient implementations of multiqubit uniform
controlled rotations become available, this decomposition

approach will become an increasingly practical means to
model dynamic processes of open quantum systems. Further-
more, because the decomposition is completely general, it can
be used to implement nonunitary processes in unitary-gate-
based quantum computing.

Many investigations into the nonunitary time evolution of
open quantum systems have relied on explicit mathematical
dilation. Whereas this has been both effective and efficient,
it requires the use of Kraus operators and, therefore, limits
the applications to dynamics that can be written explicitly in
the operator sum form. The strength of our algorithm is that
it has no constraints on the operators used; lifting the con-
straint of requiring contraction mappings allows our method
to work with the master equation directly. This drastically
broadens the scope of applications of this algorithm as often
the differential master equation is parametrized in a more
physically meaningful way. Moreover whereas our current
algorithm utilizes the unraveled Lindblad equation which is
valid in the Markovian regime, we could use the algorithm to
capture non-Markovian dynamics through use of the ensemble
of Lindblad’s trajectories method [10], which was previously
applied in the explicit dilation framework. This algorithm
has broad and far-reaching applications in quantum chemistry
and quantum optics because it makes no explicit assumptions
about the form of the propagators or nature of the dynamical
regimes of interest.
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