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Abstract

In this paper we study the quantum generalisation of the skew divergence, which is a
dissimilarity measure between distributions introduced by L. Lee in the context of natural
language processing. We provide an in-depth study of the quantum skew divergence,
including its relation to other state distinguishability measures. Finally, we present a
number of important applications: new continuity inequalities for the quantum Jensen-
Shannon divergence and the Holevo information, and a new and short proof of Bravyi’s
Small Incremental Mixing conjecture.

1 Introduction

The quantum relative entropy of two density operators ρ and σ, denoted S(ρ||σ) = Tr ρ(log ρ−
log σ), was introduced by Umegaki [34] in 1962. Since the 90’s it gained in prominence, espe-
cially in the quantum information theory community, when Hiai and Petz [15] showed that
Umegaki’s formula provided the proper quantum generalisation of the classical Kullback-
Leibler divergence KL(p||q) of two probability distributions, as an operational measure of
dissimilarity between quantum states. A lot of research has been spent exploring its mathe-
matical and physical properties. Despite having many universally useful features, the relative
entropy exhibits certain properties that in some applications may be considered as drawbacks.
In particular, the relative entropy is not a distance measure in the mathematical sense of the
word: it is asymmetric with respect to interchanging arguments, S(ρ||σ) ̸= S(σ||ρ), and it
does not satisfy a triangle inequality. Moreover, the relative entropy is infinite whenever the
support of σ is not contained in the support of ρ. This makes the relative entropy completely
unsuitable as a distance measure between pure states, for example. We will refer to this
feature as the ‘infinity problem’.

Over the years, several modifications to the relative entropy have been proposed. Some
of the better known modifications are the Quantum Jensen-Shannon divergence [13, 14], and
the closely related Holevo information or Holevo χ [16, 25] (even though this is not usually
considered as a modification of the relative entropy in the QIT community because it serves
entirely different purposes).
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In the present paper we introduce another modification of the quantum relative entropy,
which we call the quantum skew divergence. We have coined this term [1] because of its close
similarity to the already existing classical concept of skew divergence of two probability dis-
tributions, which was introduced by Lee [17, 18] in the context of natural language processing
to overcome the infinity problem for the Kullback-Leibler divergence. As no confusion will
arise we will henceforth refer to the quantum skew divergence as skew divergence (SD) for
short. It is not to be confused with the Wigner-Yanase-Dyson skew information and related
notions, to which it bears no obvious resemblance.

The skew divergence is essentially the relative entropy but with ‘skewed’ second argument.
That is, the second argument σ is replaced by the convex combination αρ+(1−α)σ, where α
is a scalar (0 < α < 1) which we call the skewing parameter. As one of its basic properties we
will show that S(ρ||αρ+ (1−α)σ) is no longer infinite but is bounded above by − logα, and
we define the skew divergence as the skewed relative entropy divided by this factor − logα:

Sα(ρ||σ) :=
1

− logα
S(ρ||αρ + (1 − α)σ).

Hence, Sα always takes values between 0 and 1. It is to be noted that Lee’s skew divergence
does not have this normalisation factor.

This paper can be subdivided roughly in two parts: the first part is a theoretical study of
the properties of the skew divergence, and the second part is on applications. The first part
consists of six sections. After some preliminaries (Section 2), in Section 3 we give precise
definitions for the skew divergence and state and prove its basic properties.

Sections 6 and 7 are devoted to the more complicated continuity properties of the quantum
skew divergence. These are properties that have no counterparts for the relative entropy, as a
direct consequence of the infinity problem. First, we show that continuity holds in the sense
that states that are close in trace norm distance are also close when measured by the SD
(Section 6). Secondly, we show that the SD is also continuous with respect to perturbations
of each of its arguments (Section 7). The proofs of these statements rely on some technical
results about the derivatives of the operator logarithm, and this is presented in Sections 4
and 5.

In the second part of this paper we consider applications of the quantum skew divergence.
In Section 8 we give a simple proof of the so-called Small Incremental Mixing Conjecture that
was postulated by Bravyi [8] and recently proven by Van Acoleyen [33]. Our proof yields
a better proportionality constant (2 instead of 9) and may yield additional insight into the
more general ‘mixing problem’ proposed by Lieb and Vershynina [22].

The second application (Section 9) is as a dissimilarity measure between quantum states,
being the original purpose for introducing the skew divergence. Here we give a detailed
overview of the relative entropy’s drawbacks and of the various proposals that have been
made in the literature and how the skew divergence fits in.

In Section 10 we note the close connection between SD and the generalised quantum
Jensen-Shannon divergence (QJS), i.e. the Holevo information. By exploiting the sharp
continuity estimates for the SD derived in this paper, we obtain new continuity-type bounds
for the QJS and the Holevo information that in many cases improve on existing estimates
from the literature.
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2 Preliminaries

First, let us recall the definition of the quantum relative entropy [26, 28, 36]. For quantum
states ρ and σ, both positive,

S(ρ||σ) := Tr ρ(log ρ− log σ). (1)

For non-normalised positive operators A and B, one defines more generally

S(A||B) := TrA(logA− logB) − Tr(A−B). (2)

For positive scalars a and b, we will also write

S(a|b) := a(log a− log b) − (a− b). (3)

Strictly speaking, when σ (or B) is not invertible, the quanutm relative entropy is no longer
defined. However, when the supports of ρ and σ satisfy the condition supp ρ ⊆ suppσ one
customarily adopts the convention that ‘0+ log 0+ = 0’ and redefines the relative entropy as

S(ρ||σ) := S(ρ|σ||σ|σ),

S(A||B) := S(A|B||B|B),

where the symbol A|B denotes the restriction of A to the support of B. When supp ρ ̸⊆ suppσ
this redefinition is not possible and one says that the relative entropy is infinite, leading to
the infinity problem mentioned in the introduction.

Another important distance measure between density operators is the trace norm distance:

T (ρ, σ) :=
1

2
||ρ− σ||1,

where ||.||1 denotes the trace norm,

||X||1 := Tr |X| = Tr(X∗X)1/2.

For any self-adjoint operator X, let X+ and X− denote the positive part X+ = (X + |X|)/2
and negative part X− = (|X| − X)/2; both parts are positive semidefinite (note that the
negative part is positive for the same reason that the imaginary part of a complex number is
real). Then another expression for the trace norm distance is

T (ρ, σ) = Tr(ρ− σ)+ = Tr(ρ− σ)−.

3 Quantum Skew Divergence

In this section we give a rigorous definition of the quantum generalisation of the skew diver-
gence (SD) and state and prove its basic properties.

The quantum skew divergence is based on the functional S(ρ||αρ+(1−α)σ), or S(A||αA+
(1 − α)B) in the non-normalised case, where α is a scalar, with 0 < α < 1. Since, for all
such α, supp(A) ⊆ supp(A + B) = supp(αA + (1 − α)B), no problem of infinities arises.
Henceforth, we will always write S(A||αA+ (1−α)B), whether A,B > 0 or A,B ≥ 0. In the
latter case this is to mean S(A|A+B||(αA + (1 − α)B)|A+B).
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Definition 1. For fixed α ∈ (0, 1), the quantum α-skew divergence between states ρ and σ
is defined as

Sα(ρ||σ) :=
1

− log(α)
S(ρ||αρ + (1 − α)σ). (4)

Likewise, for non-normalised operators A,B ≥ 0,

Sα(A||B) :=
1

− log(α)
S(A||αA + (1 − α)B). (5)

We call α the skewing parameter.

The reason for incorporating the scale factor 1/(− logα) is to normalise the range of the
SD to the interval [0, 1].

Theorem 1. For all states ρ and σ and 0 < α < 1,

0 ≤ Sα(ρ||σ) ≤ 1,

and Sα(ρ||σ) = 1 if and only if ρ ⊥ σ.

Recall that two quantum states are mutually orthogonal, denoted ρ ⊥ σ, iff Tr ρσ = 0.

Proof. Let τ = αρ + (1 − α)σ. By operator monotonicity of the logarithm, we have

log(τ) = log(αρ + (1 − α)σ) ≥ log(αρ),

and, therefore,

S(ρ||τ) = Tr ρ(log ρ− log τ)

≤ Tr ρ(log ρ− log(αρ))

= − logα.

Thus, S(ρ||τ) is bounded above by − logα, which is finite for 0 < α < 1. It therefore makes
perfect sense to normalise S(ρ||τ) by dividing it by − logα, producing a quantity that is
always between 0 and 1.

The equality case was proven in [2].

The definition of the skew divergence for non-normalised operators is also applicable to
non-negative scalars. To distinguish the scalar case more clearly from the matrix case we will
use the symbol Sα(b|c) for scalars; we have

Sα(b|c) =
b(log b− log(αb + (1 − α)c)) − (1 − α)(b− c)

− logα
. (6)

As we do not restrict the arguments of the SD to be normalised states, the following
scaling identities can be useful.

Theorem 2. For 0 < α < 1, operators X,Y ≥ 0, and positive scalars b, c,

Sα(bX||bY ) = b Sα(X||Y ) (7)

Sα(bX||cX) = Sα(b|c) TrX. (8)
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This is easy to prove by simple calculation.

The quantum skew divergence inherits many desirable properties from the quantum rel-
ative entropy:

Theorem 3. For 0 < α < 1, states ρ, σ, any unitary matrix U and any completely positive
trace-preserving (CPTP) map Φ,

1. Positivity: Sα(ρ||σ) ≥ 0, and Sα(ρ||σ) = 0 if and only if ρ = σ;

2. Unitary invariance: Sα(UρU∗||UσU∗) = Sα(ρ||σ);

3. Contractivity: Sα(Φ(ρ)||Φ(σ)) ≤ Sα(ρ||σ);

4. Joint convexity: the map (ρ, σ) 7→ Sα(ρ||σ) is jointly convex.

The proof is again straightforward. Note that these are the same properties that the
quantum Jensen-Shannon divergence obeys [24].

4 The Operator Logarithm and its Derivatives

The following integral representation of the logarithm lies at the basis of much of the subse-
quent treatment. For x > 0, we have

log x =

∫ ∞

0
ds

(

1

1 + s
− 1

x + s

)

. (9)

Using functional calculus, this definition can be extended to the operator logarithm. For
A > 0,

logA =

∫ ∞

0
ds

(

1

1 + s
I− (A + sI)−1

)

. (10)

From this representation follow representations of the first and second derivatives of the
operator logarithm.

4.1 First Derivative

Following [21], let us define for A > 0 the linear map ∆ → TA(∆) for self-adjoint ∆ as the
Fréchet derivative of the operator logarithm:

TA(∆) :=
d

dt

∣

∣

∣

∣

∣

t=0

log(A + t∆). (11)

From integral representation (9) we get an integral representation for TA as well:

TA(∆) =

∫ ∞

0
ds (A + sI)−1∆(A + sI)−1. (12)

Here we have used the fact that

d

dt
(A + t∆)−1 = −(A + t∆)−1∆(A + t∆)−1.

Being a positive linear combination of conjugations it follows that, for any A > 0, TA is a
completely positive map. In particular, it preserves the positive semidefinite order; that is,
if X ≤ Y , then TA(X) ≤ TA(Y ). Also, X > 0 implies TA(X) > 0.
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Lemma 1. For A > 0 and ∆ = ∆∗, and scalars a > 0 and δ,

TaA(δ∆) =
δ

a
TA(∆). (13)

Furthermore,
TA(A) = I. (14)

Proof. For the first identity:

TaA(δ∆) =
d

dt

∣

∣

∣

t=0
log(aA + tδ∆) =

d

dt

∣

∣

∣

t=0
log(A + t(δ/a)∆)

= TA((δ/a)∆) = (δ/a)TA(∆).

The second identity follows similarly from the fact that log(A + tA) = (1 + t)I + logA, and
the term logA drops out after differentiating.

Hence, for scalar arguments we have

Ta(δ) = δ/a. (15)

Lemma 2. For A,B ≥ 0 with A + B > 0

TA+B(A) ≤ I. (16)

Proof. Since B ≥ 0, we have A + B ≥ A and because TA+B preserves the positive
semidefinite ordering, TA+B(A) ≤ TA+B(A + B) = I.

4.2 The metric MA(B,C)

The sesquilinear form

MA(B,C) := ⟨B∗, TA(C)⟩ = TrB∗TA(C) (17)

which is defined for A > 0, is a metric: it is self-adjoint (MA(B,C) = MA(C,B)), positive
semidefinite (MA(B,B) ≥ 0 for any B), with MA(B,B) = 0 iff B = 0, and MA(B,B) is
continuous in B for any A. As the metric is contractive under completely positive trace-
preserving (CPTP) maps Φ,

MΦ(A)(Φ(B),Φ(B)) ≤ MA(B,B)

for any A > 0 and any B, it is a monotone metric [20, 27]. Lieb has shown that the map
(A,B) 7→ MA(B,B), for A > 0 and any B, is jointly convex in A and B ([21], Theorem 3).

M satisfies the following limit property:

Lemma 3. Let A,B,C ≥ 0 with B + C > 0 and suppA ⊆ suppB. Then

lim
ϵ→0

MB+ϵC(A,A) = MB|B (A|B, A|B).

Proof. Let P be the projector on suppB and Q the projector on the orthogonal comple-
ment of suppB. Consider the 2 × 2 partitioning induced by P and Q:

A →
(

PAP ∗ PAQ∗

QAP ∗ QAQ∗

)

,
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and similarly for all other operators. Because of the conditions on the supports, we have
PAQ∗ = QAP ∗ = QAQ∗ = 0 and PBQ∗ = QBP ∗ = QBQ∗ = 0. Hence,

TrATB+ϵC(A)

=

∫ ∞

0
ds TrA(B + ϵC + s)−1A(B + ϵC + s)−1

=

∫ ∞

0
ds Tr(PAP ∗) (P (B + ϵC + s)−1P ∗) (PAP ∗) (P (B + ϵC + s)−1P ∗).

Using Schur complements, we can find the explicit expression

P (B + ϵC + s)−1P ∗

=
(

(PBP ∗ + ϵPCP ∗ + s) − ϵ2PCQ∗(ϵQCQ∗ + s)−1QCP ∗
)−1

.

In the limit ϵ → 0, this simplifies as

lim
ϵ→0

P (B + ϵC + s)−1P ∗ = (PBP ∗ + s)−1,

since all operator blocks appearing here are invertible. Therefore,

lim
ϵ→0

TrATB+ϵC(A) =

∫ ∞

0
ds Tr(PAP ∗) (PBP ∗ + s)−1 (PAP ∗) (PBP ∗ + s)−1

= TrA|BTB|B (A|B).

4.3 Second Derivative

Having defined the linear operator T via the first derivative of the logarithm, we can also
define a quadratic operator R via the second derivative [21]. For A > 0 and ∆ self-adjoint,
let

RA(∆) := − d2

dt2

∣

∣

∣

∣

∣

t=0

log(A + t∆). (18)

A simple calculation using the integral representation of the first derivative yields the integral
representation

RA(∆) = 2

∫ ∞

0
ds (A + sI)−1∆(A + sI)−1∆(A + sI)−1. (19)

One can similarly define a bilinear form, for A > 0 and self-adjoint ∆1 and ∆2:

RA(∆1,∆2) := − d2

dt1dt2

∣

∣

∣

∣

∣

t1=t2=0

log(A + t1∆1 + t2∆2) (20)

=

∫ ∞

0
ds (A + sI)−1∆1(A + sI)−1∆2(A + sI)−1

+

∫ ∞

0
ds (A + sI)−1∆2(A + sI)−1∆1(A + sI)−1. (21)
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Clearly,

RA(∆,∆) = RA(∆), (22)

RA(∆1,∆2) = RA(∆2,∆1), (23)

Tr ∆0RA(∆1,∆2) = Tr ∆2RA(∆0,∆1). (24)

It is readily checked that for scalar a and δ we have

RaA(δ∆) = (δ/a)2RA(∆) (25)

and
Ra(δ) = (δ/a)2. (26)

Lemma 4. For A > 0 and ∆ = ∆∗

RA(A,∆) = TA(∆).

Hence
RA(A) = I.

Proof.

RA(A,∆) = − d2

dt1dt2

∣

∣

∣

∣

∣

t1=t2=0

log(A + t1A + t2∆)

= − d2

dt1dt2

∣

∣

∣

∣

∣

t1=t2=0

log(1 + t1)I + log(A + t2/(1 + t1)∆)

= − d

dt1

∣

∣

∣

∣

∣

t1=0

d

dt2

∣

∣

∣

∣

∣

t2=0

log(A + t2/(1 + t1)∆).

The derivative w.r.t. t2 is, with u = t2/(1 + t1),

d

dt2

∣

∣

∣

∣

∣

t2=0

log(A + t2/(1 + t1)∆) =
d

du

∣

∣

∣

∣

∣

u=0

log(A + u∆)
1

1 + t1

= TA(∆)
1

1 + t1
.

Therefore,

RA(A,∆) = − d

dt1

∣

∣

∣

∣

∣

t1=0

TA(∆)
1

1 + t1
= TA(∆).

Lemma 5. For A,B ≥ 0, with A + B > 0,

RA+B(A) ≤ I. (27)
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Proof. Due to the bilinearity of RA(∆1,∆2) and Lemma 4, we have

RA+B(A) = RA+B(A + B −B) = RA+B(A + B −B,A + B −B)

= RA+B(A + B,A + B) + RA+B(−B,A + B)

+ RA+B(A + B,−B) + RA+B(−B,−B)

= I− 2TA+B(B) + RA+B(B).

The third term can be bounded in terms of the second. Since A+B + sI ≥ B, for any s ≥ 0,
we have (A + B + sI)−1 ≤ B−1 and B(A + B + sI)−1B ≤ B. Therefore,

RA+B(B) = 2

∫ ∞

0
ds (A + B + sI)−1 B(A + B + sI)−1B (A + B + sI)−1

≤ 2

∫ ∞

0
ds (A + B + sI)−1 B (A + B + sI)−1

= 2TA+B(B).

We finally get
RA+B(A) ≤ I− 2TA+B(B) + 2TA+B(B) = I.

5 A Continuity Inequality for the metric M

In this section we will prove the following technical inequality for the metric M , which will
be used heavily in the proofs of the continuity properties of the quantum skew divergence.

Theorem 4. For A,B,C ≥ 0 with A + B > 0, and with a = TrA, c = TrC,

0 ≤ MA+B(A,A) −MA+B+C(A,A) ≤ Ma(a, a) −Ma+c(a, a) (28)

or, explicitly,

0 ≤ TrATA+B(A) − TrATA+B+C(A) ≤ a− a2

a + c
. (29)

To prove this theorem, we need the following lemma:

Lemma 6. Let f(t) be a real-valued convex function on [0, 1]. If, moreover, f(0) ≤ 0 and
f(0) ≤ f ′(0), then ∀t ∈ [0, 1], f(0) ≤ (1 − t)f(t).

Proof. Since f(0) ≤ 0, for all t ∈ [0, 1] we have f(0) ≤ f(0)(1 − t) ≤ f ′(0)(1 − t).
Multiplying both sides by t and adding (1 − t)f(0) gives f(0) ≤ t(1 − t)f ′(0) + (1 − t)f(0) =
(1 − t)(f(0) + tf ′(0)). By convexity of f , f(0) + tf ′(0) is a lower bound on f(t), and the
inequality of the lemma follows.

Proof of Theorem 4. The first inequality in (29) easily follows from the fact that x 7→ 1/x
is operator monotone decreasing together with the identity

TrXTA(X) =

∫ ∞

0
ds Tr(X1/2(A + sI)−1X1/2)2,

and monotonicity of the function X → TrX2.
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The second inequality involves more work. Let us thereto consider two positive density
operators ρ and σ, an operator G ≥ ρ, and the function

f(t) = −1 +
d

ds

∣

∣

∣

∣

∣

s=0

Tr ρ log(G + sρ + t(σ −G))

= Tr ρTtσ+(1−t)G(ρ) − 1.

We start by showing that (1 − t)f(t) ≥ f(0) for 0 ≤ t ≤ 1.

Firstly, f(0) = Tr ρTG(ρ) − 1. Since TG(ρ) ≤ TG(G) = I, we have f(0) ≤ 0.

Secondly, the derivative f ′(0) is given by

f ′(0) =
d2

dsdt

∣

∣

∣

∣

∣

s=t=0

Tr ρ log(G + sρ + t(σ −G))

= Tr ρRG(ρ,G− σ) = Tr ρRG(ρ,G) − Tr ρRG(ρ, σ).

The first term can be rewritten as

Tr ρRG(G, ρ) = Tr ρTG(ρ),

by Lemma 4. Because G ≥ ρ, the second term can be bounded using Lemma 5 as

Tr ρRG(ρ, σ) = TrσRG(ρ) ≤ Trσ = 1.

We therefore obtain
Tr ρRG(ρ,G− σ) ≥ Tr ρTG(ρ) − 1,

which proves that f ′(0) ≥ f(0).

By Lieb’s convexity theorem, the map G 7→ Tr ρTG(ρ) is convex, hence f(t) is convex.

All three conditions of Lemma 6 are therefore satisfied, so that (1 − t)f(t) ≥ f(0), for
0 ≤ t ≤ 1.

Now let a > 0, c ≥ 0, and G = ρ + B/a, with B ≥ 0; this choice indeed satisfies the
condition G ≥ ρ. With this substitution, we get

f(t) = Tr ρT(1−t)ρ+ 1

a
(1−t)B+tσ(ρ) − 1.

In particular, with the choice t = c/(a + c),

(1 − t)f(t) =
a

a + c

(

Tr ρT a
a+c

ρ+ 1

a+c
B+ c

a+c
σ(ρ) − 1

)

= Tr ρTρ+ 1

a
B+ c

a
σ(ρ) − a

a + c
f(0) = Tr ρTρ+ 1

a
B(ρ) − 1.

The inequality (1 − t)f(t) ≥ f(0) therefore gives (after multiplying by a) Multiplying by a
yields

Tr aρTaρ+B+cσ(aρ) − a2

a + c
≥ Tr aρTaρ+B(aρ) − a.

or, after rearranging terms,

Tr aρTaρ+B(aρ) − Tr aρTaρ+B+cσ(aρ) ≤ a− a2

a + c
.

Setting A = aρ and C = cσ we obtain the second inequality of (29).
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6 Quantum Skew Divergence as Integral of the Metric M

The reason for considering the metric M in such detail as we have done, is that the quantum
skew divergence can be conveniently written as an integral of M . To this purpose, let us
introduce the following quantity based on M , which can be seen as a differential version of
the SD:

Definition 2. Let A,B ≥ 0 such that A + B > 0. For 0 < α < 1, define

Dα(A||B) := α(1 − α)MαA+(1−α)B(A−B,A−B). (30)

For α = 0, 1, define Dα to be identically zero.

For general A,B ≥ 0 not satisfying the condition A + B > 0, define Dα(A||B) as
Dα(A|A+B||B|A+B).

Other explicit formulas for Dα are:

Dα(A||B) = α(TrATαA+(1−α)B(A−B) − Tr(A−B)) (31)

=
α

1 − α
TrATαA+(1−α)B(A) − α

1 − α
TrA− αTr(A−B). (32)

These formulas follow from (30) by expressing A−B as

A−B =
1

1 − α
(A− (αA + (1 − α)B))

and exploiting the identities TX(X) = I and TrATX(B) = TrBTX(A).

We denote Dα for scalar arguments by Dα(b|c). Explicit formulas are

Dα(b|c) = α(1 − α)
(b− c)2

αb + (1 − α)c
(33)

=
α

1 − α

(

b2

αb + (1 − α)c
− b

)

− α(b− c). (34)

In particular,
Dα(b|0) = (1 − α)b, Dα(0|c) = αc. (35)

From the properties of M , it follows that Dα is positive and contractive under CPTP
maps. For example, with a = TrA and b = TrB, we have:

Dα(A||B) ≤ Dα(a|b). (36)

Clearly, Dα is unitarily invariant: for any unitary U , Dα(UAU∗||UBU∗) = Dα(A||B).

A very useful property of Dα is the following symmetry property.

Theorem 5. For A,B ≥ 0, and 0 < α < 1,

Dα(A||B) = D1−α(B||A). (37)
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Proof. This follows immediately from formula (30).

We will now show how the quantum skew divergence is related to Dα. It is well-known that
the quantum relative entropy S(A||B) is differentiable w.r.t. A and B whenever A,B > 0.
Hence, for A,B > 0, the function α 7→ S(A||αA + (1 − α)B) is differentiable over the open
interval (0, 1). For A,B ≥ 0 this is no longer true as the relative entropy is in general only
lower semicontinuous [36]. However, if one restricts A and B to the support of A + B, the
function α 7→ S(A||αA + (1 − α)B) is still differentiable for A,B ≥ 0. Because of this, the
following connection between Dα and Sα emerges:

Lemma 7. For A,B ≥ 0 and 0 < α < 1,

Dα(A||B) =
d

d(− logα)
S(A||αA + (1 − α)B) (38)

= −α
d

dα
S(A||αA + (1 − α)B). (39)

Conversely, Sα can be obtained from Dα by a simple averaging procedure.

Theorem 6. For operators A,B ≥ 0 and 0 < α < 1,

Sα(A||B) =
1

− logα

∫ − logα

0
Dα′(A||B) d(− logα′). (40)

Proof. Define the function f(α) = S(A||αA+ (1−α)B). By the substitution b = − logα,
we can write

Sα(A||B) =
1

b
f(exp(−b))

Dα(A||B) =
d

db
f(exp(−b)).

Therefore, as for b = 0, f(exp(−b)) = f(1) = S(A||A) = 0,

Sα(A||B) =
1

b

∫ b

0

d

db
f(exp(−b)) db

=
1

− logα

∫ − logα

0
Dα′(A||B) d(− logα′),

which is indeed an average w.r.t. − logα.

This is an important fact, because whenever one has an equality or inequality involving
several instances of Dα with the same value of α, one can immediately obtain the correspond-
ing (in)equality for Sα by averaging over a suitable range of − logα.

To end this section, we use the averaging technique to derive sharp inequalities relating

Sα(ρ, σ) to the trace norm distance T (ρ, σ). We will encounter further applications of this
technique in the proofs of Proposition 1 and Theorems 11 and 12.

The quantity Dα is related to one of the so-called quantum χ2-divergences introduced
by Temme et al [32], namely the one induced by the logarithm. This logarithmic quantum
χ2-divergence is defined for A,B > 0 as

χ2
log(A,B) := MB(A−B,A−B) = Tr(A−B)TB(A−B).

12



A short calculation reveals that

Dα(A||B) =
α

1 − α
χ2
log(A,αA + (1 − α)B). (41)

This means that certain properties that were proven in [32] for the quantum χ2-divergences
carry over to Dα. One such property is the following lower bound on Dα in terms of the trace
norm distance T (ρ, σ):

Theorem 7. For all density operators ρ and σ and any 0 < α < 1,

Dα(ρ||σ) ≥ 4α(1 − α)T (ρ, σ)2. (42)

Proof. This follows from Lemma 5 in [32] according to which χ2(ρ, σ) ≥ ||ρ− σ||21. With
the substitution σ → τ := αρ+(1−α)σ and noting that ρ−τ = (1−α)(ρ−σ), the inequality
follows.

We can also furnish an upper bound on Dα in terms of the trace norm distance.

Theorem 8. For density operators ρ, σ ≥ 0 and 0 < α < 1,

Dα(ρ||σ) ≤ T (ρ, σ). (43)

Proof. From formula (31) and the basic properties of T ,

Dα(ρ||σ) = αTr ρTαρ+(1−α)σ(ρ− σ)

= αTr(ρ− σ)Tαρ+(1−α)σ(ρ)

≤ αTr(ρ− σ)+Tαρ+(1−α)σ(ρ)

≤ Tr(ρ− σ)+Tαρ+(1−α)σ(αρ + (1 − α)σ)

= Tr(ρ− σ)+ = T (ρ, σ).

Using the averaging procedure, Theorem 6, we immediately get the promised relations
for Sα:

Theorem 9. For density operators ρ, σ ≥ 0 and 0 < α < 1,

2(1 − α)2

− log(α)
T (ρ, σ)2 ≤ Sα(ρ||σ) ≤ T (ρ, σ). (44)

To prove the lower bound we note that using (40) the factor 4α(1 − α) averages to
2(1 − α)2/(− log(α)).

The upper bound shows that two states that are close in trace norm distance are also
close in terms of Sα. Despite the very simple form of the upper bound, it is the strongest
one possible. Equality can be obtained for any value of t = T (ρ, σ) for states in dimension 3
(and higher), for example by choosing ρ = Diag(t, 0, 1 − t) and σ = Diag(0, t, 1 − t).

7 Continuity Properties of the Quantum Skew Divergence

The inequalities of Theorem 4 lead to several inequalities for Dα, which in turn lead to
inequalities for the quantum skew divergence.

13



Theorem 10. For A,B,C ≥ 0 and 0 < α < 1, with a = TrA and c = TrC,

−αc = −Dα(0|c) ≤ Dα(A||B) −Dα(A||B + C)

≤ Dα(a|0) −Dα(a|c). (45)

0 ≤ Dα(B||A + B) −Dα(B + C||A + B + C)

≤ Dα(0|a) −Dα(c|a + c). (46)

Proof. Consider first the case A,B,C > 0 of inequalities (45). These follow from Theorem
4 and expressions (32) and (34). We have

Dα(A||B) −Dα(A||B + C)

=
α

1 − α

(

MαA+(1−α)B(A,A) −MαA+(1−α)(B+C)(A,A)
)

− αTrC

=
1

1 − α

(

MA+ 1−α
α

B(A,A) −MA+ 1−α
α

B+ 1−α
α

C(A,A)
)

− αTrC.

The first term is now of the form that allows Theorem 4 to be invoked and (45) follows
immediately.

To treat the case A,B,C ≥ 0 we use Lemma 3 to bring both terms on a ‘common denomi-
nator’ as far as supports are concerned. Whereas Dα(A||B) is defined as Dα(A|A+B||B|A+B),
and in the second term the operators are restricted to the potentially larger subspace supp(A+
B + C), we can write

Dα(A||B) −Dα(A||B + C) = lim
ϵ→0

Dα(A||B + ϵC) −Dα(A||B + C),

in which the operators in both terms are now restricted to the support of A+B+C, allowing
to use the positive case, as before.

To prove the second set of inequalities (46) we use the expression (30) and the substitution
A′ = (1 − α)A (so TrA′ = (1 − α) TrA):

Dα(B||A + B) −Dα(B + C||A + B + C)

= α(1 − α)
(

MαB+(1−α)(A+B)(A,A) −Mα(B+C)+(1−α)(A+B+C)(A,A)
)

=
α

1 − α

(

MA′+B(A′, A′) −MA′+B+C(A′, A′)
)

,

which is again of the form required by Theorem 4.

Equality in the lower bounds of (45) and (46) is attained for A = Diag(a, 0), B =
Diag(b1, b2) and C = Diag(0, c). Equality in the upper bounds is attained for scalar A,B,C.
Thus, the given bounds are the best possible among all bounds that are only based on a, c
and α.

Theorem 10 immediately yields:

Proposition 1. For operators A,B,C ≥ 0, with a = TrA and c = TrC,

− Sα(0|c) ≤ Sα(A||A + B) − Sα(A||A + B + C) ≤ − Sα(a|a + c) (47)

−S(0|c) ≤ S(A||A + B) − S(A||A + B + C) ≤ −S(a|a + c). (48)
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0 ≤ Sα(B||A + B) − Sα(B + C||A + B + C)

≤ Sα(0|a) − Sα(c|a + c) (49)

0 ≤ S(B||A + B) − S(B + C||A + B + C)

≤ S(0|a) − S(c|a + c). (50)

Proof. Inequalities (47) follow by averaging those of (45) and noting that Sα(a|a) = 0.
Inequalities (49) follow by averaging those of (46).

Then note that

(− logα) Sα(A||A + B) = S(A||αA + (1 − α)(A + B))

= S(A||A + (1 − α)B).

Doing this for all the terms in (47) and absorbing the factors (1 − α) in B, C and c yields
(48). A similar procedure yields (50) from (49).

From Theorem 10, it is easy to derive quantitative continuity properties for Sα. The
following theorem gives bounds on the change of Sα (and Dα) when either of its arguments
changes, as expressed by the trace distance. Here we restrict to density operators (trace equal
to 1).

Theorem 11. Let 0 < α < 1.

For density operators ρ, σ1, σ2 such that T (σ1, σ2) = t,

|Dα(ρ||σ1) −Dα(ρ||σ2)| ≤ Dα(1|0) −Dα(1|t) + Dα(0|t) (51)

|Dα(σ1||ρ) −Dα(σ2||ρ)| ≤ Dα(0|1) −Dα(t|1) + Dα(t|0) (52)

and

| Sα(ρ||σ1) − Sα(ρ||σ2)| ≤ Sα(1|0) − Sα(1|t) + Sα(0|t) (53)

| Sα(σ1||ρ) − Sα(σ2||ρ)| ≤ Sα(0|1) − Sα(t|1) + Sα(t|0). (54)

Proof. Let A,B1, B2 ≥ 0. A successive application of the first and then the second
inequality of (45) yields

Dα(A||B1) −Dα(A||B2)

= Dα(A||B1) −Dα(A||B1 + (B2 −B1)+ − (B2 −B1)−)

≤ Dα(A||B1) −Dα(A||B1 + (B2 −B1)+) + Dα(0|Tr(B2 −B1)−)

≤ Dα(TrA|0) −Dα(TrA|Tr(B2 −B1)+) + Dα(0|Tr(B2 −B1)−).

Specialising to A = ρ and Bi = σi, with Tr(σ2 − σ1)+ = Tr(σ2 − σ1)− =: t, we get (51).
Inequality (52) follows immediately from (51) by the symmetry of Dα (Theorem 5). Using
the averaging procedure we get the same inequalities with Dα replaced by Sα, giving (53)
and (54). Due to the symmetry under exchanging σ1 and σ2 we can add an absolute value
sign to the left-hand side of all these inequalities.

Remarks.

1. It can be checked that the right-hand side of inequality (53) is a concave and monotonously
increasing function of t for any 0 < α < 1.
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2. It is also easily verified that equality is achieved in (53) for ρ ⊥ σ1 and σ2 = tρ+(1−t)σ1.

3. Unlike in Proposition 1, this approach does not lead to corresponding inequalities for
the relative entropy proper, S, as no such inequalities can exist. Indeed, no matter
how small t is, one can always find states ρ, σ1 and σ2 such that |S(ρ||σ1) − S(ρ||σ2)|
is unbounded; take, for example, ρ = σ2 and σ1 such that supp ρ is not a subspace of
suppσ1.

8 The Small Incremental Mixing Conjecture

Consider an ensemble of time-dependent states, E(t) = {(pj , ρj(t))}nj=1, where each state
ρj(t) evolves under the influence of a Hamiltonian Hj ; that is, ρj(t) = Uj(t)ρjUj(t)

∗, where
Uj(t) = exp(itHj). Let ρ0(t) be the ensemble averaged state, ρ0(t) =

∑n
j=1 pjρj(t). We will

drop the time argument to indicate the state at time 0, ρj := ρj(0).

The mixing rate Λ(E) of this ensemble is defined as

Λ(E) :=
d

dt

∣

∣

∣

∣

∣

t=0

S(ρ0(t)).

Bravyi conjectured in [8] the following upper bound on the mixing rate for binary ensembles
(n = 2):

Λ(E) ≤ c h2(p) ||H1 −H2||,
where c is a dimension- and state-independent constant, and h2(p) is the Shannon entropy
of the distribution (p, 1− p). He called this the Small Incremental Mixing (SIM) conjecture.
Lieb and Vershynina considered this conjecture in [22] and inquired whether this bound could
also be valid for larger ensembles (n > 2); that is, whether

Λ(E) ≤ c H(p),

where H(p) is the Shannon entropy of the ensemble’s probability vector, and all the Hamil-
tonians satisfy ||Hj || ≤ 1.

Bravyi’s SIM conjecture was proven very recently by Van Acoleyen et al [33], with a value
for the constant c = 9. More details about the physical relevance of this conjecture (now a
theorem), in particular to entanglement generating rates and entanglement area laws, can be
found in [8, 22, 33].

In this Section we provide an entirely different proof, and obtain a sharper form of the
inequality, with constant c = 2. Our approach is based on the observation that the mixing
rate can be expressed in terms of Sα. Without loss of generality we can put H1 = 0 and
replace H2 by H, so that U1(t) = I, U2(t) = U(t) and ρ1(t) = ρ1. Because the entropy of the

16



signal states ρj(t) does not change under unitary evolution, we have

S(ρ0(t)) − S(ρ0)

=



S(ρ0(t)) −
∑

j

pjS(ρj(t))



−



S(ρ0) −
∑

j

pjS(ρj)





=
∑

j

pj (S(ρj(t)||ρ0(t)) − S(ρj ||ρ0))

= −p1 log(p1)(Sp1(ρ1||ρ2(t)) − Sp1(ρ1||ρ2))
−p2 log(p2)(Sp2(ρ2(t)||ρ1) − Sp2(ρ2||ρ1))

= −p1 log(p1)(Sp1(ρ1||U(t)ρ2U
∗(t)) − Sp1(ρ1||ρ2))

−p2 log(p2)(Sp2(ρ2||U∗(t)ρ1U(t)) − Sp2(ρ2||ρ1)). (55)

In the last line we have exploited unitary invariance of Sα.

A natural first attempt is to try inequality (53) of Theorem 11 (with s = 0).

S(ρ0(t)) − S(ρ0) ≤ −
∑

j

pj log(pj)(Spj (1|0) − Spj (1|tj) + Spj (0|tj))

≤ −
∑

j

pj log(pj)
1 − pj

−pj log(pj)
tj ,

where t1 = T (U(t)ρ2U
∗(t), ρ2) and t2 = T (U∗(t)ρ1U(t), ρ1). This requires estimating the

trace norm distances tj but it can already be seen that we will obtain a bound that is too
weak, due to the occurrence of the factor (1−pj)/(−pj log(pj)), which can become arbitrarily
large for small pj .

The following theorem is a substantial sharpening of inequality (53) for the special case
that σ1 and σ2 are unitarily equivalent.

Theorem 12. For states ρ and σ, for 0 < α < 1, and U = exp(iH),

Sα(ρ||UσU∗) − Sα(ρ||σ) ≤ 2||H||. (56)

This is the key result leading to our proof of the SIM conjecture.

The proof of this theorem relies on the following simple estimate of the trace norm distance
between two unitarily equivalent states.

Lemma 8. For a state ρ subject to a unitary evolution U(t) = exp(itH),

T (U(t)ρU∗(t), ρ) ≤ t ||H||. (57)

Proof. Let ρ′ = U(t)ρU∗(t). For infinitesimal dt, U = I+i dtH and UρU∗ = ρ+i dt [H, ρ].
Thus ||ρ′ − ρ||1 = dt || [H, ρ] ||1 ≤ dt 2||H|| ||ρ||1, where we used the triangle inequality for
the trace norm, and Hölder’s inequality. Integrating over t and using the triangle inequality
once more shows that this is also true for finite t.

Proof of Theorem 12. Rather than working with Sα, we consider Dα because its symmetry
property is essential. For all density operators ρ, σ1 and σ2, and 0 < α < 1, with τ =
T (σ1, σ2), inequality (51) reads

Dα(ρ||σ1) −Dα(ρ||σ2) ≤ Dα(1|0) −Dα(1|τ) + Dα(0|τ)

=
τ

α + (1 − α)τ
≤ τ

α
.
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In particular, for σ2 = σ and σ1 = UσU∗, with U = exp(iH),

Dα(ρ||UσU∗) −Dα(ρ||σ) ≤ 1

a
T (UσU∗, σ) ≤ 1

α
||H||,

where we also have used Lemma 8.

From the symmetry property of Dα, Theorem 5, it follows that the inequality also holds
when replacing α in the right-hand side by 1 − α. Indeed,

Dα(ρ||UσU∗) −Dα(ρ||σ) = D1−α(UσU∗||ρ) −D1−α(σ||ρ)

= D1−α(σ||U∗ρU) −D1−α(σ||ρ)

≤ 1

1 − α
T (U∗ρU, ρ) ≤ 1

1 − α
||H||.

Hence, combining the two inequalities yields

Dα(ρ||UσU∗) −Dα(ρ||σ) ≤ min

(

1

α
,

1

1 − α

)

||H|| ≤ 2||H||.

Using the averaging procedure then yields the inequality of the theorem.

Theorem 13 (Small Incremental Mixing). Within the setup described above,

S(ρ0(t)) − S(ρ0) ≤ 2t h(p1, p2)||H||. (58)

Proof. To each term of (55) we apply Theorem 12 to estimate the differences between the

Sα and get

S(ρ0(t)) − S(ρ0) ≤ −
2
∑

j=1

pj log(pj) 2t||H|| = 2t h(p1, p2) ||H||.

9 Quantum Skew Divergence as a State Distinguishability

Measure

The quantum relative entropy (QRE) between two quantum states ρ and σ, S(ρ||σ) =
Tr ρ(log ρ − log σ), is a non-commutative generalisation of the Kullback-Leibler divergence
(KLD) KL(p||q) between probability distributions p and q, and is widely used as a measure
of dissimilarity of quantum states [26].

Both the KLD and the QRE exhibit a number of features that arise naturally from their
underlying mathematical model and that may be useful in certain circumstances. However,
these features also imply that neither the KLD nor the QRE is a proper distance measure in
the mathematical sense. First of all, the KLD and QRE are asymmetric in their arguments.
This alone already precludes their use as a distance measure, and prompted the terminology
KL ‘divergence’, rather than KL ‘distance’. Secondly, neither obeys the triangle inequality.
A third feature, and the one considered in this paper, is that the KLD is infinite whenever
for some i, the probability q(i) is zero when p(i) is not. Likewise, S(ρ||σ) is infinite when
the support of ρ is not contained in the support of σ. In particular, this renders the relative
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entropy useless as a useful distance measure between pure states, since it is infinite for pure
ρ and σ, unless ρ and σ are exactly equal (in which case it always gives 0). It is therefore
unable to tell by how much two distinct pure states are dissimilar.

It is illustrative to see how this feature comes about in one of the more important opera-
tional interpretations of the KLD and QRE, namely in the context of asymmetric hypothesis
testing. Let the null hypothesis H0 be that a random variable X is drawn from the distri-
bution p; the alternative hypothesis H1, that it is drawn from distribution q. A test is to
be designed that optimally discriminates between the two. Two types of error are relevant:
a type I error (false positive) is when the test selects H1 when in fact H0 is true; a type II
error (false negative) is when the test selects H0 when H1 is true. The probability of a type I
error is usually denoted by α, and the probability of a type II error by β. These probabilities
cannot usually both be made zero, but they can be made to both tend to 0 exponentially fast
when N , the number of samples of X looked at by the test, tends to infinity. One can then
define the corresponding error rates, αR and βR, as the limits αR = − limN→∞(1/N) logαN

and βR = − limN→∞(1/N) log βN . These rates quantify how fast αN and βN tend to 0 with
N .

The KLD can be given a clear operational meaning in this context, as the best possible
rate βR when αN (not αR) is to be kept below a certain value ϵ (a value which, surprisingly,
does not ultimately enter in the value of the optimal βR). It is now not hard to see why
the KLD should be infinite when, for some i, q(i) is zero but p(i) is not. In this case an
optimal test should only look at outcome i. If this outcome occurs, even if only once, this
immediately rules out the alternative hypothesis. The number of samples required to find
outcome i amongst them (which depends on p(i)) is finite, therefore the rate βR is infinite.
In other words, the infinity of the KLD represents the fact that “the theory ‘All crows are
black’ can be refuted by the single observation of a white crow”.

Whereas the emergence of this feature of the KLD (and the QRE) seems quite natural,
it may not always be that desirable. Firstly, the unboundedness of the KLD may be a
source of numerical instability in applications. Secondly, the extreme focus on zeros of q
(zero eigenvalues of σ, respectively) implies a complete disregard of other discriminating
information. As stated before, the QRE can only tell distinctness of pure states, but not
by how much. Thirdly, in applications where q is an empirical distribution, the weight put
on events with q(i) = 0 is totally inappropriate: in empirical distributions this corresponds
to unseen events, not to impossible ones. This is a serious concern in applications such as
natural language processing [17], where the events are occurrences of word combinations in
a large (but not infinitely large) corpus of text, and in which many genuine but rare word
combinations do not occur at all; consider, for example, the total number of occurrences
of the word combination “relative entropy” in the combined issues of the New York Times.
Similar concerns can be raised in the quantum case, when σ is a reconstructed quantum
state obtained from quantum state tomography experiments. When maximum likelihood
reconstruction of nearly pure states produces reconstructed states with one or more zero
eigenvalues, these zeroes should not be interpreted as zero probabilities. How to properly
deal with these empirical quantum states is known in the tomography literature as the ‘zero-
eigenvalue problem’ [7]. A final problem is of a theoretical nature: because KLD and QRE
can become infinite, it is much harder (and less natural) to obtain good upper bounds on
these quantities in terms of other distance measures. Invariably, some information about the
smallest eigenvalues of ρ and σ have to be supplied to allow even the existence of such bounds
(see, e.g. [3, 4]).
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Several solutions have been put forward to overcome the problems associated with this
infinity feature, in the classical case and in the quantum case, in the form of modifications of
the KLD (QRE). In the classical case, one of the first to discuss several of these modifications
in detail was Lin [23]. In addition to the infinity problem, he also considered the asymmetry
issue. He introduced the following dissimilarity measures based on the KLD, which he called
the K-divergence and L-divergence, respectively:

K(p||q) = S(p||(p + q)/2) (59)

L(p, q) = K(p||q) + K(q||p) (60)

= 2H((p + q)/2) −H(p) −H(q). (61)

Here, H(p) is the Shannon entropy of a distribution, which for the discrete case reads H(p) =
−∑i p(i) log p(i). Lin also considered a generalisation of the L-divergence with different
weights, which he called the Jensen-Shannon divergence:

JSα(p, q) = H(αp + (1 − α)q) − αH(p) − (1 − α)H(q). (62)

Lin pointed out that the K divergence is a special case of the Csiszár f -divergences with the
function f given by f(x) = x log(2x/(1 + x)) [10].

In [17], Lee introduced a generalisation of Lin’s K-divergence that incorporates different
weights,

sα(p||q) = S(p||αq + (1 − α)p), (63)

a quantity which she called the α-skew divergence. In contrast to Lin’s, whose motivations
were mainly theoretical and driven by the lack of good upper bounds on the KL divergence,
Lee’s proposal was fuelled by a practical application in natural language processing: the
estimation and subsequent use of probabilities of unseen word combinations [17, 18]. Here,
the asymmetry of the KLD had to be maintained but its inordinate focus on zero-probabilities
had to be alleviated. Lee proposed a ‘smoothing’ of the q distribution with p by mixing a
small amount of p into q (she used α = 0.99), in order to shift the focus to events that are
seen under both distributions.

In the quantum case, the first attempt to overcome the infinity problem of the QRE was
undertaken by Lendi, Farhadmotamed and van Wonderen [19], who proposed to mix both ρ
and σ with the maximally mixed state. They introduced the regularised relative entropy as

R(ρ||σ) = cd S

(

ρ + Id

1 + d

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

σ + Id

1 + d

)

,

where d is the dimension of state space, and cd is a normalisation constant. It is clear
that this procedure only works for finite-dimensional states. One might also consider mixing
both states with a smaller amount of the maximally mixed state, for example as a quantum
generalisation of Laplace’s rule of succession for empirical distributions, by which 1 is added
to the frequencies of all outcomes, in order to properly account for unseen events.

Another possibility, also applicable to the infinite dimensional case, is to apply a smooth-
ing process. One can define the smooth relative entropy between states ρ and σ as the infimum
of the ordinary relative entropy between ρ and another (unnormalised) state τ , where τ is
constrained to be ϵ-close to σ in trace norm distance:

Sϵ(ρ||σ) = inf
τ
{S(ρ||τ) : τ ≥ 0,Tr τ ≤ 1, ||τ − σ||1 ≤ ϵ} . (64)
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This form of smoothing has already been applied to Renyi entropies and min- and max-
relative entropy [11, 29, 35], giving rise to a quantity with an operational interpretation.
However, the process can equally well be applied to ordinary relative entropy.

By far the most popular modification of the QRE in the quantum case is the quantum
Jensen-Shannon divergence (QJSD) [9, 13, 14, 24, 30], which has the additional feature of
being symmetric in its arguments. It comes in several flavours: for pairs of states and equal
weights, we have the ‘vanilla’ style:

QJS(ρ, σ) = S(ρ||1
2
ρ +

1

2
σ) + S(σ||1

2
ρ +

1

2
σ) (65)

= S((ρ + σ)/2) − (S(ρ) + S(σ))/2. (66)

Here S(ρ) is the von Neumann entropy S(ρ) = −Tr ρ log ρ. The latter formula allows for a
straightforward generalisation to general statistical weights, and to more than two states:

QJS(π1,...,πn)(ρ1, . . . , ρn) = S(
n
∑

i=1

πiρi) −
n
∑

i=1

πiS(ρi). (67)

In the context of quantum channels, this quantity is also known as the Holevo χ of an ensemble
{(ρi, πi)}ni=1.

It seems that in the quantum case, Lee’s α-skew divergence has not been studied before.
It was highly rewarding to discover the many interesting properties of the skew divergence,
not to mention the applications presented in this paper.

The skew divergence is closely related to other distinguishability measures. Firstly, it
can be seen as a simplified version of smoothed relative entropy: to calculate the latter a
minimisation problem over states τ has to be solved. However, there is a simple canonical
choice for τ that achieves the same purpose of regularisation but without having to find the
exact minimiser. Namely, we can take that τ that lies on the m-geodesic (mixing geodesic)
from ρ to σ; i.e. τ = αρ + (1 − α)σ. Note that it is not a good idea to choose an e-geodesic
(exponential geodesic) here as this once again leads to infinities. In so doing we obtain exactly
the skew divergence with α = ϵ/||ρ − σ||1. For that reason, the skew divergence can be a
useful approximation for the smoothed relative entropy. Further study will be devoted to the
question how good this approximation may be.

The skew divergence is also the non-symmetric distinguishability measure underpinning
the quantum Jensen-Shannon divergence. It is therefore not surprising that mathematical
results for the skew divergence lead to useful mathematical results for the QJSD and the
Holevo χ. This is the topic of the next and final section.

10 Inequalities for the Quantum Jensen-Shannon Divergence

and Holevo Information

The Quantum Jensen-Shannon Divergence (QJS) of n states ρi, with weights pi, is formally
equal to the Holevo information χ, of the quantum ensemble E = {(ρi, pi)}ni=1, and is defined
as

QJS(p1,...,pn)(ρ1, . . . , ρn) = χ(E) = S
(

∑

i

piρi

)

−
∑

i

piS(ρi). (68)
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We will denote by p the probability vector p = (p1, . . . , pn). Let the averaged state of the
ensemble be denoted by ρ0 :=

∑

i piρi. It will also be useful to define the complementary
states

ρi :=
ρ0 − piρi

1 − pi
=

∑

j,j ̸=i pjρj

1 − pi
.

The Holevo χ can be rewritten in terms of quantum skew divergences as follows:

χ(E) =
∑

i

piS(ρi||ρ0) = −
∑

i

pi log(pi) Spi(ρi||ρi). (69)

From this representation and the bounds on the skew divergence follow several bounds for χ
that improve on existing bounds in the literature.

Let tij = T (ρi, ρj) = ||ρi − ρj ||1/2, the trace distance between signal states ρi and ρj .
Also, let t = maxi,j tij . From the bound of Theorem 9, Sα(ρ||σ) ≤ T (ρ, σ), and the convexity
of T in each of its arguments, we immediately obtain

χ(E) = −
∑

i

pi log(pi) Spi(ρi||ρi)

≤ −
∑

i

pi log(pi)T (ρi, ρi)

≤ −
∑

i

pi log(pi)
∑

j ̸=i

pj
1 − pi

tij (70)

≤ H(p) t. (71)

In the last line, H(p) := −
∑

i pi log(pi) is the Shannon entropy of the ensemble’s probability
vector. Hence we have shown:

Theorem 14. Let E be the ensemble E = {(pi, ρi)}ni=1 with corresponding probability vector
p = (pi)

n
i=1. Let t be the largest of the trace distances tij = T (ρi, ρj) = ||ρi − ρj ||1/2. Then

χ(E) ≤ H(p) t.

This bound combines the well-known bound χ(E) ≤ H(p) (see, e.g. [28], Th. 3.7), with
the bound χ(E) ≤ log(n) t of Theorem 14 in [9] (only proven there for n = 2 but clearly true
in general), and therefore improves on both.

For binary ensembles, Roga [30] proves the following bound on χ(E) in terms of the
Uhlmann fidelity F between the two signal states (see also [13] for extensions to more than
2 states):

χ(E) ≤ S(σ), σ =

(

p
√

p(1 − p)F
√

p(1 − p)F 1 − p

)

, (72)

where F = F (ρ1, ρ2) = Tr
√√

ρ1ρ2
√
ρ1. A numerical investigation showed that this gives a

bound that is sometimes lower in value than (71), which is in terms of the trace distance, and
sometimes higher. However, when replacing t by its upper bound

√
1 − F 2 in (71), Roga’s

bound (72) is always better. Which bound to choose of course also depends on ease of use
and generality.

Now consider two ensembles E and E ′ with the same probabilities pi, but different signal
states ρi and ρ′i, respectively. Let ti = ||ρi − ρ′i||1/2 be the trace distance between corre-
sponding signal states. We wish to obtain a bound on |χ(E) − χ(E ′)| in terms of the ti. A
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näıve way to do so would be to use Fannes’ continuity bound on the von Neumann entropy
[12]. However, this would lead to a bound that is dimension dependent. Here we show how
the two continuity inequalities of the skew divergence (Theorem 11) can be used to obtain a
dimension-independent bound.

Define ρ′0, ρ
′
i analogously as above, t0 = T (ρ0, ρ

′
0) and ti = T (ρi, ρ

′
i). The distances ti can

be bounded in terms of the tj as

ti ≤
∑

j:j ̸=i pjtj

1 − pi
≤ max

j:j ̸=i
tj . (73)

To simplify the formulas, we will express everything in terms of the largest tj , which we
denote by t.

First consider the difference between terms

Spi(ρi||ρi) − Spi(ρ
′
i||ρ′i)

= Spi(ρi||ρi) − Spi(ρ
′
i||ρi) + Spi(ρ

′
i||ρi) − Spi(ρ

′
i||ρ′i)

≤ Spi(0|1) − Spi(ti|1) + Spi(ti|0) + Spi(1|0) − Spi(1|ti) + Spi(0|ti)
≤ Spi(0|1) − Spi(t|1) + Spi(t|0) + Spi(1|0) − Spi(1|t) + Spi(0|t)

=
1

− log(pi)

(

t log
pit + 1 − pi

pit
+ log

pi + (1 − pi)t

pi

)

.

Summing over all terms then yields

|χ(E) − χ(E ′)| ≤
∑

i

pit log

(

1 +
1 − pi
pi

1

t

)

+
∑

i

pi log

(

1 +
1 − pi
pi

t

)

. (74)

The probabilities pi can be eliminated by exploiting concavity of the logarithm, giving the
promised dimension-independent bound:

Theorem 15. Let E and E ′ be two ensembles of n quantum states with the same probabilities
pi, but with different states ρi and ρ′i, respectively. Let t be the largest of ti := T (ρi, ρ

′
i) =

||ρi − ρ′i||1/2. Then

|χ(E) − χ(E ′)| ≤ t log(1 + (n− 1)/t) + log(1 + (n− 1)t). (75)

For small t, this bound is approximated well by (log(n− 1) + (n− 1) − log t)t.
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