QUANTUM SOCIAL SCIENCE

Written by world experts in the foundations of quantum mechanics and its applications to social science, this book shows how elementary quantum mechanical principles can be applied to decision making paradoxes in psychology, and used in modeling information in finance and economics.

The book starts with a thorough overview of some of the salient differences between classical, statistical, and quantum mechanics. It presents arguments on why quantum mechanics can be applied outside of physics and defines quantum social science. The issue of the existence of quantum probabilistic effects in psychology, economics, and finance is addressed and basic questions and answers are provided. Aimed at researchers in economics and psychology, as well as physics, basic mathematical preliminaries and elementary concepts from quantum mechanics are defined in a self-contained way.

EMMANUEL HAVEN is a Professor at the School of Management, University of Leicester, UK. He has published numerous articles in a variety of fields, such as operations research, economics, and finance.

ANDREI KHRENNIKOV is a Professor of Applied Mathematics at Linnaeus University, Sweden, and Director of the International Centre for Mathematical Modelling in Physics, Engineering, Economics and Cognitive Science.

QUANTUM SOCIAL SCIENCE

EMMANUEL HAVEN University of Leicester

AND

ANDREI KHRENNIKOV Linnaeus University

> CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi, Mexico City

Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org Information on this title: www.cambridge.org/9781107012820

© E. Haven and A. Khrennikov 2013

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2013

Printed and bound in the United Kingdom by the MPG Books Group

A catalogue record for this publication is available from the British Library

Library of Congress Cataloguing in Publication data Haven, Emmanuel, 1965– Quantum social science / Emmanuel Haven and Andrei Yu. Khrennikov. p. cm. Includes bibliographical references and index. ISBN 978-1-107-01282-0 (hbk.) 1. Social sciences – Mathematical models. 2. Quantum theory. I. Khrennikov, A. IU. (Andrei IUr'evich), 1958– II. Title. H61.25.H38 2012 300.1/53012 – dc23 2012027126

ISBN 978-1-107-01282-0 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

> To our lovely Wives – Irina and Sophie To our lovely Children – Anton, Nath, and Sam

Contents

	Fore	word	<i>page</i> xiii
	Prefe	ace	xvii
	Ackn	owledgements	xix
	List o	of symbols	xxi
Ι	Phys	sics concepts in social science? A discussion	
1	Class	sical, statistical, and quantum mechanics: all in one	3
	1.1	Newtonian mechanics	3
	1.2	References	6
	1.3	The Hamiltonian formalism	7
	1.4	Statistical mechanics and the Liouville equation	9
	1.5	The classical kingdom	11
	1.6	References	12
	1.7	Classical fields	12
	1.8	Reference	14
	1.9	The Born–Sommerfeld quantization	14
	1.10	Reference	17
	1.11	Theory of quantum waves	17
	1.12	References	18
	1.13	Heisenberg's symbolic calculus	18
	1.14	Heisenbergian symbolism in physics: a version of symbolism	
		in art	23
	1.15	References	24
	1.16	Completeness of quantum mechanics and a possibility to	
		apply quantum mechanics outside of physics	24
	1.17	References	28
	1.18	Brownian motion	28
	1.19	References	31
			vii

viii	Contents	
	1.20 The Schrödinger equation	31
	1.21 References	35
	1.22 Do not be afraid of no-go theorems!	35
	1.25 References	50
2	Econophysics: statistical physics and social science	37
	2.1 Science and social science: econophysics?	37
	2.2 References 2.3 The physics-based "Eakker_Planck" PDE in economics	40 40
	2.5 The physics-based Tokkel-Thankk TDL in economics 2.4 References	40 41
	2.5 Potential and kinetic energy in social science	41
	2.6 References	42
	2.7 The backward Kolmogorov PDE in finance	43
	2.8 References	48
	2.9 What a weird world! Martingales and fake probabilities	49
	2.10 References	52 52
	2.11 Whetting the quantum appetite	52 53
		55
3	Quantum social science: a non-mathematical motivation	54
	3.1 What is quantum social science?	54
	3.3 References	64
		01
11	Mathematics and physics preliminaries	
4	Vector calculus and other mathematical preliminaries	71
	4.1 Linear spaces	71
	4.2 References	72
	4.5 State space: Hilbert space	72
	4.5 Operators	73
	4.6 References	75
	4.7 Dirac brakets and bras and kets	75
	4.8 References	76
	4.9 Eigenvalues/eigenfunction	77
	4.10 References	77
	4.11 Hermiticity	77
	4.12 References	/8 70
	4.15 Flojection operators 4.14 Probability density functions	/8 70
	4.15 References	79 79
		. ,

	Contents	ix
	4.16 ODEs and PDEs	79
	4.17 References	80
	4.18 Basics of stochastic mathematics, Brown	ian motion,
	non-arbitrage condition, Itô's Lemma	80
	4.19 References	82
5	Basic elements of quantum mechanics	84
U	5.1 Mathematical formalism of quantum me	chanics: brief
	introduction	84
	5.2 References	89
	5.3 Double slit experiment: rationale for the	existence of
	probability waves	90
	5.4 References	92
	5.5 Quantum mechanical postulates	92
	5.6 References	94
	5.7 States and state functions	95
	5.8 References	95
	5.9 Wave packets – constructive and destruct	tive interference 96
	5.10 References	96
	5.11 Heisenberg's uncertainty principle	96
	5.12 References	97
	5.13 The time-dependent and time-independent	nt Schrödinger PDE 97
	5.14 References	98
	5.15 Classical limit ideas: Ehrenfest's approac	ch and the
	correspondence principle	98
	5.16 References	100
6	Basic elements of Bohmian mechanics	102
	6.1 Short introduction to Bohmian mechanic	es 102
	6.2 References	103
	6.3 Mathematical formalism	103
	6.4 References	105
	6.5 Non-locality	106
	6.6 References	107
	6.7 Criticisms of Bohmian mechanics	107
	6.8 References	108
Ш	Quantum probabilistic effects in psycholog and answers	y: basic questions
7	A brief overview	113
	7.1 Decision making in social science: gener	al overview 113

х		Contents	
	7.2	References	116
	7.3	Modeling risk: some basic approaches	117
	7.4	References	120
	7.5	Possible remedies to the paradox: a brief discussion	120
	7.6	References	122
	7.7	The role of the law of total probability (LTP): a brief overview	122
	7.8	Reference	123
8	Inter	ference effects in psychology – an introduction	124
	8.1	Classical decision making and the Bayesian approach	124
	8.2	References	125
	8.3	Non-classical decision making: violation of the LTP (law of	
		total probability) and the quantum Bayesian approach	125
	8.4	Contextual probabilistic formalization	128
	8.5	Interference effects in social science: decision making based	
		on LTP with interference terms	132
	8.6	Savage sure-thing principle	132
	8.7	Behavioral games: Prisoner's Dilemma	134
	8.8	Violation of rationality in the experiments of Shafir and	
		Tversky	135
	8.9	Prisoner's dilemma-type experiment: Shafir and Tversky	136
	8.10	Violation of double stochasticity for matrices of	
		transition probabilities	137
	8.11	Prisoner's dilemma-type experiment: Croson	138
	8.12	Gambling experiment – 1: Tversky and Shafir	139
	8.13	Gambling experiment – 2: Tversky and Shafir	141
	8.14	The Hawaii vacation experiment	141
	8.15	Non-classicality of statistical data: non-zero coefficients of	
		interference	142
	8.16	The constructive wave function approach and fit to data from	
	-	the experiments of Shafir and Tversky	144
	8.17	Other experiments	145
	8.18	References	152
9	A qu	antum-like model of decision making	155
	9.1	Introduction	155
	9.2	Two-player game and rational behavior	155
	9.3	Construction of a mental state	156
	9.4	A process of decision making	158
	9.5	Example: decision making in PD	161
	Appe	endix 1: Channels and liftings	162

	Contents	xi
	Appendix 2: Quantum Markov chain description of data from experiments in cognitive psychology	163
	9.6 References	170
IV	Other quantum probabilistic effects in economics, finance, and brain sciences	
10	Financial/economic theory in crisis 10.1 Relevance of the concepts of efficiency and non-arbitrage: a	173
	brief discussion	173
	10.2 References10.3 George Soros' interpretation of the crisis and the use of	176
	classical quantum physics in finance	177
	10.4 References	181
	10.5 The need for an information modeling device in	107
	10.6 Reference	182
11		104
11	Bohmian mechanics in finance and economics	184
	mechanics	184
	11.2 References	185
12	The Bohm–Vigier model and path simulation	186
14	12.1 The Bohm–Vigier model in finance	186
	12.2 References	187
	12.3 The Newton–Bohm equation: path simulation	187
	12.4 Reference	191
13	Other applications to economic/financial theory	192
	13.1 The (non-)Hermiticity of finance-based operators?	192
	13.2 References	196
	13.3 Implications of the non-Hermiticity of a Black–Scholes	
	arguments	197
	13.4 References	198
	13.5 Implications of the non-Hermiticity of a Black–Scholes Hamiltonian operator on the stochastic equivalent of	
	Hamilton–Jacobi equations	198
	13.6 Interpretations of the wave function: a brief discussion	198
	13.7 The wave function and non-observed state prices	200
	13.8 Price and superposition of values	204

xii	Contents	
	13.9 References	207
	13.10 Arbitrage and negative probabilities	207
	13.11 References	210
	13.12 The Li–Zhang and WKB approach	211
	13.13 References	214
	13.14 The wave function as a Radon–Nikodym derivative	214
	13.15 References	220
	13.16 Universal Brownian motion: definition and discussion	220
	13.17 References	222
	13.18 Universal Brownian motion and option pricing	222
	13.19 References	226
	13.20 Wave functions in drift-dependent option pricing	226
	13.21 References	227
	13.22 Generalizations of Itô stochastics: path integration and other	
	tools	227
	13.23 References	228
	13.24 q -calculus and finance	228
	13.25 References	235
14	Neurophysiological sources of quantum-like processing in the brain	237
	14.1 Introduction	237
	14.2 Why could the brain use the quantum-like representation of	
	information which is based on classical electromagnetic	
	waves?	239
	14.3 Prequantum classical statistical field theory: non-composite	
	systems	242
	14.4 Cognitive model: two regimes of brain's functioning	246
	14.5 Classical regime: time representation	250
	14.6 Classical signal processing of mental images	252
	14.7 Quantum-like processing of mental images	255
	14.8 Composite systems	259
	14.9 References	261
15	Conclusion	263
	Glossary of mathematics, physics, and economics/finance terms	265
	Index	274

Foreword

This new book by Emmanuel Haven and Andrei Khrennikov argues that information processing in social systems can to a degree be formalized with the mathematical apparatus of quantum mechanics. This is a novel approach. Understanding decision making is a central objective of economics and finance and the quantum like approach proposed here, is used as a tool to enrich the formalism of such decision making. Emmanuel and Andrei argue for instance that probability interference can be used to explain the violation of the law of total probability in well known paradoxes like the Ellsberg decision making paradox.

Emmanuel and Andrei's book forms one of the very first contributions in a very novel area of research. I hope this book can open the road for many new books to come. More new results are needed, especially in the area of decision making.

H. Eugene Stanley
William Fairfield Warren Distinguished Professor;
Professor of Physics; Professor of Chemistry;
Professor of Biomedical Engineering;
Professor of Physiology (School of Medicine)
Director, Center for Polymer Studies,
Department of Physics, Boston University

By chance a few days before Andrei Khrennikov and Emmanuel Haven asked me to write this Foreword to their new book *Quantum Social Science*, I was browsing the collected works of Wolfgang Pauli, *Writings on Physics and Philosophy*, eds. Charles P. Enz and Karl von Meyenn, Springer (1994). I was just coming off a busy semester, including teaching a rather advanced course on harmonic analysis and quantum physics. To those erstwhile Ph.D. students in mathematics and physics, I had found myself counseling them with utterances such as "look, all physicists need to think semi-classically or even classically," or "you have to do something, you cannot just say it is all random motion," or "Heisenberg didn't really understand mathematics, but his intuition was sufficient to guide him."

xiii

xiv

Foreword

Therefore I was very pleased to see Haven and Khrennikov also going to some of Pauli's thoughts in their Preface. Pauli, one of the greatest thinkers on quantum mechanics, was often preoccupied with the interaction of experiment with observer, and in analogy with the interaction of the conscious with the unconscious. Pauli's advocacy of the coupling of objective quantum physics to the subjective, e.g. psychic, was patterned upon Bohr's fundamental notion of complementarity. Two mutually contradictory concepts, e.g. those of particle and wave, may co-exist.

Indeed, quantum mechanics has forced upon us a new reality, possessing many co-existing dualities. One has the Schrödinger picture of differential equations describing all the chemical elements upon which the universe depends, and the Heisenberg picture stressing more the probabilistic nature of scattering interactions. The two pictures were more or less reconciled by Born in 1926, with his concept of probability wave. I have reviewed the Born probability interpretation of quantum mechanics from its inception to the present in K. Gustafson, *The Born Rule*, AIP Proceedings 962 (2007) pp. 98–107. I detailed in that review how often the great pioneers of quantum theory had to resort to reasonings of classical physics. So one should not think that quantum mechanics is all "hocus-pocus." Quantum mechanics is grounded in reality.

On the other hand, it is quite important to stress that the Born interpretation places the physics into an abstract configuration space, and not in real 3d space. As a consequence, from then on one must rely on the mathematics. Quantum mechanics has generated some very powerful mathematics. Ideally, this then should be coupled with new quantum-like thinking that one will not find in classical physics. It is the authors' intention in the present book to apply these powerful new mathematical tools and the evolving new non-classical quantum intuition to social science, behavioral economics, decision theory, and financial engineering.

Both authors already have considerable experience in this endeavor. Andrei Khrennikov is the founder of the celebrated series of annual quantum physics conferences held in Växjö Sweden for the last dozen years. At those conferences Emmanuel Haven from the economics side has joined with Khrennikov in recent years to organize special sessions on the subject matter of this book. Khrennikov has previously put forth his thinking in two books, *Information Dynamics in Cognitive, Psychological and Anomalous Phenomena*, Kluwer (2004), and *Ubiquitous Quantum Structure: From Psychology to Finance*, Springer (2010). Haven brings to the present book more expertise in economics and finance.

Overall, one could describe their basic approach as that of embedding situations from the social or economic sciences into a quantum mechanical context and then using the methods of the latter to obtain new insights and results for the former.

Foreword

Such approach presumes of the reader a substantial knowledge of both contexts, that of quantum mechanics, and that of the particular social field of application. That is asking a lot.

I chose to address this issue, that of more needed interdisciplinary competence in education, science, and the general public, in my recent autobiography *The Crossing of Heaven: Memoirs of a Mathematician*, Springer (2012). I have come to the conclusion that we must invoke and enforce a new term, that of Multidisciplinarity. Interdisciplinarity is a weak word. It implies that one is less than one hundred percent committed to each of the two fields. Or that one is slightly weak in one's own field and leaning on an expert from the other field, who is probably a bit weak also in his field. I have worked successfully in several fields of science and I can assure you that you should plan on becoming an expert also in "the other field," and that will take you, say, at least five years before you have a chance of becoming competitive there.

Thus a collateral message of this foreword is that of advancing the concept and indeed the cause of creating more multidisciplinarity in our future mathematicians, physicists, social scientists, and, in a more general sense, throughout the educated public. A tall order! But great opportunities will open up to those who are strong enough.

This book by Haven and Khrennikov is a move in that direction, a pioneering effort.

Karl Gustafson

Professor Of Mathematics University of Colorado at Boulder

Preface

The current level of specialization of knowledge in a variety of fields of inquiry may make it quite challenging for a researcher to be at the same time a "developer" and a "tester" of a theory. Although a theory can exist without a necessary clear and obvious practical end goal, the ultimate test of the validity of a theory (whether it is situated in the exact or social sciences) will always be how measurement can "confirm" or dislodge a theory.

This book is largely dedicated to the *development* of a theory. We will be the very first to accept the accusation that the duo "theory-test" is widely absent in this work, and we believe it necessary to make this statement at the very beginning.

This book is about a very counter-intuitive development. We want to use a physics machinery which is meant to explain sub-atomic behavior, in a setting which is at the near opposite end of the size spectrum, i.e. the world as we know and live it through our senses. We may know about the sub-atomic world, but we do not have human experience of the sub-atomic world. Do we have credible and provable stories which can explain how the sub-atomic engages into the mechanics of the statistical macro-world? Probably not. Why do we bother then about being so exotic? The interested reader will want us to provide for a satisfactory answer to this obvious question, and we want to leave it up to him or her to decide whether we have begun, via the medium of this book, to convince that the level of "exoticality" (and "yes" how exotic is that word?) is sensibly less than anticipated. We can possibly give a glimmer of "hope," even at this early stage. Consider the words of one of the towering giants of physics of the twentieth century -Wolfgang Pauli. In an unpublished essay by Pauli, entitled "Modern examples of 'background physics'," which is reproduced in Meier* (pp. 179-196), we can read Pauli's words (Meier* (p. 185)): "Complementarity in physics... has a very close analogy with the terms 'conscious' and 'unconscious' in psychology in

* Meier C. A. (2001). Atom and Archetype: The Pauli/Jung Letters, 1932–1958. Princeton University Press.

xviii

Preface

that any 'observation' of unconscious contents entails fundamentally indefinable repercussions of the conscious on these very contents." The words of Pauli are important. They show there is promise for a connection between "concepts" of utmost importance in two very different sciences: complementarity in quantum physics and "complementarity" between consciousness and unconsciousness in psychology.

In this book, we intend to give the reader a flavor of an intellectual development which has taken shape over several years via the usual media many academics use: conference presentations and academic articles. The theory presented here is nowhere complete but we strongly believe that it merits presentation in book form.

The models presented in this book can be called "quantum-like." They do not have a direct relation to quantum physics. We emphasize that in our approach, the quantum-like behavior of human beings is not a consequence of quantum physical processes in the brain. Our basic premise is that information processing by complex social systems can be described by the mathematical apparatus of quantum mechanics. We present quantum-like models for the financial market, behavioral economics, and decision making.

Connecting exact science with social science is not an easy endeavor. What reveals to be most difficult is to dispel an intuition that somehow there *should* exist a natural bridge between physics and the modeling of social systems. This is a very delicate issue. As we have seen above it is possible to think of "complementarity" as a concept which could bridge physics and psychology. However, in some specific areas of social systems, the "physics equivalent" of the obtained results may have very little meaning.

It is our sincere hope that with this book we can convince the brave reader that the intuition of the authors is not merely naive, but instead informative. Hence, may we suggest that "reading on" is the command of the moment? Let the neurons fire!

Acknowledgements

- Luigi Accardi and A. Khrennikov and M. Ohya (2009). Quantum Markov model for data from Shafir-Tversky experiments in cognitive psychology. *Open Systems* & *Information Dynamics*, 16(4), 378–383. This material is reproduced with permission of World Scientific Publishing Co Pte Ltd.
- Masanari Asano and M. Ohya and A. Khrennikov (2011). Quantum-like model for decision making process in two players game. *Foundations of Physics*, 41, 538–548. Foundations of Physics by Springer New York LLC. Reproduced with permission of Springer New York LLC in the format reuse in a book/textbook via Copyright Clearance Center.
- Masanari Asano and M. Ohya and Y. Tanaka and I. Basieva and A. Khrennikov (2011). Quantum like model of brain's functioning: decision making from decoherence. *Journal of Theoretical Biology*, 281, 63–64. Journal of Theoretical Biology by Academic Press. Reproduced with permission of Academic Press in the format reuse in a book/textbook via Copyright Clearance Center.
- Sheldon Goldstein (2010). Bohmian mechanics and quantum information. Foundations of Physics, 40, 335–355. © Springer Science+Business Media, LLC 2009. Quotes reproduced with kind permission from Springer Science+Business Media: Foundations of Physics.
- Emmanuel Haven (2005). Analytical solutions to the backward Kolmogorov PDE via an adiabatic approximation to the Schrodinger PDE. *Journal of Mathematical Analysis and Applications*, 311, 442–443. © 2005. Reprinted with Permission from Elsevier Inc.
- Emmanuel Haven (2008). Private information and the "information function": a survey of possible uses. *Theory and Decision*, 64, 200–201. © Springer 2007. Reprinted with kind permission from Springer Science+Business Media.
- Emmanuel Haven (2008). The variation of financial arbitrage via the use of an information wave function. *International Journal of Theoretical Physics*, 47,

XX

Acknowledgements

196–199. © Springer Science+Business Media, LLC 2007. Reprinted with kind permission from Springer Science+Business Media, LLC 2007.

- Emmanuel Haven (2010). The Blackwell and Dubins theorem and Rényi's amount of information measure: some applications. *Acta Applicandae Mathematicae*, 109, 751–757. © Springer Science+Business Media B.V. 2008. Reprinted with kind permission from Springer Science+Business Media B.V. 2008.
- Emmanuel Haven (2011). Itô's lemma with quantum calculus: some implications. *Foundations of Physics*, 41, 3, 530–536. © Springer Science+Business Media, LLC 2010. Reprinted with kind permission from Springer Science+Business Media.
- Peter Holland (2000). The Quantum Theory of Motion: An Account of the de Broglie–Bohm Causal Interpretation of Quantum Mechanics. © Cambridge University Press 1995. Reproduced with permission.
- Hiromu Ishio and E. Haven (2009). Information in asset pricing: a wave function approach. Annalen der Physik, 18, 1, 40–42. © 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. Reprinted with kind permission from J. Wiley.
- Max Jammer (1974). *The Philosophy of Quantum Mechanics*. New York: J. Wiley. This material is reproduced with permission of John Wiley & Sons, Inc.
- Andrei Khrennikov (2010). *Ubiquitous Quantum Structure: From Psychology to Finance, Prisoner's Dilemma.* © Springer-Verlag, Berlin, Heidelberg 2010. Reprinted with kind permission from Springer Science+Business Media.
- Andrei Khrennikov (2011). Quantum-like model of processing of information in the brain based on classical electromagnetic field. *Biosystems*, 105, 251–259.
 Biosystems by Elsevier Science. Reproduced with permission of Elsevier Science.
- C. A. Meier (2001). *Atom and Archetype: The Pauli/Jung Letters, 1932–1958.* © Princeton University Press 2001. Reprinted with permission.
- Michael A. Morrison (1990). Understanding Quantum Physics: A User's Manual. Volume 1. 1st edition. © 1990. Reprinted by permission of Pearson Education Inc., Upper Saddle River, NJ.
- Salih Neftci (2000). An Introduction to the Mathematics of Financial Derivatives, pp. 346–358. © Elsevier 2000.
- Hal R. Varian (1992). *Microeconomic Analysis*. 3rd edition. © 1992, 1984, 1978
 W. W. Norton and Company, Inc. Used by Permission of W. W. Norton and Company Inc.

List of symbols

Some mathematics symbols used in the book

- \mathbb{R} : space of real numbers
- \mathbb{C} : space of complex numbers
- $\rho(.,.)$: probability density function (2 dimensional)
- $\rho(t, ..., .)$: time-dependent probability density function
- $L_2(\mathbb{R}^3)$: space of square integrable complex valued functions $\psi : \mathbb{R}^3 \to \mathbb{C}$
- $H = L_2(\mathbb{R}^3)$: complex Hilbert space with a scalar product
- *l.i.m*: limit in the mean square sense
- $\mathcal{P} = (\Omega, F, P)$: \mathcal{P} is a probability space and points ω of Ω (which is a nonempty set) are said to be elementary events. *F* is a so-called σ -algebra and *P* is a probability measure
- *m.s.*: mean square
- $\delta(x x_0)$: Dirac δ -"function"
- $\mathbf{P}^{b|a}$: matrix of transition probabilities
- $d_q f(x)$: q differential of a function f(x)
- $d_h f(x)$: *h* differential of a function f(x)

Some physics symbols used in the book

- *m*: mass
- *a*: acceleration
- *f*: force acting on particle
- V: real potential function
- ϕ , S: phase of a wave function
- v: frequency
- *t*: time
- ∇V : gradient of the real potential function

xxii

List of symbols

- *p*: momentum
- q: position
- $\mathcal{H}(.,.)$: Hamiltonian function
- $\{f, g\}$: Poisson bracket of two functions f and g on an N particle phase space
- $\{f_1, f_2\}$: Poisson bracket for a pair of classical observables f_1, f_2
- $\phi(t, x, y, z,)$: field state at instant t of vector with coordinates x, y and z
- E(t, x, y, z,): electrical field at instant t of vector with coordinates x, y and z
- B(t, x, y, z,): magnetic field at instant t of vector with coordinates x, y and z
- h: Planck's constant
- *ħ*: rationalized Planck constant
- $\Delta E_{ij} = E_i E_j$: discrete portion of energy
- L: angular momentum of an electron
- *I*: intensity of the electromagnetic field
- $A = (a_{ij})$: Hermitian matrix
- $\widehat{\mathcal{H}}$: Hermitian matrix representing the energy observable (quantum Hamiltonian)
- \hat{q} : position operator
- \hat{p} : momentum operator
- σ_x : standard deviation of position
- σ_p : standard deviations of momentum
- Δ_{q_i} : Laplace operator
- $\psi(t, q)$: probability amplitude on time, t, and position, q
- Γ: phase space of hidden states
- $|\psi\rangle$: element of the Hilbert space H: a ket vector
- (φ): element of the dual space H*, the space of linear continuous functionals on H: a bra vector
- $\langle \psi_1 | \widehat{w} \psi_2 \rangle$: Dirac braket, where ψ_1^* denotes the complex conjugate of ψ_1 and \widehat{w} acts on the state function ψ_2 .
- k: wave number
- A(k): amplitude function of wave number k
- $\langle p \rangle$: average momentum
- Q: quantum potential
- $\mathbf{P}(.|C)$: conditional probability dependent on the context, C
- D_+ : mean forward derivative
- D_{-} : mean backward derivative

Some economics/finance symbols used in the book

- σ : volatility
- $\alpha(\sigma)$: drift function of volatility
- $\beta(\sigma)$: diffusion function of volatility

List of symbols

- dX, dz, dW: Wiener process
- $\overrightarrow{q} = (q_1, q_2 \dots q_n)$: *n*-dimensional price vector
- m_j : number of shares of stock j
- $T_j(t)$: market capitalization of trader j at time t
- *V*(*q*₁,...,*q_n*): interactions between traders as well as interactions from other macro-economic factors
- Π: portfolio value
- F: financial option price
- S: stock price
- $\Delta = \frac{\partial F}{\partial S}$: delta of the option
- f_u ; f_d : intrinsic values of the option when the price of the asset is respectively going up and down
- E(r): expected return
- $\delta\Pi$: discrete change in the value of the portfolio, Π
- μ : expected return
- dF: infinitesimal change in F (the option price)
- r_f : risk free rate of interest
- $\phi(S, t)$: part of the premium invested in the stock, S
- S_T : asset price at the expiration of the option contract
- S_0 : asset price at the inception of the option contract
- *P*(., .|., .): conditional probability distribution
- $E[S_T|I_t]$: conditional expectation of a stock price at time T > t, given the information you have at time t
- $E(e^{Y_t\lambda})$: moment generating function, λ is some arbitrary parameter, and Y_t follows a probability density function (pdf) with mean μt and $\sigma^2 t$
- $E^{\widetilde{P}}[.,.]$: expectation with respect to a risk neutral probability measure \widetilde{P}
- E^{P} [., .]: expectation with respect to a probability measure P
- C_t : option call value at time t
- *P_t*: option put value at time *t*
- $\overrightarrow{\Phi} = (\Phi_1, \Phi_2, \dots, \Phi_K)$: *K*-dimensional state price vector
- $\overrightarrow{D_1}, \ldots, \overrightarrow{D_K}$: security price vector at time t_1 , if the market is, respectively, in state $1, \ldots, K$
- λ: Lagrangian multiplier
- E(u(W)): expected utility of wealth, W
- ≻: preference relation
- \succeq : weak preference relation
- β_i : CAPM Beta of asset *i*

xxiii