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We derive a Margolus-Levitin-type bound on the minimal evolution time of an arbitrarily driven open

quantum system. We express this quantum speed limit time in terms of the operator norm of the

nonunitary generator of the dynamics. We apply these results to the damped Jaynes-Cummings model

and demonstrate that the corresponding bound is tight. We further show that non-Markovian effects can

speed up quantum evolution and therefore lead to a smaller quantum speed limit time.
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What is the maximal speed of evolution of a quantum
system? This question is of fundamental importance in
virtually all areas of quantum physics, where the determi-
nation of the minimal duration of a process is of interest.
The latter include quantum communication [1], computa-
tion [2], and metrology [3], as well as nonequilibrium
thermodynamics [4] and optimal control theory [5]. The
maximal rate of evolution may be characterized by the
quantum speed limit time defined as the minimal time a
system needs to evolve between two states separated by a
given angle [6–11]. For closed systems, and orthogonal
states, the latter can be obtained by combining the results
of Mandelstam-Tamm (MT) [12] and Margolus-Levitin
(ML) [13], and reads �QSL ¼ maxf�@=ð2�EÞ; �@=ð2EÞg.
The MT bound depends on the variance �E of the energy
of the initial state while the ML bound on its mean energy
E with respect to the ground state; the quantum speed limit
time is thus given by the ML expression whenever E �
�E. The fact that �QSL is determined by the initial energy

of the system reflects the fact that the Hamiltonian is the
generator of unitary Schrödinger dynamics. It is worth
emphasizing that the existence of a speed limit time is a
purely quantum effect which vanishes when @ goes to zero.
Generalizations of the MT and ML findings to nonorthog-
onal states and to driven systems have been provided in
Refs. [14–19]. Since all systems are unavoidably con-
nected to their surroundings, a determination of the speed
limit time for open quantum systems appears necessary;
the latter indeed plays a key role in the analysis of envi-
ronmental effects on, e.g., the maximal rate of information
transfer [1], of gate operations [2], and of entropy produc-
tion [4], as well as on the efficiency of optimal control
algorithms [5]. Recently, the quantum speed limit time has
been derived for open systems described by positive non-
unitary maps and applications to dephasing in noisy chan-
nels and quantum parameter estimation have been
discussed [20,21]. In both approaches, the speed limit
time was obtained in terms of the variance of the generator

of the evolution, which reduces to the MTexpression in the
case of closed system dynamics. To our knowledge, no ML
type bound has been proposed for open quantum systems
to date.
In this Letter, we use a geometric approach to derive a

quantum speed limit time valid for open system dynamics
with possibly time-dependent nonunitary generators. In
contrast to previous studies, we obtain a bound that
depends on the mean of the generator; it therefore reduces
to the ML formula for unitary processes. MT type bounds
are usually derived with the help of the Cauchy-Schwarz
inequality. The latter invariably leads to expressions con-
taining the variance of the generator, and is hence not
suitable for getting ML type bounds. We here solve this
technical challenge by making use of the von Neumann
trace equality [22–24]. In the following, we obtain a quan-
tum speed limit time that depends on the operator norm of
the nonunitary generator and show that the so obtained ML
bound is not only sharper than the MT bound, it is also
tight. By employing both inequalities, we are able to obtain
a unified quantum speed limit time for generic positive
open system dynamics. We further apply these results to
investigate the influence of non-Markovianity on the rate
of quantum evolution. Non-Markovian (or memory) ef-
fects become important when the relaxation time of the
system is comparable to the relaxation time of the environ-
ment [25,26]. They have been shown to play a central role
in the creation of steady state entanglement [27], in the
description of quantum coherence in photosynthetic sys-
tems [28], in quantum metrology [29], and optimal control
theory [30]. Recent experiments with photons in a control-
lable non-Markovian environment have been reported in
Refs. [31,32]. Interestingly, we will show that non-
Markovian dynamics can lead to smaller quantum speed
limit times.
Geometric approach.—We consider a possibly driven

open quantum system and ask for the minimal time that
is necessary for it to evolve from an initial state �0 to a final
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state ��. Without loss of generality, we assume that the
initial state is pure, �0 ¼ jc 0ihc 0j. The case of an initially
mixed state can be treated by purification in a suffi-
ciently enlarged Hilbert space [33]. Note that under non-
unitary dynamics, the final state �� will be generally
mixed. The basis of our geometric approach is provided
by the Bures angle Lð�0; ��Þ between initial and final
states of the quantum system [33,34],

Lð�0; ��Þ ¼ arccos

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hc 0j��jc 0i

q �
: (1)

The Bures angle is a generalization to mixed states of the
angle in Hilbert space between two state vectors [35].

To evaluate the quantum speed limit time, we consider
the dynamical velocity with which the density operator of
the system evolves [8]. The latter is given by the time
derivative of the geometric Bures angle (1),

d

dt
Lð�0; �tÞ �

��������d

dt
Lð�0; �tÞ

��������
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� hc 0j��jc 0i
p jhc 0j _�tjc 0ij

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihc 0j��jc 0i

p : (2)

Using the definition (1), Eq. (2) can be written as

2 cosðLÞ sinðLÞ _L � jhc 0j _�tjc 0ij: (3)

Expression (3) will serve as the starting point for our
unified derivation of ML and MT type bounds on the
rate of quantum evolution, using, respectively, the von
Neumann trace inequality and the Cauchy-Schwarz
inequality.

Margolus-Levitin bound.—To illustrate the use of the
von Neumann trace inequality, we begin by providing a
derivation of the ML bound in the case of driven unitary
dynamics. The generator is here given by the time-
dependent Hamiltonian Ht of the system, and its density
operator obeys the von Neumann equation,

_�t ¼ 1

i@
½Ht; �t�: (4)

Substituting Eq. (4) into Eq. (3), we have

2 cosðLÞ sinðLÞ _L � 1

@
jhc 0j½Ht; �t�jc 0ij: (5)

Equation (5) can be estimated from above with the help of
the triangle inequality and we obtain

2 cosðLÞ sinðLÞ _L � 1

@
ðjtrfHt�t�0gj þ jtrf�tHt�0gjÞ: (6)

To proceed, we introduce the von Neumann trace inequal-
ity for operators which reads [22–24],

jtrfA1A2gj �
Xn
i¼1

�1;i�2;i: (7)

Inequality (7) holds for any complex n� n matrices A1

and A2 with descending singular values, �1;1 � . . . � �1;n

and �2;1 � . . . � �2;n. The singular values of an operator

A are defined as the eigenvalues of
ffiffiffiffiffiffiffiffiffi
AyA

p
[36]. For a

Hermitian operator, they are given by the absolute value
of the eigenvalues of A, and are positive real numbers. If A1

and A2 are simple (positive) functions of density operators
acting on the same Hilbert space, Eq. (7) remains true for
arbitrary dimensions [24]. The singular values of the op-

erators A and Ay are moreover identical. By taking A ¼
ðHt�tÞy ¼ �y

t H
y
t ¼ �tHt, and combining Eqs. (6) and (7)

we thus find

2 cosðLÞ sinðLÞ _L � 2

@

X
i

�ipi ¼ 2

@
�1; (8)

where �i are the singular values of Ht�t and pi ¼ �i;1

those of the initial pure state �0. For a Hermitian operator,
the operator norm is given by the largest singular value
kAkop ¼ �1, while the trace norm is equal to their sum

kAktr ¼ P
i�i [36]. As a consequence,

2 cosðLÞ sinðLÞ _L � 2

@
kðHt�tÞkop � 2

@
kðHt�tÞktr: (9)

We note, in addition, that the trace norm is given by

kðHt�tÞktr ¼ trfjHt�tjg ¼ hHti; (10)

when the instantaneous eigenvalues of Ht are all positive
(the latter can always be realized by properly choosing
the zero of energy [13]). Integrating Eq. (9) over time from
t ¼ 0 to t ¼ �, we arrive at the inequality

� � @

2E�

sin2½Lð�; ��Þ�; (11)

with the time-averaged energy E� ¼ ð1=�ÞR�
0 dthHti.

Equation (11) is the ML bound for driven closed systems.
The above derivation can be easily extended to arbitrary

time-dependent nonunitary equations of the form

_�t ¼ Ltð�tÞ; (12)

with positive generator Lt [37]. The latter are trace class
(super-)operators in a complex Banach space and need
generally not be Hermitian [26]. However, for symmetric

norms, such as the Schatten p norm kLtkp ¼ ½Pi�
p
i �1=p,

that we here consider [38], kLy
t jj ¼ kLtk. As a result, all

previously used definitions and inequalities remain valid
[39]. Substituting Eq. (12) into Eq. (3) we then have

2 cosðLÞ sinðLÞ _L � jhc 0jLtð�tÞjc 0ij; (13)

which is the nonunitary generalization of Eq. (5). Noting
that hc 0jLtð�tÞjc 0i ¼ trfLtð�tÞ�0g and employing the von
Neumann trace inequality (7), we obtain

2 cosðLÞ sinðLÞ _L � X
i

�ipi ¼ �1; (14)

where �i are the singular values of the operator Ltð�tÞ.
Equation (14) can again be estimated from above by the
operator norm and the trace norm to yield
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2 cosðLÞ sinðLÞ _L � kðLtð�tÞÞkop � k½Ltð�tÞ�ktr: (15)

Integrating Eq. (15) over time, we eventually find

� � max

�
1

�op
�
;
1

�tr
�

�
sin2½Lð�; ��Þ�; (16)

where we have defined �op;tr
� ¼ ð1=�ÞR�

0 dtkLtð�tÞkop;tr.
Equation (16) provides a ML type bound on the rate of
quantum evolution valid for arbitrary positive driven open
system dynamics.

Mandelstam-Tamm bound.—We next derive a unified
bound for the quantum speed limit time for open systems
by generalizing the method presented in Ref. [21] based on
the relative purity. To this end, we rewrite Eq. (3) as

2 cosðLÞ sinðLÞ _L � jtrfLtð�tÞ�0gj: (17)

The latter can be estimated from above with the help of the
Cauchy-Schwarz inequality for operators:

2 cosðLÞ sinðLÞ _L �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trfLtð�tÞLtð�tÞygtrf�2

0g
q

: (18)

Since �0 is a pure state, trf�2
0g ¼ 1, and we obtain

2 cosðLÞ sinðLÞ _L �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trfLtð�tÞLtð�tÞyg

q
¼ kLtð�tÞkhs;

(19)

where kAkhs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trfAyAg

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiP
i�

2
i

q
is the Hilbert-Schmidt

norm [36]. Integrating Eq. (11) over time leads to the
following MT type bound for nonunitary dynamics,

� � 1

�hs
�

sin2½Lð�; ��Þ�; (20)

where �hs
� ¼ ð1=�ÞR�

0 dtkLtð�tÞkhs. For unitary processes,

�hs
� is equal to the time-averaged variance of the energy.

For initially pure states, relative purity and fidelity are
identical, and the bound (20) thus reduces to the one
derived in Ref. [21], since sin2x � j cosx� 1j, 0 � x �
�=2; they are, however, different for initially mixed states.
Combining Eqs. (16) and (20), we obtain

�QSL ¼ max

�
1

�
op
�
;
1

�tr
�

;
1

�hs
�

�
sin2½Lð�; ��Þ�: (21)

Equation (21) provides a unified expression for the quan-
tum speed limit time for generic (positive) open system
dynamics. It represents a general extension of the MT and
ML result, �QSL ¼ maxf�@=ð2�EÞ; �@=ð2EÞg.

We may go a step further by noting that for trace class
operators the following inequality holds (see Ref. [39],
Theorem 1.16),

kAkop � kAkhs � kAktr: (22)

As a result, 1=�
op
� � 1=�hs

� � 1=�tr
� and we can therefore

conclude that the ML-type bound based on the operator
norm of the nonunitary generator provides the sharpest

bound on the quantum speed limit time. We will show
below that the bound can be attained and is hence tight.
Non-Markovian effects.—We may use the above results

to investigate the influence of non-Markovian dynamics on
the quantum speed limit time. To this end, we consider the
exactly solvable damped Jaynes-Cummings model for a
two-level system resonantly coupled to a leaky single
mode cavity [40,41]; the environment is supposed to be
initially in a vacuum state. The non-Markovian properties
of the damped Jaynes-Cummings model have recently
been studied experimentally in a solid-state cavity QED
system [42]. The nonunitary generator of the reduced
dynamics of the system is

Ltð�tÞ ¼ �t

�
���t�þ � 1

2
�þ���t � 1

2
�t�þ��

�
; (23)

where �� ¼ �x � i�y are the Pauli operators and �t the

time-dependent decay rate. By assuming that there is only
one excitation in the combined atom-cavity system, the
environment can be described by an effective Lorentzian
spectral density of the form

Jð!Þ ¼ 1

2�

�0�

ð!0 �!Þ2 þ �2
; (24)

where !0 denotes the frequency of the two-level system, �
the spectral width, and �0 the coupling strength. The time-
dependent decay rate is then explicitly given by

�t ¼ 2�0� sinhðdt=2Þ
d coshðdt=2Þ þ � sinhðdt=2Þ ; (25)

where d ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � 2�0�

p
. In the interaction picture, the

reduced density operator of the system at time t reads

�t ¼
�11ð0Þje��t j �10ð0Þe��t=2

��
10ð0Þe���

t =2 1� �11ð0Þje��t j

 !
; (26)

where �t ¼
R
t
0 dt

0�t0 . We shall examine the case where the

system starts in the excited state, �11ð0Þ ¼ 1 and �10ð0Þ ¼
0. For vanishing coupling, the system is isolated and in a
stationary state. For finite coupling, the two-level system is
driven by the bath. The correlation time of the bath is �B ¼
��1, while the decay time of the system is equal to �S ¼
��1
0 . The non-Markovian properties of the model have

been investigated in Refs. [43–47]: The dynamics is
Markovian in the weak-coupling regime, �0 < �=2. For
large time scale separation �B � �S, or, equivalently,
�0 � �, the decay rate is constant, �t ¼ �0. The dynamics
is non-Markovian for strong coupling, �0 > �=2, which
corresponds to an imaginary parameter d. In this regime,
the decay rate �t is an oscillatory function of time.
Figure 1 shows the quantum speed limit time (21) for the

two-level system as a function of the coupling strength �0,
obtained for the three different norms, in the case � ¼ 1.
We can distinguish two different phases. The speed limit
time exhibits a plateau independent of �0 for moderate
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coupling and then decreases for large coupling amplitudes.
Our second observation is that the ML bound based on the
operator norm is sharper than the MT bound based on the
Hilbert-Schmidt norm, in agreement with Eq. (22). It is
also sharper than the ML bound based on the trace norm.
Remarkably, the operator-norm bound is tight as it reaches
the actual driving time � over a large range of coupling
strengths.

The above behavior can be explained by evaluating the
singular values of the operator _�� in the strong Markovian
limit �� ¼ �0. The two values are equal and given by
j _�11j ¼ j _�00j ¼ j�� expð�

R
�
0 dt�tÞj ¼ �0 expð��0�Þ.

For small coupling �0� � 1, the singular values are thus
proportional to the coupling strength j _�11j ’ �0. For larger
coupling such that �0� 	 1, the singular values are inde-
pendent of �0, j _�11j ’ 0. The plateau seen in Fig. 1 is
hence a signature of Markovian dynamics and follows
from the time independence of the decay rate. The height
of the plateau can be determined by computing the time
averaged norm of _�t plotted in Fig. 2;

1

�

Z �

0
dtk _�tk ¼ n

�
½1� expð��0�Þ�; (27)

with n ¼ 1,
ffiffiffi
2

p
, and 2 for the operator, Hilbert-Schmidt,

and trace norms, respectively. The constant n is equal to

21=p for the general Schatten p norm. Equation (27) hence
shows that the operator norm (p ¼ 1) is the only p norm
for which the plateau reaches the actual driving time �.
Furthermore, the increase of the norm of the rate _�t in
the strong coupling regime, �0 > �=2 appears as a
consequence of the (oscillatory) time dependence of the
decay rate �t, and is thus a purely non-Markovian effect.
We therefore reach the interesting conclusion that
non-Markovian dynamics can increase the rate of evolution

of a quantum system, and thus reduce the quantum speed
limit time below its Markovian value.
Discussion.—Non-Markovian dynamics has been char-

acterized by an increase of the distinguishability of quan-
tum states quantified by their trace distance [44]. The time
derivative, �t ¼ @tk�1

t � �2
t ktr=2, of the trace distance

between states �1;2
t has been shown to be negative

(decrease of distinguishability) for Markovian processes
and positive (increase of distinguishability) for non-
Markovian processes. The latter has been interpreted as
an information backflow from the environment to the
system [44–47]. For the damped Jaynes-Cummings
model (23) with �1

0 ¼ j1ih1j and �2
0 ¼ j0ih0j, �t ¼

��t expð��tÞ [44,45,48] and the singular values of the
nonunitary generator are thus given by j�tj. In the non-
Markovian regime, �t < 0 (�t > 0), and the rate �t is
hence a decreasing function of time. As a result, �t grows
with time through its exponential dependence on �t. The
decrease of the quantum speed limit (which is inversely
proportional to the singular values) is therefore a conse-
quence of the backflow of information to the system. The
latter is observable provided that the prefactor ��t does
not decrease too rapidly. More precisely, the calculation of
the time derivative of �t, _�t ¼ ð�2

t � _�tÞ expð��tÞ,
reveals that non-Markovian effects speed up quantum evo-
lution _�t > 0, provided that _�t < �2

t , that is, if the rate of
change of �t is smaller than its square. When this condition
is not met, the dynamics of the system counters the effect
of the information backflow and prevents the speed-up
[49]. We emphasize that the above discussion is not limited
to the damped Jaynes-Cummings model, but applies to a
general class of two-level systems obeying a time-local
master equation of the form, _�t ¼ �ð�t=2Þ�
ðLyL�t þ �tL

yL� 2L�tL
yÞ, with arbitrary Lindblad-

type operator L [50]. The latter includes the important
dephasing channel model (L ¼ �z) which has been
recently investigated experimentally [32].
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FIG. 2 (color online). Time-averaged operator norm of the
nonunitary generator Lð�tÞ of the damped Jaynes-Cummings
model (23) (continuous line). The dotted line corresponds to the
Markovian result, Eq. (27). The inset shows the fidelity
Fð�0; ��Þ ¼ cosðLð�0; ��ÞÞ. Same parameters as in Fig. 1.
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FIG. 1 (color online). Quantum speed limit time �QSL, Eq. (21),
for the damped Jaynes-Cummings model as a function of the
coupling strength �0. The three curves are obtained for the trace
norm (green dotted line), Hilbert-Schmidt norm (blue dashed
line), and the operator norm (red solid) of the nonunitary
generator Lð�tÞ, Eq. (23). The black (dash-dotted) line repre-
sents the actual driving time � ¼ 1. Parameters are � ¼ 50 and
!0 ¼ 1.
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Conclusions.—We have derived a quantum speed limit
time that generalizes the familiar MT and ML results to
generic time-dependent (positive) dynamics of open quan-
tum systems. In particular, using the von Neumann trace
inequality, we have obtained an expression of the speed
limit time in terms of the operator norm of the nonunitary
generator of the evolution. We have demonstrated that the
latter bound is sharper than any bound based on a Schatten
p-norm, such as the trace and Hilbert-Schmidt norms, and
that it is moreover tight. Applying these results to the
damped Jaynes-Cummings model has additionally shown
that non-Markovian effects, and the associated information
backflow from the environment, can lead to faster quantum
evolution, and hence to smaller quantum speed limit times.

This work was supported by the DFG (Contract
No. LU1382/4-1). S. D. acknowledges financial support
by the postdoc-program of the German Academic
Exchange Service (DAAD, Contract No. D/11/40955).

[1] J. D. Bekenstein, Phys. Rev. Lett. 46, 623 (1981).
[2] S. Lloyd, Nature (London) 406, 1047 (2000).
[3] V. Giovanetti, S. Lloyd, and L. Maccone, Nat. Photonics 5,

222 (2011).
[4] S.Deffner andE. Lutz, Phys. Rev. Lett. 105, 170402 (2010).
[5] T. Caneva, M. Murphy, T. Calarco, R. Fazio, S.

Montangero, V. Giovannetti, and G. E. Santoro, Phys.
Rev. Lett. 103, 240501 (2009).

[6] G. N. Fleming, Nuovo Cimento A 16, 232 (1973).
[7] K. Bhattacharyya, J. Phys. A 16, 2993 (1983).
[8] J. Anandan and Y. Aharonov, Phys. Rev. Lett. 65, 1697

(1990).
[9] L. Vaidman, Am. J. Phys. 60, 182 (1992).
[10] J. Uffink, Am. J. Phys. 61, 935 (1993).
[11] D. C. Brody, J. Phys. A 36, 5587 (2003).
[12] L.Mandelstam and I. Tamm, J. Phys. (USSR) 9, 249 (1945).
[13] N. Margolus and L. B. Levitin, Physica (Amsterdam)

120D, 188 (1998).
[14] V. Giovannetti, S. Lloyd, and L. Maccone, Phys. Rev. A

67, 052109 (2003).
[15] P. Jones and P. Kok, Phys. Rev. A 82, 022107 (2010).
[16] M. Zwierz, Phys. Rev. A 86, 016101 (2012).
[17] S. Deffner and E. Lutz, arXiv:1104.5104.
[18] P. Pfeifer, Phys. Rev. Lett. 70, 3365 (1993).
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