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Abstract We show how the quantum paradigm can be used to speed up unsupervised learn-
ing algorithms. More precisely, we explain how it is possible to accelerate learning algo-
rithms by quantizing some of their subroutines. Quantization refers to the process that par-
tially or totally converts a classical algorithm to its quantum counterpart in order to improve
performance. In particular, we give quantized versions of clustering via minimum spanning
tree, divisive clustering and k-medians that are faster than their classical analogues. We also
describe a distributed version of k-medians that allows the participants to save on the global
communication cost of the protocol compared to the classical version. Finally, we design
quantum algorithms for the construction of a neighbourhood graph, outlier detection as well
as smart initialization of the cluster centres.

Keywords Unsupervised learning - Clustering - Quantum learning - Quantum information
processing - Grover’s algorithm

1 Introduction

Consider the following scenario, which illustrates a highly challenging clustering task.

Imagine that you are an employee of the Department of Statistics of the United Nations.
Your boss gives you the demographic data of all the Earth inhabitants and asks you to anal-
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yse this data with a clustering algorithm in the hope that you might detect interesting trends
and groups within this population. Seeing that you seem a bit lost in front of such a big
amount of data, he tells you that he was able to “borrow” a fully operational full-scale quan-
tum computer from the National Security Agency. Can this quantum computer help you
speed up the clustering process?

Unsupervised learning algorithms are frequently used in Data Mining (Witten and Frank
2005) for applications in which the size of the dataset is huge, such as astronomy, bioin-
formatics or data issued from large-scale networks such as the Internet. For this type of
applications, having fast and efficient algorithms is a necessity, and sometimes having a
polynomial-time algorithm is not enough to be considered efficient. For instance, even a
quadratic-time algorithm can be totally useless in practice on a billion entries, which illus-
trates the importance of developing algorithms that are as efficient as possible. In particular,
we shall see in this paper that the paradigm of quantum computing can be used to speed up
several classical unsupervised learning algorithms.

Learning algorithms based on quantum primitives have already been developed in super-
vised (Anguita et al. 2003; Ezhov and Berman 2003) and reinforcement learning (Dong
et al. 2005). However, not much work has been done yet concerning unsupervised learn-
ing, with the exception of a quantum algorithm for the minimal spanning tree (Diirr et al.
2004), which can also be used to perform clustering although this was not these authors’
intention. See also Li et al. (2009, 2011) and Yu et al. (2010). Almost all the quantum al-
gorithms described in this paper are based on variants of Grover’s algorithm (Grover 1997).
Our quantum versions of clustering algorithms offer a speed-up compared to their classical
counterparts, but do not improve the quality of the resulting clustering process. In partic-
ular, if finding the optimal solution for a particular clustering problem is NP-hard (Garey
and Johnson 1979), it is generally believed that quantum computers would also be unable to
solve the problem exactly in polynomial time (Bennett et al. 1997).

The outline of this paper is as follows. First, Sect. 2 provides an overview of quantum
information processing, in particular of Grover’s algorithm and its variants. Some of these
variants are further detailed because they are used as subroutines in our learning algorithms.
Afterwards, Sect. 3 describes the black-box model adapted for the clustering context. The
quantized versions of the clustering algorithms based on the minimum spanning tree, on
divisive clustering and k-medians (standard and distributed versions) are detailed in Sects. 4,
5 and 6, respectively. Then, Sect. 7 describes a set of algorithms that can be used as tools
during the preprocessing steps of other unsupervised learning algorithms: construction of a
neighbourhood graph, detection of outliers and initialization of the cluster centres. Finally,
Sect. 8 concludes this paper by a discussion and some perspectives on future extensions,
such as a quantum version of ISOMAP, an algorithm for dimensionality reduction.

This paper is a thoroughly polished version of our earlier work (Aimeur et al. 2007),
which it extends in two important directions. First, in addition to speeding up the classical
k-medians algorithm in Sect. 6.1, we demonstrate in Sect. 6.2 that quantum information can
be used to reduce the amount of communication required to implement this algorithm in a
distributed setting. Second, we have shown how to speed up classical algorithms for outlier
detection (Sect. 7.2) and the “smart” initialization of cluster centres (Sect. 7.3).

2 Quantum information processing
In this section, we briefly review the notions of quantum information processing that are rele-

vant to understanding our quantum versions of unsupervised learning algorithms. A detailed
account of the field can be found in the book of Nielsen and Chuang (2000).

@ Springer



Mach Learn (2013) 90:261-287 263

|0) (M=

Fig. 1 Simple quantum circuit acting as a perfect random bit generator
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Fig. 2 Unitary computation of function f by quantum circuit C that implements U ¢

2.1 Basic notions of quantum information processing

A qubit (or quantum bit) is the quantum analogue of the classical bit. In contrast with its
classical counterpart, a qubit can exist in a superposition of states. For instance, an elec-
tron can be simultaneously on two different orbits of the same atom, which could rep-
resent classical bits 0 and 1, respectively. Formally, a qubit is represented as a unit vec-
tor in a two-dimensional Hilbert space. Using the Dirac notation, a qubit is described as
|Y) = «|0) + B|1), where @ and 8 are complex numbers called the amplitudes of classical
states |0) and |1), respectively, subject to the normalization condition that |«|> + |B|*> = 1.
When the state |1) is measured, either |0) or |1) is observed, with probability || or |B]?,
respectively. Furthermore, measurements are irreversible because the state of the system col-
lapses to whichever value (|0) or |1)) has been observed, thus losing all memory of former
amplitudes o and S. The notion of qubit has a natural extension, which is the quantum regis-
ter. A quantum register |v), composed of n qubits, lives in a 2"”-dimensional Hilbert space.
Register |) = Zflgl a;|i) is specified by complex amplitudes «g, ¢, ..., aon_; subject to
normalization condition Y |o;|> = 1. Here, basis state |i) denotes the n-bit binary encoding
of integer i. A quantum state such as % |01) — % [10) is entangled if it cannot be described
by the state of its individual qubits.

With the exception of measurements, all other operations allowed by quantum mechanics
are unitary operations on the Hilbert space in which our qubits live. They are represented by
gates, much as in a classical circuit. For instance, the Walsh—-Hadamard gate H maps |0) to
%|0) + %H) and |1) to %|0) - %H). As an elementary example, consider the circuit
shown in Fig. 1, where the single wires carry quantum information while the double wire
holds classical information. In this example, we apply a Walsh—-Hadamard gate to state |0),

which yields % |0) + % |1), and then measure the quantum state. The subsequent measure-
ment produces either O or 1, each with probability |% |> = %, and the state collapses to the
observed classical value. This circuit acts as a perfect random bit generator.

Fortunately (for implementation considerations), any unitary operation can be decom-
posed in terms of unary and binary gates. However, doing so efficiently (by a polynomial-
size circuit) is often nontrivial and usually impossible. Nevertheless, any function f that
can be computed by a classical circuit of size k can be computed by a quantum circuit C of
size approximately 2k, which implements unitary operation U s. Because unitary operations
must be reversible, we cannot in general simply go from |i) to | f(i)). Instead, we must map
|i,b) to |i,b+ f(i)), as illustrated in Fig. 2, where the addition is performed in an appro-
priate finite group and the second input is a quantum register of sufficient size to hold the
output. It suffices to set b to zero at the input of the circuit in order to obtain f (7).

This quantum circuit can then be applied to a superposition of different inputs:

Ur(Q; :1i)|0)) =, ;1i)| f(i)). This gives rise to a potentially exponential amount of

@ Springer



264 Mach Learn (2013) 90:261-287

|z) (=17 @) |z)
1) 1)

Fig. 3 Circuit to invert the phase of the target state. The output is identical to the input, with the possible
exception of the phase, which is inverted if and only if f(x) = 1. This process is known as phase kick-back
because it is in fact the state of the bottom qubit that evolves from |1) to —|1) whenever f(x) = 1. However,
it is legitimate to think as if the phase flip were applied to the input qubits because |x)(—|1)) = (—|x))|1)

parallelism, which has no classical counterpart. Amongst the most celebrated results, Shor
(1997) has developed quantum algorithms for integer factorization and the computation of
discrete logarithms, two problems of major importance in the field of cryptography. Another
famous algorithm, due to Grover (1997), offers a quadratic speed-up in unstructured search
problems. Grover’s algorithm was analysed formally and generalized by Boyer et al. (1998).
Several extensions of this algorithm are used in this paper as described below.

2.2 Grover’s algorithm and its variants

In the original version of Grover’s (1997) algorithm, a Boolean function f is given as a black
box with the additional promise that there is a unique xo such that f(x¢) = 1. Classically,
finding this x(, when the function f displays no particular structure, requires on average
approximately 5 queries to this black box, for n the number of points in the domain of f.
Grover’s algorithm solves the same problem with approximatively +/n queries to the black
box, but those are made in quantum superposition of classical states.

Grover’s algorithm starts by applying a Walsh—-Hadamard transformation on each qubit
of an initial state composed of a sequence of |0)’s in order to create an equal superposition
of all the possible inputs.! Afterwards, the algorithm proceeds by repeating an adequate
number of times Grover’s iteration, which consists in two steps: a call to the quantum circuit
shown in Fig. 3 inverts the phase of the target state, which is the unknown state |x) such
that f(x) = 1, and an inversion around the average swings the amplitude of each state at the
same distance but on the other side of the average amplitude of all states. It will be crucial in
Sect. 6.2 that only the first of these two steps depends on the function f under consideration.
One application of Grover’s iteration has for effect to increase slightly the amplitude of the
target state, while decreasing the amplitudes of the other states. After approximately %ﬁ
iterations (Boyer et al. 1998), the amplitude of the target state will have risen very close
to 1. Therefore, if the register is measured at that precise moment, the target state will be
observed with quasi-certainty. This results in an O (y/n) computational time.

Starting from the original idea of Grover, several generalizations of his algorithm have
been developed for the cases in which there are more than one x such that f(x) = 1. For any
known number ¢ > 0 of solutions, the application of approximately %\/Im Grover iterations
is sufficient to find one of these solutions with high probability (Boyer et al. 1998) or even
with certainty if the Grover iterations are modified very slightly, according to Theorem 4 of
Brassard et al. (2002). If the number of solutions ¢ is unknown, Boyer et al. (1998) show that
it is nevertheless possible to find one of the solutions among the ¢ possible ones in O (4/n/t)
expected time. Moreover, extensions to Grover’s algorithm exist that can be used to count
(exactly or approximately) the number of solutions (Brassard et al. 1998, 2002).

Twe suppose throughout for simplicity that the number of points under consideration is a power of 2. If it is
not, an equal superposition of the points can be obtained either with the use of a quantum Fourier transform
or, in case measurement is allowable, by a postselection process.
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Other applications of Grover’s algorithm find the minimum (or maximum) of a function
(and its position) (Diirr and Hgyer 1996) or the ¢ smallest (or highest) values of its image
(Diirr et al. 2004) after @ (/n) and © (y/cn) calls to the function, respectively. Other vari-
ants can be used to approximate the median of a set of values or statistics that are related to it
(Nayak and Wu 1999) with a quadratic speed-up compared to the best possible classical al-
gorithm. Finally, the generalization of Grover’s algorithm known as amplitude amplification
(Brassard and Hgyer 1997; Brassard et al. 2002) can accelerate many classical probabilistic
algorithms by a quadratic factor in terms of the number of queries asked to the black box.

3 Quantization of clustering algorithms

Quantization refers to the process that partially or totally converts a classical algorithm
to a quantum algorithm in order to improve its performance. In this section, we detail a
model and tools that can be used to quantize unsupervised learning algorithms, among which
specifically clustering algorithms. Although related, the task of quantizing a clustering algo-
rithm should not be confused with the design of classical algorithms inspired from quantum
mechanics (Horn and Gottlieb 2001, 2002) or the task of performing clustering directly on
quantum information (Aimeur et al. 2006).

3.1 Black-box model

Traditionally in clustering, we consider a training dataset composed of n datapoints de-
noted by D, = {xy, ..., x,}, where each datapoint x; corresponds to a vector of d attributes.
The goal of a clustering algorithm is to partition D, into subsets of points called clusters,
such that the objects that are similar are grouped within the same cluster (intra-similarity)
whereas dissimilar objects are placed in different clusters (inter-dissimilarity). One usual
assumption is that there exists a notion of distance (or a dissimilarity measure) that can be
evaluated to compare each pair of points. This distance is used by the algorithm to drive the
formation of the clusters.

The model considered in most of this paper differs from this traditional machine learning
framework and corresponds rather to the black-box model. In this model, our knowledge of
the dataset comes uniquely from a black box (sometimes called oracle) that can be queried
to learn the distance between two points. No assumptions are made a priori concerning the
properties of this distance except that it is non-negative and that Dist(x;, x;) = 0 for all i.
In particular, the triangle inequality need not hold and the distance may not be symmetric.>
Throughout this paper, we shall nevertheless assume for simplicity that the distance function
is symmetric, but most of our algorithms can be adapted mutatis mutandis without modify-
ing their computational time significantly if this is not the case. This black-box model is
generally used to derive lower bounds for problems for which it is difficult to prove such
bounds in a more general context. Note that in this model, the complexity of an algorithm is
measured in terms of the numbers of queries to the oracle, which constitutes a lower bound
on the computational complexity of this problem. For simplicity, we shall henceforth refer
to this number of queries as “time”.

This black-box model is comparable to the one introduced by Angluin (1988) in classical
computational learning theory, which is used to study the complexity of learning exactly a

2To be mathematically rigorous, the term dissimilarity measure would be more appropriate than the term
distance when the symmetry property or the triangle inequality does not hold.
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Fig. 4 Illustration of the distance oracle: i and j are the indexes of two points from D, and Dist(x;, x j)
represents the distance between these two points. The addition b + Dist(x;, x ;) is computed in a finite group
of appropriate size between the ancillary register b and the distance Dist(x;, x ;)

function given as a black box. A quantum analogue of Angluin’s model has been defined by
Servedio (2001). The main difference is that our goal is to perform clustering and not to learn
exactly a function computed by an oracle. To the best of our knowledge, the complexity of
clustering in Angluin’s model has not been studied before, whether it be in the classical or
the quantum version. However, a similar problem was considered in the classical variant of
the PAC setting (Probably Approximately Correct) of Valiant (1984), in which the goal was
to characterize the time needed to learn a specific clustering (in the PAC sense of the term)
among a class of possible clusterings (Mishra et al. 2001).

In the classical variant of the black-box model, a query to the oracle corresponds to
asking for the distance between two points x; and x; by giving as inputs the indexes i and j
of these two points. The corresponding quantum black box is illustrated in Fig. 4, where O
stands for “oracle”. In order to obey the principles of quantum mechanics, O must be unitary
(and therefore reversible). In practice, this is not really a restriction as it is always possible
to transform any classical irreversible circuit into a reversible one for a “reasonable” cost
(Bennett 1973). Therefore, it is enough to specify the description of the classical irreversible
circuit implementing the oracle in order to be able to convert it into a reversible circuit before
implementing it quantum mechanically (at least in principle).

If the black box is quantum-mechanical, it can be interrogated in a superposition of in-
puts. For instance, if the input qubits are initially in state |0) and a Walsh—-Hadamard gate
is applied on each of these qubits (with the exception of the ancillary register, which is left
unchanged to |0)), the input will be transformed to an equal superposition of all the pairs
of indexes of datapoints. In this specific situation, interrogating the oracle will result in a
superposition of all the possible triplets |i, j, Dist(x;, x;)).

The assumption that a particular clustering problem is given as a black box is not realistic
in practice, even though it is the usual paradigm considered in quantum information process-
ing as well as in Angluin’s model. However, Giovannetti et al. (2008) have designed general
quantum random access memory (QRAM) architectures, which can be used to construct
explicitly and efficiently a quantum circuit playing the role of the oracle.

3.2 Quantum subroutines

This section describes three quantum subroutines used to speed up classical clustering algo-
rithms. All these subroutines are based on variations of Grover’s algorithm. In particular, the
first two are direct applications of previous work of Diirr and Hgyer (1996) and Diirr et al.
(2004), respectively. The third subroutine is a novel, albeit simple, application of Grover’s
algorithm.

The algorithm quant_find_max described thereafter (Algorithm 1) is directly inspired
from the algorithm of Diirr and Hgyer (1996) for finding the minimum of a function. It can
be easily adapted to compute the maximum, hence retrieving the farthest pair of points in
the dataset (the distance between these points is called its diameter). A similar algorithm
can be used to identify the datapoint that is the farthest from a specific point.
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Algorithm 1 quant_find_max(D,)
Initialize d,;;,, =0
repeat
Using Grover’s algorithm, try to find indexes i and j such that Dist(x;, x;) > dyax
Update d,,.x = Dist(x;, x;)
until no new i, j have been found
Return i, j

Fig.5 Circuit implementing the phase flip in the variant of Grover’s algorithm that retrieves the pair of points
with maximum distance (Algorithm 1). The unitary transformation O is the inverse of O and the subcircuit
P is described in the following figure. The output is identical to the input, with the exception of the phase of
|dmax ), which is inverted by phase kick-back if and only if Dist(x;, xj) > dmax

|d) |d)
‘dmaaj) ‘dmaz>
|b) |b® I{d > dmaz})

Fig. 6 Subcircuit P used in Fig. 5 to produce the desired phase kick-back, where I{-} is the indicator func-
tion, which evaluates to 1 if its argument is true and O otherwise, and “@” denotes the sum modulo 2, also
known as the exclusive-or

The algorithm starts by initializing d,,,, to zero. By using the circuit realizing the phase
flip described in Figs. 5 and 6, Grover’s algorithm attempts to find a new pair of points
(i, j), if it exists, such that Dist(x;, Xj) > da. If such a pair is not found, the algorithm ter-
minates. Otherwise, the value of the distance d,,, is updated to Dist(x;, x;) and the process
is repeated until the algorithm converges to the diameter with high probability.

Theorem 1 (Convergence of quant_find_max) With high probability, algorithm
quant_find_max returns the indexes i and j of the farthest pair of points in O(/p) = O(n)
expected time, where p = n? is the number of pairs in the dataset. In the simpler case, in
which we are interested in retrieving the farthest point from a specific point, the correspond-
ing algorithm takes O (\/n) expected time.

Proof The convergence proof of quant_find_max is similar to the analysis of Diirr and Hgyer
(1996) for their algorithm for finding the minimum of a function. u

Diirr et al. (2004) have developed an algorithm for finding the ¢ smallest values of a

function with high probability within O(4/cn) time, for n the number of datapoints in the
domain of the function. If we set this function to be the distance between a fixed point and
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all the other points, we obtain the second subroutine quant_find_smallest_values, which is
a direct application of the algorithm of Diirr et al. (2004) adapted for finding the c closest
neighbours of a point.

Theorem 2 (Convergence of quant_find_smallest_values (Diirr et al. 2004)) With high
probability, algorithm quant_find_smallest_values finds the c closest neighbours of a point

in O(y/cn) time.

Note that this algorithm for finding the ¢ smallest values is more efficient, albeit more
complicated, than simply applying the algorithm for finding the minimum c¢ times, which
would have taken O (c4/n) time instead of O ( /cn).

The third and last subroutine is a new algorithm, coined quant_find_median, which com-
putes the median within an ensemble of n points D, = {x1, ..., x,}.

Definition 1 (Median) The median of a set of points D is one whose sum of distances with
all the other points is minimal (ties are broken arbitrarily): it is an x € D such that

ZDist(x, y) < ZDist(z, y) 1)

yeD yeD

for all z € D. In the case of multidimensional points, the term medoid is sometimes used
instead of the term median.

Finding the median can be realized classically by computing, for each point in the ensem-
ble, the sum of its distances with all the other points and by taking the minimum. This
process requires O (n?) time, where n is the number of points considered. In the generic
case, where there are no properties of the distance to be used or no structure within the
ensemble of points that can be exploited, this naive solution is the most efficient possible.
Indeed, consider a scenario in which all the points are at the same distance from one another,
with the exception of two points that are closer to one another. These two points are the
medians of this ensemble of points. Classically, it will be necessary to ask almost all the
distances between pairs of points to the black box before it is possible to identify one of
these two medians. This results in a lower bound of §2 (n?) time.

When all the x; correspond simply to numbers, or more generally when all the points
are colinear, the quantum algorithm of Nayak and Wu (1999) can be used to approximate
the median in ® (4/n) time. However in the more generic case considered in this paper, our
goal is to compute the median by using as sole information the distance between each pair
of points, which corresponds to a situation for which the algorithm of Nayak and Wu does
not apply.

To solve this problem quantum mechanically, we use the circuit S illustrated in Fig. 7,
which takes |i) as input, with 1 <i < n, and computes the sum of distances between x;
and all the other points in D,. This can be achieved in O(n) time by simply applying
the black box described in Fig. 4 successively for each value of j, 1 < j < n (recall that
Dist(x;, x;) =0). A more efficient but approximate solution to this problem has recently
been proposed by Brassard et al. (2011). We leave it for further research to determine the
impact (or not) of this approach on clustering because it is not obvious to determine how
detrimental to the quality of the resulting clustering would this use of approximate medi-
ans be.
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) )
S
|b) I b+ 327 Dist(wi, z;))

Fig. 7 Computation of the sum of distances between x; and all the other points of the ensemble
Dy = {x1,...,xx}. The oracle S can be obtained by repeating n times the oracle O described in Fig. 4
for j ranging from 1 to n

Afterwards, the algorithm of Diirr and Hgyer (1996) can be used to identify the minimal
sum for all the possible x; by using ® (y/n) applications of the circuit of Fig. 7.

Lemma 1 (Convergence of quant_find_median) With high probability, algorithm
quant_find_median finds the median among a set of n points in O (n/?) time.

Proof Each application of the circuit illustrated in Fig. 7 takes O (n) time and finding the
minimal sum among the n possible ones requires O(y/n) applications of the circuit by
using the quantum algorithm for finding the minimum (Diirr and Hgyer 1996). Therefore,
the algorithm requires O (n/n) = O(n*?) time to compute the median. ]

4 Clustering via minimum spanning tree

Let G = (V, E) be a connected undirected graph for which V is the set of n vertices and E
is the set of edges. Each edge has a weight, which is a positive real value.

Definition 2 (Spanning tree) A spanning tree is a subset of n — 1 edges T C E such that
(V, T) constitutes a connected graph.

Definition 3 (Minimum spanning tree) A minimum spanning tree is a spanning tree for
which the total sum of the weights of the edges is minimum among all the possible spanning
trees.

One of the oldest techniques for performing clustering (Zahn 1971) is directly based on
the minimum spanning tree. Consider for instance that each datapoint x; of the dataset is the
vertex of a graph and that each pair of vertices (x;, x;) is linked by an edge whose weight
is proportional to some measure of distance Dist(x;, x;). Once a minimum spanning tree
for this graph has been constructed, it is easy to group the points into k clusters simply by
removing the k — 1 heaviest edges of this tree.

The clustering based on the minimum spanning tree maximizes a criterion that depends
on the minimal distance between each cluster.

Definition 4 (Spacing) Let C; and C, be two disjoint clusters, the spacing between C; and
C, is defined as

Spacing(Cy, Cy) = Dist,;;n(Cy, C2) = min _ Dist(x, y). 2)

xeC1,yeCy

In words, it is the distance between the closest pair of points (x, y), for x belonging to the
first cluster and y belonging to the second cluster.
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The spacing is also sometimes called minimal distance between two clusters or single
linkage.

Definition 5 (k-clustering with maximum spacing) A k-clustering with maximum spacing

of the dataset D, is a set of k clusters Cy, C», ..., C; partitioning D,, that maximizes
k=1 k
> > Spacing(C;, C)). 3)
i=1 j=i+l

The clustering based on the minimum spanning tree is precisely the one that maximizes
this clustering criterion of maximum spacing (Gower and Ross 1969). Therefore, this corre-
sponds to a situation for which a polynomial-time algorithm for maximizing the clustering
criterion exists, which is not the case for most of the other clustering criteria.

Classically, when the graph is given as an adjacency matrix, this clustering problem can
be solved directly by using Prim’s algorithm (1957), which takes O (n?) time, where n is
the number of vertices in the graph (or equivalently the number of points in the dataset).
This algorithm is optimal since all classical algorithms require £2(n?) time in the case of a
complete graph and an arbitrary metric.

The first quantum algorithm for clustering, although it had not been developed with this
purpose in mind, is due to Diirr et al. (2004), who have studied the quantum complexity of
some graph problems, including the minimum spanning tree. The models considered in their
work are quantum versions of the adjacency matrix and the adjacency list. The adjacency
matrix model, which is the only one considered here, is comparable to the black-box model
described in Sect. 3.1. In this model, we give as input the indexes i and j of two vertices and
we get as output the weight of the edge linking them (which, in our application, corresponds
to the distance).

In practice, we must avoid at all cost the need to build a quantum circuit (or QRAM)
that stores explicitly in its memory all the possible values of the adjacency matrix. Indeed,
the construction of this circuit would require at least £2(n?) time because one would need to
read each entry of the n x n matrix at least once. This is clearly not better than using directly
Prim’s algorithm. Intuitively, the situations for which it is interesting to apply Grover’s algo-
rithm (or one of its variants) are when it is possible to construct a quantum circuit defining
the search space in less time than needed classically for generating the minimum spanning
tree.

The algorithm of Diirr et al. (2004) is a quantization of a classical algorithm for the
minimum spanning tree due to Boriivka (1926). Taking no account of the practical need to
build a quantum circuit for the adjacency matrix (as mentioned above), it assumes that this
matrix is given by an oracle.

Theorem 3 (Quantum algorithm for the minimum spanning tree) The quantization of
Boriivka’s algorithm due to Diirr et al. (2004) can build the minimum spanning tree of a
graph in ® (n’/?) time, where n is the number of vertices of the graph. Moreover, this al-
gorithm is optimal: in the case of a complete graph, no quantum algorithm can find the
minimum spanning tree in less than $2(n/?) time.

This theorem directly implies that it is possible to obtain a k-clustering with maximum

spacing in ® (n/?) time, again on condition that an efficient quantum circuit to provide the
distance between an arbitrary pair of points can be obtained in O (n%/?) time.
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Algorithm 2 quant_divisive_clustering(D)

if the points within D are sufficiently similar then
Return D as a cluster

else
Find points x, and x; that are the farthest apart within D using quant_find_max
for each x € D do

Attach x to the closest point among x, and x;

end for
Let D, be the set of points attached to x,
Let Dy, be the set of points attached to x;
Call quant_divisive_clustering(D,)
Call quant_divisive_clustering(Dj)

end if

5 Divisive clustering

One of the simplest ways to build a hierarchy of clusters is to start by assigning all the
points to the same super-cluster. Afterwards, divisive clustering splits this super-cluster into
two subclusters. Two datapoints are chosen to be the initial seeds of the two subclusters.
A common technique is to choose as seeds the two points that are the farthest apart within
the dataset. Afterwards, all the other points are attached to their closest seed. This division
technique is then applied recursively on all the subclusters obtained until all the points con-
tained within a cluster are sufficiently similar or some other stopping criterion is reached
(see Algorithm 2 for more details).

Divisive clustering seeks to maximize at each step of the recursion a criterion that de-
pends on the maximal distance between two clusters.

Definition 6 (Maximal distance between two clusters) The maximal distance between two
clusters is the distance between the pair of points (x, y) that are the farthest apart, for x
belonging to the first cluster and y belonging to the second cluster:

Dist,,qx(Cy, C;) = max  Dist(x, y). 4)

xeCp,yeCy

The costliest part of this algorithm is to identify the two points that are the farthest apart
within the initial ensemble of n points. If the datapoints are vectors in R for an arbitrarily
high dimension d, this process requires §2(n?) comparisons in the general case,® and this
even in the case of approximations (Finocchiaro and Pellegrini 2002). Quantum mechani-
cally, it is possible to use quant_find_max as a subroutine in this algorithm to find the two
points that are the farthest apart in O (n) time.

Theorem 4 (Quantum divisive clustering) With high probability, algorithm
quant_divisive_clustering performs divisive clustering of a set of n points with a gain of
at least Q(@) over the classical version, as measured by the ratio between the classical
and quantum times.

3However, if this dimension d is low (such as d < 3), linear-time and sub-quadratic algorithms exist for some
metrics such as the Euclidean distance (Preparata and Shamos 1985; Bespamyatnikh 1998).
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Proof Suppose at first that at each recursive call, the algorithm splits the dataset into two
sub-clusters of approximately the same size. This will lead to the construction of a balanced
binary tree and the algorithm will have its execution time 7 (n) characterized asymptotically
by the recurrence T (n) = 2T (n/2) + O (n), which is O (nlogn). Classically, the recurrence
for the same case is characterized by T (n) = 2T (n/2) + £2 (n*) because of the time required
to find the two points that are the farthest apart among the ensemble of points, which results
in £2(n?) time. The ratio between the classical and quantum times is therefore

I’l2 n
2 = .
nlogn logn

On the other hand, in the unbalanced case in which the algorithm produces one cluster that
contains a small number of points and another that concentrates all the global mass, the
generated tree will be unbalanced and with a depth of . In this case, this requires O (n?)
global computational time quantum mechanically compared to of £2(n°) classically, which
results in a gain of £2(n®/n?) = 2(n). The gain between the classical and quantum versions

is therefore even more pronounced in the unbalanced case, but it is £2( 10’; —) in all cases. O

In practice, if the clusters thus generated are highly unbalanced, this may be indicative of
the presence of outliers. In this case, a common technique consists in detecting and removing
these outliers before launching divisive clustering. This avoids the formation of sub-clusters
that are too unbalanced. We discuss in Sect. 7.2 a quantized version of an algorithm for
performing outlier detection.

6 k-medians

This section describes two quantum versions of the k-medians algorithm, the “standard” ver-
sion, in which all the points are physically gathered in the same location, and the distributed
version, in which the data is shared between two or more participants.

6.1 Standard version

The k-medians algorithm, also called k-medoids (Kaufman and Rousseeuw 1987), is a
cousin of the k-means algorithm (Lloyd 1982). The cluster centres are often initialized as
k points chosen at random among the n points of the dataset, k being a parameter of the
algorithm corresponding to the number of desired clusters. (In Sect. 7.3, a quantum algo-
rithm for initializing the clusters using a “smarter” approach is proposed.) The algorithm is
iterative and each iteration is composed of two steps. During the first step, each datapoint is
attached to its closest centre. Afterwards, during the second step, the centre of each cluster
is updated as the median of all the points belonging to this cluster (recall that this is the point
with minimal total distance to all the points in the cluster). The algorithm terminates when
all the cluster centres are stabilized (or quasi-stabilized).

The k-medians algorithm seeks to partition the data into k clusters minimizing a distance
criterion depending on the distance between all the points belonging to a cluster and the
centre of this cluster.

Definition 7 (k-medians criterion) Consider a set of k clusters Cy, Cy, ..., C; partitioning
D,, that have points ui, Uz, ..., ur € D, for respective centres. These clusters are optimal
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Algorithm 3 quantum_k_medians(D,,, k)
Choose uniformly at random k points that will be the initial cluster centres
repeat
for each datapoint in D,, do
Attach this point to its closest centre
end for
for each cluster QO do
Compute the cluster’s median using quant_find_median(Q); make it the new centre
end for
until (quasi-)stabilization of the clusters
Return the clusters found and their respective centres

with respect to the clustering criterion of k-medians if they minimize

k

Z Z Dist(x, ;). (5)

i=1 xeC;

Contrary to the criteria used for the clustering algorithms described in the previous sec-
tions, optimizing the k-medians criterion is NP-hard for all £ > 2 even in the Euclidean
case (Papadimitriou 1981). Hence, no known polynomial-time algorithm exists for comput-
ing an optimal solution to this problem (a set of clusters that minimizes this criterion) even
with the use of a quantum computer. The quantum version of the k-medians algorithm (Al-
gorithm 3) is therefore a quantized version of a heuristic for solving an NP-hard problem,
but not an algorithm for solving exactly this problem.

The main difference between k-means and k-medians is that the former chooses a virtual
point called centroid as centre of a cluster, which corresponds to the average of the points
belonging to this cluster, whereas the latter restricts the centre to be an actual point of the
dataset. The k-means algorithm is guaranteed to converge to a stable assignment of the clus-
ter centres after a finite number of iterations whereas the k-medians algorithm can reach a
situation in which it oscillates between two (or more) configurations. This difference of con-
vergence behaviour arises from the fact that the average is always uniquely defined whereas
it is possible to have several perfectly valid medians for the same set of points. However,
one of the advantages of k-medians over k-means is that it can be used even when the sole
information available is the distance between points (and not their descriptions), which ren-
ders the computation of the average (and therefore the application of k-means) meaningless.
Compared to its more famous cousin, the k-medians algorithm also offers the advantage of
being more robust to noise and less sensitive to the presence of outliers within the data (see
Sect. 7.2 for a brief explanation).

Theorem 5 (Standard quantum k-medians) With high probability, algorithm
quantum_k_medians computes the clustering of a set of n points with a gain of at least
2(/nJk) over the classical version, as measured by the ratio between the classical and
the quantum times, where k is the number of clusters returned by the algorithm.

Proof In order to analyse the efficiency of one iteration of the algorithm, suppose at first

that all the clusters are approximately of the same size n/k. If all the medians were to be
computed classically, each would require ©® ((%)2) time, for a total of @(%nz) time in order
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to identify the centres of the k clusters. Quantum mechanically, the median of a cluster of
size n/k can be obtained in 0(%\/% ) time by using the subroutine quant_find_median. This
leads to O (n*?/+/k ) time for one iteration of the quantum version of k-medians, which is
2(+/n/k) times faster than the classical approach. Consider now the unbalanced scenario,
in which all the clusters but one are of small constant size, whereas a unique cluster concen-
trates almost all the mass of datapoints. In this case, finding the median requires £2 (n?) time
classically, compared to O (n*/?) time quantum mechanically, which is £2(,/n ) times faster.
The gain between the classical and quantum versions is therefore even more pronounced in
the unbalanced case, but it is §2(y/n/k) in all cases. d

Note that the use of the quantum or classical version has no impact on the convergence
rate of the algorithm, as measured by ¢, the number of iterations. In practice, however, the
number of iterations and the quality of the clustering returned can be improved by perform-
ing a more “intelligent” initialization of the cluster centres (see Sect. 7.3).

Between two iterations of the k-medians algorithm, it is possible that the clusters stay
relatively stable, meaning that only a small number of points are moved from one cluster to
another. In this situation, it is likely that an appropriate (classical) data structure can keep
track of the contents of clusters and their medians in order to accelerate the computation
of medians from one iteration to the next. However, this potential improvement does not
seem to have been the focus of much study in the (classical) literature. If it were, we could
use the quantum version of k-medians during the first iterations before using the classical
alternative based on the appropriate data structure when the situation becomes more stable.
Alternatively, we could design an appropriate quantum data structure to bring about even
more improvement. This is the topic of further research.

The quantum version of k-medians might also be improved by developing a quantum
algorithm to estimate the sum of distances rather than simply adding them one by one as
suggested in Fig. 7. Currently existing algorithms for estimating the mean (Grover 1998) do
not seem to be appropriate for this purpose because of precision issues, but other methods
based on amplitude estimation seem promising (Brassard et al. 2011). It is also plausible
that the convergence of the algorithm, as measured by the number of iterations ¢, might be
sped up with the help of quantum techniques. We leave this as another avenue for future
research.

6.2 Distributed version

In the same manner that it is sometimes possible to speed up an algorithm by exploiting
the quantum paradigm, in some cases it is possible to reduce the communication cost of a
distributed protocol (de Wolf 2002; Brassard 2003; Buhrman et al. 2009). In a distributed
setting, the dataset D,, is not localized in a single place but distributed among two (or several)
participants. Equivalently, this can be seen as a situation in which each participant has his
own dataset and their goal is to run a learning algorithm on the union of their datasets.
For simplicity, we shall concentrate on the case of two participants and we assume that
each of the attributes of any given datapoint can be represented with finite precision using
a constant number of bits. This problem can be solved simply by gathering all the data in
a central site and then running the standard version of the learning algorithm. In this case,
the communication cost of the protocol would be of & (dm) bits, for d the dimension of the
space in which the datapoints live and m the number of points of the smaller dataset. This
can be very inefficient in practice if the size of the dataset is large. The main purpose of
the theory of (classical) communication complexity (Kushilevitz and Nisan 1997) is to find
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efficient protocols that require fewer bits of communication than what communicating the
whole input would entail.

In a quantum distributed learning situation, the participants have the possibility of ex-
changing qubits instead of bits or to share prior entanglement in order to help them in
performing their task. The main issue is whether or not the use of quantum information
can help in decreasing the communication cost of some distributed protocols. Holevo’s
(1973) theorem rules out the possibility of transmitting more than n classical bits of in-
formation by communicating n qubits unless the participants share prior entanglement, in
which case it is possible to transmit 2n classical bits by superdense coding (Bennett and
Wiesner 1992), but this is the best possible (Cleve et al. 1999). Furthermore, it is impossi-
ble to use entanglement for instantaneous communication as this would entail faster-than-
light communication. However, these limitations do not preclude the possibility of using
quantum information to save significantly (quadratically or even exponentially) on the com-
munication cost of computing some distributed functions (de Wolf 2002; Brassard 2003;
Buhrman et al. 2009) or to achieve tasks that are provably impossible classically in a con-
text in which communication between participants is ruled out (Brassard et al. 2005).

Suppose that the dataset D,, is shared between two participants, Alice and Bob. For the
sake of simplicity, we assume that they share equally an even number n of datapoints.*
In order for the quantum version of distributed k-medians to be interesting, it is necessary
that its communication cost be lower than that of the trivial protocol, which would require
sending all the data to one site, at a cost of ®@(dn) bits. The points in D,, can be reordered
such that the first n/2 points correspond to Alice’s dataset D, = {x, ..., X, 2}, whereas the
rest constitutes Bob’s dataset Dy = {X144/2, ..., Xu}.

Alice can construct a quantum circuit E, that encodes her dataset D,, possibly in the
form of a QRAM (Giovannetti et al. 2008). This circuit E, takes as input the index i of
a point from her dataset, for i € {1, ..., 7}, and produces the description x; of this point.
Bob can do the same with his own dataset D, and build a circuit E, that, from the index
J €{5 +1,...,n}, returns the description x; of this point. Moreover, if Alice has an im-
plementation of the quantum circuit Dist, which computes the distance between two points
whose description is given as inputs, she can use it in conjunction with E, to implement a
circuit S, that computes the sum of distances between an arbitrary point whose description
is known (even a point belonging to Bob’s dataset) and all the points from her dataset D,
(the same goes for Bob, who can build circuit S;). Quantum circuit Dist can be constructed
by first designing an irreversible classical version of the distance circuit and then using Ben-
nett’s (1973) technique to make it reversible and thus implementable as a quantum circuit.
Moreover, Alice and Bob can also construct EZ, SZ, EZ and S"', the inverses of E,, S,, E,
and S;, respectively.

In order to implement the k-medians algorithm in a distributed manner, Alice and Bob
have to perform distributively Grover’s iteration, as used in the subroutine quant_find_
median. During this protocol, they use and exchange three quantum registers. The first reg-
ister, which encodes the index of a datapoint, is called the index register and is of size
©® (logn). This is the only register that will not be exchanged during the protocol. The sec-
ond register, which contains the description of a datapoint, is called the description regis-
ter and is of size ©® (d). Finally, the third register, which contain the distance or a sum of

41f this assumption does not hold, the algorithm can be adapted without difficulty. However, if the sizes of
the datasets of Alice and Bob are exceedingly unbalanced—for example if one of the participants has only
O(/n) datapoints—the best solution is that the participant with the smallest dataset sends directly all his
data to the other participant, who then can run the standard version of the learning algorithm on the whole
dataset.
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distances between one datapoint and several others, is called the distance register. We as-
sume that we know an upper bound sum_dist,,,, on the maximum sum of distances between
one point and all the other points’ so that we can choose the distance register to be of
size © (logsum_dist,,,). Indexes A and B are attached to the quantum registers to indi-
cate who, respectively between Alice and Bob, has control over this register at a particular
moment of the protocol.

Consider an iteration of the k-medians algorithm in which Alice and Bob need to find the
median of cluster Q = Q, U Q,, where Q, € D, and Q;, C D,. Let i, be the desired index
of a point in Q, whose sum of distances with all the other points of Q is minimal (i, is
defined in the same way for Q). The distributed Grover iteration, as given by Algorithm 4,
is used to find i, with quant_find_median, where d,,;, is initialized to 1 + sum_dist,,,, and
the index register is initialized to an equal superposition of the indices of all the points in
Q. before the first iteration. Here, circuits S, and S, (and their inverses SZ and SZ) have
been modified to take only account of the points in Q, and Q,, respectively.

Lemma 2 The protocol distributed_Grover_iteration (Algorithm 4), which implements
Grover’s iteration in a distributed manner, can be used in the subroutine quant_find_median.
Its communication cost is of O (d +1og sum_dist,,,,) qubits, where d is the number of attrib-
utes used to describe the datapoints and sum_dist,,,, is an upper bound on the maximum
sum of distances between one datapoint and all the other datapoints of D, .

Proof The step by step description of Algorithm 4 clearly demonstrates that it implements
the functionality of Grover’s iteration such as described in Sect. 2.2. In particular, the effect
of the first part of Grover’s iteration (Steps 1 to 8) is to invert the phase of all the points
in Q, whose sum of distances from all the points in Q is below the value d,,;,. The inver-
sion around the average, which is performed during the last step of Grover’s iteration, is
independent of the functionality considered and can be realized locally by Alice. Concern-
ing communication, only steps 3 and 6 require an exchange of information between Alice
and Bob. The sizes of the registers exchanged are O(d) for the description register and
O (log sum_dist,,,,) for the distance register. The global communication cost is therefore
O (d + log sum_dist,,,) qubits. O

For each iteration of the k-medians algorithm and for each cluster, the subroutine
quant_find_median is called in order to find i, by applying the protocol
distributed_Grover_iteration for implementing Grover’s algorithm. Before calling dis-
tributed_Grover_iteration for the first time, Alice sets the index register in a superposition of
all the indexes of the points in Q, (the current cluster considered by her). Once i, has been
identified by using quant_find_median, i, can be found by inverting the roles of Alice and
Bob. Finally, to determine the median among Q, U Q,, it is sufficient to choose between i,
and i), the one whose sum of distances with all the points in Q is minimum. Algorithm 5
formalizes the distributed version of k-medians.

Theorem 6 (Quantum k-medians distributed) With high probability, algorithm
k_medians_distributed clusters an ensemble of n points distributed between two partici-
pants at a communication cost of O(tvkn(d + log sum_disty,y)) qubits, where n is the
number of points in the dataset, d the number of attributes used to describe these points, k

51n the worst case, sum_distmay is O(n+/d) but a better upper bound could be known.

@ Springer



Mach Learn (2013) 90:261-287 271

Algorithm 4 distributed_Grover _iteration(Q = Q, U Q)
[Step 1] Alice uses circuit E, to produce in the description register the description x; of a
point from index i found in the index register, which will usually be in superposition.
. O Eq |,
1) 410) 37 # idalxi) -
(The index register is of size ®@ (logn) qubits and the description register is of size
Od).)
[Step 2] Alice calls the circuit S, to compute the sum of distances between the point x;
and all the points in Q,,.
. o sum_distmax) Sa . .
i) ali) al0) 37O 2 i) 4 1x0) 4l X, e, Dist(i, X)) a
(The distance register is of size © (log sum_dist,u,y).)
[Step 3] Alice sends the description and distance registers to Bob.
liYabxi)al Xy e, DistOxis x4 7 i alxi) sl X, g, Dist(xi, X))z
[Step 4] Bob makes the description register interact with the description of his points by
using the circuit S,. This operation computes the sum of distances between x; and all the
points in Q = Q, U Q.
. . Sp . .
liYalxi) Bl Yoo e, DistOxiy ) p 75 1) alxi) 8] 32, o Dist(xi, X)) s
[Step 5] Let f be the Boolean function defined as

iy — {1 it Y-, o Dist(xi, %)) < din, ©

0 otherwise,

where d,,;,, was initialized to 1 + sum_dist,,,, before the first iteration.
Bob applies the conditional phase flip P, which realizes the following transformation:

. . P i) .
) alxi) sl 2o o Dist(xi, x)) 5 > (=17 Dli)alxi) I 3, e o Dist(xi, X)) 5.
[Step 6] Bob applies SZ to disentangle the distance register from his points in Q, and
sends back the description and distance registers to Alice.

Sz+c0m

(=) Di) alx;) ) ijgQ Dist(x;, x)))p > (=17 D]i)alx;)al ijega Dist(x;j, x;))a
[Step 7] Alice disentangles and discards the distance register by applying S;.
. . sé N
(=D DNi)alxi) al Xy eq, Dist(xi, x))a = (=D Ol alxi)a
[Step 8] Alice disentangles and discards the description register by applying E .
(=D Dli)alxi)a = (=17 DJi) 5
[Step 9] Alice applies locally the inversion around the average to the index register.

the number of clusters returned, t the number of iterations of the algorithm and sum_dist,, .
is an upper bound on the maximum sum of distances between one datapoint and all the other
datapoints of D,,.

Proof Let us consider the two extremes. If the k clusters are approximatively of the same
size n/k, each iteration of the algorithm requires that Alice and Bob exchange O (/n/k)
times a register of size O(d + log sum_dist,,..) per cluster, for a total of O(ky/n/k) =
O (Vkn) registers exchanged per iteration. On the other hand, if one cluster contains al-
most all the n points and the others are of negligible size, each iteration of the algorithm
requires that Alice and Bob exchange O(4/n) times a register of the same size as in the
other case. We see that the balanced case is the worst in terms of communication (whereas
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Algorithm 5 k_medians_distributed(D,, Dy, k)
Alice and Bob choose k points uniformly at random among D, and D, as being the
initial cluster centres
repeat
for each datapoint in D, and D, do
Attach this point to its closest centre
end for
for each cluster 0 = Q, U Q, do
Alice find i, by using quant_find_median( Q) with the protocol
distributed_Grover_iteration in order to perform Grover’s iteration;
Bob find i), by using quant_find_median(Q) with the protocol
distributed_Grover_iteration (the roles of Alice and Bob are exchanged)
for performing Grover’s iteration;
median(Q) = arg min;¢(;, ;) ijeQ Dist(x;, x)
end for
until (quasi-)stabilization of the cluster
Return the clusters (distributed between Alice and Bob) and their centres

it was the best case in terms of computation time in the nondistributed setting studied in
Sect. 6.1). In all cases, O (vkn) exchanges of a register of size O (d + log sum_dist,,,, ) suf-
fice, which results in a communication cost of O (vkn(d + log sum_dist,,,,)) qubits per it-
eration. The total communication cost is therefore of O(M/E (d + log sum_dist,,,,)) qubits
for all ¢ iterations. O

This algorithm can be easily generalized to the multiparty case, for a number of par-
ticipants m > 2. To do this, it is sufficient for each participant j (for 1 < j <m) to find
within his dataset the point i; whose sum of distances with all the other points is minimum.
This can be done by adapting the distributed version of Grover’s iteration so that it works
with more than 2 participants. Afterwards, the median can be chosen as the point among
{i1, ..., iy} that minimizes the sum of distances with all the other points of the cluster.

7 Quantum tools for unsupervised learning algorithms

The algorithms described in this section are not unsupervised learning algorithms by them-
selves, but they are often used as tools by other algorithms for unsupervised learning. There-
fore, faster versions of these algorithms contribute directly to obtaining faster versions of
algorithms for unsupervised learning.

7.1 Construction of a neighbourhood graph

The construction of a neighbourhood graph is an important step in the preprocessing of
several unsupervised learning algorithms such as the algorithm Isomap for dimensionality
reduction (Tenenbaum et al. 2000) and clustering by random walk (Harel and Koren 2001).
Definition 8 (Neighbourhood graph) Consider a complete undirected graph in which ver-

tices correspond to points of a dataset and each edge between two vertices is weighted
according to the distance between these two points. A neighbourhood graph is built from
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Algorithm 6 quant_neighbourhood_graph(D,,, k)
for each datapoint x; of D, do
Use quant_find_smallest_values for finding the k closest neighbours of x;
for each of the k closest neighbours of x; do
Create an edge between x; and this neighbour, which is weighted according to the
distance between these two points
end for
end for
Return the constructed graph

this original graph by keeping for each vertex only the edges connecting it to its k closest
neighbours.

An alternative notion of a neighbourhood graph could be defined by keeping an edge
between two vertices if and only if they are in the close neighbourhood of each other. This
approach guarantees that the maximum degree of the graph is less than or equal to k, the
number of the closest neighbours considered. However, it would then be possible that some
points become isolated (not connected) from the rest of the graph, which may indicate that
they are outliers (see next section), but may also be seen as a drawback if the neighbour-
hood graph is given as input to an algorithm that requires a connected graph. We shall use
Definition 8 henceforth.

Algorithm 6 is a quantized version of an algorithm for constructing a neighbourhood
graph.

Theorem 7 (Quantum algorithm for constructing a neighbourhood graph) With high prob-
ability, the algorithm quant_neighbourhood_graph constructs the neighbourhood graph of
a set of n points in O (Vkn*'?) time, for k the number of neighbours considered.

Proof For each datapoint, it is possible to obtain its k closest neighbours in O (vkn ) time
by using the subroutine quant_find_smallest_values. Therefore, construction of the global
neighbourhood graph takes O (+v/k n*/?) time. O

Classically, if we use an arbitrary metric and if the only information available is the
distance between pairs of points, £2(n?) time is required to generate the neighbourhood
graph. However, if we have explicitly access to all the d attributes describing these points
and if d is small,® an appropriate data structure such as the binary trees for multidimensional
search (Bentley 1975), also known as kd-trees, can be used to obtain the k closest neighbours
of a specific point in ® (klogn) time. The building of a kd-tree requires us to sort all the
points for each dimension, which can be done in ® (dn logn) time, where d is the dimension
of the space in which the datapoints live and » is the number of datapoints. Therefore, it takes
©((k 4+ d)nlogn) time to construct the kd-tree representing a dataset and use it for finding
the k closest neighbours of each of the n points, provided d small.

6Kibriya and Frank (2007) review a study comparing different methods and data structures to speed up the
search of the closest neighbours. This study empirically demonstrates that for any d > 16, all these methods
become sensitive to the curse of dimensionality and require a time worse than linear in the number of points
for identifying the closest neighbours of a particular point.
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7.2 Outlier detection

Definition 9 (Outlier) An outlier is an observation that differs significantly from the rest of
the data.

In practice, the exact interpretation of this definition depends on the context considered.
In some contexts, outliers are considered as being datapoints generated by a noise process
and therefore must be removed if possible. For example, the outlier might be a datapoint that
has been corrupted, either by a change in the value of some of its attributes or because it has
been labelled with a wrong class. It might even be the case that this observation is purely
random and does not carry any meaningful information.

When performing classification, it is desirable to be able to detect and remove outliers
that are present inside a dataset in order to improve the accuracy of the classifier that will be
learnt on this data. Similarly in clustering, the ability to recognize outliers makes it possible
to avoid taking them into account during the formation of clusters and therefore to improve
the quality of the resulting clustering. However, in some applications, such as fraud detection
for credit card usage or intrusion detection, it is important to be able to detect outliers as they
might correspond to an unusual behaviour that we want to discover.

If we know in advance the distribution from which the data have been sampled (for
instance by a model learned through density estimation or by some a priori knowledge),
a statistical test can be used to identify the datapoints that diverge significantly from this
distribution (Yamanishi et al. 2004). Another way to detect an outlier is by inspecting the
attributes of each point and then considering as potential outliers those differing significantly
from the median value. The median is generally used instead of the mean because it is less
influenced by the presence of outliers since the mean might be greatly influenced by some
extreme values. This also explains why the k-medians algorithm (described in Sect. 6) is
generally considered as being less sensitive to outliers than its cousin the k-means algorithm
(Massart et al. 1986). Other density-based methods (Breunig et al. 2000) inspect the neigh-
bourhood of each point and take the points located in low density areas as potential outliers.
In practice, this method gives very good results but is often costly in terms of computational
resources. Finally, another approach relies on a notion of distance, which labels as outliers
the points that are at far distant from their k closest neighbours. Indeed, a possible technique
(Angiulli and Pizzuti 2002) consists in identifying, for each point x;, its k closest neighbours
and to give a neighbourhood score w; to this point equal to

w; = Z DiSt(Xi,Xj), (7)

Xj€Vi(x;)

where Vi (x;) is the subset of D, consisting in the k closest neighbours of x;. Once this
score has been computed for each point, outliers can be identified as points whose score w
is above a threshold w,,,, (determined empirically), or as the ¢ points that have the highest
score, for a well-chosen constant ¢. Algorithm 7 is a quantum version of this idea, which
computes these scores for each point. Classically, £2(n?) time is needed to determine the
neighbourhood scores of all n points in the general case.

Theorem 8 (Quantum algorithm for outlier detection based on distances) With high prob-
ability, the algorithm quant_detection_outlier identifies all the outliers, within a dataset of
size n, in O (Vkn®?) time, where k is the number of neighbours considered for each point.
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Algorithm 7 quant_detection_outlier(D,,, k, Wyay)
Use quant_neighbourhood_graph(D,,, k) to build the neighbourhood graph
for each point x; in D, do
Compute w; as being the sum of distance between x; and its k closest neighbours
Identify x; as an outlier if @; > wy4x
end for
Return the outliers thus identified

Algorithm 8 quantum_initialization_centres(D,,, k)
Choose at random a datapoint in D,,, which is labelled as 1,
fori =2tok do '
Use quant_find_max for finding u; = argmax,cp, Z’j;ll Dist(x, uj)
end for
Return w4, ..., 1, as initial cluster centres

Proof By virtue of Theorem 7, it takes O (v/kn%?) time to compute the neighbourhood
graph. Once this is done, O (k) time is needed for each of the n nodes to compute its score
and decide if it is an outlier. Therefore, the algorithm takes O (v/k n>/? + kn) total time,
which is O (vkn*?) since k < n. O

7.3 Initialization of the cluster centres

Traditionally, the initial cluster centres in algorithms such as k-means or k-medians are
chosen at random among all the points from the dataset. Starting from two different initial
configurations, the algorithm has a non-negligible probability of converging towards two
different clusterings. Moreover, as it is NP-hard to optimize the cost functions of k-means
and k-medians (Papadimitriou 1981), it is likely that both clusterings thus generated corre-
spond at best to local minima. A standard technique for alleviating this problem is to run the
algorithm several times from different initial configurations and to keep only the clustering
that minimizes the cost function considered.

A different approach is to choose the initial cluster seeds in a “smart” way instead of
completely at random. An algorithm of the max-min (Dasgupta and Long 2005) type starts
by choosing the first centre 1, at random among all the points from the dataset. Afterwards,
the second centre w, is chosen as the point with maximum distance from ;. The following
centres U3, ..., iy are chosen one by one, always taking as next centre the datapoint whose
sum of distances with all the previous centres is maximum. Formally, we define the ith
centre y; as:

i-1
ni = argmaxZDist(x, M) (8)

xeDy, =1

This method produces initial cluster seeds that are well-scattered and distant from one an-
other. Algorithm 8 is a quantum version of this method for initializing the cluster centres.

Theorem 9 (Quantum algorithm for the initialization of the cluster centres) With high prob-
ability, the algorithm quantum_initialization_centres initializes in a “smart” way the k clus-
ter centres of a set of n points in O(k*/n) time.
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Proof The algorithm quantum_initialization_centres chooses the first centre at random
among all the possible points of the dataset. Afterwards, the second centre is determined
as the farthest point from this original centre by using the quant_find_max subroutine,
which requires O(y/n) time. Then for each of the following centres wu;, for 3 <i <k,
we can compute it through i — 1 applications of the oracle O, and then calling the subrou-
tine quant_find_max on the register of distances, which take O((i — 1)/ ) time. Therefore,
this algorithm takes O (k%/n) time in total, which is obtained from summing the arithmetic

series Yy | iy/n. O

The algorithm quantum_initialization_centres can be used to find a clustering composed
of k disjoint clusters in which the maximum diameter, among all these clusters, is approx-
imately minimized. The main goal here is to create an ensemble of k clusters with small
maximum diameter. Formally, this algorithm seeks to minimize

max max Dist(x, y) )
1<i<k x,yeC;
over all clusterings Cy, C», ..., Cy. This criterion is NP-hard to optimize in its exact version,

but an approximation due to Gonzélez (1985) returns a set of k clusters whose maximum
diameter is at most twice that of the optimal k-clustering of minimal maximum diameter,
provided the distance function is defined in a Euclidean space. Gonzdlez’s algorithm starts
by choosing the k cluster centres as explained previously, which classically requires O (k*n)
time. Afterwards, each point of the dataset is attached to its closest centre. The quantum
version of this algorithm requires O (k*+/n) time to identify the cluster centres.

8 Conclusion and future avenues of research

As seen in this paper, some unsupervised learning algorithms can be accelerated beyond
what can be achieved classically by making some of their subroutines quantum mechanical.
Moreover, in some distributed learning scenarios, it is possible to save on the communication
cost if the participants are allowed to exchange quantum information or if they share prior
entanglement, such as the distributed version of k-medians (Sect. 6.2). In this conclusion,
we summarize the different results presented in this paper and open new avenues of research
for quantum unsupervised learning algorithms.

8.1 Fair comparison between classical and quantum learning algorithms and lower bounds

In order to make a fair comparison between classical and quantum clustering scenarios, it is
important to consider the best known classical algorithm when the only information avail-
able is the distance between pairs of points as well as when a complete description of the
datapoints is available. For instance, when building a neighbourhood graph, the classical
algorithm for kd-trees computes this graph so efficiently that quantizing the classical al-
gorithm working only on the distances offers no significant advantage if the dimension d
is small (Kibriya and Frank 2007). A fundamental open question is the study of the lower
bounds for different clustering scenarios, be they classical or quantum mechanical. In par-
ticular, can we characterize precisely the situations in which the quantized version of the
clustering algorithm offers a speed-up not only on its classical counterpart but on all possi-
ble classical algorithms?
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Table 1 Table summarizing the lower and upper bounds in the time (or communication cost) required by
unsupervised learning algorithms studied in this paper

Clustering problem Classical Quantum mechanical

Minimum spanning tree/k-clustering @(nz) C] (n3/ 2)

with maximum spacing

Divisive clustering (in the case of @(nz) 2(n), O(nlogn)

balanced sub-clusters)

k-medians (standard 2(), 06¢%)  2), 0¢-n??
-medians (standard) (F)0a) (), O —n™)

k-medians (distributed), ®(dn) 2(d/n), Ot~vkn(d + logsum_distmayx))

communication cost

Construction of a neighbourhood graph G)(nz) 2(n), O(ﬁnwz)

(for d a medium or high dimension)

Outlier detection (based on the @(nz) 2(n), 0(\/1;n3/ 2)

neighbourhood graph)

“Smart” initialization of the cluster (), 0(k*n) W), 02 yn)

centres

For example, in the case of the minimum spanning tree (Sect. 4), Diirr et al. (2004) have
proven that their algorithm is optimal. Therefore, if one could give a reduction between the
problem of k-clustering with maximum spacing and the construction of the minimum span-
ning tree, this would imply that no clustering algorithm that tries to maximize the criterion
of k-clustering with maximum spacing, whether it be classical or quantum mechanical, can
take less than £2 (n*/?) time. Table 1 summarizes the results seen so far in this paper.

These bounds are relatively tight for the clustering via minimum spanning tree, for the
divisive clustering and for the “smart” initialization of the cluster centres. Concerning the
construction of the neighbourhood graph and the detection of outliers, it seems likely that
the true lower bound is closer from £2 (/%) than from 2 (n). If this intuition were formally
proven, this would have for consequence that the algorithms presented in this paper are es-
sentially optimal. On the other hand, for the quantum version of the k-medians algorithm,
there is still a important gap between the lower bound and the upper bound, which leaves
open the possibility of finding a more efficient quantum algorithm. In particular, the im-
pact of the new approximate median-finding algorithm of Brassard et al. (2011) should be
investigated.

Another fundamental question is to determine the type of clustering algorithms admitting
a distributed version in which the transmission of quantum information can lead to a saving
on the communication cost (compared to the classical versions). So far, we have seen that
the k-medians algorithm admits an efficient distributed quantum version. The same kind of
idea could also be applied to obtain a distributed version of the “smart” initialization of the
cluster centres. This simply involves using the distributed version of Grover’s iteration in
the computation of quant_find_max. Both distributed algorithms have a communication cost
of O(d~/kn') qubits (not taking into account the log factors) and return as output only O (k)
bits of information corresponding to the cluster centres. On the other hand, algorithms such
as clustering via minimum spanning tree output §2(n) bits of information (for instance the
description of the minimum spanning tree), which seems not easily compressible. It follows
that these algorithms are unlikely candidates for the distributed setting because their com-
munication cost would be at least as much as simply sending directly all the data to a single
entity.

@ Springer



284 Mach Learn (2013) 90:261-287

8.2 Quantization of dimensionality reduction algorithm

Isomap (Tenenbaum et al. 2000) is an unsupervised algorithm for learning a low-
dimensional representation of data coming from non-linear varieties. More specifically,
Isomap assumes that the observed data, which live in high dimension, have been gener-
ated by a low-dimensional manifold. The main idea of the algorithm is to approximate the
geodesic distance between two points on this curvature by the length of the shortest path
between these two points on a neighbourhood graph. Once the geodesic distance has been
estimated for each pair of points of the dataset, multidimensional scaling (Cox and Cox
1994) is used on the distance matrix in order to learn a low-dimensional representation of
the data. The computational bottleneck of Isomap, as well as of most of the dimensionality
reduction algorithms, stems from the computation of the eigenvalues and eigenvectors of
n x n matrices, which requires in general O (n*) time. The cost of these eigencomputations
dominates the computational complexity of these algorithms. Concerning the determina-
tion of the eigenvalues, some quantum algorithms, such as amplitude estimation (Brassard
et al. 2002), use the quantum Fourier transform to estimate the eigenvalues more quickly
than classically achievable. However, with respect to the determination of the eigenvectors
of a matrix, to the best of our knowledge there exist no quantum algorithms that are more
efficient than their classical counterparts. We leave as open question the possibility of de-
veloping a quantum algorithm for determining the eigenvalues and the eigenvectors of an
n x n matrix more efficiently than it is classically possible, which would directly lead to a
panoply of quantum algorithms for dimensionality reduction.

8.3 Other research avenues

Grover’s algorithm, and its generalization amplitude amplification (Brassard and Hgyer
1997; Brassard et al. 2002), are applicable in a wide range of situations but offer at best a
quadratic speed-up compared to the best classical algorithm. More recently, other algorith-
mic approaches based on guantum walks (Kempe 2003; Ambainis 2003) or quantum Markov
chains (Szegedy 2004; Magniez et al. 2007; Santha 2008) have emerged. These techniques
seem promising and capable of overcoming the intrinsic limits of Grover’s algorithm. In par-
ticular, there are strong similarities and links between some learning algorithms and some
quantum algorithmic techniques, which might be exploited to develop new quantum learn-
ing algorithms. An example of promising candidate is a classical clustering algorithm based
on random walks (Harel and Koren 2001).

Better than quadratic improvement over classical algorithms are likely to emerge only
when intrinsically quantum algorithms, without any classical counterpart, will be developed.
A paradigm shift on the computation as well as the representation model, such as adopting
the point of view of the measurement-based model (Raussendorf and Briegel 2001) or adi-
abatic computation (Farhi et al. 2000), might lead to the development of such algorithms.
These two models offer the same computational power as the “traditional” model of the
quantum circuits (Aharonov et al. 2004; Broadbent and Kashefi 2009), but bring a different
perspective and might result in the discovery of new algorithms that can more naturally be
phrased in these models than in the form of circuits. Indeed, the measurement-based model
is an ideal framework for expressing parallel or distributed algorithms, while the adiabatic
computation model seems more appropriate for building optimization algorithms, such as a
quantum version of simulated annealing.

Open Access This article is distributed under the terms of the Creative Commons Attribution License

which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the
source are credited.
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