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We investigate the spin-orbit opened energy gap and the band topology in recently synthesized silicene

as well as two-dimensional low-buckled honeycomb structures of germanium using first-principles

calculations. We demonstrate that silicene with topologically nontrivial electronic structures can realize

the quantum spin Hall effect (QSHE) by exploiting adiabatic continuity and the direct calculation of

the Z2 topological invariant. We predict that the QSHE can be observed in an experimentally accessible

low temperature regime in silicene with the spin-orbit band gap of 1.55 meV, much higher than that of

graphene. Furthermore, we find that the gap will increase to 2.9 meVunder certain pressure strain. Finally,

we also study germanium with a similar low-buckled stable structure, and predict that spin-orbit coupling

opens a band gap of 23.9 meV, much higher than the liquid nitrogen temperature.
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Recent years have witnessed great interest [1–6] in the

quantum spin Hall effect (QSHE), a new quantum state of

matter with a nontrivial topological property, due to its

scientific importance as a novel quantum state and the

technological applications in spintronics. This novel elec-

tronic state with time-reversal invariance is gapped in the

bulk and conducts charge and spin in gapless edge states

without dissipation at the sample boundaries. The exis-

tence of QSHE was first proposed by Kane and Mele in

graphene in which the spin-orbit coupling (SOC) opens a

band gap at the Dirac point [1]. Subsequent works, how-

ever, showed that the SOC is rather weak, which is in fact

a second order process for graphene, and the QSHE in

graphene can occur only at an unrealistically low tempera-

ture [7–9]. So far, there is only one proposal that is able

to demonstrate QSHE in a real system, which is in two-

dimensional HgTe-CdTe semiconductor quantum wells

[3,4] in spite of some theoretic suggestions [5,6].

Nevertheless, HgTe quantum wells have serious limita-

tions such as toxicity, difficulty in processing, and incom-

patibility with current silicon-based electronic technology.

As the counterpart of graphene [10] for silicon, silicene

recently synthesized has shown that a low-buckled two-

dimensional hexagonal structure corresponds to a stable

structure, and there is also evidence of a graphenelike

electronic signature in silicene nanoribbons experimentally

[11–13]. Therefore, almost every striking property of gra-

phene could be transferred to this innovative material with

the extra advantage of easily being incorporated into the

silicon-based microelectronics industry.

In this Letter we provide systematic investigations on

the spin-orbit gap in silicene and germanium with two-

dimensional honeycomb geometry by first-principles cal-

culation, and show that an appreciable gap can be opened

at the Dirac points due to spin-orbit coupling and the low-

buckled structure. We predict that QSHE can be observed

in an experimentally accessible temperature regime in both

systems. Further, we find the strain can tune gap size. Our

argument is based on adiabatic continuity of the band

structures of the stable low-buckled geometry to the topo-

logically nontrivial planar silicene with QSHE, then con-

firmed by direct calculation of the Z2 topological invariant.

The structure of silicene is shown in Fig. 1. We obtain

the low-buckled geometry of minimum energy and stabil-

ity with lattice constant a ¼ 3:86 �A and nearest neighbor

Si-Si distance d ¼ 2:28 �A through structural optimization

and calculations of phonon spectrum. The results agree

with the previous calculations [14,15]. Compared with

graphene, the larger Si-Si interatomic distance weakens

FIG. 1 (color online). The lattice geometry of low-buckled

silicene. (a), (b) The lattice geometry from the side view and

top view, respectively. Note that A sublattice (red or gray)

and B sublattice (yellow or light gray) are not coplanar.

(c) The first Brillouin zone of silicene and its points of high

symmetry. (d) The angle � is defined as being between the Si-Si

bond and the Z direction normal to the plane.
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the �-� overlaps, so it cannot maintain the planar structure

anymore. This results in a low-buckled structure with

sp3-like hybrid orbitals. In Fig. 1(d), one can define the

angle � between the Si-Si bond and the direction normal

to the plane. The sp2 (planar), low-buckled, and sp3

configurations correspond to � ¼ 90�, � ¼ 101:73�, and
� ¼ 109:47�, respectively.

To illustrate the band topology of the low-buckled sili-

cene, we begin with their graphene analog, planar silicene,

and follow its band structure under an adiabatic transfor-

mation during which the unstable planar honeycomb struc-

ture is gradually evolved into the low-buckled honeycomb

structure. Planar silicene with the same structure as gra-

phene should have similar properties. Furthermore, since

Si atoms have greater intrinsic spin-orbit coupling strength

than C atoms, it is natural to conceive that the quantum spin

Hall effect is more significant in planar silicene. According

to symmetry, the low energy effective Hamiltonian with

SOC in planar silicene in the vicinity of Dirac point K can

be described by

H½K�
eff

�
���z vFðkx þ ikyÞ

vFðkx � ikyÞ ��z

� �

; (1)

where vF is the Fermi velocity of � electrons near the

Dirac points with the almost linear energy dispersion, and

�z is Pauli matrix. The effective SOC � for planar silicene

has the explicit form � � 2�2
0
j��j=ð9V

2
sp�Þ with �� being

the energy difference between the 3s and 3p orbitals and

�0 half the intrinsic spin-orbit coupling strength, respec-

tively [7]. The parameter Vsp� corresponds to the � bond

formed by the 3s and 3p orbits. The effective Hamiltonian

near Dirac point K� can be obtained by the time-reversal

operation on the one near K. The above equation results in

a spectrum Eð ~kÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðvFkÞ
2 þ �2

p

. Therefore, one can

estimate the energy gap, which is 2� at the Dirac points,

to be about the order of 0.1 meV by taking the values of the

corresponding parameters [16]. Notice that in planar sili-

cene (� ¼ 90�) � orbitals and � orbitals are coupled only

through the intrinsic SOC. So, the effective SOC is in

fact a second order process. However, with the deviation

(� > 90�) from the planar geometry, � orbitals and �
orbitals can also directly hybridize. Consequently, the

magnitude of the effective SOC depends on the angle �.
As can be expected with increasing the degree of deviation

from the planar structure, the effective SOC will be incre-

mental, and QSHE will be more significant.

The argument above is supported by our first-principles

calculations based on density-functional theory (DFT).

The relativistic electronic structure of silicene is obtained

self-consistently by using the projector augmented wave

(PAW) pseudopotential method implemented in the VASP

package [17]. The exchange-correlation potential is treated

by Perdew-Burke-Ernzerhof (PBE) potential [18].

We carry out detailed and systematic calculations of

the band structure in adiabatic evolution from the planar

honeycomb geometry to the low-buckled honeycomb

geometry. The evolution of the gap opened by SOC for

the � orbital at the Dirac point K from the planar honey-

comb geometry to the low-buckled honeycomb geometry

is shown in Fig. 2(a). Figures 2(b) and 2(d) show the band

structures of planar and low-buckled silicene, respectively,

with the corresponding structures in Fig. 2(a). The band

structures of planar and low-buckled geometry are slightly

different, except linear dispersion near the Fermi level

[14,19]; in consideration of that the gap induced by the

effective SOC increases and the degeneracies split at some

k points. The difference of both the band structures in

the vicinity of the � point and in the energy range from

�3 to �2 eV actually means that � orbital and � orbital

can directly hybridize only in low-buckled geometry. We

can find that the gap induced by SOC for � orbitals is

34.0 meV at the � point in both geometries. As is also

shown in the figure that the magnitude of the gap induced

by effective SOC for the � orbital at the K point in planar

geometry is 0.07 meV, which is in agreement with the

(b)

(d)

(a)

(c)  G2/2

-G2/2
G1/2-G1/2

FIG. 2 (color online). The adiabatic evolution of the gap,

calculated relativistic band structure, and the topological Z2

invariant of silicene. (a) The evolution of the gap opened by

SOC for the � orbital at the Dirac point K from the planar

honeycomb geometry to the low-buckled honeycomb geometry

with keeping the Si-Si bond length constant. The top and bottom

abscissas correspond to the difference of vertical height between

A sublattice and B sublattice and the � angle aforementioned,

respectively, during evolution. (b) and (d) are the relativistic

band structures with the corresponding geometries in (a). (b),(d)

Main panel: the relativistic band structure of planar silicene and

low-buckled silicene, respectively. Inset: zooming in the energy

dispersion near the K point and the gap induced by SOC. (c) The

n-field configuration for silicene. The calculated torus in

Brillouin zone is spanned by G1 and G2. Note that the two

reciprocal lattice vectors form an angle of 120�. The white and

black circles denote n ¼ 1 and �1, respectively, while the blank

denotes 0. The Z2 invariant is 1 obtained by summing the n field

over half of the torus.

PRL 107, 076802 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

12 AUGUST 2011

076802-2



estimate obtained from the tight-binding model discussed

above. In the low-buckled structure, the magnitude of the

gap is 1.55 meV, which corresponds to 18 K. The top

coordinate in Fig. 2(a) denotes the altitude difference of

two nonequivalent Si atoms within a primitive cell in the

vertical direction. The figure indicates that the gap with the

magnitude of 0.07 meV in the planar structure has been

increasing to 1.55 meV in the low-buckled structure with

energy minimum and stability. Most importantly, the gap is

not closed. Therefore, the low-buckled silicene with energy

minimum and stability must share the same nontrivial

topological properties as the planar silicene. Conse-

quently, QSHE can be realized in the low-buckled silicene,

namely, the native geometry of silicene. The argument can

be confirmed by direct calculation of the Z2 topological

invariant.

One can interpret nonzero topological Z2 invariant as an

obstruction to make the wave functions smoothly defined

over half of the entire Brillouin zone under a certain gauge

with the time-reversal constraint [20–22]. The band topol-

ogy can be characterized by the Z2 invariant. Z2 ¼ 1

characterizes a nontrivial band topology while Z2 ¼ 0

means a trivial band topology. Here we follow the method

in Ref. [23] to directly perform the lattice computation of

the Z2 invariants from our first-principles method [24,25].

The n-field configuration for the low-buckled silicene is

shown in Fig. 2(c) from first-principles calculations. It

should be noted that different gauge choices result in

different n-field configurations; however, the sum of the

n field over half of the Brillouin zone is gauge invariant

module 2, namely Z2 topological invariant. As shown

in Fig. 2(c), low-buckled silicene has nontrivial band

topology with the topological invariant Z2 ¼ 1. There-

fore, QSHE can be realized in the low-buckled silicene,

that is the native geometry of silicene.

In what follows, we investigate the gap opened by SOC

at Dirac points related to QSHE and the Fermi velocity of

charge carriers vF near the Dirac points in a series of

silicene geometries under hydrostatic strain from the

first-principles method. We find that while the largest

pressure strain can reach �6% without destroying the

nontrivial topological properties of those systems, the

magnitude of the gap at Dirac points induced by SOC

can be up to 2.90 meV, which corresponds to 34 K. As

shown in Fig. 3, the magnitude of the gap at Dirac points

induced by SOC is incremental with the decrease of

hydrostatic strain �, which is defined as � ¼ ða-a0Þ=
a0 � 100%, with a0 and a being the lattice constant with-

out and with hydrostatic strain, respectively. In the pressure

strain range, the QSHE can be also realized in the system

and even more pronounced. The figure also indicates that

the greater the angle �, the greater the gap. In addition, we

evaluate the Fermi velocity of charge carriers vF near the

Dirac points under different hydrostatic strain and find that

the magnitude of the hydrostatic strain does not signifi-

cantly change the carrier Fermi velocity vF. The value is

slightly less than the typical value in graphene, say, 106 m=s
due to the larger Si-Si atomic distance.

Recently, several experiments on silicene have been

reported [11–13]. They have not only proven silicene adopt-

ing slightly buckled honeycomb geometry and possessing

the band dispersion with a behavior analogous to the Dirac

cones of graphene, but also synthesized a silicene sheet

through epitaxial growth. With the advancement in experi-

mental techniques, we expect that silicenewith high quality

will soon bemanufactured. The experimental data available

can be compared with our theoretical prediction, then.

Although germanium with two-dimensional honeycomb

geometry has not yet been synthesized in experiments, we

also conduct a detailed study on germanium with two-

dimensional honeycomb structure because of its similarity

to the other group IVA elements in the periodic table, as

well as its significant importance as semiconductor mate-

rial. After structural optimization and calculations of

phonon spectrum, the low-buckled geometry of minimum

energy and stability with lattice constant a ¼ 4:02 �A and

nearest neighbor Ge-Ge distance d ¼ 2:42 �A is obtained.

As shown in Figs. 4(a) and 4(b), Ge with low-buckled

honeycomb structure is insulator while Ge with planar

honeycomb structure is metallic. Figure 4(b) indicates

that the magnitude of the gap induced by effective SOC

for the � orbital at the K point in low-buckled geometry is

23.9 meV corresponding to 277 K which is much higher

than the liquid nitrogen temperature. The direct calculation

for topological Z2 invariant proves that Ge with low-

buckled honeycomb structure has nontrivial band topology.

Therefore, we predict that QSHE will be realized in native

FIG. 3 (color online). The gap induced by SOC and the Fermi

velocity of charge carriers vF near the Dirac points are calcu-

lated from the first-principles method under different hydrostatic

strain conditions. The black circles and red or gray diamonds

mark the gap and the Fermi velocity vF near the Dirac points

under different hydrostatic strain �. Inset: Energy of unit cell

versus different hydrostatic strain condition.
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germanium with two-dimensional low-buckled honey-

comb geometry and easily observed experimentally once

this novel material is synthesized.

In conclusion, we have shown both silicene and Ge with

two-dimensional honeycomb geometry have nontrivial to-

pological properties in their native structure. In addition,

the QSHE in silicene can be more significant under a range

of hydrostatic strain due to the increasing gap size. These

are confirmed by direct calculations of the topological Z2

invariants from first-principles methods. Silicene and Ge

with low-buckled honeycomb geometry have novel physi-

cal properties akin to graphene such as the linear energy

dispersion at the Fermi level. Besides, silicene and Ge with

low-buckled geometry and great SOC can be not only

synthesized and processed using mature semiconductor

techniques but also more easily integrated into the current

electronics industry. All of these make silicene and Gewith

low-buckled honeycomb geometry cornucopias of funda-

mental scientific interest and promising applications.
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