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1 Introduction and summary

The BPS/CFT correspondence [1] relates the algebra and geometry of two dimensional

conformal field theories, and their q-deformations, to the algebra and geometry of the

moduli space of vacua of four dimensional N = 2 supersymmetric gauge theories, and

their various deformations, such as Ω-deformation, lift to higher dimensions, inclusion of

extended objects and so on. In many respects the BPS/CFT correspondence is an analogue

of the mirror symmetry, relating the count of (pseudo)holomorphic curves in symplectic

manifolds to the periods of mirror complex manifolds. Here the analogue of curve counting

is the enumeration of instantons in four dimensional gauge theory, while the role of the

mirror complex geometry is played by the two dimensional conformal field theory. Indeed,

thanks to the holomorphic factorization, the CFT calculations, especially in a semi-classical

limit, quite often becomes a problem in complex geometry.

Algebraic geometers consider the curve counting problems difficult, therefore the mirror

map is a welcome simplification. With the higher genus corrections in place both sides

become complicated. Sometimes additional dualities are available, mapping the problem

of counting curves or quantizing the variations of Hodge structure to the problems of

counting ideal sheaves or generalized gauge instantons.

From gauge theory to a spin chain. In this paper we explore a specific corner of

the BPS/CFT correspondence, where the techniques developed in the four dimensional

instanton counting are applied to a seemingly very distant problem: calculating a quantum

mechanical wave-function of a many-body system, or a spin chain.
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The N = 2 gauge theories in four dimensions have an intrinsic connection [2, 3] to

algebraic integrable systems [4], usually called the Seiberg-Witten integrable systems af-

ter [5, 6]. The gauge theory of our interest, the asymptotically N = 2 superconformal

SQCD in four dimension, reveals the structure which has dual (bi-spectral) descriptions.

On the one hand, it is a complex generalization of the Heisenberg spin chain, based on the

Lie algebra sl2, on the other hand it is a special case of Gaudin model (which is, in turn [7],

a special case of the Hitchin system [4]), based on the slN Lie algebra.

The first hints of this correspondence, for the asymptotically free theories, were ob-

served in [2, 8], at the classical level. Much later, thanks to the development of localization

methods in supersymmetric gauge theories [9], this correspondence was extended to the re-

lation between the quantized integrable systems [10, 11], and Ω-deformed supersymmetric

gauge theories, including some of the asymptotically conformal theories.

For almost twenty years now the non-perturbative aspects of the N = 2 supersym-

metric gauge theories can be extracted from the exact computations in the theory subject

to the Ω-background on R
4 (or a product of two cigars as in [11]) with two parameters ǫ1

and ǫ2. The partition function Z and certain BPS observables can be computed exactly

by localization for a large class of N = 2 supersymmetric gauge theories [1]. The limit

ǫ1, ǫ2 → 0 reveals the classical integrable system whose phase space, incidentally, can be

identified with the moduli space of solutions of some partial differential equations of gauge

theoretic origin [12]. In the NS limit ǫ2 → 0, ǫ1 = ~ one expects to find the quantum

version of that integrable system [13].

The quantization program has three aspects: the deformation of the commutative

algebra of observables to the noncommutative associative algebra, with a big enough com-

mutative subalgebra in the integrable case, the construction of the representation of the

algebra of observables in the space of states, and, to make contact with the physical pre-

dictions of probabilities, endowing the space of states with the Hilbert space structure.

The first step can be, in principle, analyzed with the help of two dimensional topological

sigma model [14] called the Poisson sigma model [15]. However the second and the third

steps do not seem natural in this approach. In the topological A model, using the so-called

cc branes of [16] and the more familiar Lagrangian branes, one can, at least under some

additional assumptions, produce both the algebra and its representation.

One is naturally led to the question of computing the wavefunctions, in some specific

representation, of quantum integrable systems, of the stationary eigenstates, i.e. the com-

mon eigenvectors of the quantum integrals of motion. This is where the four dimensional

supersymmetric gauge theory, as opposed to the two dimensional sigma model, seems to

give an advantage. First of all, the cc branes lift to the pure geometry (at the tip of

the cigar). The Lagrangian branes can be interpreted as the boundary conditions at in-

finity on the first cigar. The stationary states of the quantum integrable system, under

the Bethe/gauge correspondence [17, 18], are the vacua of the effective two dimensional

N = (2, 2) gauge theory. In order to get the wavefunction of the stationary state we com-

pute the expectation value of the special local observable in this effective two dimensional

theory — the surface defect in the four dimensional theory. The parameters of the surface

defect become the coordinates on which the wavefunction depends. As we will review in
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section 2, introduction of a surface defect proves to be a very useful tool when studying

quantum version of the Bethe/gauge correspondence. The four dimensional theory with

the co-dimension two surface defect can be viewed as a theory on an orbifold. The local-

ization techniques generalize so as to compute the defect instanton partition function [19]

and also the expectation values of some observables. Our scope is the class of qq-character

observables, which are fractionalized in the presence of the surface defect [20]. The main

statement in [21] proves a certain vanishing theorem for the expectation values of the qq-

characters, with or without surface defect inserted. These vanishing equations, called the

non-perturbative Dyson-Schwinger equations, can be used to derive the KZ-equations [22]

satisfied by the defect partition function [23]. Furthermore, in the NS-limit, these Dyson-

Schwinger equations become the Schrödinger-type equations satisfied by the defect instan-

ton partition function [20, 24] (for pure N = 2 theory this has been observed to hold on

purely algebraic grounds in [25]). The localization computation of the surface defect par-

tition function therefore provides a systematic way of constructing both the spectrum and

the eigenstate wavefunction for the corresponding quantum integrable model.

This story is a infinite-dimensional generalization of the correspondence between the

strictly two dimensional N = 2 theories and finite dimensional quantum systems, where the

Bethe Ansatz Equations of the quantum integrable system can be recovered from either

the saddle point equation of the corresponding supersymmetric gauge theory instanton

partition function [10, 26, 27], or from the properties of the qq-characters [1, 20].

Classical and quantum integrability. According to [10] the algebraic integrable sys-

tem governing the special Kähler geometry of the vectormultiplet moduli space of the

four dimensional theory is deformation quantized, the Planck constant ~ being the Ω-

deformation parameter ǫ1. The quantum system remains integrable, with the spectrum of

the commutative subalgebra of the algebra of observables being the twisted chiral ring of

the effective two dimensional theory.

Now, the subtle point, which is best understood by relating the four dimensional gauge

theory to the two dimensional sigma model as in [11], is that the “spectrum” of the previous

sentence, is understood in the algebraic geometry sense. It becomes the physical spectrum,

typically isolated once the additional data such as the choice of supersymmetric boundary

conditions at infinity, is made.

In this paper we shall not pursue this line. Instead, we shall study the analogue of

the continuous spectrum problem, the construction of the scattering states wavefunctions

(sometimes called the Jost functions). The gauge theory analogue of this problem is the

following. Suppose we fix the vacuum with the special coordinates a = (a1, . . . , aN ) on the

Coulomb branch (these determine the masses of the W -bosons, say). In this vacuum we

compute the expectation values of the gauge invariant observables built out of the vector

multiplet scalars

Ok(a) = 〈Trσk〉a (1.1)

Using the Bethe/gauge dictionary, this expectation value is identified, as in [10, 27, 28],

with the eigenvalues Hk(a) of the commuting Hamiltonians Ĥk, k = 1, 2, . . . :

ĤkΨa = Hk(a)Ψa (1.2)
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where Ψa is the wavefunction of the state characterized by the spectral parameters we

identify with a. The expectation values (1.1) receive contributions from the all instanton

sectors. If we ignore all the instanton contributions, then the expectation values (1.1) are

given by the classical expressions

Ok(a)
pert =

N
∑

i=1

aki (1.3)

which are the eigenvalues of the free Hamiltonians, e.g.
∑N

i=1(−i∂xi)
k acting on the plane

wave function

Ψfree
a ∼ ei

∑
aixi (1.4)

With the instanton contributions included this function is dressed up into the scattering

state wavefunction we are after, while the eigenvalues (1.1) become the complicated func-

tions of a, the masses, the Ω-deformation parameter, and the gauge coupling q. These

contributions can be studied using the nonperturbative Dyson-Schwinger equations, which

can be conveniently organized with the help of the qq-character observables [1].

Surface defect and the wavefunction. The main question is the choice of the polar-

ization in which one to represent the wavefunction in question. Fortunately, here as well

the gauge theory provides a candidate. Generalizing the disorder operators of the Ising

model and the ’t Hooft and Wilson loops of the conventional gauge theory, one introduces

a codimension two defect operators SΣ,c, which are the instruction to perform the path

integral over the singular gauge fields, having the nontrivial holonomy around the small

loops linking a codimension two surface Σ in spacetime. The conjugacy class c of the

holonomy is fixed throughout Σ while the representative varies. Let G denote the gauge

group and let Gc be the stabilizer of the conjugacy class c. Then the singularity at the

defect is classified by the set of equivalence classes [Maps (Σ, G/Gc)]. We can therefore

generally write

〈SΣ,c. . .〉a =
∑

d∈[Maps(Σ,G/Gc)]

ed·x〈. . .〉singular gauge fields in the homotopy class of d, in the vacuum a

(1.5)

We identify the wavefunction Ψa(x) with the normalized vev of Sσ,c. Our main method

is the supersymmetric localization allowing to compute the unnormalized surface defect

partition function Zdefect in the four dimensional Ω-background, with two parameters ǫ1, ǫ2,

from which we extract, in a nontrivial manner sketched below, the wavefunction in question:

Ψa(x;m, ~) = lim
ǫ2→0

Zdefect(a, ǫ1, ǫ2,m,x, q)

Zbulk(a, ǫ1, ǫ2,m, q)
(1.6)

with ~ = ǫ1 being the Planck constant, and m entering the quantum integrable system in

an interesting way we describe below.

One flew over the limit shape. The limits of vanishing Ω-deformation parameters

are the main applications of the localization techniques. In the limit ǫ1, ǫ2 → 0 the Ω-

background approaches the flat space limit, where the supersymmetric gauge theory regains
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the full N = 2 supersymmetry. The F -terms of the low-energy effective theory are recov-

ered from the small ǫ-expansion. The finite ǫ computation is often doable, reducing the

complicated gauge theory path integral to a sum over an infinite yet finite at each instanton

order set. The set is PN , with P being the set of all partitions, or Young diagrams.

The limit ǫ → 0, with appropriate choices for the parameters, such as the Coulomb

moduli a, the masses m etc. can be analyzed, by observing that one term in this infinite

sum dominates, the limit shape phenomenon of Vershik-Kerov-Logan-Schepp. In particu-

lar, in [12, 29] the limit shape determining the prepotential F of the low-energy effective

theory for a large class of theories was found. It is found in the limit ǫ1, ǫ2 → 0 from the

asymptotics of the gauge theory supersymmetric partition function, which in this paper

we call the bulk partition function:

Zbulk(a, ǫ1, ǫ2,m, q) ∼ e
F(a,m,q)

ǫ1ǫ2
+...

, ǫ1, ǫ2 → 0. (1.7)

The bulk partition function is invariant under the exchange ǫ1 ↔ ǫ2.

The choices mentioned in the previous paragraph are then dealt with by the use of

analyticity of Zbulk which is a consequence of supersymmetry. The asymptotics (1.7)

assumes the (a,m, q) parameters are generic. If, however, the parameters are fine tuned

to some special values, the asymptotics (1.7) gets much more interesting and complicated,

reflecting the subtleties of the low-energy effective theory.

In [10, 13] this analysis is extended to the more complicated limit ǫ2 → 0, with ǫ1 = ~

kept finite. In this case one obtains the effective twisted superpotential W of the effectively

two dimensional N = (2, 2) theory corresponding to the four dimensional theory subject

to the two dimensional Ω-background:

Zbulk(a, ǫ1 = ~, ǫ2,m, q) ∼ e
W(a,~,m,q)

ǫ2
+···

, ǫ2 → 0 (1.8)

As explained in [9, 29] the exponential asymptotics (1.7), (1.8) can be interpreted as the

fact that the supersymmetric partition function has the extensive behavior of the typical

thermodynamic partition function, with 1
ǫ1ǫ2

playing the role of the four dimensional volume

and 1
ǫ2

playing the role of the two dimensional area. The area and the volume entering

here are the measures of the space occupied by the instantons.

Now, in the presence of the surface defect, the supersymmetric partition function gets

modified to

Zdefect(a, ǫ1, ǫ2,m,x, q) .

Again, the localization makes it a sum over a countable set. Actually the set is the same

PN , but the sum is different.

Assuming the defect is localized in the plane affected by the ǫ2-part of the Ω-deformation

the small ǫ2 asymptotics is not, at the leading order, modified, as the bulk instantons don’t

feel much of the defect:

Zdefect(a, ǫ1 = ~, ǫ2,m,x, q) ∼ e
W(a,~,m,q)

ǫ2 (Ψa(x;m, ~) + . . .) , ǫ2 → 0 (1.9)

In [20, 30] an∞ : 1 map πN : PN −→ PN is constructed, which represents the map between

the moduli space of instantons in the presence of the surface defect to the moduli space of

– 5 –



J
H
E
P
0
3
(
2
0
2
1
)
0
9
3

instantons in the bulk (the map is a finite ramified cover in a fixed instanton sector). The

sum giving the left hand side of (1.9) can be reorganized as the sum over the image of πN
of the sums over the fibers. The former, in the ǫ2 → 0 limit, is dominated by one term,

the limit shape of the bulk theory. The latter remains to be evaluated. This is the main

objective of this paper.

The sum-cracking secret. Here is the strategy we employ. We first recall, that the

sum the localization reduces the supersymmetric partition function to can and originally

was represented as a series of countour integrals. Remarkably, the remaining sum we are

to evaluate can also be represented as a series of contour integrals, which can be further

intepreted as the series of integrals of the cohomological field theory type over a sequence

of moduli spaces of solutions to matrix equations, defined in a way, similar to the folded

instanton constructions of [31]. These equations depend on some real parameters, the

Fayet-Illiopoulos terms ζR. The integrals over the moduli spaces do not change under the

small variations of ζR’s, however they may and do jump, as ζR’s cross the walls of stability

where the corresponding moduli space becomes singular.

The simplest example of such crossing is the moduli space of solutions to the equation
∑N

i=1 |zi|
2 = ζR, with complex numbers (z1, . . . , zN ). If one divides by the symmetry

(zi) 7→ (eiθzi), then, for ζR > 0 one gets the complex projective space CPN−1 as the moduli

space, with interesting topology captured by the integrals akin to the ones we study in this

paper. For ζR < 0 the moduli space is empty so all the reasonable integrals vanish on the

occasion.

The significance of the wall-crossing becomes obvious at the second step of our ap-

proach. We move the contour of integration, letting it circle around the infinity and wrap

around the set of poles one is ignoring in taking the integral over the original contour by

residues. Remarkably, the residues at infinity can be summed up. The sum of the residues

at other poles can be interpreted as integrals over the moduli spaces of the same folded

instanton equations but with the different sign of the ζR parameters. The moduli spaces in

that case are non-trivial yet simpler, at least at the level of the fixed points of the global

symmetry group, to which the integrals localize. Notice, that in variance with [32], we

do not modify the original theory. We merely compute the original path integral by the

contour manipulation.

To be specific, we shall be working with the four dimensional N = 2 supersymmetric

gauge theory with the SU(N) gauge group, and Nf = 2N hypermultiplets in the funda-

mental N -dimensional representation. The number of the matter multiplets is precisely

such that the theory is superconformal at high energy, as such it is characterized by the

ultraviolet gauge coupling g, and the theta angle θ. The latter is a parameter since the

axial anomaly is cancelled for Nf = 2N as well. It is convenient to combine g and θ into

the complex parameters τ and q:

τ =
θ

2π
+

4πi

g2
, q = exp 2πiτ, (1.10)

– 6 –
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The masses m =
(

m±
f

)N

f=1
of the fundamental hypermultiplets (the splitting to + and −

masses will be commented on in the main text) are complex as well. It is useful to think

of the masses as of the scalars in the vector multiplet of the global symmetry U(Nf ).

In this way we arrive at the main result of this paper: the formula for the wavefunction.

Specifically, in the section 3 we demonstrate that the normalized vev of the surface defect

partition function of N = 2 SQCD can be written in terms of N(N−1)
2 Mellin-Barnes-type

contour integrals. In the limit to the asymptotically free pure N = 2 theory our formula

becomes that of the periodic Toda lattice wavefunction [33, 34].

As a by-product, and also as a warm-up, we discuss the similar contour manipulation

applied to the bulk partition function. For the pure N = 2 SYM, or the N = 2 SQCD with

Nf < 2N − 1 flavors, and N = 2∗ theories with gauge group U(N), the instanton partition

function does not depend on the sign of the FI-parameter ζR entering the deformed ADHM

equations [35] (the B-field in string theory realization [36] of noncommutative instantons

used in the localization approach). However, the supersymmetric gauge system we study

does exhibit the ζR-dependence. As we will discuss in detail in 3, the change in the

integrals over the moduli spaces corresponding to different ζR’s can be organized into an

elegant crossing formula, confirming the U(1)-factors in the AGT-conjecture [37].

Furthermore, we find that in the chain-saw and hand-saw quiver extensions [38], the

instanton counting parameters of each quiver node are related in a non-trivial manner with

different stability conditions. This leads to the transformations of the coordinates x of the

integrable system, looking vaguely similar to the cluster structures in [39–41].

More on XXXsl2 spin chain/SQCD correspondence. Bethe/gauge correspondence

identifies the quantum integrals of motion of some quantum integrable system with the

elements of the twisted chiral ring of some gauge theory with the N = (2, 2), d = 2

supersymmetry. Among such theories we find the four dimensional N = 2 supersymmetric

theories subject to the two dimensional Ω-deformation. The limit ǫ1 = ~ → 0 restores the

four dimensional super-Poincare invariance while being the classical limit of the quantum

system. In section 4 we relate the Darboux coordinates, which are natural in the spin chain

realization of the Seiberg-Witten integrable system describing the Nf = 2N SQCD, to the

parameters of the surface defect and the bulk theory. In this limit our Mellin-Barnes-type

integrals can be evaluated by the saddle point approximation. The latter can also be used

to classify the possible contours of integration. We find the the saddle point equations of

the surface defect partition function look like the nested Bethe equations, which can be

solved in terms of the holonomy matrix of the classical limit of the XXXsl2-spin chain. In

this way we recover Sklyanin’s separated variables [42, 43].

We then extend the XXXsl2/SQCD correspondence to the quantum level in the sec-

tion 5. Using the nonperturbative Dyson-Schwinger equations we are able to generate

infinitely many bulk gauge invariant chiral ring observables, whose vacuum expectation

values are the eigenvalues of the mutually commuting differential operators (Hamiltonians)

acting on the surface defect partition functions, which are the higher quantum integrals

of motion of the XXXsl2 spin chain. We present the explicit calculation of the first three

Hamiltonians.

– 7 –
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Along the way, we find that the inclusion of all the qq-characters, not only the funda-

mental ones [1], is needed to recover all the indepedent Hamiltonians.

We conclude in the section 6. Various definitions and some of the computational details

are given a series of appendices.

Duality of correspondences, and correspondences of dualities: slN Gaudin vs.

XXXsl2-chain. Quite often the Poisson-commuting Hamiltonains of the classical inte-

grable system can be organized into a algebraic equation R(x, z) = 0 describing an algebraic

curve. The values of the Hamiltonians are the parameters of the curve. Sometimes this

algebraic equation is the characteristic polynomial of an operator Φ(z) depending on the

additional parameter z,

R(x, z) = Det (x− Φ(z)) (1.11)

The gauge theory counterpart of the values of the Poisson-commuting Hamiltonians, has

been observed in several cases to be the spectrum of the chiral ring, e.g. in the N = 2

SQCD [8, 44–46], and shown more generally in [3]. When the four dimensional N = 2

theory is Ω-deformed in two dimensions, the theory retains N = (2, 2) two dimensional

super-Poincare invariance, with the translational symmetry in two dimensions unaffected by

the Ω-background. Remarkably, the equation R(x, z) = 0 may have several interpretations

like (1.11). This is related to the phenomena of dualities in integrable systems [47–49],

and bi-spectrality. This includes the Nahm duality between the integrable system on the

moduli space of periodic monopoles and Gaudin model [50], whose relation to the four

dimensional gauge theory is demonstrated in [12], for all A-type quiver gauge theories.

The same duality, in the A1-case, with an excursion into the quantum realm, is discussed

recently in [51].

Let us explain this duality in the classical case. Consider the following version of the

Hitchin system. Let Φξ, ξ ∈ {0, q, 1,∞} be the N × N traceless complex matrices, with

fixed eigenvalues, which we assume to be distinct for ξ = 0,∞, and maximally degenerate

yet non-trivial (i.e. with multiplicity (N − 1, 1)) for ξ = q, 1. Define:

Φ(z) =
∑

ξ

Φξ

z − ξ
(1.12)

Let us require Φ(z) to be holomorphic outside {0, q, 1,∞}, which means

∑

ξ

Φξ = 0 (1.13)

and divide by the group GC = SL(N,C) acting by the simultaneous conjugation

(Φξ)0,q,1,∞ 7→
(

g−1Φξg
)

0,q,1,∞
for g ∈ GC . (1.14)

The space of solutions to (1.13) modulo (1.14) is the phase space M of Gaudin model,

M = (O0 ×Oq ×O1 ×O∞) //GC (1.15)

– 8 –
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the latter notation suggesting M is a symplectic manifold. The symplectic structure ωM

can be described in terms of the Poisson brackets of functions of the matrix elements of

the residues Φξ,

{(Φξ)
j
i ,
(

Φξ′
)j′

i′
} = δξ,ξ′

(

δji′ (Φξ)
j′

i − δj
′

i (Φξ)
j
i′

)

(1.16)

It follows from (1.16) that the coefficients of the characteristic polynomial

R(x, z) := DetN (x− Φ(z)) =
N
∑

i=0

xN−iui(z) , u1(z) ≡ 0 (1.17)

Poisson-commute for any value of z. Furthermore, the functions ui(z) only have poles

at z = 0, q, 1,∞, with the leading asymptotics determined by the fixed eigenvalues of

the residues. It can be shown by the straightforward algebraic analysis that the number

of independent parameters in ui(z) is equal to N2 − N + 2(N − 1) − N2 + 1 = N − 1,

which is half the expected dimension of M, meaning we have a complex integrable system.

Moreover, one can recover a point on M given the curve R(x, z) = 0 and a point on its

Jacobian, i.e. a holomorphic line bundle. This bundle is identified with the eigenline of

Φ(z) corresponding to the eigenvalue x. With proper adjustments, all of the Jacobian, i.e.

the complete abelian variety, is the fiber of the projection M → C
N−1 given by fixing the

spectral curve R(x, z) = 0, belongs to M. This makes M an algebraic integrable system in

the sense of [4]. The periods of the differential xdz provide the action variables (there are

many choices for the N − 1 cycles on the spectral curve, leading to the special geometry

and the prepotential).

Another representation of the same algebraic integrable system is obtained by the

Nahm transform. Namely, consider the moduli space of solutions to the complex part of

the SU(2) Bogomolny equations:

iDx̄Φ̃ + Fx̄u = 0 (1.18)

where u ∼ u + 1 is a coordinate on S1, x, x̄ are the coordinates on R
2, Fµν = ∂µAν −

∂νAµ + [Aµ, Aν ], and Φ̃, Aµ are the adjoint-valued Higgs field and gauge field on S1 × R
2,

respectively. The eqs. (1.18) imply that the spectrum of the complexified SL(2,C)-valued

holonomy

g(x, x̄) := P exp

∮

(

Au + iΦ̃
)

du (1.19)

varies holomorphically with x:

∂̄x̄ R̃(x, z̃) = 0 , R̃(x, z̃) = Det2 (z̃ − g(x, x̄)) . (1.20)

If we impose, in addition, the condition that at x → ∞ the conjugacy class of g(x, x̄)

approaches that of diag(q
1
2 , q−

1
2 ), while at x = µ1, . . . , µN there are singularities which

can be modelled on the U(1) Dirac singular monopoles embedded into the SU(2) gauge

fields, then

qP+(x)R̃(x, z̃) = (z − 1)(z − q)R(x, z) (1.21)
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with

z = z̃

√

q
P+(x)

P−(x)
. (1.22)

Thus, the monopole spectral curve and the Hitchin-Gaudin spectral curves essentially co-

incide. The precise map between Φ and Φ̃, A data is obtained analogously to the usual

Nahm transform [52]. By writing

(z − 1)(z − q)

z
R(x̃, z) = zP−(x)− (1 + q)T (x) + qz−1P+(x) (1.23)

with

x̃ =
x

z
−

∑

ξ=0,q,1,∞

mξ

z − ξ
(1.24)

with mq,m1 equal to multiplicity N−1 eigenvalues of Φq,Φ1, respectively, one deduces [12]

that the monopole spectral curve data becomes the data of the algebraic integrable system

associated with the XXXsl2 spin chain with the complex spins sf =
m+

f
−m−

f

~
, and the

inhomogeneities µf = 1
2

(

m+
f +m−

f

)

.

The XXXsl2 spin chain side of the story is addressed in this paper. The Hitchin-

Gaudin representation is obtained from the ǫ2 → 0 limit of the Knizhnik-Zamolodchikov

equation derived in the companion paper [23]. In this way we obtain a generalization of the

results of [53], which can be recovered for special values of masses and Coulomb parameters.

2 The surface defect

In this section we briefly recall the construction of the surface defect and study its vacuum

expectation value.

2.1 From gauge theory to a statistical model

Localization technique reduces generally complicated supersymmetric gauge theory path

integral into computation of an effective statistical model, capturing the correlation func-

tions of the BPS protected operators.

Let us consider the N = 2 A1-quiver gauge theory in 4 dimensions, with the gauge

group SU(N) and 2N fundamental hypermultiplets. The Lagrangian is parametrized by

the complexified gauge coupling

τ =
θ

2π
+

4πi

g2
, q = exp 2πiτ, (2.1)

and by the choice m of 2N masses, which we split into N fundamental m+ = (m+
1 , . . . ,m

+
N )

and N anti-fundamental m− = (m−
1 , . . . ,m

−
N ) ones. The choice of the vacuum is para-

metrized by the N Coulomb moduli parameters a = (a1, . . . , aN ), obeying

N
∑

α=1

aα = 0 . (2.2)
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The localization of the Ω-deformed theory [1, 54] produces the the statistical model

whose configurations space is PN , the set of all N -tuples of Young diagrams ~λ =

(λ(1), . . . , λ(N)). In turn, each individual Young diagram λ(α), α = 1, . . . , N , is a collection

λ(α) = (λ
(α)
1 , λ

(α)
2 , . . . ) of nonnegative numbers obeying

λ
(α)
i ≥ λ

(α)
i+1, i = 1, 2, . . . . (2.3)

which can be represented geometrically as Young diagram, where each number λ
(α)
i is the

i-th row of that many identical squares �, as in the figure 3.

The pseudo-measure associated to the instanton configuration ~λ is defined using the

plethystic exponent E operator, which converts the additive Chern characters to the mul-

tiplicative classes

E

[

∑

a

mae
ξa

]

=
∏

a

ξ−ma
a (2.4)

where ma ∈ Z is the multiplicity of the Chern root ξa. For ~λ the associated pseudo-measure

is computed by:

Z(a,m±,~ǫ)[~λ] = E

[

−
ŜŜ∗

P ∗
12

+
M̂Ŝ∗

P ∗
12

]

(2.5)

where

N̂=

N
∑

α=1

eaα , K̂=

N
∑

α=1

∑

(i,j)∈λ(α)

eaαqi−1
1 qj−1

2 , Ŝ=N̂−P12K̂, M̂=

N
∑

f=1

em
+
f + em

−
f . (2.6)

qi=e
ǫi are the exponentiated complex Ω-deformation parameters ǫ1, ǫ2∈C [9, 54, 55], and

Pi = 1− qi, P12 = (1− q1)(1− q2). (2.7)

Given a virtual character X̂ =
∑

a mae
ξa we denote by X̂∗ =

∑

a mae
−ξa the dual virtual

character.

The localization equates the supersymmetric partition function of the Ω-deformed A1

U(N) theory to the conventional partition function of the grand canonical ensemble

Z(a,m±, q,~ǫ) =
∑

~λ

q|
~λ|Z(a,m±,~ǫ)[~λ]. (2.8)

A recent development in BPS/CFT correspondence notices differential equations of

two dimensional conformal theories, such as KZ equations [22] and KZB equations [56]

can be verified by adding a regular co-dimension two surface defect in the supersymmetric

gauge theory [20]. These conformal equations become eigenvalue equations of integrable

models in Nekrasov-Shatashivilli limit (NS-limit for short) ǫ2 → 0 [26, 57].

The co-dimension two surface defect is introduce in the form of a ZN type orbifold-

ing [30] acting on R
4 = C1 × C2 by (z1, z2) → (z1, ηz2) with ηN = 1. The orbifolding

– 11 –
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generates chainsaw quiver structure [19, 38]. Such a surface defect is characterized by a

coloring function c : [N ] → ZN that assigns a representation Rc(α) of ZN to each color

α = 1, . . . , N .

Here and below Rω denotes the one-dimensional complex irreducible representation of

ZN , where the generator η is represented by the multiplication by exp 2πiω
N .

In the presence of fundamental matter, additional coloring functions σ± : [N ] → ZN

assign a representation Rσ±(f) to each fundamental flavor m±
f , f = 1, . . . , N . In the

simplest example, it is enough to assume that the coloring functions c(α) and σ±(f) take

the form

c(α) = α− 1, α = 1, . . . , N ; σ±(f) = f − 1, f = 1, . . . , N.

In principle, one may consider arbitrary degree orbifolding as the quotient by Zn with any

integer n. The defect corresponding to the ZN , represented in the color and in the both

fundamental and anti-fundamental flavor spaces in a regular representation is called the

full-type/regular surface defect, which is relevant for our purpose. More detailed discussions

can be found in [19, 30, 58, 59]. The complex instanton counting parameter q fractionalizes

to N couplings (qω)
N−1
ω=0 :

q = q0q1 · · · qN−1; qω+N . (2.9)

The coupling qω is assigned to the representation Rω of ZN as fugacity for the chainsaw

quiver nodes. The surface defect partition function is the path integral over the ZN -

invariant fields:

Zdefect(a,m±,~q) =
∑

~λ

∏

ω

qkωω E






−





ŜŜ∗ − M̂Ŝ∗

P ∗
1 (1− q

− 1
N

2 R−1)





ZN






(2.10)

with the power kω of fractional coupling qω defined in eq. (B.2b).

The expectation value of the surface defect partition function Z in the Nekrasov-

Shatashivilli limit (NS-limit for short) ǫ2 → 0 has the asymptotics

Zdefect(a,m±, τ,~q; ǫ1, ǫ2) = e
1
ǫ2

W(a,m±,τ ;ǫ1) · (Ψa(x,a,m
±, τ, ǫ1) +O(ǫ2)) (2.11)

with the singular part being identical to that of the bulk partition function Z,

W(a,m±, τ ; ǫ1) = lim
ǫ2→0

ǫ2 logZ
bulk . (2.12)

We denote the normalized vev of the surface defect by

Ψa(m
±,~q, ǫ = ~) = lim

ǫ2→0

Zdefect(a, ǫ1, ǫ2,m
±,~q, q)

Zbulk(a, ǫ1, ǫ2,m±, q)
(2.13)

Indeed, the exponential asymptotics is the thermodynamic large volume limit, 1/ǫ2 play-

ing the role of the volume, the free energy being the effective twisted superpotential

W(a,m±, τ ; ǫ1) of that N = (2, 2) two dimensional theory. The presence of the surface

defect does not change the leading asymptotics, as it is an extensive quantity.
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The properties of partition function Z of A1 quiver gauge theory along with the twisted

superpotential W are well studied in various papers [7, 10, 13], see also [9, 17, 18, 36]. In

comparison the normalized vev of the surface defect partition function is much less explored

and understood. However,as we will see in later sections, the normalized vev of the surface

defect will be identified as the wavefonction of the scattering states in the dual quantum

integrable model.

2.2 Shifted moduli

For convenience of further computation, we scale ǫ2 → ǫ2
N and define shifted moduli pa-

rameters by

aα −
c(α)

N
ǫ2 = ãα; m±

f −
σ±(f)

N
ǫ2 = m̃±

f . (2.14)

The shifted moduli parameters {ãα} and fundamental matter masses {m̃±
f } are charged

neutral under the orbifolding. All the ADHM characters can be expressed in terms of the

shifted moduli:

N̂ =

N−1
∑

ω=0

Ñωq
ω
N

2 Rω, Ñω =
∑

c(α)=ω

eãω , Ñ =

N−1
∑

ω=0

Ñω; (2.15a)

M̂ =
N−1
∑

ω=0

M̃ωq
ω
N

2 Rω, M̃ω =
∑

σ(f)=ω

em̃
±
ω , M̃ =

N−1
∑

ω=0

Mω; (2.15b)

K̂ =

N−1
∑

ω=0

K̃ωq
ω
N

2 Rω, K̃ω =
∑

α

eãα
∑

J

∑

(i,j)∈λ(α)

c(α)+j−1=ω+NJ

qi1q
J
2 , K̃ =

N−1
∑

ω=0

K̃ω; (2.15c)

Ŝ = N̂ − P1

(

1− q
1
N

2 R1

)

K̂ =
∑

ω

S̃ωq
ω
N

2 Rω, S̃ =

N−1
∑

ω=0

S̃ω, (2.15d)

with

S̃ω = Ñω − P1K̃ω + P1K̃ω−1, ω = 1, . . . , N − 1; (2.16a)

S̃0 = Ñ0 − P1K̃0 + q2P1K̃N−1. (2.16b)

The surface defect partition function is the ZN -invariant fields, which can be easily

obtained from the bulk partition function in eq. (2.5):

Z(a,m±, q, ~z) =
∑

~λ

∏

ω

qkωω E






−





ŜŜ∗ − M̂Ŝ∗

P ∗
1 (1− q

− 1
N

2 R−1)





ZN







=
∑

~λ

∏

ω

qkωω E

[

−
S̃S̃∗ − M̃S̃∗

P ∗
12

+

∑

ω1<ω2
S̃ω1S̃

∗
ω2

− M̃ω1S̃
∗
ω2

P ∗
1

]

=
∑

~λ

N−1
∏

ω=0

qkωω µbulk(a,m
±)[~λ]µsurface(a,m

±)[~λ]. (2.17)
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The bulk contribution

µbulk(a,m
±, q)[~λ] = E

[

−
S̃S̃∗ − M̃S̃∗

P ∗
12

]

(2.18)

depends only on the bulk Young diagram S̃ = Ñ−P12K̃N−1. Dependence on the fractional

K̃ω lies in the surface contribution

µsurface(a,m
±)[~λ] = E

[

∑

ω1<ω2
S̃ω1S̃

∗
ω2

− M̃ω1S̃
∗
ω2

P ∗
1

]

. (2.19)

We define a new set of virtual characters :

Γω := S̃0 + · · ·+ S̃ω−1, ω = 1, . . . , N. (2.20)

The surface contribution can be rewrite using {Γω}:

µsurface[~λ] = E

[

∑N−1
ω=1 Γω(Γω+1 − Γω)

∗

P ∗
1

−

∑N−1
ω=1 M̃ω−1(ΓN − Γω)

∗

P ∗
1

]

. (2.21)

In the NS-limit ǫ2 → 0 with ǫ1 ≡ ǫ fixed. The bulk contribution is locked to the

limit shape instanton configuration ~Λ∗ (See appendix D for detail about limit shape) which

satisfies

µbulk(a,m
±, q)[~Λ∗] = E

[

−
S̃[~Λ∗]S̃

∗[~Λ∗]− M̃S̃∗[~Λ∗]

P ∗
12

]

= exp

(

1

ǫ2
W(a,m±, τ, ǫ1)

)

. (2.22)

The character ΓN = S̃ denotes the limit shape configuration in the bulk, while the

remaining Γω, ω = 1, . . . , N − 1 involves any surface structure on top of the bulk limit

shape. In particular we find the virtual characters Γω’s of the from

ΓN =
∑

α

eAα +
∑

α

∑

{J ′}

eãαqJ
′

2 q
Λ
t,(α)

∗,J′+1

1 (1− q1) = FN + P1W, (2.23a)

Γω =
∑

c(α)<ω

eAαq
λ
t,(α)
tail,ω−c(α)

1 +
∑

α

∑

{J ′
ω}

eãαq
J ′
ω

2 q
Λ
t,(α)

∗,J′
ω+1

1 (1− q1) = Fω + P1Uω. (2.23b)

The Fω’s denote the N − 2 Young diagrams ~λtail = (λ
(0)
tail, λ

(1)
tail, . . . , λ

(N−2)
tail ) attach-

ing to first J = 0 of limit shape ~Λ, which we call tail. Each tail Young diagram

λ(ω) for ω = 0, 1, . . . , N − 2 is the collection of row of boxes of non-negative length

λ
(ω)
tail = (λ

(ω)
tail,1, λ

(ω)
tail,2, . . . ) obeying

λ
(ω)
tail,1 ≤ N − 1− ω;

λ
(ω)
tail,i ≥ λ

(ω)
tail,i+1, i = 1, 2, . . . .

The set of jumps in the bulk {J ′} is defined by

{J ′} =
{

J ∈ N | Λ
t,(α)
∗,J − Λ

t,(α)
∗,J+1 = 1

}

, {J ′
1} ⊂ {J ′

2} ⊂ · · · ⊂ {J ′
N} = {J ′}. (2.25)
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Figure 1. Tail and jumps that forms ~λ on top of limit shape ~Λ∗.

The normalized vev of the surface defect Ψa is identified as an ensemble over all allowed

surface configurations, namely the arrangements of jumps {Uω} and tail Young diagrams

λ
t,(α)
tail,ω−c(α) connected to the very bottom of limit shape ~Λ∗. See figure 1 for illustration.

Ψa =
∑

~λ

N−2
∏

ω=0

q
kω−kN−1
ω µsurface[~λ]

=
∑

λ̃tail

∑

{Uω}

N−2
∏

ω=0

q
kω−kN−1
ω E

[

∑N−1
ω=1 Γω(Γω+1−Γω)

∗

P ∗
1

−

∑N−1
ω=1 Mω−1(ΓN−Γω)

∗

P ∗
1

]

. (2.26)

3 The integral representation

In this section, we demonstrate how we to simplify the expression for the normalized vev

Ψa of the surface defect in the vacuum characterized by the Coulomb moduli a in (2.26).

We shall cast it in the form of the N(N−1)
2 -fold Mellin-Barnes contour integral. In the

asymptotically free limit our integral approaches that of the eigenfunction of quantum

periodic Toda chain [33, 34], as it should.

In this section and onward, {aα} and {m±
f } always denote the shifted moduli param-

eters and fundamental/antifundamental multiplet masses.

3.1 The emerging quiver structure

Define the dual character Vω:

ΓN − Γω =
∑

l≥ω

eAl + P1Vω, Vω = (W − Uω) +
∑

l<ω

eAl
1− q

λ
t,(l)
tail,ω−l

−λ
t,(l)
tail,N−l

1

1− q1
. (3.1)

We see that Vω is a pure character, i.e. it is a sum of monomials with positive coefficients.

The normalized vev of the surface defect Ψa in (2.26) can be rewritten in terms of the Vω’s
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as follows:

Ψa =
∑

~λ

N−2
∏

ω=0

q
kω−kN−1
ω E





N−1
∑

ω=1



ΓN −Mω−1 −
∑

l≥ω

Ll





L∗
ω

P ∗
1





× E

[

P1WV ∗
1 +

N−1
∑

ω=1

(Lω−1V
∗
ω + q1L

∗
ωVω − P1Vω(Vω − Vω+1)

∗ −Mω−1V
∗
ω )

]

, (3.2)

Lω = eAω .

The new ADHM-like quiver system can be reconstructed from the {Vω} dependence in the

eq. (3.2). With a little bit of a work one arrives at the data which consists of the following

vector spaces:

• N − 1 complex vector spaces Vω ≈ C
vω whose character is denoted by Vω,

• N complex vector spaces Lω ≈ C
1 whose character is denoted by Lω = eAω ,

• N − 1 mass nodes Mω, and

• one complex vector space W ≈ C
|W | whose character is denoted by W ,

the maps between them (and their contributions to the character in (3.2)):

• The map I : W → V1 ( WV ∗
1 );

• The map iω : Lω → Vω+1 ( LωV
∗
ω+1 );

• The map jω : Vω → Lω (q1L
∗
ωVω );

• The map B
(ω)
1 : Vω → Vω (q1VωV

∗
ω );

• The map βω : Vω → Vω+1 (VωV
∗
ω+1) ,

a couple of the ADHM-like equations (and their contributions to the character in (3.2)):

• The equation B
(ω+1)
1 βω − βωB

(ω)
1 + iωjω = 0 (−q1VωV

∗
ω+1);

• The equation B
(1)
1 I = 0 (−q1WV ∗

1 ) ,

the gauge symmetry U(Vω), which contributes (−VωV
∗
ω ) to the character, and, finally, one

supplements the measure by the Euler class of the vector bundle of maps Mω−1 → Vω,

effectively contributing (−Mω−1V
∗
ω ) to the character.

See figure 2 for the illustration of the new quiver, resembling, in particular, the handsaw

quiver [19, 38].

The moduli space corresponding to this new quiver is given by

M =

{

Hom(W,V1)⊕
N−2
⊕

ω=1

Hom(Vω,Vω+1)⊕
N−1
⊕

ω=1

Hom(Vω,Vω)⊕
N−1
⊕

ω=0

Hom(Lω,Vω+1)

⊕
N−1
⊕

ω=1

Hom(Vω,Lω) + eqs.

}

/[U(V1)×U(V2)× · · · × U(VN−1)] (3.3)
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Figure 2. The quiver emerging from the Vω dependence of the normalized vev Ψa.

with the global symmetry

U(W)×U(L0)×U(L1)× · · · × U(LN−1)×U(M0)× · · · × U(MN−2)×U(1)q1 . (3.4)

The U(1)q1 symmetry acts by

(B
(ω)
1 , βω, iω, jω, I) → (q1B

(ω)
1 , βω, iω, q1jω, I)

for all ω = 1, . . . , N − 1. The quotient with respect to

U(V1)×U(V2)× · · · × U(VN−1) (3.5)

is accompanied by the real moment map equations:

µR,ω = [B
(ω)
1 , B

(ω)†
1 ] + βω−1β

†
ω−1 − β†ωβω + iω−1i

†
ω−1 − j†ωjω = ζR,ωIdVω , (3.6)

with β0 = I and βN−1 = 0, and

ζ = {ζR,ω} (3.7)

being the set of Fayet–Iliopoulos parameters. We call the ζR,ω > 0 choice the positive

stability chamber. A representative would be

ζR,ω ≡ ζR > 0 ∀ω.

This emerging quiver variety is the special case of the moduli space of folded instan-

tons [21, 31] on the ZN orbifold of C4 acting via (z1, z2, z3, z4) → (z1, ηz2, z3, η
−1z4) with

ηN = 1 [30], with the following gauge origami data: the Chan-Paton spaces, as the ZN -

modules, are:

N12 =

N−1
⊕

ω=0

Lω ⊗Rω, (3.8a)

N24 = W ⊗R0, (3.8b)

K =

N−1
⊕

ω=1

Vω ⊗Rω−1. (3.8c)
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The ADHM gauge origami matrices are decomposed as

B1 = (B
(ω)
1 )ω−1; (3.9a)

B2 = (βω)ω−1; (3.9b)

I12 = (iω−1)ω−1; (3.9c)

J12 = (jω)ω−1; (3.9d)

I24 = (I)0 (3.9e)

for ω = 1, . . . , N − 1, and

J24 = B3 = B4 = 0 . (3.10)

They satisfy:

[B1, B2] + I12J12 = 0, (3.11a)

B1I24 = 0 (3.11b)

In the positive stability chamber the vector space K decomposes as:

K = C[B1, B2]I12(N12) + C[B2]I24(N24). (3.12)

The eqs. (3.8), (3.9), (3.10) follow from the folded instantons equations [31] subject to the

decomposition (3.8) supplemented by the real moment map equation (which is equivalent

to (3.6)):

µR = [B1, B
†
1] + [B2, B

†
2] + I12I

†
12 − J†

12J12 + I24I
†
24 = ζR IdK . (3.13)

As a result, Ψa ≡ Ψa,+ is the cohomological field theory partition function which is obtained

by integrating the equivariant Euler class of the bundle of all the equations above over the

moduli space of matrices obeying the stability condition (3.12) modulo the complexified

symmetry group (3.5).

3.2 On the other side

The calculation of the partition function Ψa,− defined in the same way with the flip of the

sign of the FI-parameters, i.e. for ζR < 0 in the real moment map equation (3.13) is much

simpler. Indeed, in the negative stability chamber, i.e. for ζR < 0, the eq. (3.13) implies

||I12||
2 + ||I24||

2 − ||J12||
2 = kζR < 0.

It implies that both I12 = I24 = 0 at the fixed points of the global symmetry, leaving the

B†
1 and B†

2 commuting. The vector space K is generated by the image of J†
12:

K = C[B†
1, B

†
2]J

†
12(N12). (3.14)

The fixed points on the moduli space are characterized by N − 1 Young diagrams ~λdual =

(λ
(1)
dual, . . . , λ

(N−1)
dual ) with the restrictions on their maximal height in the B†

2 direction. Each
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Young diagram λ
(α)
dual = (λ

(α)
dual,1, λ

(α)
dual,2, · · · ) is a collection of rows of squares of non-negative

length obeying

λ
(α)
dual,i ≥ λ

(α)
dual,i+1, i = 1, 2, . . . (3.15a)

λ
(α)
dual,1 ≤ α, α = 1, . . . , N − 1 (3.15b)

The transposed Young diagrams can be expressed by the collection (λ
(α)
dual)

t =

(λ
(α),t
1 , λ

(α),t
2 , . . . , λ

(α),t
α ) with non-negative entries such that

λ
(α),t
i ≥ λ

(α),t
i+1 , i = 1, . . . , α. (3.16)

The dual characters Vω in the negative stability chamber are

Vω =
∑

α≥ω

eAα q−1
1

1− q
−λ

(α),t
dual,α−ω+1

1

1− q−1
1

,

=⇒ ΓN − Γω =
∑

l≥ω

eAl + P1Vω =
∑

l≥ω

eAlq
−λ

(α),t
dual,α−ω+1

1 = F≥ω (3.17)

Set ǫ1 = ~. The normalized vev of the surface defect in that chamber is equal to the

sum over the Gelfand-Zeitlin-like table (3.15), (3.16), similar to the sum over fluxes in the

gauged linear sigma model corresponding to the complete flag variety, or as in [34]:

Ψa,− =
∑

~λdual

N−2
∏

ω=0

q
− 1

~
ch1(F≥ω)

ω, eff E

[

1

P ∗
1

(

ΓNF
∗
≥1−

∑

ω

F≥ω(F≥ω − F≥ω+1)
∗−
∑

ω

Mω−1F
∗
≥ω

)]

.

(3.18)

3.2.1 Mutation of fractional couplings

For future use let us define the effective fractional couplings. Let:

cω := 1− qω + qωqω+1 + · · ·+ (−1)N−1−ωqω · · · qN−2 , (3.19)

for ω = 0, 1, . . . , N − 2, with c−1 = cN−1 = 1, and

q0,eff = q0 c1 , (3.20a)

qω,eff = qω cω+1 c
−1
ω−1 , ω = 1, . . . , N − 3 , (3.20b)

qN−2,eff = qN−2 c
−1
N−3 , (3.20c)

qN−1,eff = q

N−2
∏

ω=0

q−1
ω,eff , (3.20d)

so that the product of effective fractional couplings is equal to the bulk coupling q. We

leave the study of the properties of the map ~q 7→ ~qeff to future work.
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3.2.2 The crossing of the normalized vev

See the appendix (C.3) for the N = 2, 3 examples and for the toy model illustrating the

transformation of the fractional couplings. Here we present the case of general N

The normalized vev of the surface defect of a general gauge group U(N) is of the form

Ψa,+ =
∑

~λ

N−1
∏

ω=1

qvωω E

[(

ΓN −
∑

l≥ω

eAl − P1Vω

)

(

eAω

P1
+ Vω − Vω+1

)∗

+
Mω−1(

∑

l≥ω e
Al + P1Vω)

∗

P ∗
1

]

(3.21)

We again rewrite Ψa,+ using the dual characters {Vω} defined by the eq. (3.1). The sum

over the entries in Vω can be expressed as the sum over the residues in the contour integral

∞
∑

v1,...,vN−1=0

N−1
∏

ω=1

qvωω−1

vω!

∮

Cω

vω
∏

i=1

dφ
(ω)
i

2πi

1

~

∏

i>j

(φ
(ω)
i − φ

(ω)
j )2

(φ
(ω)
i − φ

(ω)
j )2 − ~2

vω+1
∏

j=1

φ
(ω)
i − φ

(ω+1)
j + ~

φ
(ω)
i − φ

(ω+1)
j

×
(φ

(ω)
i −m+

ω−1)(φ
(ω)
i −m−

ω−1)

(φ
(ω)
i −Aω−1)(φ

(ω)
i −Aω + ~)

×

|W |
∏

s=1

φ
(1)
i − bs − ~

φ
(1)
i − bs

.

(3.22)

The integration is evaluated by deforming the contours Cω in steps:

1. We start at ω = N − 1.

2. We choose vω − lω integration variables {φ
(ω)
i }, i = 1, . . . , vω − lω, for some lω =

0, . . . , vω, to pick up the residues at the pole at infinity.

3. The residue at infinity is computed using eq. (C.31).

4. The integral over the remaining variables {φ
(ω)
i }, i = vω − lω +1, . . . , vω is performed

by computing the residues at Aα−j~, j = 1, 2, . . . , for some α = ω, . . . , N −1. These

poles generate the dual Young diagram corresponding to a fixed point of the quiver

variety in the negative FI-parameter chamber.

5. Sum over (vω, lω).

6. Repeat the steps 2 to 5 with ω → ω − 1.

The residues at infinity for a single φ(ω) are

r(ω)∞ =
1

~
(m+

ω−1 +m−
ω−1 −Aω−1 −Aω + ~), ω = 1, . . . , N − 1. (3.23)

In terms of the quantity defined by the eq. (3.19) the total crossing factor is given by the

formula

c
|W |
0 ×

N−2
∏

j=0

cr
(j+1)
∞
j .
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3.3 Integral representation of the normalized vev of the surface defect

The normalized vev of the surface defect Ψa,+ in the positive ζR chamber is related to its

negative chamber counterpart by the crossing formula,

Ψa,+ = c
1
~

∑N−1
α=0 Aα−aα

0





N−2
∏

j=0

cr
(j+1)
∞
j



Ψa,−. (3.24)

The physical meaning of the parameters Aα’s in the quantum integrable system are the

asymptotic momenta at the spatial infinity.

The normalized vev of the surface defect Ψa,− in the negative FI-parameter chamber

can be represented both as the discrete sum (3.18), and as the integral over the set y =

(y1, y2, . . . , yN−1) of R-valued variables in the following form

Ψa,− =
∑

~λ

N−1
∏

ω=0

q
kω−kN−1

ω,eff E

[

ΓNF
∗
≥1

P ∗
1

−

∑N−1
ω=1 F≥ω(F≥ω − F≥ω+1)

∗

P ∗
1

−

∑N−1
ω=1 Mω−1F

∗
≥ω

P ∗
1

]

=

∫

µ(y)C(y)U(y)dy (3.25)

where

1. The set ||yn,j ||1≤j≤n≤N−1 is the lower left triangle of an (N − 1) × (N − 1) ma-

trix. The function Ψ(y) is defined with the identification y = (y1, . . . , yN−1) =

(yN−1,1, . . . , yN−1,N−1) by the Mellin-Barnes integral

U(y) =

∫

C

N−2
∏

n=1

q

−
n∑

j=1

yn,j
~

N−n−1,eff

n!

n
∏

j=1

n+1
∏

k=1

(−~)
yn,j−yn+1,k

~ Γ
(

yn,j−yn+1,k

~

)

∏

1≤j 6=k≤n

Γ
(

yn,j−yn,k

~

)

Γ
(

yn,k−yn,j

~

)

1
n
∏

j=1
MN−n−1(yn,j)

×
N−2
∏

n=1

n
∏

j=1

dyn,j
2π~i

. (3.26)

The integral is understood as follows: first integrate out the variable y1,1 along a

straight line

C1,1 :=
{

y1,1 : Re
(y1,1

~

)

= constant, Re (y1,1/~) > max{Re (y2,1/~) ,Re (y2,2/~)}
}

followed by integration with respect to the variables (y2,1, y2,2) over the product of

two straight lines {C2,1, C2,2} parallel to C1,1,

C2,i :=
{

y2,1 : Re
(y2,i

~

)

= constant, Re (y2,i/~) > maxj{Re (y3,j/~)}
}

and so on. The last set of integrations with respect to the variables (yN−2,1, . . . ,

yN−2,N−2) is performed along N − 2 straight lines

CN−2,i :=
{

yN−2,i : Re
(yN−2,i

~

)

=constant, Re (yN−2,i/~) > maxj{Re (yN−1,j/~)}
}

.
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The contribution to the integrand of the fundamental flavor multiplets is given by

Mn(y) = E

[

Mne
−y

P ∗
1

]

=
∏

±

Γ

(

y −m±
n

~

)

(~)
y−m

±
n

~

2. The function C(y) is given by

C(y) =
N−1
∏

j=1

Q(yj − ~)

M0(yj)

1
∏N

α=1 sinπ
(

yj−Aα

~

) (3.27)

where Q(y) is the solution of Baxter equation (D.7) and M0(y) is given by

M0(y) =
∏

±

Γ

(

y −m±
0

~

)

(~)
y−m

±
0

~

Even though C(y) only has contributions from two fundamental masses, eq. (3.25)

shall still have gamma function factor from 2N − 2 fundamental mass dependent on

y by the pole structure of (3.26).

3. The measure µ(y), sometimes called the Sklyanin measure, is of the form

µ(y) = q
−

∑N−1
j=1

yj
~

0,eff

1

(2πi~)N−1

1

(N − 1)!

∏

j 6=k

1

Γ(
yj−yk

~
)

= q
−

∑N−1
j=1

yj
~

0,eff

1

(2πi~)N−1

1

(N − 1)!

∏

1≤j<k≤N−1

(yj − yk)

π~
sinπ

(

yj − yk
~

)

(3.28)

We notice that the normalized vev of the surface defect (3.25) has the same structure

as the SL(2,R) spin wave function derived in [60].

3.4 The limit to Toda

Let us consider the limits m±
f → ∞, q → 0, with q

∏N
f=1m

+
f m

−
f = Λ2N kept finite. From

the point of view of the gauge theory, we integrate out the fundamental hypermultiplets,

arriving at the pure super-Yang-Mills theory. It is well-known to be dual to the ÂN−1 Toda

lattice (periodic N -particle Toda chain) in the sense of Bethe/gauge correspondence,

ĤToda = −
~
2

2

N
∑

α=1

∂2

∂x2α
+ Λ2

N
∑

α=1

exα−xα−1 , xα ∼ xα+N (3.29)

Integrating out the fundamental hypermultiplets results in several modification of the

normalized vev of the surface defect (3.24). Since the integration over moduli space (3.22)

no longer has pole at the infinity, there will be no crossing factor. The surface partition

functions in the positive and negative FI-parameter chambers are therefore identical

Ψa,+ = Ψa,−.
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In addition, the fractional coupling qω will not be modified between the two chambers,

namely

qω,eff = qω = Λ2exω−xω−1 .

In the mass decoupling limit, we recognize that the normalized vev of the surface parti-

tion fucntion coincides with the integral formula for the eigenfunction of the ÂN−1 Toda

lattice [33, 34]. See appendix B.2 for detail about reconstruct the Schrödinger equation of

ÂN−1 Toda lattice from N = 2 SYM with a co-dimension two surface defect.

3.5 Crossing and AGT

Here we work with both ǫ1, ǫ2 finite, so we restore the notation ǫ+ = ǫ1 + ǫ2. Let us con-

sider the SU(2) gauge theory. We can start with the U(2) gauge group with the Coulomb

moduli a1 = −a2 = a having the zero trace. In the original AGT conjecture [37], the SU(2)

vector multiplet is accompanied by two fundamental and two anti-fundamental hypermul-

tiplets. The crossing formula in the eq. (C.22) considers all flavors in the fundamental

representation of the gauge group. To match with the AGT convention, we change the

hypermultiplets with masses m+
1 and m− to the anti-fundamental representation of the

gauge group, which modifies

m±
1 → ǫ+ −m±

1

One special property of the U(2) gauge theory with moduli parameter a1 = −a2 = a is

that the instanton partition functions in the positive and negative FI-parameter chambers

are related by the additional symmetry m 7→ ǫ+ −m. Such additional symmetry can be

seen by identifying the instanton configuration (λ1, λ2) in the ζR > 0 chamber with the

instanton confugration (λ2, λ1) in the ζR < 0 chamber, which results in

ZU(2),+(a,m
±
i ; q) = ZU(2),−(a, ǫ+ −m±

i ; q). (3.30)

At the same time, the crossing formula in eq. (C.22) predicts

ZU(2),+(a,m
±
i ; q) = (1− q)−r∞ZU(2),−(a,m

±
i ; q).

See the appendix C.2 for the derivation of the crossing formula in the bulk.

The r∞ in the new convention of flavor becomes

r∞ =
ǫ+
ǫ1ǫ2

(m+
0 +m−

0 −m+
1 −m−

1 ).

We denote the masses of the fundamental and anti-fundamental flavors of the effective U(1)

theory by

µ0 =
m+

0 +m−
0

2
, µ1 =

m+
1 +m−

1

2
=⇒ r∞ = 2ǫ+(µ0 − µ1).

A U(1) instanton partition function with one fundamental flavor µ0 and one anti-

fundamental flavor µ1 is equal to [1]:

ZU(1),+(µi; q) = (1− q)
µ0(ǫ+−µ1)

ǫ1ǫ2 .
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The symmetry m 7→ ǫ+−m can be restored by decoupling overall U(1) instanton partition

from the U(2) instanton partition function,

B(a,m±
i ; q) =

(

ZU(1),+(µi, q)
)−2

ZU(2),+(a,m
±
i ; q) = (1−q)

−
2µ0(ǫ+−µ1)

ǫ1ǫ2 ZU(2),ζR>0(a,m
±
i ; q),

(3.31)

such that B(a,m±
i ; q) enjoys the m 7→ ǫ+ −m symmetry,

B(a, ǫ+ −m±
i ; q) = (1− q)

−
2(ǫ+−µ0)µ1

ǫ1ǫ2 ZU(2),+(a, ǫ+ −m±
i ; q)

= (1− q)
−

2(ǫ+−µ0)µ1
ǫ1ǫ2 ZU(2),+(a,m

±
i ; q)

= (1− q)
−

2(ǫ+−µ0)µ1
ǫ1ǫ2 (1− q)r∞ZU(2),+(a,m

±
i ; q)

= (1− q)
−

2µ0(ǫ+−µ1)

ǫ1ǫ2 ZU(2),+(a,m
±
i ; q)

= B(a,m±
i ; q). (3.32)

We can recover exactly the U(1) factor given by the original AGT conjecture [37]. We

also need to take special value of Ω-parameters ǫ1 = b, ǫ2 = b−1. As shown in (B.16), the

U(2) gauge theory is associated to the Liouville conformal theory. The momenta of vertex

operators in Liouville theory are

µ0 −
ǫ+
2

=
m+

0 +m−
0 − ǫ+

2
, µ̃0 −

ǫ+
2

=
m+

0 −m−
0

2
, (3.33a)

µ1 −
ǫ+
2

=
m+

1 +m−
1 − ǫ+

2
, µ̃1 −

ǫ+
2

=
m+

1 −m−
1

2
. (3.33b)

based on the identification in (B.17),

Instead of decoupling the U(1) factor, an alternative choice to restore the m 7→ ǫ+−m

symmetry is by coupling the U(1) instanton partition function in the opposite FI-parameter

chamber

B̃(a,m±
0,1; q) := ZU(1),−(µi, q)

2ZU(2),+(a,m
±
i ; q) (3.34)

with

ZU(1);−(µi; q) = (1− q)
(ǫ+−µ0)µ1

ǫ1ǫ2 . (3.35)

Changing m 7→ ǫ+ − m swaps the FI-parameter chambers the U(2) and U(1) instanton

partition functions reside in. The choice of fundamental masses of the U(1) instanton

partition function ensures that the crossing factor from ZU(1),ζR<0 and ZU(2),ζR>0 cancel

each other, leaving B̃ invariant.

The main statement of the AGT correspondence identifies B with the 4-point conformal

block of Liouville conformal theory on a sphere. See [61–63] for the lectures on Liouville

theory, and [37, 64, 65] for details about the AGT correspondence.
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4 Classical XXXsl2/SQCD correspondence

A connection between the XXXsl2 spin chain and the N = 2 SQCD in four dimensions

has been anticipated a long time ago. Various hints were presented first in [46, 66], then

in [10, 17, 18, 27, 28], for fine tuned parameters of the theory. In this paper we show in

full generality that the classical XXXsl2 spin chain is the Seiberg-Witten geometry of the

theory, in particular we establish relations between the sl2 spin chain coordinate systems

and the defect gauge theory parameters.

Let us briefly review the classical XXXsl2 spin chain Lax matrices and the monodromy

matrix. Let x be a local coordinate on the CP
1. The Lax operators are defined as a set of

GL2-valued functions [67]

LXXX
ω (x) = x− µω + Lω, ω = 0, . . . , N − 1 (4.1)

where Lω = ℓ0ωσ0+ ℓ
+
ωσ++ ℓ−ωσ− are sl2 matrices. The µi’s are N points on CP

1 which are

called the inhomogeneities. The Lax matrix LXXX
ω (x) is assigned to the (ω + 1)-th site of

XXXsl2 spin chain lattice with a Poisson structure defined on each site

{ℓ0α, ℓ
±
β } = ±ℓ±α δαβ , {ℓ

+
α , ℓ

−
β } = 2ℓ0αδαβ . (4.2)

The monodromy matrix is defined as a product over Lax matrices

TSC(x) = K(q)LXXX
N−1(x) · · ·L

XXX
0 (x). (4.3)

The twist matrix K(q) is a constant GL2-valued matrix. The spectral curve of spin chain

is defined by introduction of spectral parameter z

det(z −TSC(x)) = 0. (4.4)

Expanding the 2× 2 determinant explicitly gives

z2 − zTrTSC(x) + detK(q)P (x) = 0, P (x) =

N−1
∏

ω=1

(x− µω + sω)(x− µω − sω). (4.5)

4.1 Constructing the monodromy matrix

We now demonstrate how one can recognize the eq. (4.3) in the four dimensional super-

symmetric gauge theory. We take both ǫ1, ǫ2 → 0 (classical, or flat space) limit of the

non-perturbative Dyson-Schwinger equations (5.14) in the presence of the regular defect:

Yω+1 + qω
Pω(x)

Yω
= (1 + qω)tω(x) (4.6)

where

Pω(x) = (x−m+
ω )(x−m−

ω ), tω(x) = x− ρω.

Let us define

Yω = (x−m+
ω )

ψω

ψω−1
(4.7)
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such that eq. (4.6) becomes a second degree difference equation of the ψω’s.

(x−m+
ω+1)ψω+1 + qω(x−m−

ω )ψω−1 = (1 + qω)(x− ρω)ψω, (4.8)

with twisted periodicity constraint imposed on ψω’s

ψω+N = zψω (4.9)

for some complex z. Eq. (4.8) can be rewrite as a first-order difference equation by defining

a vector

χω =

(

ψω+1 − ψω

ψω

)

, χω+N = zχω,

such that χω obeys

χω =
1

x−m+
ω+1

(

−ρω +m+
ω+1 + qω(x− ρω) −ρω +m+

ω+1 + qω(−ρω +m−
ω )

x−m+
ω+1 x−m+

ω+1

)

χω−1. (4.10)

We consider a gauge transformation Πω = hωχω satisfying

hω

(

qω 0

1 1

)

h−1
ω−1 =

(

1 0

0 1

)

. (4.11)

In other words

hω

(

qω 0

1 1

)(

qω−1 0

1 1

)

. . .

(

q0 0

1 1

)

= hω

(

u∨ω+1 − u∨ω 0

u∨ω 1

)

= h−1

where

u∨ω = 1 + q0 + q0q1 + q0q1q2 + . . .+ q0. . .qω−1. (4.12)

The twisted matrix is defined based on the gauge transformation

h−1
N−1 =

N−1
∏

ω=0

(

qω 0

1 1

)

h−1
−1 := h−1

−1K =⇒ K = h−1

(

q 0

u∨N−1 1

)

(h−1)
−1. (4.13)

The first order difference equation eq. (4.10) can be written in terms of the vector Π,

Πω =

(

1 +
1

x−m+
ω+1

Lω

)

Πω−1 =
LXXX
ω (x)

x−m+
ω+1

Πω−1 (4.14)

with the Lax matrix of the form

Lω = hω

(

(1 + qω)(−ρω +m+
ω+1) (−ρω +m+

ω+1) + qω(−ρω +m−
ω )

0 0

)(

qω 0

1 1

)−1

h−1
ω

= −sω + Lω , Lω =

(

ℓ0ω ℓ−ω
ℓ+ω −ℓ0ω

)

. (4.15)
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The spins {sω} and the inhomogeneities {µω} of the XXXsl2 spin chain are expressed

through the masses of the fundamental and anti-fundamental flavors in the gauge theory via

sω =
−m+

ω+1 +m−
ω

2
, µω =

m+
ω+1 +m−

ω

2
.

The quadratic Casimir operator of the sl2 spin vector ~ℓω is

(~ℓω)
2 = (ℓ0ω)

2 + ℓ+ω ℓ
−
ω = s2ω. (4.16)

We now construct the spin chain monodromy matrix T(x) based on the Lax operators,

T(x) = K

N−1
∏

ω=0

LXXX
ω (x)

x−m+
ω+1

=
1

P+(x)
TSC(x) (4.17)

with P±(x) =
∏

ω(x − m±
ω ). The twist matrix K is defined in eq. (4.13). The spectral

curve of the XXXsl2 spin chain is

0 = det(z −T(x)) = z2 − zTrT(x) + detT(x) = z2 − z(1 + q)
T (x)

P+(x)
+ q

P−(x)

P+(x)
. (4.18)

After the substitution Y = zP+(x), the spectral curve of the spin chain coincides with the

bulk Seiberg-Witten curve when Y 6= 0

det(Y −TSC(x)) = Y 2 − Y Tr TSC(x) + qP (x) (4.19)

with

TrTSC(x) = (1 + q)T (x)|SW.

4.2 Canonical coordinates

The components of spin vector ~ℓω obeys eq. (4.16). In what follows, we shall consider the

representation for the spin components which is build upon two independent parameters

βω and γω,

ℓ0ω = βωγω − sω, ℓ+ω = 2sωγω − βωγ
2
ω, ℓ−ω = βω. (4.20)

Given the spin component Poisson structure (4.2), parameters {βω, γω} are canonical co-

ordinate pairs subject to the Poisson relation

{γω, βω′} = δωω′ . (4.21)

Our next objective is to identify canonical coordinates {βω, γω} in terms of gauge

theory parameters. The monodromy matrix (4.17) is gauge hω dependent. All the gauge

matrices hω are generated by a single h−1 based on their definition in eq. (4.11),

hω =

(

aω bω

cω dω

)

= h−1
1

u∨ω+1 − u∨ω

(

1 0

−u∨ω u∨ω+1 − u∨ω

)

.
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The Lax matrix Lω in eq. (4.15) is defined based on the gauge matrix hω

Lω =

(

βωγω − sω βω
2sωγω − βωγ

2
ω −βωγω + sω

)

=
1

aωdω − cωbω

(

−aωcωPω + (aωdω + cωbω)sω a2ωPω − (2aωbω)sω
−c2ωPω + 2cωdωsω aωcωPω − (aωdω + cωbω)sω

)

(4.22)

where

Pω = ρω −m+
ω+1 + qω(ρω −m−

ω ) = (1 + qω)(ρω + µω) + (qω − 1)sω. (4.23)

The spin chain canonical coordinates {βω, γω} are identified in terms of the gauge transform

matrix components

βω =
a2ωPω − 2aωbωsω
aωdω − cωbω

, γω = −
cω

aω
. (4.24)

The Pω given in (4.23) is related to the zeros of the fractional tω(x), which can be found

by considering large x expansion of eq. (4.6):

Pω = −

[

ǫzω

(

∂

∂zω
−

∂

∂zω−1

)

− aω+1 +
zω
zω−1

aω −m+
ω+1 +

zω
zω−1

m+
ω

]

logΨa.

with the coordinates z = (z0, . . . , zN−1) defined by

qω =
zω
zω−1

, zω+N = qzω, ∇z
ω = zω

∂

∂zω
. (4.25)

The normalized vev of the surface defect differs from Ψa by the perturbative factor

Ψ̃ =

[

N−1
∏

ω=0

z
−

aω+1−m
+
ω+1

ǫ
ω

]

Ψa (4.26)

such that the Pω becomes

Pω = ǫzω

(

∂

∂zω−1
−

∂

∂zω

)

log Ψ̃ = zω

(

∂S

∂zω−1
−

∂S

∂zω

)

. (4.27)

The Hamilton-Jacobi function S is defined by

S(a,m±, z) = lim
ǫ→0

ǫ log Ψ̃(a,m±, z)

The twist matrix K defined in eq. (4.13) is also gauge dependent, which we shall use as

the anchor for our gauge choice. In particular, we demand that the gauge transformation

satisfies

K = h−1

(

q 0

u∨N−1 1

)

(h−1)
−1 =

(

q 0

0 1

)

, (4.28)
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which we solve out the gauge

h−1 =

(

1
z−1

0
u∨
N−1

1−q
1

)

. (4.29)

The spin canonical coordinates {γω, βω} with the gauge choice h−1 in eq. (4.29) can be

identified using the gauge theory parameters. In particular, they satisfy the Hamiltonian-

Jacobi equation

γω =
zω + zω+1 + . . .+ zω+N−1

q− 1
=

q(z0 + . . .+ zω−1) + zω + . . .+ zN−1

q− 1
. (4.30a)

βω =
∂S

∂zω−1
−

∂S

∂zω
=

∂S

∂γω
(4.30b)

{βω, γω} form Darboux coordinate pair are subject to the desired Poisson structure

{γα, ββ} = δαβ . (4.31)

Moreover, the coordinates {γω, βω} obey the twisted periodicity condition

γω+N = qγω, βω+N =
1

q
βω (4.32)

The only constrain on the twist matrix K is that it is a GL2 constant matrix with the

determinant det(K) = q. The choice of the twist matrix K in (4.28) is not unique. An

alternative is

K =

(

q+ 1 −q

1 0

)

= hnew−1

(

q 0

u∨N−1 1

)

(hnew−1 )−1. (4.33)

The gauge transformation that yields such twist matrix K is

hnew−1 =

(

u∨N−1 1

0 1

)

. (4.34)

The gauge matrix hω that defines the Lax matrices Lω now reads

hnewω =

(

aω bω

cω dω

)

=
1

u∨ω+1 − u∨ω

(

u∨N−1 − u∨ω u∨ω+1 − u∨ω
−u∨ω u∨ω+1 − u∨ω

)

. (4.35)

A new set of coordinates {βnewω , γnewω } can be defined based on the new gauge, whose

relation with the gauge theory parameters are less illuminating.

4.3 An open spin chain inside the integral

In this section, we study the normalized vev of the surface defect (3.25) in the semi-classical

limit ~ → 0. To avoid the clutter, we denote

q̃n = −qN−n−1,eff , m̃±
n = m±

N−n+1 , n = 0, 1, . . . , N − 1. (4.36)
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In the limit ~ → 0, we use the Stirling approximation of the Gamma functions in the Mellin-

Barnes integral representation (3.26) of the normalized vev of the surface defect (3.25),

U(y) ≈

∫

C

N−2
∏

n=1

n
∏

j=1

dyn,j
2πij~

e−
1
~
W [yn,j ] (4.37)

W [yn,j ] =
N−2
∑

n=1

log(−q̃n)
n
∑

j=1

yn,j −
n
∑

j=1

n+1
∑

k=1

(yn,j − yn+1,k) (log (yn,j − yn+1,k)− 1) (4.38)

+
∑

1≤j<k≤n

±πi (yn,j − yn,k) +
∑

±

n
∑

j=1

(

yn,j −m±
N−n−1

)(

log
(

yn,j −m±
N−n−1

)

−1
)

.

The integration is dominated by the saddle point configurations with yn,j (1 ≤ n<N−1)

satisfying ∂W/∂yn,j = 0. Exponentiating yields the system of nested Bethe equations

Rn+1(yn,j) = −q̃nRn−1(yn,j)P̃n(yn,j) , n = 1, . . . , N − 2 , j = 1, . . . , n (4.39)

with

Rn(x) =
n
∏

j=1

(x− yn,j) , n = 1, . . . , N − 1, R0(x) = 1

and P̃n(x) = (x − m̃+
n )(x − m̃−

n ). These equations can be viewed as a discrete many-

body system, admitting an interesting elliptic generalization [68], which arises in the six

dimensional N = (1, 0) analogues of the theory we studied. In this way one could rigorously

justify some of the observations in [69] based on M/string theory considerations.

For the last integration variables {yN−1,j}, we notice that in the ~ → 0 limit, the

functions Q(x) and Y (x) have the asymptotics

Q(x) ∼ e
1
~
Σ(x), Y (x) ∼ e∂xΣ(x). (4.40)

The saddle point equation for yN−1,j is found by

Y (yN−1,j) = −q̃N−1RN−2(yN−1,j)P̃N−1(yN−1,j) , j = 1, . . . , N − 1. (4.41)

In the ǫ→ 0 limit the function Y (x) solves the algebraic equation,

Y (x) + q
P (x)

Y (x)
= (1 + q)T (x)|SW, P (x) = P̃0(x) . . . P̃N−2(x) , P̃N−1(x). (4.42)

which defines the Seiberg-Witten curve of our theory.

We can define a series of T − Q Baxter equations based on the saddle point equa-

tions (4.39)

Rn+1(x) = Xn(x)Rn(x)− q̃nRn−1(x)PN−n−1(x) , n = 1, . . . , N − 2, (4.43)

with Xn(x) = (1 + q̃n)(x − wn) being a degree one polynomial. The T − Q Baxter equa-

tion (4.43) can be extended to the n = 0 case by defining

X0(x) = R1(x) + q̃0P̃
−
0 (x) = (1 + q̃0)(x− w0)R0(x) = R1(x) + q̃0P̃0(x)R−1(x) (4.44)
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with P̃+
0 (x)R−1(x) = R0(x) = 1. Using eq. (4.43) we express the Xn(x) function as

Xn(x) =
Rn+1(x)

Rn(x)
+ q̃n

P̃n(x)Rn−1(x)

Rn(x)
(4.45)

for n = 0, 1, . . . , N − 2. We will see later that the Xn(x) functions can be identified as

q-characters.

4.3.1 Construction of the holonomy matrix

Let us rewrite the eqs. (4.43) in terms of the first order difference equations by defining a

vector

Ξn(x) =

(

Rn+1(x)

P̃+
n+1(x)Rn(x)

)

= xn+1 ·

(

1

1

)

+ . . . ,

obeying the transport equation

Ξn(x) = L̃n(x) Ξn−1(x) . (4.46)

The local Lax operators Ln are defined as gauge transforms of L̃n:

Ln(x) = hn+1L̃n(x)h
−1
n = x+ hn+1

(

−wn(1 + q̃n) q̃nm̃
−
n

−m̃+
n+1 0

)

h−1
n = x− µn + Ln. (4.47)

with

hn+1

(

1 + q̃n −q̃n

1 0

)

h−1
n =

(

1 0

0 1

)

. (4.48)

The eq. (4.41) does not fit for general pattern, of having a polynomial XN−1(x) since Y (x)

is multi-valued. However, by observing the (3.26) is invariant under the shift of yn,j →

yn,j+~ of the integration variables, which can be interpreted as one of the non-perturbative

“large” contour modifications of [1], subtracting one instanton in the corresponding quiver

node VN−n−1 in the new quiver system. We recall the derivation of the corresponding

nonperturbative Dyson-Schwinger equations in the form of the qq-character analyticity,

in the appendix A. A similar procedure can be applied to the integration representation

of the normalized vev of the surface defect (3.25). In this way we find N q-characters1

whose expectation values are degree one polynomials. In the classical limit ~ → 0 these

q-characters are

Xn(x) = Υn(x) +
q̃nP̃n(x)

Υn−1(x)
, Υn(x) =

Rn+1(x)

Rn(x)
, n = 0, 1, . . . , N − 2, (4.49a)

XN−1(x) =
1

RN−1(x)

[

(1 + q)T (x)|SW + q̃N−1P̃N−1(x)RN−2(x) + U(x)
]

. (4.49b)

The function U(x) is a degree N polynomial

U(x) = RN−1(x)
N−1
∑

k=1

∏k
j=1 q̃j−1P̃j−1(x)

Rk(x)Rk−1(x)
(4.50)

1They are only q, not qq-characters, since we already have ǫ2 = 0.
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such that

U(yN−1,j) =
qP (yN−1,j)

q̃N−1P̃N−1(yN−1,j)RN−2(yN−1,j)
= −

qP (yN−1,j)

Y (yN−1,j)
.

Inspired by the function U(x), we define the dual R-functions by

R̃n(x) = Rn(x)

[

P̃+
0 (x) +

n
∑

k=1

∏k
j=1 q̃j−1P̃j−1(x)

Rk(x)Rk−1(x)

]

∼ ũ∨nx
n+1 + · · · , n = 1, . . . , N − 1

(4.51)

with

ũ∨n = 1 + q̃0 + q̃0q̃1 + · · ·+ q̃0 . . . q̃n−1. (4.52)

In addition, we extend the dual R-function to n = 0 and n = −1 by

R̃0(x) = P̃+
0 (x), R̃−1(x) = 0.

In particular, the R̃n(x) function defined in eq. (4.51) is a degree n+ 1 polynomial

R̃n(x) = ũ∨nP̃
+
0 (x)×

n
∏

j=1

(x− ỹn,j). (4.53)

The dual Υ-function is defined as ratio of the two dual R-functions

Υ̃n(x) =
R̃n+1(x)

R̃n(x)
. (4.54)

We find that for n = 0, . . . , N − 2, the Υ̃n(x) are the other solution to eq. (4.45)

Υ̃n(x) +
q̃nP̃n(x)

Υ̃n−1(x)
= Xn(x). (4.55)

Hence the dual R-functions {R̃n(x)} are the other linearly independent solution to the

second order Baxter equations (4.43)

Xn(x)R̃n(x) = R̃n+1(x) + q̃nP̃n(x)R̃n−1(x). (4.56)

The zeros of dual R-functions satisfy the Bethe equations,

R̃n+1(ỹn,j) + q̃nP̃n(ỹn,j)R̃n−1(ỹn,j) = 0, n = 1, . . . , N − 2. (4.57)

The Wronskians of the two linearly independent solutions Rn(x), R̃n(x) of the Baxter

equations are

R̃n+1(x)Rn(x)− R̃n(x)Rn+1(x) =
n
∏

j=0

q̃jP̃j(x) (4.58)
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We define the vector Ξ̃n which obeys the same transfer relation in eq. (4.46) as the

vector Ξn,

Ξ̃n(x) =

(

R̃n+1(x)

P̃+
n+1(x)R̃n(x)

)

= L̃n(x)Ξ̃n−1(x). (4.59)

The first N − 2 spin chain Lax matrices can be constructed based on L̃n by gauge

transformation in eq. (4.47). One potential candidate for the last Lax matrix L̃N−1 is by

using the last q-character XN−1(x) in eq. (4.49b):

XN−1(x)RN−1(x) = Y (x) +
qP (x)

Y (x)
+ q̃N−1P̃N−1(x)RN−2(x) + R̃N−1(x). (4.60)

The q-character XN−1(x) is degree one polynomial with the single root at wN−1,

XN−1(x) = (1 + q+ q̃N−1 + ũ∨N−1)(x− wN−1).

However, it turns out that the correct way to construct the last Lax matrix of the chain

involves not the q-character XN−1(x), but its dual. We explain in detail in the next section.

4.3.2 The dual Q-function

The second order equations such as T − Q equation (D.7) have two linearly independent

solutions over the (quasi)constants, which in the present case stands for the ǫ-periodic

functions of x. The normalized vev of the surface defect in eq. (3.25) involves one solution

Q(x) inherited from the gauge observable Y (x) in the Seiberg-Witten equation. The other

solution to the T − Q equation, denoted as Q̃(x), can be expressed in terms of Q(x) via

the series

Q̃(x) = q
x
~

∞
∑

k=0

qkQ(x)M(x+ k~)

Q(x+ k~)Q(x+ (k + 1)~)
(4.61)

where M(x) = P (x)M(x − ~) given by a product of Γ-functions. A straightforward com-

putation verifies that Q̃(x) is a solution to the Baxter equation (D.7)

(1 + q)T (x)Q̃(x) = Q̃(x+ ~) + qP (x)Q̃(x− ~)

with the Wronskian

Q̃(x)Q(x+ ~)− Q̃(x+ ~)Q(x) = q
x
~M(x). (4.62)

The dual Ỹ (x) function is defined as a ratio of two Q̃ functions with a shifted argument:

Ỹ (x) =
Q̃(x)

Q̃(x− ~)

which in classical limit ~ → 0 relates to the original Y (x) by

Ỹ (x) =
qP (x)

Y (x)
. (4.63)

– 33 –



J
H
E
P
0
3
(
2
0
2
1
)
0
9
3

The normalized vev of the surface defect Ψa in eq. (3.25) involves only one solution of

the Baxter equation (D.7). A general solution of second order equations considers a linear

combination of both the Q(x) and the Q̃(x),

Ψa,− =

∫

µ(y)C(y)U(y)dy + κ

∫

µ(ỹ)C̃(ỹ)U(ỹ)dỹ (4.64)

where κ is some constant to be determined by initial or boundary conditions of the specific

system. The function C̃(ỹ) is the dual version of the function C(y) in eq. (3.25)

C̃(ỹ) =
N−1
∏

j=1

Q̃(ỹj − ~)

M0(ỹj)

1
∏N

α=1 sinπ
(

ỹ−Aα

~

) .

In the classical limit ~ → 0, The saddle point equations of Mellin-Barnes integration

in U(ỹ) generate exactly the Bethe equations eq. (4.57) for {ỹn,j}, n = 1, . . . , N − 2,

j = 1, . . . , n. The saddle point equations of ỹ variables generate the dual version of

eq. (4.41):

P̃+
0 (ỹN−1,j)Ỹ (ỹN−1,j) = −q̃N−1P̃N−1(ỹN−1,j)R̃N−2(ỹN−1,j). (4.65)

The dual of the last q-character XN−1(x) (4.49b) is defined as a degree one polynomial

X̃N−1(x)R̃N−1(x) =

(

Ỹ (x) +
qP (x)

Ỹ (x)

)

P̃+
0 (x) + q̃N−1P̃N−1(x)R̃N−2(x)− P̃+

0 (x)2RN−1(x)

(4.66)

where

X̃N−1(x) =
1 + q+ q̃N−1ũ

∨
N−2 − 1

ũ∨N−1

(x− w̃N−1) = q̃N−1(x− w̃N−1).

We are now able to define the last Lax matrix L̃N−1 base on dual q-character X̃N−1(x)

L̃N−1(x) =

(

X̃N−1(x) + P̃+
0 (x) −q̃N−1P̃

−
N−1(x)

P̃+
0 (x) 0

)

. (4.67)

The vectors ΞN−1(x) and Ξ̃N−1(x) are defined based on the action of matrix L̃N−1,

ΞN−1(x) := L̃N−1(x)ΞN−2(x) =

(

RN (x)

P̃+
N−1(x)RN−1(x)

)

, (4.68a)

Ξ̃N−1(x) := L̃N−1(x)Ξ̃N−2(x) =

(

R̃N (x)

P̃+
N−1(x)R̃N−1(x)

)

. (4.68b)

The polynomials RN (x) and R̃N (x) are defined by the action of the matrix L̃N−1:

RN (x) :=
(

X̃N−1(x) + P̃+
0 (x)

)

RN−1(x)− q̃N−1P̃N−1(x)RN−2(x), (4.69a)

R̃N (x) :=
(

X̃N−1(x) + P̃+
0 (x)

)

R̃N−1(x)− q̃N−1P̃N−1(x)R̃N−2(x). (4.69b)
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With the last Lax matrix in place, the spin chain holonomy matrix TSC(x) can be

constructed by

L̃N−1(x) · · · L̃0(x) = h−1
0 KLN−1(x) · · ·L0(x)h0 = h−1

0 TSC(x)h0 (4.70)

The trace of the holonomy matrix TSC(x) = KLN−1 · · ·L0 is found by

TrTSC(x) = TrKLN−1 · · ·L0

= TrL̃N−1(x) · · · L̃0(x)

= P̃+
0 (x)RN−1(x) +

1

P̃+
0 (x)

[

R̃N (x)− P̃+
0 (x)R̃N−1(x)

]

= P̃+
0 (x)RN−1(x) +

1

P̃+
0 (x)

[

(1 + q)T (x)|SWP̃
+
0 (x)− P̃+

0 (x)2RN−1(x)
]

= (1 + q)T (x)|SW. (4.71)

Finally we will choose the gauge

h0 =

(

u∨N−1 1− u∨N−1

0 1

)

such that the twist matrix K(q) is of the form

K =

(

q+ 1 −q

1 0

)

.

We will see in the next section that the choice of the gauge h0 allows us to identify the

variables {ỹN−1,j} around the saddle points as E. Sklyanin’s separated variables.

The saddle point can be now found by using the eq. (4.71). The l.h.s. of eq. (4.71)

is a degree N polynomial whose coefficients depend on the root of the q-characters {wn},

the fractional couplings {q̃n}, and the fundamental flavors’ masses {m̃±
n }. The r.h.s. of

eq. (4.71) is a degree N polynomial with coefficients {En}, which are conserved quantities

of the XXXsl2 spin chain. The coefficients of degree N polynomial in x in (4.71) give

rise to N equations on {wn, En, q̃n, m̃
±
n }. The N unknown {wn} can be solved in terms of

{En, q̃n,m
±
n } to obtain the saddle point configuration.

The spin chain holonomy matrix constructed from the classical limit of the wavefunc-

tion (3.25) is an open spin chain with the initital to be either

Ξ−1 =

(

1

1

)

, or Ξ̃−1 = P̃+
0 (x)

(

1

0

)

.

which is different from the periodic spin chain constructed from the defect Seiberg-Witten

curve in eq. (4.17).
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4.3.3 Sklyanin’s separation of variables

The separation of variable (SoV) is a technique in basic elementary physical/mathematical

curriculum. Briefly speaking, SoV reduces multidimensional problem to a set of many

one dimensional problems. SoV was identified to be potentially the most universal tool to

solve integrable models of both classical and quantum mechanics. In particular E. Sklyanin

identified the standard construction of action-angle variable from Baker-Akhiezer function

as variant of SoV [42, 43] in classical integrable systems, and in many particular models

can be extended to quantum counterpart. In many cases the SoV can be related to T-

duality in string theory, mapping the moduli space of higher dimensional D-branes (which

is identified with the phase space of some integrable system, e.g. Hitchin system) to the

moduli space of D0-branes [70, 71].

Classical (complexified) Hamiltonian mechanics with finite N degrees of freedom is

Liouville integrable (algebraically integrable) if its phase space is a 2N -dimensional sym-

plectic manifold equipped with N independent Hamiltonians {Hj} commuting with respect

to Poisson bracket

{Hj , Hk} = 0, j, k = 1, . . . , N.

In addition, one requires the level sets Jh = { (x, p) |Hj(x, p) = hj } of Hj ’s to be compact

(algebraic varieties). The system of Darboux coordinates {xj , pj}

{xj , xk} = 0, {pj , pk} = 0, {xj , pk} = δjk

are called separated variables if there exist N relations of the form

fj(xj , pj , H1, . . . ,HN ) = 0 , (4.72)

connecting (xj , pj) on the level set Jh. Suppose the commutative Hamilonians {Hj} can

be obtained from some D×D Lax matrix T(ξ) whose elements are functions on the phase

space and one additional parameter ξ called the spectral parameter. The characteristic

polynomial of the matrix T(ξ)

det(z −T(ξ)) =

D
∑

n=0

tn(ξ)z
D−n, t0(ξ) = 1, tD(ξ) = detT(ξ). (4.73)

The characteristic equation

det(z −T(ξ)) = 0

defines the eigenvalue z = z(ξ) of the Lax matrix T(ξ). The Baker-Akhiezer function

ψ(ξ) [72, 73] is defined as the eigenvector of T(ξ)

T(ξ)ψ(ξ) = z(ξ)ψ(ξ) (4.74)

associated to the eigenvalue z(ξ). In the case of the XXXsl2 spin chain, D = 2, and [43]

shows the Lax matrix T(xj) takes the upper triangular form

T(xj) =

(

zj T12(xj)

0 T22(xj)

)

, zj = z(xj). (4.75)
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for the separated variables (xj). We show now that the ~ → 0 saddle point value of the

integration variables {ỹN−1,j} are the classical Sklyanin’s separated variables. The spin

chain holonomy matrix TSC in (4.70) is a 2× 2 matrix

TSC(x) =

(

T11(x) T12(x)

T21(x) T22(x)

)

. (4.76)

The diagonal elements T11(x) and T22(x) are degree N polynomials, while the off-diagonal

T12(x) and T21(x) are degree N − 1 polynomials. We denote

ξ̃n = h0Ξ̃n

such that ξ̃−1 obeys

ξ̃N−1 = TSC(x)ξ̃−1

=⇒
1

u∨N−1P̃
+
0 (x)

(

u∨N−1 1− u∨N−1

0 1

)(

R̃N (x)

P̃+
0 (x)R̃N−1(x)

)

=

(

T11(x) T12(x)

T21(x) T22(x)

)(

1

0

)

(4.77)

The matrix equation above becomes an eigenvalue equation of TSC(x) with the eigenvector
(

1
0

)

when x = ỹN−1,j . Thus the variables {ỹN−1,j} are the Sklyanin’s separated variables,

cf. eq. (4.75). Furthermore, at the saddle point, the set {ỹN−1,j} is the set of N − 1 roots

of the lower-left component T21(x) of the holonomy matrix

T21(ỹN−1,j) = 0 (4.78)

with the associated eigenvalue/conjugate momentum

T11 (ỹN−1,j) = Ỹ (ỹN−1,j) = z̃j . (4.79)

For the other variables {yN−1,j}, we denote the dual of vector ξ̃n by

ξn(x) = h0Ξn(x) ,

so that

ξN−1 = TSC(x)ξ−1 =⇒

(

u∨N−1 1− u∨N−1

0 1

)(

RN (x)

P̃+
0 (x)RN−1(x)

)

=

(

T11(x) T12(x)

T21(x) T22(x)

)(

1

1

)

.

We identify {yN−1,j}, j = 1, . . . , N − 1, and m̃+
0 are the root of

T21(yN−1,j) +T22(yN−1,j) = T21(m̃
+
0 ) +T22(m̃

+
0 ) = 0. (4.80)

The sum T22(x) + T21(x) is a degree N polynomial x. The number of its roots is the

number of unknowns {yN−1,j} plus one more, which fixes m̃+
0 . The variables yN−1,j are

not the separated variables, they do not carry the associated conjugate momenta.

To go lower in the table of integration variables, i.e. for {yn,j , ỹn,j}, with n = 1, . . . , N−

2, we consider the truncated holonomy matrix

T(n)(x) = KnLn(x) · · ·L0(x) =

(

T
(n)
11 (x) T

(n)
12 (x)

T
(n)
21 (x) T

(n)
22 (x)

)

, (4.81)
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with

Kn = h0

n
∏

n=0

(

1 + q̃n −q̃n

1 0

)

h−1
0 = h0

(

ũ∨n+1 1− ũ∨n+1

ũ∨n 1− ũ∨n

)

h−1
0 , (4.82)

so that

ξn =

(

u∨N−1 1− u∨N−1

0 1

)(

Rn+1(x)

P̃+
n+1(x)Rn(x)

)

= T(n)(x) ξ−1, (4.83a)

ξ̃n =

(

u∨N−1 1− u∨N−1

0 1

)(

R̃n+1(x)

P̃+
n+1(x)R̃n(x)

)

= T(n)(x) ξ̃−1. (4.83b)

Eq. (4.83b) becomes eigenvalue equation when x = ỹn,j , which is equivalent to the condition

T
(n)
21 (ỹn,j) = 0. (4.84)

In the case of yn,j , we again identify

T
(n)
21 (yn,j) +T

(n)
22 (yn,j) = 0. (4.85)

5 Quantum XXXsl2/SQCD correspondence

The XXXsl2/SQCD duality is known to extend to the quantum level [10, 13], in the sense

that the T − Q equation underlying the functional Bethe ansatz of the spin chain can be

recovered from the NS-limit of the A1 gauge theory. However, the conventional use of

the T − Q equation is mostly for the finite dimensional spin representations at the sites

of the spin chain. In this paper we make the most general claim covering all possible

XXXsl2 spin chains, and their wavefunctions. We match several quantum Hamiltonians

with the commuting operators, for which the surface defect expectation value is a common

eigenvector, and find the formula for its wavefunction.

Since there are different claims in the literature concerning this duality, let us briefly

recall, that the Lie algebra sl2 has infinite dimensional representations of several types:

there are Verma modules V±
h of the lowest or highest weights, in which the spectrum of

the operator L0 (in the usual basis of L−, L0, L+ generators) belongs to the set h+n, with

n ∈ Z≥0 or n ∈ Z≤0, respectively, with h ∈ C being the L0 eigenvalue of the vacuum vector,

annihilated by L−, or L+, respectively. For this modules the spin s of the representation,

defined through the value s(s+1) of the Casimir operator L−L++L+L−+2L2
0, is determined

by h. However, there are the modules Vs,a, which are neither of the lowest nor of the highest

weight, for which L0−a ∈ Z. Such a module can be represented by the densities f(z)zadz−s,

via differential operators

L0 = z∂z − s+ a, L− = ∂z + a/z, L+ = (2s− a)z − z2∂z . (5.1)

For generic values of a, s these modules are irreducible. However, for special, quantized

values of a and s these modules contain sl2-invariant submodules, allowing to take the
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quotients. For example, V+
s ⊂ Vs,0, V

−
s ⊂ Vs,2s, and, for integer 2s ∈ Z+, Vs,2s ≈ Vs,0

allowing to take quotients leading to the familiar finite dimensional representations.

The spin chains with the spin representations of finite dimensional or Verma module

type were observed to be Bethe/gauge dual to some truncated versions of the A1 theory

long time ago in [10, 27, 28]. These identifications require fine tuning of the masses and

Coulomb parameters.

In the present work we don’t impose any relations between the masses and Coulomb

moduli.

In several cases of Bethe/gauge correspondence, reconstruction of Hamiltonians of

quantum integrable system from their corresponding gauge theory with regular surface

defect is within reach. This includes the Toda lattice/N = 2 SYM correspondence, and

the Calogero-Moser system/N = 2∗ theory [20, 26] duality.

The quantum Hamiltonians of the XXXsl2 spin chain {ĥi}, i = 1, . . . , N are computed,

in the algebraic Bethe ansatz approach, from the monodromy matrix TSC(u) constructed

in (4.17) by promoting the sl2 spins {ℓ0j , ℓ
+
j , ℓ

−
j } to operators and replacing the classical

Poisson brackets (4.2) by the commutators

[

ℓ0j , ℓ
±
k

]

= ±~ℓ±j δjk,
[

ℓ+j , ℓ
−
k

]

= 2~ℓ0jδjk. (5.2)

The spin operators ~ℓj can be realized as differential operators

ℓ0j = γjβj − sj~, ℓ
−
j = βj , ℓ

+
j = 2sj~γj − γ2j βj (5.3)

with canonical coordinates (γn, βn) obeying the commutation relation

[γk, βj ] = −~δjk =⇒ βj = ~
∂

∂γj
,

up to a shift of βj by a γ-dependent term of the form ∂γjσ, with σ some function of γ. The

a-dependence of (5.1) is an example of such shift.

The conserved Hamiltonians of XXXsl2 spin chain are computed from the trace of the

monodromy matrix

TrTSC(u) = (1 + q)uN + ĥ1(~β,~γ)u
N−1 + ĥ2(~β,~γ)u

N−2 + · · ·+ ĥN (~β,~γ). (5.4)

Let hi denote the eigenvalue of ĥi, characteristic polynomial of monodromy matrix is

T (u)|SC = (1 + q)uN + h1u
N−1 + h2u

N−2 + · · ·+ hN . (5.5)

The Casimir operator (quantum determinant) of the quantum XXXsl2 spin chain is de-

fined by

Tr [TSC(u) ∧TSC(u+ ~)] =
∏

ω

(x− µω + sω~+ ~)(x− µω − sω~) = P (x). (5.6)

We identify the fundamental flavor masses m±
ω with the spins sω and the inhomogeneities

µω by

m+
ω+1 − ~ = µω − sω~, m−

ω = µω + sω~ (5.7)
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5.1 Hamiltonians from the nonperturbative Dyson-Schwinger equation: from

bulk to surface

The Ω-background supersymmetry protected gauge theory observables are also evaluated

by the effective statistical mechanical system. We denote by O both the observable in

supersymmetric gauge theory, and the statistical model observable to which it reduces

thanks to the localization. Let O[~λ] be the corresponding evaluation at the state ~λ. The

expectation value of the observable O is computed by the average

〈O〉 =
1

Z(a,m±, q,~ǫ)

∑

~λ

q|
~λ|O[~λ]Z(a,m±,~ǫ)[~λ]. (5.8)

In particular, the Y (x)-observable, which is a local observable defined as the regularized

characteristic polynomial of the adjoint scalar Φ in the vector multiplet evaluated at the

origin 0 ∈ C
2

Y (x) = xN exp

[

∞
∑

l=1

−
1

lxl
TrΦl

]

. (5.9)

reduces to the statistical mechanical observable, whose evaluation Y (x)[~λ] computes as:

Y (x)[~λ] = E

[

−exS̃∗
]

(5.10)

The ref. [1] introduced the fundamental qq-character observable

X (x)[~λ] = Y (x+ ǫ+)[~λ] + q
P (x)

Y (x)[~λ]
, P (x) =

N
∏

f=1

(x−m+
f )(x−m−

f ) (5.11)

whose expectation value is shown to be a degree N polynomial in x:

〈X (x)〉 = (1 + q)T (x) = h0x
N + h1x

N−1 + · · ·+ hN . (5.12)

The nonperturbative Dyson-Schwinger equations are the vanishing of the coefficients of the

negative powers of x in the Laurent expansion X (x):

[

x−I
]

〈X (x)〉 = 0, I = 1, 2, . . . . (5.13)

See appendix A for the derivation of the qq-character X (x) (5.11).

In this paper the co-dimension two surface defect is introduced using the orbifold

construction, as in [30, 31]. Details can be found in appendix B. The fundamental qq-

character (5.11) splits into N orbifolded fundamental qq-characters:

Xω(x)[~λ] = Yω+1(x+ ǫ+)[~λ] + qω
Pω(x)

Yω(x)[~λ]
, ω = 0, . . . , N − 1. (5.14)

with Pω(x) = (x − m+
ω )(x − m−

ω ). The orbifolded qq-character Xω(x) obeys the same

non-perturbative Dyson-Schwinger equation

〈Xω(x)〉 = (1 + qω)tω(x) = (1 + qω)(x− ρω).
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in other words,

〈[x−I ]Xω(x)〉 = 0 , I > 0 (5.15)

The expectation value in the presence of a co-dimension two surface defect is defined as an

average over the orbifolded pseudo-measure

〈O〉 =
1

Zdefect(a,m±,~q,~ǫ)

∑

~λ

N−1
∏

ω=0

qkωω O[~λ]Zdefect(a,m±,~ǫ)[~λ]. (5.16)

To evaluate (5.14), we consider the expansion of the fractional Yω(x) function (5.17)

in x:

Yω(x) = (x− aω) exp

[

ǫ1
x
νω−1 +

∞
∑

I=1

ǫ1D
(I)
ω−1

xI+1

]

(5.17)

where

D(I)
ω = σ(I)ω − σ

(I)
ω+1 +

I
∑

i=1

(

I

i

)

( ǫ2
N

)i
σ(I−i)
ω , σ(I)ω =

∑

(α,�)∈Kω−1

I
∑

j=0

(

I

j

)

ǫI−j
1

I + 1− j
(c�)

j

(5.18)

and c� = aα + (i − 1)ǫ1 + (j − 1)ǫ2. The bulk Y (x) function give rise to infinitely many

bulk gauge invariant chiral ring observables D(I)’s

Y (x) =
∏

ω

Yω(x) =

[

∏

ω

(x− aω)

]

× exp

[

∞
∑

I=1

ǫ1
D(I)

xI+1

]

, D(I) =
∑

ω

D(I)
ω (5.19)

Let us define the observable U(x) as a linear combination of the fractional qq-characters

Xω(x),

U(x) =
∑

ω∈ZN

uωXω(x) (5.20)

with the linear combination coefficients {uω} given by

uω = 1 + qω+1 + qω+1qω+2 + · · ·+ qω+1 · · · qω+N−1

=⇒ uω − qω+1uω+1 = 1− q ∀ω = 0, . . . , N − 1. (5.21)

As a linear combination of the fractional qq-characters, the observable U(x) also satisfies

the non-perturbative Dyson-Schwinger equation

〈[x−I ]U(x)〉 = 0, I = 1, 2, . . . .

The choice of the coefficients {uω} ensures that [x−I ]U(x) always consists one bulk

gauge invariant chiral ring observable (1 − q)ǫ1D
(I). The I-th Hamiltonian is defined as

differential operator w.r.t. variables {zω} acting on the surface defect partition function,

1

Zdefect(~z,a,m±,~q,~ǫ)

[

ĤIZ
defect(~z,a,m±,~q,~ǫ)

]

:= 〈−
[

x−I+1
]

U(x) + (1− q)ǫ1D
(I−1)〉.

(5.22)
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which translates to an Schrödinger-type equation of surface defect partition function Zdefect

ĤIZ
defect(~z,a,m±,~q,~ǫ) = (1− q)〈ǫ1D

(I−1)〉Zdefect(~z,a,m±,~q,~ǫ). (5.23)

The fact that all the Hamiltonians defined this way share the surface defect partition

function as their common eigenfunction, all the Hamiltonians are mutually commuting.

We now evaluate the vacuum expectation value of the chiral ring observable 〈D(I)〉 in

the limit ǫ2 → 0 with ǫ1 ≡ ǫ = ~ fixed (the so-called NS limit of [10]). In the NS-limit,

the four dimensional N = 2 theory effectively becomes N = (2, 2) two dimensional theory,

with the worldsheet C
1
2. Such theory are known to be in correspondence with quantum

integrable systems [10, 17, 18].

D(I) =

N−1
∑

ω=0

D(I)
ω =

N−1
∑

ω=0

[

I
∑

i=1

(

I

i

)

( ǫ2
N

)i
σ(I−i)
ω

]

=

I
∑

i=1

(

I

i

)

( ǫ2
N

)i
[

N−1
∑

ω=0

σ(I−i)
ω

]

. (5.24)

The summation over ω can be rearranged by

N−1
∑

ω=0

σ(I−i)
ω = D

(I−i)
0 + 2D

(I−i)
1 + · · ·+ (N − 1)D

(I−i)
N−2 +Nσ

(I−i)
N−1 +O(ǫ2). (5.25)

Contributions from the D(I−i)’s are killed by the ǫi2 factor in the NS-limit ǫ2 → 0, along

with O(ǫ2) terms. The remaining {σ
(i)
N−1}

I
i=1 comes from the bulk

σ
(I)
N−1 =

∑

(α,�)∈KN−1

I
∑

j=0

(

I

j

)

ǫI−j
1

I + 1− j
(c�)

j =
∑

(α,i,j)∈~Λ

1

ǫ1

[

(c� + ǫ1)
I+1

I + 1
−
cI+1
�

I + 1

]

.

(5.26)

~Λ is the limit-shape bulk Young diagrams defined in eq. (D.1) in the NS-limit. Sum-

mation over j can be approximated by integration in the NS-limit ǫ2 → 0:

σ
(I)
N−1 =

∑

α,i

1

ǫ1ǫ2

∫ ξαi

0
dw

[

(x
(0)
αi + ǫ1 + w)I+1

I + 1
−

(x
(0)
αi + w)I+1

I + 1

]

, x
(0)
αi ≡ aα + (i− 1)ǫ1

(5.27)

=
∑

α,i

1

ǫ1ǫ2

1

(I+1)(I+2)

[

(x
(0)
αi +ǫ1+ξαi

)I+2 − (x
(0)
αi +ǫ1)

I+2 − (x
(0)
αi + ξαi

)I+2 + (x
(0)
αi )

I+2
]

=
∑

α,i

1

ǫ1ǫ2

1

(I+1)(I+2)

[

(x
(0)
αi + ǫ1 + ξαi

)I+2 − (x
(0)
αi + ξαi

)I+2
]

+
∑

α

1

ǫ1ǫ2

aI+2
α −AI+2

α

(I + 1)(I + 2)
.

In the NS-limit, the surface defect partition function has the asymptotics (2.11).

Eq. (5.23) becomes an eigenvalue equations of the normalized vev of the surface defect

Ψ + a,+

ĤIΨa,+(a,m
±, z; q) = (1− q)EI(a,m

±; q)Ψa,+(a,m
±, z; q) (5.28)
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with the eigenvalues coincide with the expectation value of the bulk gauge invariant chiral

ring observables

EI(a,m
±; q) = 〈ǫ1D

(I−1)〉 = ǫ1
ǫ2
N

(I − 1) ·Nσ
(I−2)
N−1

=
∑

α,i

1

I

[

(x
(0)
αi + ǫ1 + ξαi

)I − (x
(0)
αi + ξαi

)I
]

+
∑

α

aIα −AI
α

I
(5.29)

=
∑

α,i

1

I

[

(x
(0)
αi + ǫ1 + ξαi

)I − (x
(0)
αi + ξαi

)I
]

+
∑

α

(m+
α )

I −AI
α

I
+ E

(0)
I .

By resetting the ground state energy, we may set E
(0)
I = 0.

EI =
∑

α,i

1

I

[

(x
(0)
αi + ǫ1 + ξαi)

I − (x
(0)
αi + ξαi)

I
]

+
∑

α

(m+
α )

I −AI
α

I
. (5.30)

The generating function of the eigenvalues reads

∞
∑

I=1

u−IEI =
∞
∑

I=1

∑

α,i

u−I

I

[

(x
(0)
αi + ǫ1 + ξαi

)I − (x
(0)
αi + ξαi

)I+1
]

+
∑

α

u−I

I

[

(m+
α )

I −AI
α

]

=
∑

α,i

log

(

1−
x
(0)
αi + ξαi
u

)

− log

(

1−
x
(0)
α,i + ǫ1 + ξαi

u

)

+
∑

α

log

(

1−
Aα

u

)

− log

(

1−
m+

α

u

)

= log
Y (u)

P+(u)
(5.31)

with function Y (u) defined based on the limit-shape Young diagram ~Λ in eq. (D.13). The

eq. (5.28) is our main application of the power of exact calculations in gauge theory: The

normalized vev of the surface defect in the NS-limit is the eigenfunction of corresponding

quantum integrable model. More precisely, it is the Jost function, namely, it is a suitably

dressed scattering state, approaching the plane wave in one of the weak coupling corners

of the parameter space.

We denote the exponentiated generating function of the expectation value of chiral

ring operators by

G(u) = exp

[

∞
∑

I=1

u−IEI

]

.

The relation between conserving charges of gauge theory and the spin chain counter part

is established using bulk T-Q equation (D.7),

P+(u+ ~)G(u+ ~) + qP−(u)G(u)
−1 = T (u)|SC = (1 + q)xN + h1x

N−1 + · · ·+ hN . (5.32)

The operator versions of generating function G(u)

G+(u) := exp

[

∞
∑

I=1

u−I ĤI

1− q

]

, G−(u) := exp

[

∞
∑

I=1

u−I ĤI

q− 1

]

. (5.33)
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give the operator version of eq. (5.32)

P+(u+ ~)G+(u+ ~) + qP−(u)G−(u) = TrTSC(u). (5.34)

In the next couple of sections, we will verify the validity of eq. (5.34) in the first three

quantum Hamiltonians Ĥ2, Ĥ3, and Ĥ4. Along the way, Ĥ1 comes as a welcome bonus.

5.2 Second Hamiltonian

The second Hamiltonian of the XXXsl2 spin chain ĥ2 can be expressed in terms of the

coordinate systems γω and βω established in eq. (4.30),

ĥ2 = Tr

(

q 0

0 1

)

∑

ω>ω′

(−µω + Lω)(−µω′ + Lω′) (5.35)

=
∑

ω>ω′

(qγω′ − γω)(γω − γω′)βωβω′

+
∑

ω>ω′

−q(m−
ω γω′βω′ +m−

ω′γωβω) + q(m−
ω′ −m+

ω′ + ǫ)γω′βω

+
∑

ω>ω′

(m+
ω+1 − ǫ)γω′βω′ + (m+

ω′+1 − ǫ)γωβω + (m−
ω −m+

ω+1 + ǫ)γωβω′

+ qm−
ωm

−
ω′ + (m+

ω+1 − ǫ)(m+
ω′+1 − ǫ)

such that

ĥ2Ψ̃ = h2Ψ̃ (5.36)

where Ψ̃ is the properly normalized vev of the surface defect multiplying with a perturbative

factor:

Ψ̃ =

(

N−1
∏

ω=0

z
−

aω+1−m
+
ω+1

~
ω

)

Ψa,+. (5.37)

This factor is responsible for the appearence of the a-dependence in addition to the spins

and inhomogeneities.

The identification between the spin chain canonical coordinates {γω, βω} and the sur-

face defect gauge theory parameters {zω} are

uωzω = (q− 1)γω, βω = −~
∂

∂γω
= −~

(

∂

∂zω−1
−

∂

∂zω

)

. (5.38)

where the coefficients uω’s are defined in eq. (5.21).

To extract the Hamiltonians from non-perturbative Dyson-Schwinger equations we

consider the observable U(x) defined as a linear combination of fractional qq-character
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Xω(x) (5.14). The second Hamiltonian defined through (5.22) after resetting the zero

point energy (5.30) is

Ĥ2 =
∑

ω

−
(1− q)

2

[

(~∇z
ω)

2 − 2m+
ω+1~∇

z
ω

]

− (qω+1uω+1) (~∇
z
ω)
(

~∇z
ω −m+

ω+1 +m−
ω+1

)

(5.39)

such that Ψ is eigenfunction of Ĥ2 with eigenvalue to expectation value of chiral ring

operator

Ĥ2Ψ̃ = (1− q)E2Ψ̃ = (1− q)〈~D(1)〉Ψ̃. (5.40)

See appendix B for derivation detail of Ĥ2.

The non-perturbative Dyson-Schwinger equation does not give a definition of the first

Hamiltonian. Instead we simply define

Ĥ1 = (q− 1)~∇z
c = (q− 1)

N−1
∑

ω=0

~∇z
ω. (5.41)

In particular, this definition agrees with the eq. (5.34), with the first XXXsl2 spin chain

Hamiltonian given by

ĥ1 = Tr

(

q 0

0 1

)

∑

ω

(−µω + Lω)

=
∑

ω

(q− 1)γωβω − (q− 1)sω~− (q+ 1)µω

= Ĥ1 − qm−
c − (m+

c −N~). (5.42)

where m±
c =

∑

ωm
±
ω . The relation between the second Hamiltonian of the XXXsl2 spin

chain ĥ2 and the gauge theory Ĥ2 is found by

ĥ2 = Ĥ2 +
1 + q

2

(

Ĥ1

q− 1

)2

+ (N − 1)~

(

Ĥ1

1− q

)

+ (qm−
c −m+

c )

(

Ĥ1

1− q

)

+
∑

ω>ω′

qm−
ωm

−
ω′ + (m+

ω − ~)(m+
ω′ − ~) (5.43)

Eq. (5.43) agrees with eq. (5.34). The details can be found in appendix E.

5.3 Third Hamiltonian

The third Hamiltonian ĥ3 of the XXXsl2 spin chain is

ĥ3 =Tr

(

q 0

0 1

)

∑

ω1>ω2>ω3

(−µω1 + Lω1)(−µω2 + Lω2)(−µω3 + Lω3) (5.44)
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On gauge theory counter part, the third Hamiltonain is defined through eq. (5.22) with

I = 2. After resetting the zero point energy (5.30), the third Hamiltonian Ĥ3 reads

Ĥ3 =(q− 1)

[

∑

ω

1

6
(~∇z

ω −m+
ω+1)

3 −
1

3
(m+

ω+1)
3

]

(5.45)

+
∑

ω

~uω

[

(~∇z
ω −m+

ω+1)
2

2
−
a2ω+1

2
+ ~〈D(1)

ω 〉

]

− (uω + qω+1uω+1)

[

〈(~∇z
ω −m+

ω+1)~D
(1)
ω 〉 −

a2ω+1

2
(~∇z

ω −m+
ω+1)

]

+ qω+1uω+1

[

(m+
ω+1 +m−

ω+1)

(

(~∇z
ω)

2

2
+
a2ω+1

2
− ~〈D(1)

ω 〉

)

− (m+
ω+1)

2
~∇z

ω

+
(m+

ω+1)
2

2
(m+

ω+1 −m−
ω+1)

]

,

such that

Ĥ3Ψ̃ = (1− q)
〈

∑

ω

~D(2)
ω

〉

Ψ̃ = (1− q)E3(a,m
±; q)Ψ̃. (5.46)

The details of the construction of Ĥ3 can be found in appendix F.

The third Hamiltonian Ĥ3 consists 〈D
(1)
ω 〉 terms, which can be rewrite as a proper

differential operator using the Dyson-Schwinger equations from [x−1] in eq. (B.6),

~〈D(1)
ω 〉 =

1

q− 1

[

N−1
∑

n=0

qω · · · qω−n+1~∇
z
ω−n(~∇

z
ω−n −m+

ω−n+1 +m−
ω−n+1)

]

+
(~∇z

ω)
2

2
+m−

ω+1~∇
z
ω +

a2ω+1

2
−

(m+
ω+1)

2

2
, (5.47)

and

~〈∇z
ωD

(1)
ω 〉 =~〈D(1)

ω 〉∇z
ω + ~(∇z

ω〈D
(1)
ω 〉).

Eq. (5.45) can now be defined properly as a third order differential operator in zω acting

on the normalized vev of the surface defect Ψa,+. After walking through the tedious

calculation, we find a non-trivial relation between the XXXsl2 spin chain Hamiltonain ĥ3
and its gauge counter part Ĥ3:

ĥ3 =Ĥ3 + (1 + q)
Ĥ2

1− q

Ĥ1

1− q
+

1− q

6

(

Ĥ1

1− q

)3

− 2~





1

2

(

Ĥ1

1− q

)2

+
Ĥ2

1− q





+ (N~−m+
c )





1

2

(

Ĥ1

1− q

)2

+
Ĥ2

1− q



− (qm−
c )





1

2

(

Ĥ1

1− q

)2

−
Ĥ2

1− q





+

[

∑

n>n′

(~−m+
n )(~−m+

n′)− qm−
nm

−
n′

]

Ĥ1

1− q
− ~(N~−m+

c )
Ĥ1

1− q
+ ~

2 Ĥ1

1− q

+
∑

ω1>ω2>ω3

(~−m+
ω1
)(~−m+

ω2
)(~−m+

ω2
)− qm−

ω1
m−

ω2
m−

ω3
. (5.48)

which again agrees with eq. (5.34). Details can be found in appendix F.
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5.4 Fourth Hamiltonian and second order qq-character

Finally we will briefly demonstrate the relation between the fourth Hamiltonian of the

XXXsl2 spin chain ĥ4 and the gauge theory counter part Ĥ4. In particular the necessity

of considering higher rank qq-characters for a proper definition of Ĥ4 as a degree four

differential operator. This also extends to potentially any ĤI with I > 4. The fourth

Hamiltonian of spin chain ĥ4 is

ĥ4 =TrK
∑

ω1>ω2>ω3>ω4

(−µω1 + Lω1)(−µω2 + Lω2)(−µω3 + Lω3)(−µω4 + Lω4) (5.49)

The fourth Hamiltonian Ĥ4 is defined by eq. (5.22):

Ĥ4 = (q− 1)

[

∑

ω

~
3

2
〈(∇z

ω)
2D(1)

ω 〉

]

−
∑

ω

(uω + qω+1uω+1)

[

(~∇z
ω)

4

4!
+

~
2

2
〈(D(1)

ω )2〉+ ~
2〈∇z

ωD
(2)
ω 〉

]

+ · · · , (5.50)

so that the normalized vev of the surface defect is also an eigenfunction of Ĥ4:

Ĥ4Ψ̃ = (1− q)〈~D(3)〉Ψ̃ = (1− q)E4Ψ̃. (5.51)

To have Ĥ4 as a properly defined differential operator acting on the Ψa,+, we need to

rewrite the 〈(D
(1)
ω )2〉 and 〈∇z

ωD
(2)
ω 〉 similarly to what was done for the 〈D

(1)
ω 〉 in eq. (5.47).

The expectation value of 〈(∇z
ω)

2D
(1)
ω 〉 follows a similar procedure as for the 〈∇z

ωD
(1)
ω 〉. The

expectation value of 〈D
(2)
ω 〉 can be derived using the Dyson-Schwinger equation in eq. (F.3)

(see appendix G for detail). It is much complicated in the case of 〈(D
(1)
ω )2〉. It turns out

that we need to consider the second order qq-character X (2)(x):

X (2)(x; ν)[~λ] = Y (x+ ǫ+)[~λ]Y (x+ ν + ǫ+)[~λ] + qR(ν)Y (x+ ν + ǫ+)[~λ]
P (x)

Y (x)[~λ]

+ qR(−ν)Y (x+ ǫ+)[~λ]
P (x+ ν)

Y (x+ ν)[~λ]
+ q2

P (x)P (x+ ν)

Y (x)[~λ]Y (x+ ν)[~λ]
(5.52)

with one additional parameter ν ∈ C and

R(ν) =
(ν + ǫ1)(ν + ǫ2)

ν(ν + ǫ+)

The main statement of [1] claims that the expectation value of X (2)(x) is a polynomial of

degree 2N

〈X (2)(x)〉 =
2N
∑

n=0

fnx
2N−n. (5.53)
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The introduction of a regular co-dimension two surface defect splits the second order qq-

character (5.52) into N2 fractional qq-characters

X (2)
ω1,ω2

(x; ν) =Yω1+1(x+ ǫ+)Yω2+1(x+ ν + ǫ+) +Rω1,ω2(ν)Yω2+1(x+ ν + ǫ+)qω1

Pω1(x)

Yω1(x)

+Rω2,ω1(−ν)Yω1+1(x+ ǫ+)qω2

Pω2(x+ ν)

Yω2(x+ ǫ)
+ qω1qω2

Pω1(x)Pω2(x+ ν)

Yω1(x)Yω2(x+ ν)

(5.54)

with ω1, ω2 = 0, . . . , N − 1, and

Rω1,ω2(ν) =















ν+ǫ1
ν , ω2 − ω1 = 0;

ν+ǫ2
ν+ǫ+

, ω2 − ω1 = −1;

1, otherwise.

(5.55)

We consider the [x−2] coefficient of the fractional qq-character X
(2)
ω1,ω2(x) in eq. (G.6).

In particular, we are interested in the case of ω1 = ω2 = ω. After working through tedious

calculation, we match the highest derivative terms between ĥ4 and Ĥ4

ĥ4 = Ĥ4 + (1+q)
Ĥ3

1− q

Ĥ1

1− q
+

1−q

2

Ĥ2

1−q

(

Ĥ1

1− q

)2

+
1 + q

4!

(

Ĥ1

1−q

)4

+
1+q

2

(

Ĥ2

1−q

)2

+ · · · (5.56)

where · · · denotes any lower derivative terms. We again notice that eq. (5.56) agrees with

eq. (5.34). Details can be found in the appendix G.

6 Discussion

In this paper we computed the wavefunctions Ψa(x) of scattering states of the XXXsl2

chain corresponding to the infinite-dimensional spin sites. Our main tool was the applica-

tion of the BPS/CFT correspondence. We identified the wavefunction with the normalized

expectation value of the surface defect in the supersymmetric gauge theory in four dimen-

sions with the gauge group SU(N), 2N fundamental hypermultiplets, and Ω-deformation in

two dimensions along the surface defect. The masses and the Coulomb moduli, divided by

the Ω-deformation (equivariant) parameter ~ determine the spin and inhomogeneity con-

tent of the XXXsl2 chain. The four dimensional gauge coupling q translates to the twist.

We used the wall-crossing technique to express the normalized expectation value, given,

a priori, by a very complicated sum involving the fine structure of the limit shape of the

bulk theory (the limit shape in question was studied in [13, 74–76]). Unlike the majority of

the literature on the wall-crossing, including the seminal works [77–79], which focuses on

the nonabelian structures emerging from the wall-crossing transformations, our formula is

relatively simple, amounting to the simple multiplicative factor and a coordinate change.

Our method, which consists of first finding an emerging quiver variety whose (rational limit

of the ) χy-genus gives the asymptotics ǫ2 → 0 of the normalized expectation value, then
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replacing the latter (viewed as a quotient of the set of stable points by the complexified

gauge group) by the integral over the quotient of the unstable set. This is analogous to the

computation in [80]. Another useful analogy is the computation of the equivariant integral

over, e.g. CPN−1, of, say, c1(L)
N−1, for L = O(1). In the standard cohomological field

theory calculation, as in [81], one arrives at the contour integral:
∫

CP
N−1

c1(L)
N−1 =

1

2πi

∮

pN−1dp

(p−m1) . . . (p−mN )
(6.1)

where the contour is encircling the equivariant parameters (twisted masses in the N =

(2, 2), d = 2 language). Taking the sum over the residues is equivalent to using the Atiyah-

Bott fixed point formula. If, instead, we pull the contour in the other direction, we get to

pick a single pole at infinity, which corresponds, in the picture CP
N−1 =

(

C
N
)stable

//C∗,

to localizing at the unstable fixed point 0 ∈ C
N . This is what we did in our paper. The

same formalism (although it is not clear whether the same geometry is at play) is employed

in [82].

Let us end this work by discussing a few loose ends in this note and commenting on

future directions.

• We would like to construct the XXXsl2 spin chain monodromy matrix from the

supersymmetry gauge theory at the quantum level.

• The contour integration formula for the the instanton partition function does not

forbid different integration variables to pick up poles in ζR > 0 chamber and ζR < 0

chamber simultaneously from different moduli parameters. This is equivalent to

modifying the real moment map to

µR = ζR

(

1k+ 0

0 −1k−

)

, k = k+ + k−, (6.2)

such that k+ instantons are generated by I(N) and k− instantons are generated by

J†(N). This situation is similar to the instanton partition function of the supergroup

gauge theory [83, 84]. Such a modification breaks the U(k) symmetry of the real

moment map down to U(k+) × U(k−). The lost symmetry can be compensated

by imposing additional 2k+k− complex equations. If one could come up with the

natural set of such equations, an analogous trick would be of great help in trying to

understand theories with the SO and Sp gauge groups.

• XXXsl2 spin chain constructed from the non-perturbative Dyson-Schwinger equation

is periodic, while the semiclassical limit of the normalized vev of the surface defect

seems to be governed by the classical open spin chain. Are these two spin chain

systems related? If so, how?

• The physical wave function of the quantum Toda lattice [33, 34] is L2 normalizable

(once the center-of-mass motion is isolated), so is the wave function of the SL(2,R)

spin chain [60]. It will be nice to classify the convergence and normalizability con-

straints on Ψa, perhaps using the integral representation we constructed.
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• It should be straightforward to generalize our work to the case of the SL(2,C) spin

chains, in particular, to compare to the recent work [85]. The complex spin group,

further complexified, would correspond to the XXXsl2×sl2 spin chain in our language,

which is in some sense an (entangled?) product of two copies of the quantum field

theories we just analyzed.

• The quantum Hamiltonians ĤI are defined based on the non-perturbative Dyson-

Schwinger equations of the orbifolded fundamental qq-character with a special linear

combination defined in eq. (5.20). In principle, one can extend such formulation to

the higher rank qq-character. For instance, can one find for the orbifolded second

order qq-character a set of coefficients Gω1,ω2 (in analogue of uω in (5.21))

U (2)(x) =
∑

ω1,ω2,ν

Gω1,ω2(ν)×X (2)
ω1,ω2

(x; ν) (6.3)

so that the expectation value of U (2)(x) only depends on kω’s? And should such

{Gω1,ω2} exist, what do the Dyson-Schwinger equations tell us for second and higher

order qq-characters?

• The new quiver system constructed in the section 3.1 is helped us to simplify the

expression for the normalized vev of the surface defect in the N = 2 gauge theory

with fundamental flavors by noticing a much simpler pole structure on the other side

of the contour integration. It is well-known that the 2d integrable system dual to

the 4d N = 2∗ gauge theory is the Calogero-Moser system [10, 20, 26, 86, 87]. It is

natural to ask if a similar procedure can be employed to solve the wave function of the

quantum elliptic Calogero-Moser system. Unfortunately, unlike the A1-type theory,

the N = 2∗ (e.g. the Â0-theory in the classification of [12]) has almost equivalent

pole structures on both sides of the contour of the integral representation, leading to

no visible advantage in deforming the contour to see the new quiver structure.

• We would like to prove the validity of (5.34) to all orders. To do so, a systematic

way of writing the gauge Hamiltonians ĤI as differential operators is necessary. We

have demonstrated that any Hamiltonian ĤI with I ≥ 4 requires taking higher order

qq-character into consideration.
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Figure 3. Outer boundary (colored in green) and inner boundary (colored in red) of a Young

diagram λ.

A Non-perturbative Dyson-Schwinger equation and fundamental

qq-character

The Y (x)-observable, which is a local observable defined as the regularized characteristic

polynomial of the adjoint scalar Φ in the vector multiplet evaluated at the origin 0 ∈ C
2

Y (x) = xN exp

[

∞
∑

l=1

−
1

lxl
TrΦl

]

. (A.1)

reduces to the statistical mechanical observable Y (x)[~λ], whose evaluation computes as:

Y (x)[~λ] = E

[

−exŜ∗
]

=

N
∏

α=1

(x− aα)
∏

(i,j)∈λ(α)

(x− aα − (i−1)ǫ1 − (j−1)ǫ2 − ǫ1)(x− aα − (i−1)ǫ1 − (j−1)ǫ2 − ǫ2)

(x− aα − (i− 1)ǫ1 − (j− 1)ǫ2)(x− aα − (i− 1)ǫ1 − (j− 1)ǫ2 − ǫ+)

=
N
∏

α=1

∏

�∈∂+λ(α)(x− c�)
∏

�∈∂−λ(α)(x− c� − ǫ+)
(A.2)

where ǫ+ = ǫ1 + ǫ2, c� = (i − 1)ǫ1 + (j − 1)ǫ2, i, j = 1, 2, . . . . The outer boundary ∂+λ

represents the position where potential new boxes can be added, and the inner boundary

∂−λ denotes boxes that can be removed. See figure 3 for illustration.

The main statement of [1] is that there exist the qq-character observables X (x) as the

Laurent polynomial in Y (x) with possible shifted arguments:

X (x)[~λ] = Y (x+ ǫ+)[~λ] +O(q). (A.3)

The expectation value 〈X (x)〉 is a degree N polynomial in x:

〈X (x)〉 = T (x) = h0x
N + h1x

N−1 + · · ·+ hN . (A.4)

To construct a fundamental qq-character of the A1 quiver gauge theory, we employ

variation on the instanton configuration by adding a point like instanton, or conversely

removing a point-like instanton. Inspection of the figure 3 shows that such a modification
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can only be achieved by either adding a box in the outer boundary � ∈ ∂+λ
(α), or removing

a box in the inner boundary � ∈ ∂−λ
(α) for some α. By adding a box ξ = ec� in the outer

boundary � ∈ ∂+λ
(α), the pseudo-measure associated to the original Young diagram ~λ and

the new one ~λ′ differs by

qZ[~λ′]

Z[~λ]
= qE

[

−
(Ŝ − P12ξ)(Ŝ − P12ξ)

∗

P ∗
12

+
M̂(Ŝ − P12ξ)

∗

P ∗
12

+
ŜŜ∗

P ∗
12

−
M̂Ŝ∗

P ∗
12

]

= qE
[

Ŝ[~λ]ξ∗ + q12ξŜ
∗[~λ′]− M̂ξ∗

]

= (−1)N−1 qP (c�)
(

Resx=c�Y (x+ ǫ+)[~λ′]
)

Y ′(c�)[~λ]
(A.5)

with P (x) =
∏N

f=1(x − m+
f )(x − m−

f ). Additional (−1)N can be generated by changing

N fundamental hypermultiplets m−
f , f = 1, . . . , N , to anti-fundamental representation

of gauge group U(N). In contrast to fundamental matter, anti-fundamental matter con-

tributes to the moduli space vector bundle with Eular class

M∗K.

The contribution of fundamental and anti-fundamental hypermultiplets are related by

E[M∗K] = (−1)N |~λ|
E[MK∗]. (A.6)

In particular at the level of instanton partition function, the effect of changing fundamental

matter to anti-fundamental is equivalent to choose the instanton counting parameter as

(−1)Nq.

We define the fundamental qq-character of A1 theory by:

X (x)[~λ] = Y (x+ ǫ+)[~λ] +
qP (x)

Y (x)[~λ]
, P (x) =

N
∏

f=1

(x−m+
f )(x−m−

f ). (A.7)

The expectation value of X (x) now obeys eq. (5.12). See [1, 88] for the recent developments

and generalizations to other root systems.

B Surface defect

The surface defect partition function is the ZN -invariant contribution:

Z(a,m±,~q) =
∑

~λ

∏

ω

qkωω E






−





ŜŜ∗ − M̂Ŝ∗

P ∗
1 (1− q

− 1
N

2 R−1)





ZN






(B.1)

with the definition

Kω := {(α, (i, j)) | α = 1, . . . , N ; (i, j) ∈ λ(α); α+ j − 1 ≡ ω mod N}, (B.2a)

kω = |Kω|, νω = kω − kω+1. (B.2b)
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The Y (x)-observable (5.9) splits into N -tuples of Yω(x)[~λ] under the orbifolding

Y (x)[~λ] =
N−1
∏

ω=0

Yω(x)[~λ], Yω+N (x)[~λ] = Yω(x)[~λ]

Each orbifolded copy is given by

Yω(x)[~λ] = (x− aω)
∏

(α,(i,j))∈Kω

[

(x− c� − ǫ1)

(x− c�)

]

∏

(α,(i,j))∈Kω−1

[

(x− c� − ǫ2)

(x− c� − ǫ2 − ǫ1)

]

. (B.3)

with c� = aα + (i− 1)ǫ1 + (j− 1)ǫ2.

To calculate (5.15), we explore the large x behavior of the fractional Yω(x)[~λ]:

Yω(x) = (x− aω) exp

[

ǫ1
x
νω−1 +

∞
∑

I=1

ǫ1D
(I)
ω−1

xI+1

]

(B.4)

where

D(I)
ω = σ(I)ω − σ

(I)
ω+1 +

I
∑

i=1

(

I

i

)

( ǫ2
N

)i
σ(I−i)
ω , σ(I)ω =

∑

(α,�)∈Kω−1

I
∑

j=0

(

I

j

)

ǫI−j
1

I + 1− j
(c�)

j .

(B.5)

We derive using (5.17)

1

ǫ1
[x−1]Xω(x) =D

(1)
ω − qωD

(1)
ω−1 +

ǫ1
2
(ν2ω + qων

2
ω−1)

− qω(aω −m+
ω −m−

ω )νω−1 − aω+1νω + qω
Pω(aω)

ǫ1
. (B.6)

The observable U(x) is defined as a linear combination of the fractional qq-characters

Xω(x):

[x−1]U(x) = [x−1]
∑

ω∈ZN

uωXω(x). (B.7)

Using eq. (B.6) and eq. (5.21) we obtain

1

ǫ1
[x−1]U(x) =(1− q)

[

D(1) +
∑

ω

ǫ1
2

(

νω −
aω+1

ǫ1

)2

−
a2ω
2ǫ1

]

(B.8)

+
1

ǫ1

∑

ω

qω+1uω+1

[

ǫ1νω − aω+1 +m+
ω+1

] [

ǫ1νω − aω+1 +m−
ω+1

]

,

with the bulk gauge invariant observable D(1) given by

D(1) =
∑

ω

D(1)
ω = ǫ2

∑

ω

kω = ǫ2|~λ|. (B.9)

As a linear combination of the fractional qq-characters Xω(x), the expectation value

of the observable U(x) obeys the same Dyson-Schwinger equation (5.15), which translates
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into a second order differential equation obeyed by the surface defect instanton partition

function Z,

0 =
[

x−1
]

〈U(x)〉 =(1− q)

[

ǫ1ǫ2D
(1) +

∑

ω

1

2
(ǫ1∇

z
ω − aω+1)

2 −
a2ω+1

2

]

Z

+

[

∑

ω

qω+1uω+1(ǫ1∇
z
ω − aω+1 +m+

ω+1)(ǫ1∇
z
ω − aω+1 +m−

ω+1)

]

Z

(B.10)

with the variables {zω}
N−1
ω=0 defined in eq. (4.25).

The eq. (B.10) in the NS-limit becomes an eigenvalue problem of the normalized vev

of the surface defect Ψa

[

∑

ω

−
(1− q)

2

[

(δω −m+
ω+1)

2 − a2ω+1

]

− (qω+1uω+1) (δω)
(

δω −m+
ω+1 +m−

ω+1

)

]

Ψ+ a,+

= (1− q)E2Ψ+ a,+ (B.11)

with δω = ǫ∇z
ω − aω+1 +m+

ω+1. In particular E2 = 〈D(1)〉 is related to the twisted super-

potential W by

E2 = ǫq
∂

∂q
W(a,m±, τ ; ǫ1). (B.12)

B.1 An example with one degree of freedom

Let us consider the U(2) gauge theory with 4 fundamental flavors of masses m±
0 ,m

±
1 . We

multiply normalized vev of the surface defect with perturbative factor

ψ(~z,a,m±, q; ǫ1, ǫ2) = q
−

∑
ω

a2ω
2ǫ1ǫ2

N−1
∏

ω=0

z
−

aω+1
ǫ1

ω Z,

In the center of mass frame ∇z
0 +∇z

1 = 0, the eq. (B.11) becomes

0 =

[

−
1

z
(z − 1)(z − q)

(

ǫz
d

dz

)2

+ [q(z − 1)(m+
1 +m−

1 )− z(z − q)(m+
0 +m−

0 )]ǫ
d

dz

+ q
z − 1

z
m+

1 m
−
1 − (z − q)m+

0 m
−
0 + (1− q)E2

]

ψ

=Ĥψ (B.13)

with z = −q0. We identify eq. (B.13) as the well-known Gaudin Hamiltonian up to a

canonical transformation
(

d

dz
+ f

)2

=
d2

dz2
+ 2f

d

dz
+
df

dz
+ f2. (B.14)

By choosing

f(z) = −
m+

1 +m−
1 + ǫ

2z
+
m+

0 +m−
0

2(z − 1)
+
m+

1 +m−
1

2(z − q)
(B.15)
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the Hamiltonian in eq. (B.13) becomes well recognized Gaudin Hamiltonian:

Ĥ = −ǫ2
d2

dz2
+

∆0

z2
+

∆1

(z−1)2
+

∆2

(z−q)2
+

∆3 −∆0 −∆1 −∆2

z(z−1)
+

(1−q)u

z(z−1)(z−q)
(B.16)

where the coefficients {∆i} and u are

∆0 =
(m+

1 −m−
1 )

2

4
−
ǫ2

4
, ∆1 =

(m+
0 +m−

0 − ǫ)2

4
−
ǫ2

4
,

∆2 =
(m+

1 +m−
1 − ǫ)2

4
−
ǫ2

4
, ∆3 =

(m+
0 −m−

0 )
2

4
−
ǫ2

4
, (B.17)

u = −
(m+

1 +m−
1 + 1)(m+

1 +m−
1 )

2q(1− q)
+

(m+
0 +m−

0 + 1)(m+
1 +m−

1 )

2(1− q)2
+

m+
1 m

−
1

q(1− q)
+ E2.

B.2 The Toda limit

In the mass decoupling limit m±
f → ∞ of the A1 quiver gauge theory, some or all funda-

mental hypermultiplets are integrated out with a simultaneous scaling of q → 0 so that the

product

q

N
∏

f=1

m+
f m

−
f = Λ2N

is kept finite. The qq-character (5.11) in the mass decoupling limit becomes

X (x) = Y (x+ ǫ+) + (−1)N
Λ2N

Y (x)
. (B.18)

The (−1)N in the qq-character is a choice of convention. We explain the choice of such

convention in appendix A. Let us demonstrate how Dyson-Schwinger equation of defect

qq-character give rise to the Hamiltonian of ÂN−1 Toda lattice (~ = ǫ = ǫ1) (3.29) in the

NS-limit [20, 26]. We introduce co-dimension two surface defect exactly as how we had

done for SQCD. Orbifolded qq-character becomes

Xω(x) = Yω+1(x+ ǫ+)−
qω

Yω(x)
, qω = Λ2exω−xω−1 (B.19)

which satisfies Dyson-Schwinger equation

[x−1]〈Xω(x)〉 = 0. (B.20)

We derive using eq. (5.17)

[x−1]Xω(x) = ǫ1Dω +
ǫ21
2
ν2ω − aω+1νω − qω. (B.21)

Taking expectation value and summation over ω gives

[

ǫ1ǫ2∇
q + ǫ1ǫ2~ρ · ~∇

z + ĤToda

]

ϕ(~z,a, q; ǫ1, ǫ2) = 0. (B.22)
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ϕ is defined by multiplying surface defect partition function with perturbative factor:

ϕ(~z,a, q; ǫ1, ǫ2) = q
−

∑
ω

a2ω
2ǫ2

N−1
∏

ω=0

z
−

aω+1
ǫ1

ω Z(~z,a, q; ǫ1, ǫ2).

In the NS-limit, ϕ has asymptotics

ϕ = e
1
ǫ2

W(a,q;ǫ1) × (Ψa,+(~z,a, q; ǫ1, ǫ2) +O(ǫ2)) . (B.23)

The normalized vev of the surface defect Ψa,+ is the eigenfuncton of the quantum Toda

lattice

ĤTodaΨa,+ = E2Ψa,+, E2 = ǫ1q
∂

∂q
W. (B.24)

C The crossing formulas

In the familiar theory the FI-parameter ζR associated to real moment map is often set to

be positive [35, 36]. In the case of pure N = 2 SYM, N = 2 SQCD with Nf < 2N − 1 and

N = 2∗ theories with gauge group U(N), instanton partition does not care about the sign

of the FI-parameter. Let us show here that the instanton partition function is independent

of the sign of FI-parameter in the U(N) super Yang-Mills theory. The instanton partition

function has integral representation:

Zinst,+ (C.1)

=

∞
∑

k=0

(q)k

k!

∮

C

k
∏

i=1

dφi
2πi

ǫ+
ǫ1ǫ2

N
∏

α=1

1

(φi − αa)(φi − aα + ǫ+)

k
∏

j 6=i

(φi − φj)(φi − φj + ǫ+)

(φi − φj + ǫ1)(φi − φj + ǫ2)
.

How to pick up poles and evaluate residue in the contour integration is explained as follow:

We first rewrite the integral with ordering

1

k!

∮

C

k
∏

i=1

dφi
2πi

→

∮

dφk
2πi

· · ·

∮

dφ2
2πi

∮

dφ1
2πi

.

The first variable φ1 picks up the pole at φ1 = aα for some α = 1, . . . , N . The following

ones are determined recursively as

φi = aβ( 6=α), φj(<i) + ǫ1, φj(<i) + ǫ2.

In the end, the poles are parametrized by N -tuples of Young diagrams ~λ where each box

(i, j) ∈ λ(α) corresponds to a pole at

φi = aα + (i− 1)ǫ1 + (j− 1)ǫ2.

The contour integration can be evaluated by taking poles from the other side of the contour

C. By doing so, the first variable φ1 picks up a pole at φ1 = aα− ǫ+ for some α = 1, . . . , N .

The following ones are determined recursively as

φi = aβ( 6=α) − ǫ+, φj(<i) − ǫ1, φj(<i) − ǫ2.
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Finally the poles form the N -tuples of Young diagrams ~λdual in the negative FI-parameter

chamber. Since both instanton partition functions in the two FI-parameter chambers are

evaluated from the same integration formula, the two are equal

Zinst,−=

∞
∑

k=0

(q)k

k!

∮

C

k
∏

i=1

dφi
2πi

ǫ+
ǫ1ǫ2

N
∏

α=1

1

(φi−aα)(φi−aα+ǫ+)

k
∏

j 6=i

(φi−φj)(φi−φj+ǫ+)

(φi − φj+ǫ1)(φi−φj+ǫ2)

=
∞
∑

k=0

(q)k

k!

∮

C̃

k
∏

i=1

dφi
2πi

ǫ+
ǫ1ǫ2

N
∏

α=1

1

(φi−aα)(φi−aα+ǫ+)

k
∏

j 6=i

(φi − φj)(φi − φj + ǫ+)

(φi−φj+ǫ1)(φi−φj+ǫ2)

= Zinst,− (C.2)

A similar argument can be applied to U(N) gauge theory with number of flavors

Nf < 2N − 1. In the case of N = 2∗, a careful examination shows that there is no pole at

infinity. Thus the instanton partition functions in the two chambers are equal.

However in the case of Nf = 2N and Nf = 2N − 1 in SQCD gauge theory, par-

tition function evaluated with positive FI-parameter is different from partition function

with negative FI-parameter. To demonstrate the mismatch, we can simply take a U(1)

supersymmetric gauge theory in four dimension with moduli parameter a and two funda-

mental flavors of masses m+ and m− for demonstration. The instanton partition function

in the positive FI-parameter ζR > 0 chamber has the following expansion in the instanton

counting parameter −q

Zinst,+ = 1− q
(a−m+)(a−m−)

ǫ1ǫ2
+O(q2).

In negative FI-parameter ζR < 0 chamber, the instanton partition function instead takes a

different expansion

Zinst,− = 1− q
(a− ǫ+ −m+)(a− ǫ+ −m−)

ǫ1ǫ2
+O(q2)

with ǫ+ = ǫ1 + ǫ2. We will prove that the mismatch can be expressed by a crossing

formula, which comes from the pole at infinity in the integration representation of the

instanton partition function.

C.1 Crossing formula for a toy model

Let us consider the following toy model, the vortex analogue of the ADHM instanton

construction (cf. [89]): The vortex-ADHM data consists of the two vector spaces K = C
k

and N = C
1. In addition, we shall include the effect of one fundamental matter multiplet of

mass m. The only two matrices in the toy model are I ∈ Hom(N,K) and B ∈ Hom(K,K).

The real moment map is, naturally, cf. [90]:

µR = II† + [B,B†] = ζR1K, (C.3)

We introduce the U(1)a × U(1)ǫ-symmetry which acts by: (I,B) 7→ (w−1I, qB), which,

together with the compensating transformations becomes, upon complexification:

(I,B) →
(

g−1Iw, q g−1Bg
)

(C.4)
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with g ∈ GL(k,C) and w ∈ GL(1,C). Accordingly, the U(1)a × U(1)ǫ-fixed points on the

moduli space are the solutions to

I w = g I, q B = g B g−1 . (C.5)

For each k there is exactly one fixed point, in which the space K has the basis

Bj−1I, j = 1, 2, . . . , k . (C.6)

Each fixed point contributes the pseudo-measure

E [NK∗ − (1− q)KK∗ −MK∗]

where

N = ea = TrN(w) , K = TrK(g) = ea
k
∑

j=1

qj−1, M = em. (C.7)

The vortex partition function is the grand canonical ensemble (the Coulomb modulus is

set to zero for simplicity, and we chose (−q) as a fugacity).

Z+(m, ǫ) =
∞
∑

k=0

(−q)k E

[(

qk − em
)

K∗
]

=
∞
∑

k=0

(−q)k
k
∏

j=1

m− (j−1)ǫ

jǫ
= (1−kq)

m
ǫ . (C.8)

For negative ζR chamber the moduli space is obviously empty, since the eq. (C.3) implies

‖I‖2 = kζR. The instanton partition function in the negative FI-parameter chamber is

simply

Z−(m, ǫ) = 1.

The instanton partition functions in the positive and in the negative chambers differ by a

simple crossing factor

Z+

Z−
= (1− q)

m
ǫ . (C.9)

It is instructive to obtain the crossing factor from the contour integral representation of

the vortex partition function. Denote by K =
∑k

i=1 e
φi the character of the K space (more

precisely, it is the character of the compensator g). The integral representation of the

vortex partition function (C.8) is known:

Z+ =

∞
∑

k=0

(−q)k
1

k!

∮

C

k
∏

i=1

dφi
2πi

1

ǫ

m− φi
φi

∏

j 6=i

φi − φj
φi − φj + ǫ

=
∞
∑

k=0

(−q)k
1

k!

∮

C̃

k
∏

i=1

dφi
2πi

1

ǫ

m− φi
φi

∏

j 6=i

φi − φj
φi − φj + ǫ

. (C.10)

The deformed contour C̃ enclosed pole at infinity clockwise. Residue for a single φi at

infinity is r∞ = m
ǫ . We identify

1

k!

∮

∞

k
∏

i=1

dφi
2πi

1

ǫ

m− φi
φi

∏

j 6=i

φi − φj
φi − φj + ǫ

=

(

r∞
k

)

. (C.11)
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We then recover the crossing factor as the contribution of the residue at infinity

∞
∑

k=0

(−q)k
(

r∞
k

)

= (1− q)r∞ . (C.12)

C.2 Crossing in the bulk

The crossing factor applies to not only the surface contribution but also to the bulk partition

function.

In the case of a U(1) gauge theory with two fundamental flavors. The theory is char-

acterized by a moduli parameter a and mass of fundamental flavors m±. With the fugacity

chosen to be −q, the instanton partition function in the positive FI-parameter chamber

has the following integration representation [1, 9],

Zinst,+ =
∞
∑

k=0

(−q)k
1

k!

∮

C

k
∏

i=1

dφi
2πi

(

ǫ+
ǫ1ǫ2

)

(φi −m+)(φi −m−)

(φi − a)(φi − a+ ǫ+)

∏

j 6=i

φij(φij + ǫ+)

(φij + ǫ1)(φij + ǫ2)
,

(C.13)

where φij = φi − φj . The same integral can be find in the Witten-index formula [82]. We

explain the reason of choosing fugacity to be −q in appendix A. The contour encloses the

poles counterclockwise at φ = a + (i − 1)ǫ1 + (j − 1)ǫ2, i, j = 1, 2, . . . .2 The integration in

eq. (C.13) can also be evaluated by deformation of the contour

Zinst,+ =
∞
∑

k=0

(−q)k
1

k!

∮

C̃

k
∏

i=1

dφi
2πi

(

ǫ+
ǫ1ǫ2

)

(φi −m+)(φi −m−)

(φi − a)(φi − a+ ǫ+)

∏

j 6=i

φij(φij + ǫ+)

(φij + ǫ1)(φij + ǫ2)
.

(C.14)

The deformed contour encloses poles clockwise at a − iǫ1 − jǫ2, i, j = 1, 2, . . . and at the

infinity. Suppose there are l integration variables φi, i = 1, . . . , l picking up pole at the

infinity, l = 0, 1, . . . , k. The residue picked up by φi at infinity is equal to

ǫ+
ǫ1ǫ2

[

m+ +m− − 2a+ ǫ+
]

= r∞. (C.15)

The residue at infinity is evaluated following the procedure similar but not identical

to (C.31). The first φ1 can pick up pole at the infinity directly, obtaining a factor of

−r∞ and removed from integration completely. Or it may pick up either φ1 = φi + ǫ1 or

φ1 = φi + ǫ2 for another φi, i− 2, . . . , l. The combination gives

−r∞ + (l − 1)
ǫ+
ǫ1ǫ2

(

ǫ21(ǫ
2
1 − ǫ2+)

ǫ1(ǫ21 − ǫ22)
+
ǫ22(ǫ

2
2 − ǫ2+)

ǫ2(ǫ22 − ǫ21)

)

= −r∞ − (l − 1). (C.16)

The second φ2 is again given a choice of picking up pole at the infinity or taking residue

at another φi. The overall contribution from the pole at the infinity reads

1

l!

l
∏

i=1

(−r∞ − (i− 1)) =

(

−r∞
l

)

.

2In general, there exists four sets of possible pole structure in (C.13) characterized by sign of ǫ-

parameters: a ± (i − 1)ǫ1 ± (j − 1)ǫ2. The four sets are independent and have no mixing in between.

It is enough to consider the one with (+ǫ1,+ǫ2).
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The instanton partition function in eq. (C.13) for positive FI-parameter ζR > 0 and negative

FI-parameter ζR < 0 are related by a crossing formula:

Zinst,+ =
∞
∑

k=0

k
∑

l=0

(−q)l

(

−r∞
l

)

× (−q)k−lZinst,−,k−l = (1− q)−r∞ ×Zinst,−. (C.17)

In particular, eq. (C.17) can be verified directly since the instanton partition function

of the U(1) gauge theory with two fundamental flavors is well known [1, 91],

Zinst,+ = (1− q)
(a−m+)(a−m−)

ǫ1ǫ2 . (C.18)

Flipping the sign of the FI-parameter ζR is equivalent to the sign flip of Ω-parameters

ǫ1,2 7→ −ǫ1,2 and the shift of the moduli parameter a 7→ a − ǫ+. The instanton partition

function in the negative FI-parameter chamber is

Zinst,− = (1− q)
(a−ǫ+−m+)(a−ǫ+−m−)

ǫ1ǫ2 = (1− q)r∞Zinst,+ (C.19)

which substantiates eq. (C.17).

The crossing formula (C.17) can be easily extended to general U(N) gauge group with

2N fundamental flavors. The fugacity is chosen to be −q. The instanton partition function

in the positive FI-parameter chamber has the integration representation

Zinst,+(a,m
±, ǫ1, ǫ2; q)

=
∑

~λ

(−q)k
∮

C

k
∏

i=1

dφi
2πi

(

ǫ+
ǫ1ǫ2

)k N
∏

α=1

(φi −m+
α )(φi −m−

α )

(φi − aα)(φi − aα + ǫ+)

∏

j 6=i

φij(φij + ǫ+)

(φij + ǫ1)(φij + ǫ2)
(C.20)

The contour C is chosen to enclose poles counterclockwise located at aα + (i − 1)ǫ1 +

(j − 1)ǫ2, α = 1, . . . , N , i, j = 1, 2, . . . . The residue for a single integration variable φi at

infinity is

r∞ =
ǫ+
ǫ1ǫ2

(

N
∑

α=1

m+
α−1 +m−

α−1 − 2aα + ǫ+

)

. (C.21)

When evaluating the contribution from pole at infinity after deformation of the contour,

An integration variable φi has three options: picking up pole from infinity directly, picking

up pole from another φn + ǫ1, or picking up pole from another φn + ǫ2. The structure

of pole at infinity for general U(N) gauge group has no difference from U(1). Hence the

crossing factor of U(N) gauge theory is identical to the case of group U(1):

Zinst,+(a,m
±, ǫ1, ǫ2; q) = (1− q)−r∞Zinst,−(a,m

±, ǫ1, ǫ2; q). (C.22)

C.3 More examples of crossing formulas

Let us now look at a few explicit examples:
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C.3.1 N = 2

For SU(2) gauge theory the pseudo-measure in the normalized vev of the surface defect

Ψa,+ (2.26) can be rewritten in terms of dual character V1,

q
|V1|
0 E

[

Γ1(Γ2 − Γ1)
∗

P ∗
1

−
M0(Γ2 − Γ1)

∗

P ∗
1

]

(C.23)

= q
|V1|
0 E

[

(Γ2 − eA1 −M0)e
−A1

P ∗
1

]

E
[

P1(W − V1)V
∗
1 + eA0V ∗

1 + q1V1e
−A1 −M0V

∗
1

]

.

W =
∑|W |

s=1 e
bs is the character of jumps in the bulk. The dual character V1 dependence

can be written as the following contour integration by denoting V1 =
∑v

i=1 e
φi .

qv0
v!

∮

C

v
∏

i=1

dφi
2πi

1

ǫ

v
∏

i=1

(φi −m+
0 )(φi −m−

0 )

(φi −A0)(φi −A1 + ǫ)

∏

i>j

φ2ij
φ2ij − ǫ2

|W |
∏

s=1

φi − bs − ǫ

φi − bs
, (C.24)

with φij = φi−φj . The contour C is chosen such that it only encloses poles counterclockwise

from A0 + (i − 1)ǫ, i = 1, 2, . . . , which generate the tail, or bs, which generate the jumps.

Eq. (C.24) can be calculated by picking up poles from the other side of the contour

1

v!

∮

C̃

v
∏

i=1

dφi
2πi

1

ǫ

l
∏

i=1

(φi −m+
0 )(φi −m−

0 )

(φi −A0)(φi −A1 + ǫ)

∏

i>j

φ2ij
φ2ij − ǫ2

|W |
∏

s=1

φi − bs − ǫ

φi − bs
. (C.25)

The dual contour C̃ picks up poles clockwise at A1 − iǫ, i = 1, 2, . . . , and at the infinity.

Residue at infinity for a single φi is

1

ǫ
(m+

0 +m−
0 −A0 −A1 + ǫ+ |W |ǫ) =

1

ǫ
(m+

0 +m−
0 − a0 − a1 + ǫ) := r∞. (C.26)

The dual contour integration is performed in the following steps: We choose v−l integration

variables φn, n = 1, . . . , v − l to pick up poles at infinity.

1

(v − l)!

∮

∞

v−l
∏

n=1

dφn
2πi

1

ǫ

(φn −m+
0 )(φn −m−

0 )

(φn −A0)(φn −A1 + ǫ)

|W |
∏

s=1

φn − bs − ǫ

φn − bs
×

v
∏

j=1,j>n

φ2nj
φ2nj − ǫ2

(C.27)

How to evaluate eq. (C.27) is explained as follows. First we rewrite integral with ordering

∮

∞

dφv−l

2πi
· · ·

∮

∞

dφ2
2πi

∮

∞

dφ1
2πi

. (C.28)

The first variables φ1 can pick up poles at infinity directly. Or it can take pole at another

φn + ǫ with n = 2, 3, . . . v − l. The contour circulates the poles clockwise for either of the

choice. The former generate residue −r∞ while the second option gives

1

ǫ

ǫ2

2ǫ

(φn + ǫ−m+
0 )(φn + ǫ−m−

0 )

(φn + ǫ−A0)(φn + ǫ−A1 + ǫ)

|W |
∏

s=1

φn + ǫ− bs − ǫ

φn + ǫ− bs
×

k
∏

j=2,j 6=n

(φn + ǫ− φj)
2

(φn − φj)(φn − φj + 2ǫ)
.

(C.29)
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Residue of variable φn at infinity now becomes

1

2
(−2r∞) = 1× (−r∞). (C.30)

The factor −r∞ is credited to residue of φn at infinity. The residue for φ1 at another φn+ ǫ

is effectively 1. Combining with the multiplicity v − l − 1, the total contribution from φ1
at the infinity is

−r∞ + (v − l − 1).

The integration of the remaining variables φn are determined in the same trick as φ1. The

only difference is that the multiplicity for variable φn is v − l − n. The combined residues

at infinity give

1

(v − l)!

∮

∞

v−l
∏

n=1

dφn
2πi

1

ǫ

(φn −m+
0 )(φn −m−

0 )

(φn −A0)(φn −A1 + ǫ)

|W |
∏

s=1

φn − bs − ǫ

φn − bs
×

v
∏

j=1,j>n

φ2nj
φ2nj − ǫ2

=
1

(k − l)!

v−l−1
∏

j=0

(−r∞ + j) = (−1)v−l

(

r∞
v − l

)

(C.31)

The remaining contour integration variables φn, n = v− l+1, . . . , v now take poles at

A1− iǫ, i = 1, . . . , l, with the contour circulating these poles clockwise. The poles generate

the dual Young diagram in the negative FI-parameter chamber

1

l!

∮

C̃\∞

l
∏

i=1

dφi
2πi

1

ǫ

(φi −m+
0 )(φi −m−

0 )

(φi −A0)(φi −A1 + ǫ)

∏

j>i

φ2ij
φ2ij − ǫ2

|W |
∏

s=1

φi − bs − ǫ

φi − bs
=

l
∏

j=1

P0(A1 − jǫ)

Y (A1 − jǫ)
.

Finally we find the normalized vev of the surface defect Ψa,+ of the form

Ψa,+ =
∞
∑

v=0

v
∑

l=0

(−q0)
lqv−l

0

(

r∞
v − l

)

Q(A1 − ǫ− lǫ)

M0(A1 − lǫ)
= (1− q0)

r∞Ψa,−. (C.32)

The fundamental matter contribution M0(x) is defined by

M0(x) = E

[

M0e
−x

P ∗
1

]

=
∏

±

Γ

(

x−m±
0

ǫ

)

ǫ
x−m

±
0

ǫ .

We again see that the mismatch of the instanton partition functions can be factorized into

a crossing factor. We recover the toy model (C.12) by imposing the condition m−
0 = A1−ǫ.

C.3.2 N = 3

Next we consider the SU(3) gauge theory, whose normalized vev of the surface defect is

Ψa,+ =
∑

~λ

∑

{U1,U2}

qk0−k2
0 qk1−k2

1 E

[

∑2
ω=1 Γω(Γω+1 − Γω)

∗ −Mω−1(Γ3 − Γω)
∗

P ∗
1

]

. (C.33)

– 62 –



J
H
E
P
0
3
(
2
0
2
1
)
0
9
3

The dual characters V1 and V2 dependence in the normalized vev of the surface defect are

∞
∑

v1=0

∞
∑

v2=0

qk1−k3
0 qk2−k3

1

∑

|V1|=v1

∑

|V2|=v2

E [L0V
∗
1 + q1L

∗
1V1 + L1V

∗
2 + q1L

∗
2V2 −M0V

∗
1 −M1V

∗
2 ]

× E [P1WV ∗
1 + P1V1V

∗
2 − P1V1V

∗
1 − P1V2V

∗
2 ] (C.34)

=
∞
∑

v1=0

∞
∑

v2=0

qv10 qv21
1

v1!

∮

C1

v1
∏

i=1

dφ
(1)
i

2πi

1

ǫ

(φ
(1)
i −m+

0 )(φ
(1)
i −m−

0 )

(φ
(1)
i −A0)(φ

(1)
i −A1+ǫ)

∏

i′ 6=i

φ
(1)
i − φ

(1)
i′

φ
(1)
i −φ

(1)
i′ +ǫ

∏

b∈W

b−φ
(1)
i +ǫ

b−φ
(1)
i

×
1

v2!

∮

C2

v2
∏

j=1

dφ
(2)
j

2πi

1

ǫ

(φ
(2)
j −m+

1 )(φ
(2)
j −m−

1 )

(φ
(2)
j −A1)(φ

(2)
j −A2 + ǫ)

∏

j′ 6=j

φ
(2)
j − φ

(2)
j′

φ
(2)
j − φ

(2)
j′ + ǫ

×
φ
(1)
i − φ

(2)
j + ǫ

φ
(1)
i − φ

(2)
j

We deform both contour C1 and C2 to evaluate the integral. The integrations after deform-

ing the contour is performed according to the following steps. We start with the variables

{φ
(2)
j }. Suppose there exists v2 − l2 variables φ

(2)
j , j = 1, . . . , v2 − l2 picking up pole at

infinity,

1

(v2−l2)!

∮

∞

v2−l2
∏

j=1

dφ
(2)
j

2πi

1

ǫ

(φ
(2)
j −m+

1 )(φ
(2)
j −m−

1 )

(φ
(2)
j −A1)(φ

(2)
j −A2+ǫ)

v2
∏

j′=1,j′ 6=j

φ
(2)
j − φ

(2)
j′

φ
(2)
j −φ

(2)
j′ +ǫ

v1
∏

i=1

φ
(1)
i −φ

(2)
j +ǫ

φ
(1)
i − φ

(2)
j

.

(C.35)

The residue picked up by the φ
(2)
j at infinity is computed to be

1

ǫ
(m+

1 +m−
1 −A1 −A2 + ǫ) + v1 = r(2)∞ + v1.

The integration in the eq. (C.35) has the same structure as in eq. (C.31), which can be

calculated by the same manner. The overall residue contribution at infinity of the quiver

node V2 is given by

(−1)v2−l2

(

r
(2)
∞ + v1
v2 − l2

)

.

Next the integration is performed over the remaining variables φ
(2)
j , j = v2− l2+1, . . . , v2,

by taking the residues at the poles A2− iǫ, i = 1, . . . , l2. Then summing over (v2, l2) at the

quiver node V2 yields

∞
∑

v2=0

v2
∑

l2=0

(−1)v2−l2

(

r
(2)
∞ + v1
v2 − l2

)

qv21
1

l2!

∮

C̃2\∞

l2
∏

j=1

dφ
(2)
j

2πi

1

ǫ

(φ
(2)
j −m+

1 )(φ
(2)
j −m−

1 )

(φ
(2)
j −A1)(φ

(2)
j −A2 + ǫ)

×
l2
∏

j′=1,j′ 6=j

φ
(2)
j − φ

(2)
j′

φ
(2)
j − φ

(2)
j′ + ǫ

v1
∏

i=1

φ
(1)
i − φ

(2)
j + ǫ

φ
(1)
i − φ

(2)
j

= (1− q1)
r
(2)
∞ +v1

∞
∑

l2=0

ql21

∮

C̃2\∞

l2
∏

j=1

dφ
(2)
j

2πi

1

ǫ

(φ
(2)
j −m+

1 )(φ
(2)
j −m−

1 )

(φ
(2)
j −A1)(φ

(2)
j −A2 + ǫ)

×
l2
∏

j′=1,j′ 6=j

φ
(2)
j − φ

(2)
j′

φ
(2)
j − φ

(2)
j′ + ǫ

v1
∏

i=1

φ
(1)
i − φ

(2)
j + ǫ

φ
(1)
i − φ

(2)
j

.
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We then move on to the integration of the variables {φ
(1)
i } corresponding to the quiver

node V1. We assume there exist v1 − l1 variables φ
(1)
i , i = 1, . . . , v2 − l2, that pick up pole

at infinity. The residue picked up by the φ
(1)
i at infinity is equal to

r(1)∞ + |W | − l2. (C.36)

The integration at infinity again follows the eq. (C.31). We denote

F1(l1) =
1

l1!

∮

C̃1\∞

l1
∏

i=1

dφ
(1)
i

2πi

−1

ǫ

(φ
(1)
i −m+

0 )(φ
(1)
i −m−

0 )

(φ
(1)
i −A0)(φ

(1)
i −A1 + ǫ)

×
l1
∏

i′=1,i′ 6=i

φ
(1)
i − φ

(1)
i′

φ
(1)
i − φ

(1)
i′ + ǫ

∏

b∈W

b− φ
(1)
i + ǫ

b− φ
(1)
i

φ
(1)
i −A2 + (l2 + 1)ǫ

φ
(1)
i −A2 + ǫ

for integration over the remaining l1 variables {φ
(1)
i }, which take poles at A1 − i1ǫ, i1 =

1, 2, . . . , or A2 − i2ǫ, i2 = 1, . . . , l2. Summing over (v1, l1) in the quiver node V1 results in

∞
∑

v1=0

v1
∑

l1=0

(−1)v1−l1

(

r
(1)
∞ + |W | − l2
v1 − l1

)

qv10 (1− q1)
l1F1(l1)

= (1− q0(1− q1))
r
(1)
∞ +|W |−l2

∞
∑

l1=0

ql10 (1− q1)
l1F1(l1).

The normalized vev of the surface defect for U(3) gauge theory now reads

Ψa,+ = (1− q0 + q0q1)
r
(1)
∞ +|W |(1− q1)

r
(2)
∞ (C.37)

×
∞
∑

l1=0

∞
∑

l2=0

ql10 q
l2
1 (1− q1)

l1(1− q0 + q0q1)
−l2

× E

[∑

ω Γω(Γω+1 − Γω)
∗

P ∗
1

−

∑

ωMω−1(ΓN − Γω)
∗

P ∗
1

] ∣

∣

∣

∣

Dual

=(1− q0 + q0q1)
r
(1)
∞ +|W |(1− q1)

r
(2)
∞

×
∞
∑

l1=0

∞
∑

l2=0

ql10,effq
l2
1,effE

[

ΓNF
∗
≥1 −

∑2
ω=1 F≥ω(F≥ω − F≥ω+1)

∗

P ∗
1

]

× E

[

−

∑2
ω=1Mω−1F

∗
≥ω

P ∗
1

]∣

∣

∣

∣

Dual

.

The dual characters

ΓN − Γω =
∑

l≥ω

eAlq−d
(l)
ω

1 = F≥ω (C.38)

label the dual Young diagram ~λdual in the negative FI-parameter chamber with lω =
∑

l≥ω d
(l)
ω .

The fractional couplings in the negative FI-parameter chamber, are relate to the orig-

inal ones by

q0,eff = q0(1− q1), q1 = q1,eff (1− q0,eff) . (C.39)
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C.3.3 Toy model: the effective instanton counting

Let us demonstrate that in the case of quiver gauge theories, it is not only natural but

crucial to mutate the instanton counting parameters in crossing between the chambers to

have the equality of the two instanton partition functions.

We consider the following simplified model of the SU(3) gauge group with 6 funda-

mental flavors by forcing the following conditions on the moduli parameters (sometimes

this procedure is called simply higgsing, since with such relations between the Coulomb

moduli and masses some of the hypermultiplets become massless and can be given a vev,

thereby higgsing the gauge group to a subgroup).

a0 + ǫ1 = m+
0 , a1 = m+

1 , a2 = m+
2 ,

m−
0 = a1 − ǫ+, m−

1 = a2 − ǫ+ − ǫ1, m−
2 = a0 − ǫ+.

This condition forces the only surviving Young diagrams in both positive and negative

FI-parameter chambers to be the single rows in the ±ǫ2 direction,

~λζR>0 = ( · · · , ∅, ∅) , ~λζR<0 = (∅, · · · , ∅).

A co-dimension two surface defect is introduced as a Z3 orbifolding. The instanton pariti-

tion function in the positive FI-parameter ζR > 0 chamber is

Z+ =

∞
∑

L=0

qL
L
∏

j=1

jǫ2 − ǫ1
jǫ2

a2 − 2ǫ1 − a0 − jǫ2
a2 − ǫ1 − a0 − jǫ2

[

1− q0 + q0q1
a2 − 2ǫ1 − a0 − Lǫ2
a2 − ǫ1 − a0 − Lǫ2

]

. (C.40)

The instanton partition function in the negative FI-parameter ζR < 0 chamber is

Z− =
∞
∑

L=0

qL
L
∏

j=1

jǫ2 − ǫ1
jǫ2

a2 − 2ǫ1 − a0 − jǫ2
a2 − ǫ1 − a0 − jǫ2

[

1− q1,eff + q0,effq1,eff
a0 + 2ǫ1 − a2 + Lǫ2
a0 + ǫ1 − a2 + Lǫ2

]

.

(C.41)

In the NS-limit we focus on the surface contributions

Ψa,+ =

[

1− q0 + q0q1
a2 − 2ǫ− a0 − Lǫ2
a2 − ǫ− a0 − Lǫ2

]

, (C.42a)

Ψa,− =

[

1− q1,eff + q0,effq1,eff
a0 + 2ǫ− a2 + Lǫ2
a0 + ǫ− a2 + Lǫ2

]

. (C.42b)

By denoting A0 = a0 + ǫ, A1 = a1, A2 = a2, and W = ea0+Lǫ2 , the residues at infinity are

r(1)∞ =
1

ǫ
(m+

0 +m−
0 −A0 −A1 + ǫ) = 0,

r(2)∞ =
1

ǫ
(m+

1 +m−
1 −A1 −A2 + ǫ) = −1.

We see that both the crossing factor and the transformation of the fractional couplings is

needed to recover the partition function in the positive FI-parameter chamber from the
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negative chamber counterpart:

(1− q0 + q0q1)
r
(1)
∞ +|W |(1− q1)

r
(2)
∞ Ψa,−(a0, a2, ǫ, q0,eff, q1,eff)

= (1− q0 + q0q1)
1(1− q1)

−1

[

1− q1,eff + q0,effq1,eff
a0 + 2ǫ− a2 + Lǫ2
a0 + ǫ− a2 + Lǫ2

]

=
(1− q0 + q0q1)

(1− q1)

[

1−
q1

(1− q0 + q0q1)
+

q0q1(1− q1)

(1− q0 + q0q1)

a0 + 2ǫ− a2 + Lǫ2
a0 + ǫ− a2 + Lǫ2

]

=
1− q0 + q0q1

1− q1
−

q1

1− q1
+ q0q1

a0 + 2ǫ− a2 + Lǫ2
a0 + ǫ− a2 + Lǫ2

= Ψa,+(a0, a2, ǫ, q0, q1). (C.44)

D Limit shape instanton configuration

In the presence of a full-type/regular surface defect, the bulk contribution is identified

with the contribution in the representation RN−1 of ZN orbifolding. The projection πN of

the moduli space of instantons in the presence of the surface defect to the moduli space

of instantons in the bulk descends to the map πN : PN → PN between the sets of fixed

points. Thus, a new set of Young diagrams ~Λ = πN (~λ) can be constructed

Λ
(α)
i =

⌊

λ
(α)
i + c(α)

N

⌋

, (D.1)

where ⌊·⌋ is the floor operator. The bulk partition function is a grand canonical ensemble

over the bulk intanton configuration

Zbulk(a,m
±.q) =

∑

~Λ

q|
~Λ|µbulk(a,m

±, q)[~Λ] (D.2)

with the bulk pseudo-measure is of the form in eq. (2.18). The full Y (x) function is defined

on the bulk Young daigram

Y (x)[~Λ] =
∏

ω

E

[

−exS̃∗
ω[
~λ]
]

= E

[

−ex(Ñ − P12K̃N−1[~λ])
]

= E

[

−exS̃∗[~Λ]
]

. (D.3)

In the NS-limit ǫ2 → 0, with ǫ1 ≡ ǫ fixed, the summation in the bulk partition

function (D.2) is dominated by a limit-shape configuration ~Λ∗

Zbulk ≈ q|
~Λ∗|µbulk[~Λ∗] + · · · (D.4)

We denote Y (x) ≡ Y (x)[~Λ∗] based on the limit shape configuration. Y (x) satisfies

(1 + q)T (x) = 〈X (x)〉 =

〈

Y (x+ ǫ) +
qP (x)

Y (x)

〉

= Y (x+ ǫ) +
qP (x)

Y (x)
. (D.5)

Function T (x) is a degree N polynomial. The function Y (x) can be expressed as ratio of

two entire functions

Y (x) =
Q(x)

Q(x− ǫ)
, Q(x) = E

[

−
exS̃∗[~λ∗]

P ∗
1

]

. (D.6)
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In particular, function Q(x) is the solution of T-Q equation [10]

Q(x+ ǫ) + qP (x)Q(x− ǫ) = (1 + q)T (x)Q(x), (D.7)

which matches with the T − Q Baxter equation of the XXXsl2 spin chain [10, 27, 28].

See [1, 13, 21, 26] for more details on the origin of the Baxter equation in gauge theory.

The functions Y (x) and Q(x) are proven to be applicable tools to investigate the

structure of the limit-shape instanton configuration ~Λ∗. The zeros of Y (x) and Q(x) are

separated by at least N columns in the limit shape ~λ by the scaling of ǫ2 → ǫ2
N . The bulk

Q(x) function can be expressed in the context of new Young diagrams ~Λ∗ :

Q(x) =

N
∏

α=1

(−ǫ)
x−ãα

ǫ

Γ
(

−x−ãα
ǫ

)

∞
∏

i=1

x− ãα − (i− 1)ǫ− ξα,i
x− ãα − (i− 1)ǫ

; ξα,i = ǫ2Λ
(α)
∗,i . (D.8)

The asymptotic behavior of ξα,i = ǫ2Λ
(α)
i is restricted by the Baxter equation (D.7). ξα,i

can be determined via a order by order perturbation expansion of (D.7) in q. In the

zeroth order

T0(x) =
Q0(x+ ǫ)

Q0(x)
= Y0(x+ ǫ) = Y (x+ ǫ)[∅] =

N
∏

α=1

(x− ãα + ǫ). (D.9)

The zeroth order Q0(x) is identified to the leading Gamma function in eq. (D.8). And thus

ξα,i are restrained to be at most of order q for all α = 1, . . . , N and i = 1, 2, . . . . In the q1

order, we take x = ãα + ξα,1 which are the zeros of Q(x) function :

0 = Q(ãα + ξα,1 + 2ǫ) + qP (ãα + ξα,1)Q0(ãα − ǫ+ ξα,1)

= Q0(ãα + ξα,1 − ǫ)

[

1

T0(ãα + ξα,1)T0(ãα + ξα,1 − ǫ)

ǫ

ǫ+ ξα,1
+ qP (ãα)

]

which we find

ξα,1 = −
qP (ãα)

ǫ
∏

β 6=α(ãα − ãβ + ǫ)(ãα − ãβ)
. (D.10)

Similar procedure applied to the other zeros of Q(x). It generates a order by order expan-

sion that determines asymptotics of ξα,i by the recursive formula:

ξα,i+1 =
qP (ãα + iǫ)ξα,i

∏N
β=1(ãα + (i + 1)ǫ− ãβ)(ãα + iǫ− ãβ)

; i = 1, 2, . . . . (D.11)

Recursive relation (D.11) shows that the partition ~Λ∗ is very steep Λ
(α)
∗,i+1 ≪ Λ

(α)
∗,1 , i. e.

its dual partition ~Λt has an almost flat plateau structure. The set of jumps in the bulk

{J ′} is defined by

{J ′} =
{

J ∈ Z≥0| Λ
t,(α)
∗,J ′ − Λ

t,(α)
∗,J ′+1 = 1

}
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that locates where the elevation of dual partition ~Λt
∗ changes. Virtual character S̃ = S̃[~λ∗]

now can be separated into two parts

S̃ = S̃[~λ] = S̃[~Λ∗] =
∑

α

eAα +
∑

α

∑

{J ′}

eãαqJ
′

2 q
Λ
t,(α)

J′+1

1 (1− q1) = FN + P1W, (D.12)

with Aα = ãα+ǫΛ
t,(α)
∗,1 . The Y (x) function defined on the limit shape configuration ~Λ reads

Y (x) =

N
∏

α=1

(x−Aα)
∏

{J ′}

x− ãα − ǫ2J
′ − ǫΛ

t,(α)
∗,J ′+1

x− ãα − ǫ2J ′ − ǫΛ
t,(α)
∗,J ′+1 − ǫ

. (D.13)

The bulk virtual character is of the form

ΓN = S̃[~Λ∗] =
∑

α

eAα +
∑

α

∑

{J ′}

eãαqJ
′

2 q
Λ
t,(α)

∗,J′+1

1 (1− q1) = FN + P1W. (D.14)

Our main focus lies on the normalized vev of the surface defect, which considers all

allowed surface configuration ~λ on top of the limit-shape bulk instanton ~Λ∗:

Λ
t,(α)
∗,J = λ

t,(α)
NJ−c(α) ≥ λ

t,(α)
ω+NJ−c(α) ≥ λ

t,(α)
N+NJ−c(α) = Λ

t,(α)
∗,J+1. (D.15)

The first J = 0 is special since it lacks an upper bound. We find the virtual characters

{Γω} of the form

ΓN = S̃ =
∑

α

eãαq
λ
t,(β)
N−c(β)

1 +
∑

β

∑

{J ′}

eãβqJ
′

2 q
λ
t,(β)

N+NJ′−c(β)

1 (1− q1) = FN + P1W, (D.16a)

Γω = S̃0 + · · ·+ S̃ω

=
∑

c(α)<ω

eãαq
λ
t,(α)
ω−c(α)

1 +
∑

α

∑

{J ′
ω}

eãαq
J ′
ω

2 q
λ
t,(α)

N+NJ′
ω−c(α)

1 (1− q1) = Fω + P1Uω. (D.16b)

The Fω’s denote the N−2 Young diagrams ~λtail = (λ
(0)
tail, λ

(1)
tail, . . . , λ

(N−2)
tail ) attaching to first

J = 0 of limit shape ~Λ, which we call a tail. Each tail Young diagram λ(ω), ω = 0, 1, . . . , N−

2, is the collection of row of boxes of non-negative length λ
(ω)
tail = (λ

(ω)
tail,1, λ

(ω)
tail,2, . . . ) obeying

λ
(ω)
tail,1 ≤ N − 1− ω;

λ
(ω)
tail,i ≥ λ

(ω)
tail,i+1, i = 1, 2, . . .

The jump sets {J ′
ω} are defined by

{J ′
ω} =

{

J ∈ Z≥0| λ
t,(α)
NJ−c(α) − λ

t,(α)
ω+NJ−c(α) = 1

}

.

The jumps sets {J ′
ω} are restricted by eq. (D.15):

{J ′
1} ⊂ {J ′

2} ⊂ · · · ⊂ {J ′
N} = {J ′}, (D.18)
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Once the intanton configuration in the bulk is locked to limit shape in the NS-limit,

the surface defect partition function in eq. (2.17) becomes

Z = e
1
ǫ2

W(a,m±,q)
×
∑

~λ∗

N−2
∏

ω=0

q
kω−kN−1
ω µsurface(a,m, q, ~z)[~λ∗] (D.19)

The normalized vev of the surface defect Ψa is identified as an ensemble over all

allowed surface configurations, namely the arrangements of jumps {J ′
ω}

N−1
ω=1 and tail Young

diagrams λ
t,(α)
ω−c(α) connected to the very bottom of limit shape ~Λ∗. See fig 1 for illustration.

Ψa =
∑

~λ∗

N−2
∏

ω=0

q
kω−kN−1
ω µsurface[~λ]

=
∑

λ̃tail

∑

{Uω}

N−2
∏

ω=0

q
kω−kN−1
ω E

[

∑N−1
ω=1 Γω(Γω+1−Γω)

∗

P ∗
1

−

∑N−1
ω=1 Mω−1(ΓN−Γω)

∗

P ∗
1

]

. (D.20)

E Details of the second Hamiltonian

We derived the second Hamiltonian from the gauge theory in (B.11), which after resetting

the zero point energy (5.30) becomes

Ĥ2 =
∑

ω

−
(1− q)

2

[

(δω)
2 − 2m+

ω+1δω
]

− (qω+1uω+1) (δω)
(

δω −m+
ω+1 +m−

ω+1

)

(E.1)

with δω = ǫ∇z
ω − aω+1 +m+

ω+1 such that the

Ĥ2Ψa = (1− q)E2Ψa. (E.2)

By multiplying the normalized vev of the surface defect partition function with a pertur-

bative factor
[

N−1
∏

ω=0

z
−aω+1+m

+
ω+1

ǫ
ω

]

Ψa

The operator δω becomes ǫ∇z
ω.

The second Hamiltonian of the XXXsl2 spin chain ĥ2 is obtained from the trace of

monodromy matrix (4.17)

ĥ2 =Tr

(

q 0

0 1

)

∑

ω>ω′

(−µω + Lω)(−µω′ + Lω′) (E.3)

=
∑

ω>ω′

(qγω′ − γω)(γω − γω′)βωβω′

+
∑

ω>ω′

−q(m−
ω γω′βω′ +m−

ω′γωβω) + q(m−
ω′ −m+

ω′ + ǫ)γω′βω

+
∑

ω>ω′

(m+
ω+1 − ǫ)γω′βω′ + (m+

ω′+1 − ǫ)γωβω + (m−
ω −m+

ω+1 + ǫ)γωβω′

+ qm−
ωm

−
ω′ + (m+

ω+1 − ǫ)(m+
ω′+1 − ǫ)
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The coefficient of ǫ2∂2zω is obtained by considering ω = ω′ + 1,

− (qγω′ − γω′+1)(γω′+1 − γω′)
∂2

∂z2ω′

= −
1

q− 1
(quω′ − qω′+1uω′+1) z

2
ω′

∂2

∂z2ω′

= q(∇z
ω′)2 − qω′+1uω′+1(∇

z
ω′)2 − q∇z

ω′ + qω′+1uω′+1∇
z
ω′ . (E.4)

The cross term between ∂zω∂zω′ comes from 4 sources: βωβω′ , βω+1βω′ , βωβω′+1, and

βω+1βω′+1. Coefficients are found by

(qγω′ − γω)(γω − γω′)− (qγω′ − γω+1)(γω+1 − γω′)

− (qγω′+1 − γω)(γω − γω′+1) + (qγω′+1 − γω+1)(γω+1 − γω′+1)

= (1 + q)zωzω′ . (E.5)

We find the second order differential terms obeying

h2|∂2 =
1 + q

2
(ǫ∇z

c)
2 + Ĥ2|∂2 , ∇z

c :=
∑

ω

∇z
ω. (E.6)

For first order differentiation terms, ∂zω in Ĥ2 has coefficients:

(1− q+ qω+1uω+1)m
+
ω+1zω − (qω+1uω+1)m

−
ω+1zω

= (q− 1)γωm
+
ω+1 − (q− 1)γω+1m

−
ω+1. (E.7)

In h2, a single βω has coefficient

[

∑

ω′

−qm−
ω′

]

γω − qm−
ω γω +

[

∑

ω′

(m+
ω′+1 − ǫ)

]

γω + (m+
ω+1 − ǫ)γω

+
∑

ω′<ω

q(m−
ω′ −m+

ω′+1 + ǫ)γω′ +
∑

ω′>ω

(m−
ω′ −m+

ω′+1 + ǫ)γω′ (E.8)

The ǫ∂zω comes from 2 terms: βω and βω+1, which we find

[

∑

ω′

−qm−
ω′ + (m+

ω′+1 − ǫ)

]

zω + (1− q)m−
ω+1γω+1 − (1− q)(m+

ω+1 + ǫ)γω. (E.9)

This leads to

ĥ2 =Ĥ2 +
1 + q

2

(

Ĥ1

q− 1

)2

+ (N − 1)ǫ

(

Ĥ1

1− q

)

+ (qm−
c −m+

c )

(

Ĥ1

1− q

)

+ · · · (E.10)

Last is the constant terms. Ĥ2 has no constant term after resetting zero point energy. The

constant contribution in ĥ2 is

∑

ω>ω′

qm−
ωm

−
ω′ + (m+

ω − ǫ)(m+
ω′ − ǫ).
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We have our final result as in eq. (5.43):

ĥ2 = Ĥ2 +
1 + q

2

(

Ĥ1

q− 1

)2

+ (N − 1)ǫ

(

Ĥ1

1− q

)

+ (qm−
c −m+

c )

(

Ĥ1

1− q

)

+
∑

ω>ω′

qm−
ωm

−
ω′ + (m+

ω − ǫ)(m+
ω′ − ǫ). (E.11)

F Detail calculation of third Hamiltonian

Third Hamiltonian of spin chain is defined in eq. (5.49)

ĥ3 =Tr

(

q 0

0 1

)

∑

ω1>ω2>ω3

(−µω1 + Lω1)(−µω2 + Lω2)(−µω3 + Lω3) (F.1)

=q
[

(−µω1 + ℓ0ω1
)(−µω2 + ℓ0ω2

)(−µω3 + ℓ0ω3
) + (−µω1 + ℓ0ω1

)ℓ−ω2
ℓ+ω3

+ (−µω2 − ℓ0ω2
)ℓ−ω1

ℓ+ω3
+ (−µω3 + ℓ0ω3

)ℓ−ω1
ℓ+ω2

]

+
[

(−µω1 − ℓ0ω1
)(−µω2 − ℓ0ω2

)(−µω3 − ℓ0ω3
) + (−µω1 − ℓ0ω1

)ℓ+ω2
ℓ−ω3

+ (−µω2 + ℓ0ω2
)ℓ+ω1

ℓ−ω3
+ (−µω3 − ℓ0ω3

)ℓ+ω1
ℓ−ω2

]

On the gauge counter part, the third Hamiltonian is defined based on eq. (5.22) with

I = 3. The [x−2] coefficient of Laurent expansion of fractional fundamental qq-character

Xω(x) reads:

[x−2]Xω(x)

=
1

6
ǫ31ν

3
ω + ǫ1D

(2)
ω − (aω+1 + ǫ+)

[

1

2
ǫ21ν

2
ω + ǫ1D

(1)
ω

]

+ ǫ+ǫ1aω+1νω + ǫ21νωD
(1)
ω (F.2)

+ qω

[

−
1

6
ǫ31ν

3
ω−1 − ǫ1D

(2)
ω−1 + (aω −m+

ω −m−
ω )

(

1

2
ǫ21ν

2
ω−1 − ǫ1D

(1)
ω−1

)

− Pω(aω)(ǫ1νω−1 − aω) + ǫ21νω−1D
(1)
ω−1

]

.

The Dyson-Schwinger equation restricts Xω to have vanishing expectation value

0 = 〈[x−2]Xω(x)〉, ω = 0, . . . , N − 1. (F.3)

We again consider the linear combination U(x) =
∑

ω uωXω(x) defined in (5.20). By

resetting the zero point energy (5.30), Ĥ3 becomes:

Ĥ3 =(q− 1)

[

∑

ω

1

6
(ǫ∇z

ω −m+
ω+1)

3 −
1

3
(m+

ω+1)
3

]

(F.4)

+
∑

ω

ǫuω

[

(ǫ∇z
ω −m+

ω+1)
2

2
−
a2ω+1

2
+ ǫ〈D(1)

ω 〉

]

− (uω + qω+1uω+1)

[

ǫ〈(ǫ∇z
ω −m+

ω+1)D
(1)
ω 〉 −

a2ω+1

2
(ǫ∇z

ω −m+
ω+1)

]

+ qω+1uω+1

[

(m+
ω+1 +m−

ω+1)

(

(ǫ∇z
ω)

2

2
+
a2ω+1

2
− ǫ1〈D

(1)
ω 〉

)

− (m+
ω+1)

2ǫ∇z
ω +

(m+
ω+1)

2

2
(m+

ω+1 −m−
ω+1)

]
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The 〈D
(1)
ω 〉 term can be solved by using expectation value of [x−1]Xω in eq. (B.6)

ǫ1〈D
(1)
ω − qωD

(1)
ω−1〉

= −
ǫ21
2
(∇z

ω)
2 −

ǫ21
2
qω(∇

z
ω+1)

2 + qω(aω −m+
ω −m−

ω )(∇
z
ω−1) + aω+1∇

z
ω − qωPω(aω)

(F.5)

which solves out (5.47):

ǫ1〈D
(1)
ω 〉 =

1

q− 1

[

N−1
∑

n=0

qω · · · qω−n+1ǫ∇
z
ω−n(ǫ∇

z
ω−n −m+

ω−n+1 +m−
ω−n+1)

]

+
(ǫ∇z

ω)
2

2
+m−

ω+1ǫ∇
z
ω +

a2ω+1

2
−

(m+
ω+1)

2

2
. (F.6)

To construct relation between ĥ3 and Ĥ3, we will take order by order, term by term

comparison in the derivatives. We start with highest derivative order, (∇z
ω)

3 in Ĥ3 has

coefficients:

1

2

1 + q

1− q
(uω + qω+1uω+1)−

1− q

6
= −

1 + q

2

γω + γω+1

zω
−

1− q

6
(F.7)

and (∇z
ω)

2∇z
ω′ :

−
uω′ + qω′+1uω′+1

q− 1
qω′ · · · qω+1 = −

γω′ + γω′+1

zω
, ω′ > ω (F.8a)

−
uω′ + qω′+1uω′+1

q− 1
qω′ · · · qω−N+1 = −

q(γω′ + γω′+1)

zω
, ω′ < ω. (F.8b)

Last, Ĥ3 has no ∇z
ω1
∇z

ω2
∇z

ω3
term when ω1 6= ω2 6= ω3.

In ĥ3, degree 3 differentiation ∂3 contribution comes from βω1βω2βω2 , which has coef-

ficient

q
[

γω1γω2γω3 − γω1γ
2
ω3

+ γω2γ
2
ω3

− γω3γ
2
ω2

]

+
[

−γω1γω2γω3 + γω1γ
2
ω2

− γω2γ
2
ω1

+ γω3γ
2
ω1

]

= (γω1 − γω2)(γω2 − γω3) (qγω3 − γω1) . (F.9)

There are 8 possible combinations βω1βω2βω3 , βω1+1βω2βω3 , βω1βω2+1βω3 , βω1βω2βω3+1,

βω1+1βω2+1βω3 , βω1+1βω2βω3+1, βω1βω2+1βω3+1, βω1+1βω2+1βω3+1 that give ∂zω1
∂zω2

∂zω3
.

The coefficient is found by

(q− 1)(γω1+1 − γω1)(γω2+1 − γω2)(γω3+1 − γω3)
∂

∂zω1

∂

∂zω2

∂

∂zω3

= (q− 1)∇z
ω1
∇z

ω2
∇z

ω3
.

(F.10)

Next for ∂2zω∂zω′ terms, when ω > ω′ coefficient reads:

− (q(γω′ + γω′+1 − γω)− γω+1)(γω+1 − γω)(γω′+1 − γω′)

= −

[

q(γω′ + γω′+1)

zω
−

qγω + γω+1

zω

]

z2ωzω′ ; (F.11)
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while for ω < ω′:

(qγω − γω′+1 − γω′ + γω+1)(γω+1−γω)(γω′+1−γω′) = −

[

γω′ + γω′+1

zω
−

qγω + γω+1

zω

]

z2ωzω′ .

(F.12)

The ĥ3 has no ∂3zω . We find for the highest derivative terms:

h3|∂3 = Ĥ3|∂3 −

[

∑

ω

1

2

q+ 1

q− 1
(uω + qω+1uω+1)(ǫ∇

z
ω)

2

]

(ǫ∇z
c) +

q− 1

6
(ǫ∇z

c)
3

= Ĥ3|∂3 + (1 + q)
Ĥ2

1− q

Ĥ1

1− q
+

1− q

6

(

Ĥ1

1− q

)3

+ · · · (F.13)

with Ĥ1 = (q− 1)ǫ∇z
c and Ĥ2 defined in (B.11).

Let us move on to second order differentiation. The second order differential, (∇z
ω)

2

in Ĥ has coefficient

−
1

zω

[

∑

n>ω+1

m−
n γn −

∑

n>ω

m+
n+1γn +

∑

n<ω+1

qm−
n γn −

∑

n<ω

qm+
n+1γn + (qm−

ω+1γω −m+
ω+1γω+1)

]

−
1 + q

zω

[

γω+1m
−
ω+1 − γωm

+
ω+1

]

− ǫ
1

zω

[

−γω+1 +
∑

n>ω

γn +
∑

n<ω

qγn

]

.

The cross term ∇z
ω′∇z

ω, ω
′ > ω, only comes from 〈∇z

ωDω〉:

−
1

zω
(γω′ + γω′+1)(m

−
ω′+1 −m+

ω′+1)−
q

zω′

(γω + γω+1)(m
−
ω+1 −m+

ω+1). (F.14)

On spin chain side, the second order differentiations in ĥ3 are:

βω1βω2 : (γω1 − γω2)
[

q(m−
ω3

−m+
ω3+1 + ǫ)γω3 − qm−

ω3
γω2 + (m+

ω3+1 − ǫ)γω1

]

, (F.15a)

βω1βω3 : (qγω3 − γω1)[(m
−
ω2

−m+
ω2+1 + ǫ)γω2 −m−

ω2
γω1 + (m+

ω2+1 − ǫ)γω3 ], (F.15b)

βω2βω3 : (γω2 − γω3)[(m
−
ω1

−m+
ω1+1 + ǫ)γω1 − qm−

ω1
γω3 + (m+

ω1+1 − ǫ)γω2)]. (F.15c)

For βωβω′ , the coefficient is:

(γω − γω′)
∑

n<ω′

[

q(m−
n −m+

n+1 + ǫ)γn − qm−
n γω′ + (m+

n+1 − ǫ)γω
]

+ (γω − γω′)
∑

n>ω

[(m−
n −m+

n+1 + ǫ)γn − qm−
n γω′ + (m+

n+1 − ǫ)γω]

+ (qγω′ − γω)
∑

ω′<n<ω

[(m−
n −m+

n+1 + ǫ)γn −m−
n γω + (m+

n+1 − ǫ)γω′ ]. (F.16)

The ∂2ω has coefficients:

− zω

[

∑

n<ω+1

qm−
n γn −

∑

n<ω

qm+
n+1γn +

∑

n>ω+1

m−
n γn −

∑

n>ω

m+
n+1γn + qm−

ω+1γω −m+
ω+1γω+1

]

− zω

[(

∑

n

m+
n+1 − ǫ

)

γω+1 −

(

∑

n

qm−
n

)

γω

]

− ǫzω

[

γω+1 +
∑

n<ω

qγn +
∑

n>ω

γn

]

. (F.17)
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The cross term ∂zω∂zω′ comes from 4 terms βωβω′ , βωβω′+1, βω+1βω′ , and βω+1βω′+1:

(γω+1 − γω)(γω+1 + γω)(m
+
ω′+1 −m−

ω′+1 − ǫ)

+ q(γω′+1 − γω′)(γω′+1 + γω′)(m+
ω+1 −m−

ω+1 − ǫ)

+ (1 + q)
[

(γω+1 − γω)(γω′+1m
−
ω′+1 − γω′(m+

ω′+1 − ǫ))

+ (γω′+1 − γω′)(γω+1m
−
ω+1 − γω(m

+
ω+1 − ǫ))

]

− (γω+1 − γω)(γω′+1 − γω′)
∑

n

(qm−
n +m+

n+1 − ǫ). (F.18)

Combining with z2ωzω′∂2ω∂ω′ = (∇z
ω)

2(∇z
ω′)−∇z

ω∇
z
ω′ . We conclude

ĥ3 =Ĥ3 + (1 + q)
Ĥ2

1− q

Ĥ1

1− q
+

1− q

6

(

Ĥ1

1− q

)3

− 2ǫ





1

2

(

Ĥ1

1− q

)2

+
Ĥ2

1− q





+ (Nǫ−m+
c )





1

2

(

Ĥ1

1− q

)2

+
Ĥ2

1− q



− (qm−
c )





1

2

(

Ĥ1

1− q

)2

−
Ĥ2

1− q



+ · · ·

(F.19)

The order one derivative ∇z
ω in Ĥ3 has coefficient:

−
1

zω
(qm−

ω+1 −m+
ω+1)((m

−
ω+1 + ǫ)γω+1 −m+

ω+1γω)

−
1

zω
(m−

ω+1 −m+
ω+1)

[

ǫ(qγω − γω+1) +
∑

n>ω+1

m−
n γn −

∑

n>ω

(m+
ω+1 − ǫ)γn

+ q
∑

n<ω+1

m−
n γn + q

∑

n<ω

(m+
n+1 − ǫ)γn

]

.

The first order differential in ĥ3 may come from:

βω1 : q
[

m−
ω2
m−

ω3
γω1 + (m+

ω3+1 −m−
ω3

− ǫ)(m+
ω2+1 − ǫ)γω3

+ (m+
ω2+1 −m−

ω2
− ǫ)m−

ω3
γω2

]

− (m+
ω2+1 − ǫ)(m+

ω3+1 − ǫ)γω1 , (F.20a)

βω2 : q
[

m−
ω1
m−

ω3
γω2 +m−

ω1
(m+

ω3+1 −m−
ω3

− ǫ)γω3

]

− (m+
ω1+1 − ǫ)(m+

ω3+1 − ǫ)γω2 + (m+
ω1+1 −m−

ω1
− ǫ)(m+

ω3+1 − ǫ)γω1 , (F.20b)

βω3 : qm−
ω1
m−

ω2
γω3 − (m+

ω1+1 − ǫ)(m+
ω2+1 − ǫ)γω3

+ (m+
ω2+1 −m−

ω2
− ǫ)(m+

ω1+1 − ǫ)γω2 + (m+
ω1+1 −m−

ω1
− ǫ)m−

ω2
γω1 , (F.20c)
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which gives coefficients of βω

[

q(m−
c )

2 − (m+
c −Nǫ)2

2
−
∑

n

q(m−
n )

2 − (m+
n − ǫ)2

2
− qm−

c m
−
ω

+ (m+
c −Nǫ)(m+

ω+1 − ǫ) + q(m−
ω )

2 − (m+
ω+1 − ǫ)2

]

γω

+
∑

ω>n>n′

q(m+
n+1 −m−

n − ǫ)m−
n′γn + q(m+

n+1 − ǫ)(m+
n′+1 −m−

n′ − ǫ)γn′ (F.21)

+
∑

n>ω>n′

(m+
n′+1 − ǫ)(m+

n+1 −m−
n − ǫ)γn + q(m+

n+1 −m−
n − ǫ)m−

n′γn′

+
∑

n>n′>ω

m−
n′(m

+
n+1 −m−

n − ǫ)γn + (m+
n − ǫ)(m+

n′+1 −m−
n′ − ǫ)γn′ .

A single differential ∂ω considers βω+1 and βω:

zω

[

q(m−
c )

2 − (m+
c −Nǫ)2

2
−
∑

n

q(m−
n )

2 − (m+
n − ǫ)2

2

]

+ (m+
ω+1 − qm−

ω+1 − ǫ)(m+
ω+1γω −m−

ω+1γω+1 − ǫγω)

+ (m−
ω+1 −m+

ω+1 + ǫ)

[

q
∑

n<ω+1

m−
n γn − q

∑

n<ω

(m+
n+1 − ǫ)γn

+
∑

n>ω+1

m−
n γn −

∑

n>ω

(m+
n+1 − ǫ)γn

]

+ (Nǫ−m+
c − qm−

c )(m
+
ω+1γω −m−

ω+1γω+1) + ǫzω(Nǫ−m+
c )− ǫ2zω. (F.22)

Combining with contribution from higher derivative z2ω∂
2
zω = (∇z

ω)
2 −∇z

ω, we find

ĥ3 =Ĥ3 + (1 + q)
Ĥ2

1− q

Ĥ1

1− q
+

1− q

6

(

Ĥ1

1− q

)3

− 2ǫ





1

2

(

Ĥ1

1− q

)2

+
Ĥ2

1− q





+ (Nǫ−m+
c )





1

2

(

Ĥ1

1− q

)2

+
Ĥ2

1− q



− (qm−
c )





1

2

(

Ĥ1

1− q

)2

−
Ĥ2

1− q



 (F.23)

−

[

q
∑

n>n′

m−
nm

−
n′

]

Ĥ1

1− q

+

[

∑

n>n′

(ǫ−m+
n )(ǫ−m+

n′)

]

Ĥ1

1− q
− ǫ(Nǫ−m+

c )
Ĥ1

1− q
+ ǫ2

Ĥ1

1− q
· · ·

And last for the constant term in Ĥ3:

∑

ω

(1− q)

[

(m+
ω+1)

3

3!
+

(m+
ω+1)

3

3

]

− (uω + qω+1uω+1)
(m+

ω+1)
3

2
+ qω+1uω+1(m

+
ω+1)

3 = 0.

(F.24)
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And constant term in ĥ3:

∑

ω1>ω2>ω3

(ǫ−m+
ω1
)(ǫ−m+

ω2
)(ǫ−m+

ω2
)− qm−

ω1
m−

ω2
m−

ω3
(F.25)

We arrive at our conclusion of eq. (5.48):

ĥ3 =Ĥ3 + (1 + q)
Ĥ2

1− q

Ĥ1

1− q
+

1− q

6

(

Ĥ1

1− q

)3

− 2ǫ





1

2

(

Ĥ1

1− q

)2

+
Ĥ2

1− q





+ (Nǫ−m+
c )





1

2

(

Ĥ1

1− q

)2

+
Ĥ2

1− q



− (qm−
c )





1

2

(

Ĥ1

1− q

)2

−
Ĥ2

1− q





+

[

∑

n>n′

(ǫ−m+
n )(ǫ−m+

n′)− qm−
nm

−
n′

]

Ĥ1

1− q
− ǫ(Nǫ−m+

c )
Ĥ1

1− q
+ ǫ2

Ĥ1

1− q

+
∑

ω1>ω2>ω3

(ǫ−m+
ω1
)(ǫ−m+

ω2
)(ǫ−m+

ω2
)− qm−

ω1
m−

ω2
m−

ω3
. (F.26)

G Calculation of the fourth Hamiltonian

We will demonstrate how it is required to consider both the fundamental and second order

qq-characters for the proper definition of the fourth Hamilton Ĥ4 as a differential operator.

We only write out the highest order derivative terms for which is enough for the illustration.

G.1 The fundamental qq-characters

To construct the fourth conserving Hamiltonian of normalized vev of the surface defect

Ψa,+, we the consider [x−3] coefficient of fundamental qq-character Xω(x) under large x

expansion

[

x−3
]

Xω(x) =
1

4!
δ4ω +

ǫ1
2!
δ2ωD

(1)
ω +

ǫ21
2!
D(1)

ω D(1)
ω + ǫ1D

(3)
ω + ǫ1δωD

(2)
ω + · · ·

+ qω

[

1

4!
δ4ω−1−

ǫ1
2
δ2ω−1D

(1)
ω−1+

ǫ21
2!
D

(1)
ω−1D

(1)
ω−1− ǫ1D

(3)
ω−1+ ǫ1δω−1D

(2)
ω−1+ · · ·

]

.

(G.1)

with δω = ǫ∇z
ω − aω+1 +m+

ω+1. By the non-perturbative Dyson-Schwinger equation

〈
[

x−3
]

Xω(x)〉 = 0. (G.2)

We only list out the highest derivative terms with · · · denoting the lower derivatives. Fourth

Hamiltonian of gauge theory is defined in (5.50)

Ĥ4 = (q− 1)

[

∑

ω

ǫ1
2
〈δ2ωDω〉

]

−
∑

ω

(uω + qω+1uω+1)

[

δ4ω
4!

+
ǫ21
2
〈D2

ω〉+ ǫ1〈δωD
(2)
ω 〉

]

+ · · ·

(G.3)
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G.2 Second order qq-character

To rewrite 〈D
(2)
ω 〉 into differential operators acting on Ψa,+, we use (F.3)

ǫ1〈D
(2)
ω − qωD

(2)
ω−1〉

= −
1

6
δ3ω − 〈ǫ1δωD

(1)
ω 〉+

a2ω+1

2
δω +

a3ω
3

− qω

[

−
δ3ω−1

6
+ 〈δω−1ǫ1D

(1)
ω−1〉 −

a2ω
2
δω−1 +

a3ω
3

− (m+
ω +m−

ω )

(

δ2ω−1

2
+
a2ω
2

+ 〈ǫ1D
(1)
ω−1〉

)

−m+
ωm

−
ω δω−1

]

:= ǫ1〈C
(2)
ω 〉. (G.4)

We solve out:

ǫ1〈D
(2)
ω 〉 =

ǫ1
1− q

[

〈C(2)
ω 〉+ qω〈C

(2)
ω−1〉+ · · ·+ qωqω−1 · · · qω−N+2〈C

(2)
ω−N+1〉

]

= −
1

6
δ3ω + 〈δωD

(1)
ω 〉+

2

q− 1

N−1
∑

n=0

qω · · · qω−n+1〈δω−nD
(1)
ω−n〉+ · · · (G.5)

To rewrite 〈(D
(1)
ω )2〉 as proper differential operator w.r.t. zω, we will need to consider

second order qq-character (5.54). We will consider [x−2] coefficient of X
(2)
ω1,ω2(x), whose

highest derivative terms are

[x−2]X (2)
ω1,ω2

(x) =D(3)
ω1

+D(3)
ω2

+
1

2
(Dω1 +Dω2)

2 + (δω1 + δω2)(D
(2)
ω1

+D(2)
ω2

) (G.6)

+
1

4!
(δω1 + δω2)

4 +
1

2
(δω1 + δω2)

2(D(1)
ω1

+D(1)
ω2

)

+ qω1Rω1,ω2(ν)

[

−D
(3)
ω1−1 +D(3)

ω2
+

1

2
(−D

(1)
ω1−1 +D(1)

ω2
)2

+ (−δω1−1 + δω2)(−D
(2)
ω1−1 +D(2)

ω2
)

+
1

4!
(−δω1−1 + δω2)

4 +
1

2
(−δω1−1 + δω2)

2(−D
(1)
ω1−1 +D(1)

ω2
)

]

+ qω2Rω2,ω1(−ν)

[

D(3)
ω1

−D
(3)
ω2−1

+
1

2
(D(1)

ω1
−D

(1)
ω2−1)

2 + (δω1 − δω2−1)(D
(2)
ω1

−D
(2)
ω2−1)

+
1

4!
(δω1 − δω2−1)

4 +
1

2
(δω1 − δω2−1)

2(D(1)
ω1

−D
(1)
ω2−1)

]

+ qω1qω2

[

−D
(3)
ω1−1 −D

(3)
ω2−1 +

1

2
(−D

(1)
ω1−1 −D

(1)
ω2−1)

2

+ (−δω1−1 − δω2−1)(−D
(2)
ω1−1 −D

(2)
ω2−1)

+
1

4!
(−δω1−1 − δω2−1)

4 +
1

2
(−δω1−1 − δω2−1)

2(−D
(1)
ω1−1 −D

(1)
ω2−1)

]

+ · · ·
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By the structure of Rω1,ω2(ν) in (5.55), we may take ν → ∞ such that Rω1,ω2(ν) = 1

for any {ω1, ω2}. Using (G.2):

0=

〈

D(3)
ω − qωD

(3)
ω +

1

2
(D2

ω + qωD
2
ω−1) +

1

2
(δ2ωDω − δ2ω−1Dω−1) +

1

4!
(δ4ω + qωδ

2
ω−1)

〉

+ · · ·

(G.7)

to simplify 〈[x−2]X
(2)
ω1,ω2〉. Define

Eω = D(1)
ω − qωD

(1)
ω−1. (G.8)

Now we have

0 = 〈Eω1Eω2 + (δω1 − qω1δω1−1)C
(2)
ω2

+ (δω2 − qω2δω2−1)C
(2)
ω1

+
1

2
(δ2ω1

+ qω1δ
2
ω1−1)Eω2 +

1

2
(δ2ω2

+ qω2δ
2
ω2−1)Eω1

+
1

6
(δω2 − qω2δω2−1)(δ

3
ω1

− qω1δ
3
ω1−1) +

1

6
(δω1 − qω1δω1−1)(δ

3
ω2

− qω2δ
3
ω2−1)

+
1

4
(δ2ω1

+ qω1δ
2
ω1−1)(δ

2
ω2

+ qω2δ
2
ω2−1)

+ (δω2 − qω2δω2−1)(δω1D
(1)
ω1

+ qω1δω1−1D
(1)
ω1−1)

+ (δω1 − qω1δω1−1)(δω2D
(1)
ω2

+ qω2δω2−1D
(1)
ω2−1) + · · · 〉 (G.9)

which can be decomposed into two parts

(δω1 − qω1δω1−1)

[

〈C(2)
ω2

〉+
1

6
(δ3ω2

− qω2δ
3
ω2−1) + 〈δω2D

(1)
ω2

〉+ qω2〈δω2−1D
(1)
ω2−1〉

]

+ (1 ↔ 2) + · · · (G.10a)

〈Eω1Eω2〉+
1

4
(δ2ω1

+ qω1δω1−1)(δ
2
ω2

+ qω2δω2−1) +
1

2
〈(δ2ω1

+ qω1δ
2
ω1−1)Eω2〉

+
1

2
〈(δ2ω2

+ qω2δ
2
ω2−1)Eω1〉+ · · · (G.10b)

From calculation of Ĥ3, we know on highest order derivatives 〈δω1Eω2〉 = 〈Eω2〉δω1 +

(δω1〈Eω2〉). Here we only considers highest order derivatives which gives

〈Eω1Eω2〉 = −
1

4
(δ2ω1

+ qω1δω1−1)(δ
2
ω2

+ qω2δω2−1)−
1

2
〈Eω2〉(δ

2
ω1

+ qω1δ
2
ω1−1)

−
1

2
〈Eω1〉(δ

2
ω2

+ qω2δ
2
ω2−1) + · · ·

= 〈Eω1〉〈Eω2〉+ · · · (G.11)

Multiplying matrix inverting D(1) → E relations we get

〈D(1)
ω1
D(1)

ω2
〉 = 〈D(1)

ω1
〉〈D(1)

ω2
〉+ · · · (G.12)

for all ω1, and ω2. In particular in our interests ω1 = ω2 = ω.
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G.3 Matching Hamiltonian at highest derivative

In highest order derivative 〈(D
(1)
ω )2〉 = 〈D

(1)
ω 〉2 + · · · , which consists δ4ω and δ2ωδ

2
ω′ . Such

derivative terms also come from δωD
(2)
ω . δ4ω, and δ

2
ωD

(1)
ω . We instead first deal with δ3ωδω′ ,

which only comes from δωD
(2)
ω :

−(uω + qω+1uω+1)
2q

(q− 1)2
− (uω′ + qω′+1uω′+1)

q+ 1

(q− 1)2
qω′ · · · qω+1. (G.13)

We notice that corresponding coefficients in q+1
q−1Ĥ3δ

z
c :

−
1 + q

6
+ (uω + qω+1uω+1)

1

2

(q+ 1)2

(q− 1)2
+ (uω′ + qω′+1uω′+1)

q+ 1

(q− 1)2
qω′ · · · qω+1. (G.14)

(D
(1)
ω )2 also lacks δ2ωδω′δω′′ , which also comes from δωD

(2)
ω :

ω′ > ω′′ > ω : −
2

q− 1

1

zω
(γω′ + γω′+1), (G.15a)

ω′′ > ω′ > ω : −
2q

q− 1

1

zω
(γω′ + γω′+1), (G.15b)

ω′ > ω > ω′′ : −
2q

q− 1

1

zω
(γω′ + γω′+1), (G.15c)

ω′′ > ω > ω′ : −
2q

q− 1

1

zω
(γω′ + γω′+1), (G.15d)

ω > ω′ > ω′′ : −
2q

q− 1

1

zω
(γω′ + γω′+1), (G.15e)

ω > ω′′ > ω′ : −
2q2

q− 1

1

zω
(γω′ + γω′+1), (G.15f)

In particular we notice from q+1
q−1Ĥ3δ

z
c :

ω′ > ω′′ > ω :
q+ 1

q− 1

1

zω
(γω′ + γω′+1), (G.16a)

ω′′ > ω′ > ω :
q+ 1

q− 1

1

zω
(γω′ + γω′+1), (G.16b)

ω′ > ω > ω′′ :
q+ 1

q− 1

1

zω
(γω′ + γω′+1), (G.16c)

ω′′ > ω > ω′ :
q2 + q

q− 1

1

zω
(γω′ + γω′+1), (G.16d)

ω > ω′ > ω′′ :
q2 + q

q− 1

1

zω
(γω′ + γω′+1), (G.16e)

ω > ω′′ > ω′ :
q2 + q

q− 1

1

zω
(γω′ + γω′+1), (G.16f)
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Fourth Hamiltonian of spin chain ĥ4:

ĥ4 =TrK
∑

ω1>ω2>ω3>ω4

(−µω1 + Lω1)(−µω2 + Lω2)(−µω3 + Lω3)(−µω4 + Lω4) (G.17)

=q
[

(−µω1 + ℓ0ω1
)(−µω2 + ℓ0ω2

)(−µω3 + ℓ0ω3
)(−µω4 + ℓ0ω4

)

+ ℓ−ω1
ℓ+ω2

(−µω3 + ℓ0ω3
)(−µ−ω4

+ ℓ0ω4
)

+ (−µω1 + ℓ0ω1
)ℓ−ω2

ℓ+ω3
(−µω4 + ℓ0ω4

) + ℓ−ω1
(−µω2 − ℓ0ω2

)ℓ+ω3
(−µω4 + ℓ0ω4

)

+ (−µω1 + ℓ0ω1
)(−µω2 + ℓ0ω2

)ℓ−ω3
ℓ+ω4

+ ℓ−ω1
ℓ+ω2

ℓ−ω3
ℓ+ω4

+ (−µω1 + ℓ0ω1
)ℓ−ω2

(−µω3 − ℓ0ω3
)ℓ+ω4

+ ℓ−ω1
(−µω2 − ℓ0ω2

)(−µω3 − ℓ0ω3
)ℓ+ω4

]

+
[

ℓ+ω1
(−µω2 + ℓ0ω2

)(−µω3 + ℓ0ω3
)ℓ−ω4

+ (−µω1 − ℓ0ω1
)ℓ+ω2

(−µω3 + ℓ0ω3
)ℓ−ω4

+ ℓ+ω1
ℓ−ω2

ℓ+ω3
ℓ−ω4

+ (−µω1 − ℓ0ω1
)(−µω2 − ℓ0ω2

)ℓ+ω3
ℓ−ω4

+ ℓ+ω1
(µω2 + ℓ0ω2

)ℓ−ω3
(−µω4 − ℓ0ω4

) + (−µω1 − ℓ0ω1
)ℓ+ω2

ℓ−ω3
(−µω4 − ℓ0ω4

)

+ ℓ+ω1
ℓ−ω2

(−µω3 − ℓ0ω3
)(−µω4 − ℓ0ω4

)

+ (−µω1 − ℓ0ω1
)(−µω2 − ℓ0ω2

)(−µω3 − ℓ0ω3
)(−µω4 − ℓ0ω4

)
]

.

The highest order derivative βω1βω2βω3βω4 , ω1 > ω2 > ω3 > ω4, has coefficient:

(γω1 − γω2)(γω2 − γω3)(γω3 − γω4)(qγω4 − γω1) (G.18)

Coefficients of ∂2ω∂
2
ω′ can be found by, ω > ω′:

zωzω′(γω − γω′+1)(qγω′ − γω+1). (G.19)

Coefficient of ∂ω1∂ω2∂ω3∂ω4 :

(1 + q)(γω1+1 − γω1)(γω2+1 − γω2)(γω3+1 − γω3)(γω4+1 − γω4) = (1 + q)zω1zω2zω3zω4 .

(G.20)

Coefficients of ∂2ω∂ω′∂ω′′ :

ω > ω′ > ω′′ : zωzω′zω′′ [q(γω′ + γω′+1)− q(γω′′ + γω′′+1)− (qγω − γω+1)] (G.21a)

ω′ > ω > ω′′ : zωzω′zω′′ [(γω′ + γω′+1)− q(γω′′ + γω′′+1)− (qγω − γω+1)] (G.21b)

ω′ > ω′′ > ω : zωzω′zω′′ [(γω′ + γω′+1)− (γω′′ + γω′′+1)− (qγω − γω+1)] (G.21c)

with

−qγω + γω+1 =
1 + q

2
(γω+1 − γω) +

1− q

2
(γω+1 + γω) = zω

[

1 + q

2
−

1

2
(uω + qω+1uω+1)

]

.

(G.22)

From D2
ω unrelated terms (δ3ωδω′ and δ2ωδω′δω′′), we find

ĥ4 = Ĥ4 +
q+ 1

q− 1
Ĥ3(δ

z
c ) +

1

2
Ĥ2(δ

z
c )

2 +
1 + q

4!
(δzc )

4 + · · · (G.23)
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For D2
ω related terms, the first one is δ4ω, whose coefficient in Ĥ4 is found to be

1 + q

8
−

1

8
(uω + qω+1uω+1)−

1

8

(

q+ 1

q− 1

)2

(uω + qω+1uω+1)

−
1

2

1

(q− 1)2

∑

n<ω

(un + qn+1un+1)
z2n
z2ω

−
1

2

1

(q− 1)2

∑

n>ω

(un + qn+1un+1)
q2z2n
z2ω

=
1 + q

8
−

1

4

(

1+ q+
∑

n>ω

2
zn
zω

+
∑

n<ω

2q
zn
zω

)

−
1

2

q

(q− 1)2

(

1+ q+
∑

n>ω

2
zn
zω

+
∑

n<ω

2q
zn
zω

)

−
1

2

1

(q− 1)2

∑

n<ω

(

1 + q+
∑

n′>n

2
zn′

zn
+
∑

n′<n

2q
zn′

zn

)

z2n
z2ω

−
1

2

1

(q− 1)2

∑

n>ω

(

1 + q+
∑

n′>n

2
zn′

zn
+
∑

n′<n

2q
zn′

zn

)

q2
z2n
z2ω

=−
q+ 1

(q− 1)2

[

(q+ 1)2

8
+

(1 + q)

4

(

∑

n>ω

2
zn
zω

+
∑

n<ω

2q
zn
zω

)

+
1

2

(

∑

n>ω

z2n
z2ω

+
∑

n<ω

q2
z2n
z2ω

)]

−
1

(q− 1)2

[

∑

n<ω

∑

n′>n

znzn′

z2ω
+
∑

n<ω

∑

n′<n

q
znzn′

z2ω
+
∑

n>ω

∑

n′>n

q2
znzn′

z2ω
+
∑

n>ω

∑

n′<n

q3
znzn′

z2ω

]

=−
1

8

q+ 1

(q− 1)2



(1 + q)2 + 2(1 + q)

(

∑

n>ω

2
zn
zω

+
∑

n<ω

2q
zn
zω

)

+

(

∑

n>ω

2
zn
zω

+
∑

n<ω

2q
zn
zω

)2




=−
1

2

q+ 1

(q− 1)2

[

uω+1 + qω+1uω+1

2

]2

. (G.24)

The coefficient of δ2ωδ
2
ω′ , with ω > ω′ reads:

1 + q

4
+

1

2

[

zω
zω′

+ q
zω′

zω

]

−
1

2
[(uω + qω+1uω+1) + (uω′ + qω′+1uω′+1)]

+
1

2

q+ 1

(q− 1)2
(uω + qω+1uω+1)

zω
zω′

+
1

2

q+ 1

(q− 1)2
(uω′ + qω′+1uω′+1)q

zω′

zω

+
1

(q− 1)2

∑

n 6=ω,ω′

(un + qn+1un+1)(qn · · · qω+1)(qn · · · qω′+1). (G.25)

We identify

ĥ4 = Ĥ4 + (1 + q)
Ĥ3

1− q

Ĥ1

1− q
+

1− q

2

Ĥ2

1− q

(

Ĥ1

1− q

)2

+
1 + q

4!

(

Ĥ1

1− q

)4

+
1 + q

2

(

Ĥ2

1− q

)2

+ · · · (G.26)

This agrees with highest derivative term in (5.34).
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