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Quantum State Optimization and 
Computational Pathway Evaluation 
for Gate-Model Quantum 
Computers
Laszlo Gyongyosi1,2,3

A computational problem fed into a gate-model quantum computer identifies an objective function with 
a particular computational pathway (objective function connectivity). The solution of the computational 
problem involves identifying a target objective function value that is the subject to be reached. A 
bottleneck in a gate-model quantum computer is the requirement of several rounds of quantum state 

preparations, high-cost run sequences, and multiple rounds of measurements to determine a target 
(optimal) state of the quantum computer that achieves the target objective function value. Here, we 
define a method for optimal quantum state determination and computational path evaluation for gate-
model quantum computers. We prove a state determination method that finds a target system state for 
a quantum computer at a given target objective function value. The computational pathway evaluation 
procedure sets the connectivity of the objective function in the target system state on a fixed hardware 
architecture of the quantum computer. The proposed solution evolves the target system state without 
requiring the preparation of intermediate states between the initial and target states of the quantum 

computer. Our method avoids high-cost system state preparations and expensive running procedures 
and measurement apparatuses in gate-model quantum computers. The results are convenient for gate-
model quantum computations and the near-term quantum devices of the quantum Internet.

Quantum computers1–10 utilize the fundamentals of quantum mechanics to perform computations11–19. For 
experimental gate-model quantum computer architectures and the near-term quantum devices of the quan-
tum Internet20–60, gate-based architectures provide an implementable solution to realize quantum computa-
tions2–4,9,10,23,61–85. In a gate-model quantum computer the operations are realized via a sequence of quantum gates, 
and each quantum gate represents a unitary transformation10,23,62–72,86–91. �e input of a quantum computer is a 
quantum system realized via several quantum states, and the unitaries of the quantum computer change the initial 
system state into a speci�c state9,10,62,63. �e output quantum system is then measured by a measurement array.

A computational problem fed into a quantum computer de�nes an objective function with a particular con-
nectivity (computational pathway)10. �e solution of this computational problem in the quantum computer 
involves identifying an objective function with a target value that is subject to be reached. To achieve the target 
objective function value, the quantum computer must reach a particular system state such that the gate parame-
ters of the unitary operations satisfy the target value. �ese optimal gate parameter values of the unitary opera-
tions of the quantum computer identify the optimal state of the quantum computer. �is optimal system state is 
referred to as the target system state of the quantum computer. Finding the target system state involves multiple 
measurement rounds and iterations, with high-cost system state preparations (Note, the term "quantum state 
preparation" in the current context refers to a quantum state determination method. It is because the aim of the 
proposed procedure is the determination of an optimal state of the quantum computer, i.e., the optimal values 
of the gate-parameters of the unitaries of the quantum computer, see also10), quantum computations, and meas-
urement procedures. �erefore, optimizing the determination procedure of the target system state is essential for 
gate-model quantum computers.
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Here, we de�ne a method for state determination and computational path evaluation for gate-model quantum 
computers. �e aim of state determination is to �nd a target system state for a quantum computer such that the 
pre-determined target objective function value is reached. �e aim of the computational path evaluation is to �nd 
the connectivity of the objective function in the target system state on the �xed hardware architecture10 of the 
quantum computer. To resolve these issues, we de�ne a framework that utilizes the theory of kernel methods92–102 
and high-dimensional Hilbert spaces. In traditional theoretical computer science, kernel methods represent a 
useful and low computational-cost tool in statistical learning, signal processing theory and machine learning. 
We prove that these methods can also be utilized in gate-model quantum computations for particular problems.

�e novel contributions of our manuscript are as follows: 

 1. We de�ne a method for optimal quantum state determination and computational path evaluation for near-
term quantum computers.

 2. �e proposed state determination method �nds a target system state for a quantum computer at a given target 
objective function value.

 3. �e computational pathway evaluation �nds the connectivity of the objective function in the target system 
state on the �xed hardware architecture of the quantum computer.

 4. �e proposed solution evolves the target system state of the quantum computer without requiring the prepara-
tion of intermediate system states between the initial and target states of the quantum computer.

 5. �e method avoids high-cost system state preparations, expensive running procedures and measurement 
rounds in gate-model quantum computers.

 6. �e results are useful for gate-model quantum computers and the near-term quantum devices of the quantum 
Internet.

�is paper is organized as follows. In Section 1, related works are summarized. Section 2 presents the problem 
statement. Section 3 discusses the results. Finally, Section 4 concludes the paper. Supplemental information is 
included in the Appendix.

Related Works
�e related works are summarized as follows.

Gate-model quantum computers. �e model of gate-model quantum computer architectures and the 
construction of algorithms for qubit architectures are studied in10. �e proposed system model of the work also 
serves as a reference for our system model. Some related preliminaries can also be found in62,63.

In9, the authors de�ned a gate-model quantum neural network. �e proposed system model is a quantum 
neural network realized via a gate-model quantum computer.

In61, the authors studied a gate-model quantum algorithm called the “Quantum Approximate Optimization 
Algorithm” (QAOA) and its connection with the Sherrington-Kirkpatrick (SK)103 model. �e results serve as a 
framework for analyzing the QAOA, and can be used for evaluating the performance of QAOA on more general 
problems.

�e behavior of the objective function value of the QAOA algorithm for some speci�c cases has been studied 
in74. As the authors concluded, for some �xed parameters and instances drawn from a particular distribution, the 
objective function value is concentrated such that typical instances have almost the same value of the objective 
function.

Further performance analyses of the QAOA algorithm can be found in76,77. Practical implementations con-
nected to gate-model quantum computing and the QAOA algorithm can be found in78,79.

In104, the authors studied methods quantum computing based hybrid solution methods for large-scale 
discrete-continuous optimization problems. �e results are straightforwardly applicable for gate-model quan-
tum computers. As the authors concluded, the proposed quantum computing methods have high computational 
e�ciency in terms of solution quality and computation time, by utilizing the unique features of both classical and 
quantum computers.

A recent experimental quantum computer implementation has been demonstrated in1. �e results of the work 
con�rmed the quantum supremacy2,3 of quantum computers over traditional computers in particular problems.

�e work of4 gives a summary on quantum computing technologies in the NISQ (Noisy Intermediate-Scale 
Quantum) era and beyond.

Quantum state preparation. In105, the authors studied the utilization of reinforcement learning in di�er-
ent phases of quantum control. �e authors studied the performance of reinforcement learning in the problem of 
�nding short, high-�delity driving protocol from an initial to a target state in non-integrable many-body quan-
tum systems of interacting qubits. As the authors concluded, the performance of the proposed reinforcement 
learning method is comparable to optimal control methods.

In106, the authors studied the question of e�cient variational simulation of non-trivial quantum states. �e 
results represent an e�cient and general route for preparing non-trivial quantum states that are not adiabatically 
connected to unentangled product states. �e system model integrates a feedback loop between a quantum sim-
ulator and a classical computer. As the authors concluded, the proposed results are experimentally realizable on 
near-term quantum devices of synthetic quantum systems.

In107, the problem of simulated quantum computation of molecular energies is studied. While, on a traditional 
computer the calculation time for the energy of atoms and molecules scales exponentially with system size, on a 
quantum computer it scales polynomially. �e authors demonstrated that such chemical problems can be solved 
via quantum algorithms using modest numbers of qubits.
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In108, the authors studied the modeling and feedback control design for quantum state preparation. �e work 
describes the modeling methods of controlled quantum systems under continuous observation, and studies the 
design of feedback controls that prepare particular quantum states. In the proposed analysis, the �eld-theoretic 
model is subjected to statistical inference and is ultimately controlled.

For an information theoretical analysis of quantum optimal control, see109. In this work, the authors studied 
quantum optimal control problems and the solving methods. �e authors showed that if an e�cient classical rep-
resentation of the dynamics exists, then optimal control problems on many-body quantum systems can be solved 
e�ciently with �nite precision. As the authors concluded, the size of the space of parameters necessary to solve 
quantum optimal control problems de�ned on pure, mixed states and unitaries is polynomially bounded from the 
size of the of the set of reachable states in polynomial time.

In110, the authors studied the complexity of controlling quantum many-body dynamics. As the authors found, 
arbitrary time evolutions of many-body quantum systems can be reversed even in cases when only part of the 
Hamiltonian can be controlled. �e authors also determined a lower bound on the control complexity of a 
many-body quantum dynamics for some particular cases.

System Model and Problem Statement
System model. Let QG be the quantum gate structure of a gate-model quantum computer, de�ned with L 
unitary gates, where an i-th, i = 1, …, L unitary gate θU ( )i i  is 

θ θ= −U i P( ) exp( ) , (1)i i i i

where Pi is a generalized Pauli operator formulated by the tensor product of Pauli operators X Y Z{ , , } , while θi is 
the gate parameter associated with θU ( )i i .

�e L unitary gates formulate a system state ∣ ⟩
��

θ  of the quantum computer, as 

∣ ⟩
��

θ θ θ θ= …− −U U U( ) ( ) ( ) , (2)L L L L1 1 1 1

where θU ( )i i  identi�es an i-th unitary gate and 
��

θ  is the collection of the gate parameters of the unitaries, de�ned as 

��

θ θ θ= … .( , , ) (3)L
T

1

The system state in (2) identifies a 
��

θU( ) unitary resulted from the product of the L unitary operations 

θ θ θ…− −U U U( ) ( ) ( )L L L L1 1 1 1  of the quantum computer. For an input quantum system ϕ , the ψ  output quantum 
system of QG is as 

∣ ⟩
��

��

ψ θ ϕ

θ ϕ

θ θ θ ϕ

=

=

= … .− −

U

U U U

( )

( ) ( ) ( ) (4)L L L L1 1 1 1

�e 
��

θf ( ) objective function subject to a maximization is de�ned as 

∣ ∣ ⟩
�� �� ��

θ θ θ=f C z( ) ( ) , (5)

where C z( )  identi�es a classical objective function10 of a computational problem, while z is a bitstring resulting 
from an M measurement.

�e C classical objective function represents the objective function of a computational problem P fed into the 
quantum computer. �e C objective function is a subject of maximization via the quantum computer. Objective 
function examples are the combinatorial optimization problems9, and the objective functions of large-scale pro-
gramming problems104, such as the graph coloring problem, molecular conformation problem, job-shop sched-
uling problem, manufacturing cell formation problem, and the vehicle routing problem104.

At a target value 
��

θ∗f ( ), 

∣ ∣ ⟩
�� �� �� ��

θ θ θ θ= =
∗ ∗ ∗ ∗ ∗f f C z( ) ( ) ( ) , (6)

the problems are therefore to �nd a 
��

θ∗ that reaches the target state ∣ ⟩
��

θ∗  of the quantum computer and to identify 

the optimal ∗C z( )  computational pathway for ∣ ⟩
��

θ∗ .

De�nition 1. (Computational pathway). �e connectivity of C z( )  de�nes a computational pathway as the sum of 

C z( )ij  objective function values evaluated between quantum states ij in the QG structure: 

∑= .

∈

C z C z( ) ( )

(7)ij QG

ij

�e C z( )  computational pathway between quantum states ij sets the connectivity of objective function in a given 
state ∣ ⟩

��

θ  of the quantum computer.
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De�nition 2. (Optimal computational pathway). �e ∗C z( )  optimal computational pathway of the quantum com-

puter is the computational pathway associated with the optimal (target) state ∣ ⟩
��

θ∗ . �e ∗C z( )  computational path-

way sets the connectivity of the objective function in the target state ∣ ⟩
��

θ∗  of the quantum computer.

De�nition 3. (Connectivity graph of the quantum hardware). �e G = V S( , )  connectivity graph refers to the 
�xed connectivity of the hardvare of the QG quantum gate structure, where the v ∈ V nodes are quantum systems, 
while the s ∈ S edges are the connections between them. An edge si,j with index pair i j( , )  identi�es a physical 
connection between quantum systems vi and vj.

Problem statement. �e problem statement is given in Problems 1 and 2, as follows.

Problem 1. (Target state determination of the quantum computer). For a given target objective function value 
��

θ∗f ( ), 

�nd the ∣ ⟩
��

θ∗  target state of the quantum computer from an initial state ∣ ⟩
��

θ0  and an initial objective function 
��

θf ( )0 .

Problem 2. (Computational path of the quantum computer in the target state). Determine the connectivity of the 

objective function ∗C z( )  of 
��

θ∗f ( ) for the target quantum state ∣ ⟩
��

θ∗  of the quantum computer.
Our solutions for Problems 1 and 2 are proposed in �eorems 1, 2, and Lemma 1.

Results
Evaluation of the target state of the quantum computer. 
�eorem 1. (Target system state evaulation). �e ∣ ⟩

��

θ∗  system state associated with the 
��

θ∗f ( ) target objective func-
tion can be evaluated from an initial state ∣ ⟩

��

θ0  via a decomposition of the initial objective function 
��

θf ( )0 .

Proof. Let 
��

θf ( )0  be the initial objective function value associated with ∣ ⟩
��

θ0  and with gate parameters 
��

θ0. �e 
��

θf ( )0  
value can be rewritten as 

�� ��

θ θ χ=f ( ) ( ) , (8)
T

0 0

where χ is a vector of regression coe�cients being evaluated via a K kernel machine (see (33)), while 
��

θ0 is decom-
posed as 

�� ��

θ θ= +F F U( ) ( ) , (9)0 0

where 
��

θF( )0  and F U( )  are orthogonal components, such that 
��

θF( )0  depends on the actual objective function value, 
while F U( )  is a component independent from the current value of the objective function (i.e., F U( )  is a �xed 

component for an arbitrary 
��

θ ) that lies in the null space. Since 
��

θ0 and 
��

θf ( )0  are known, the χ regression coe�cient 
vector can be determined from (8).

Using (9), the initial objective function in (8) can be rewritten at a particular χ as 

�� ��

θ θ χ= +f F F U( ) ( ( ) ( )) , (10)
T

0 0

where the 
��

θF( )0  component is evaluated at a given χ as 

�� ��

θ χ θ=
+F f( ) ( ), (11)0 0

where + is the Moore–Penrose pseudoinverse92,102. Since F U( )  has no dependence on the actual system state, it 
can be expressed from (9) and (11) as 

�� ��

θ θ= − .F U F( ) ( ) (12)0 0

�en, let 
��

θ∗ be the parameter vector associated with the target state ∣ ⟩
��

θ∗  of the target objective function 
��

θ∗f ( ).

Applying the same decomposition steps for the target 
��

θ∗f ( ), the component 
��

θ∗F( ) at a given χ is 

�� ��

θ χ θ= .
∗ + ∗F f( ) ( ) (13)

�erefore, the target vector 
��

θ∗ can be rewritten via (13) and (12) as 

�� �� �� �� ��

θ θ θ χ θ χ θ= + = + − .
∗ ∗ + ∗ +F F U f f( ) ( ) ( ( ) ( )) (14)0 0

Using the 
��

θ∗ gate parameters in (14), the target system state ∣ ⟩
��

θ∗  can be built up to achieve the target objective 

function 
��

θ∗f ( ). �e target system state ∣ ⟩
��

θ∗  of a given 
��

θ∗f ( ) is therefore evolvable from the initial values 
��

θ0, 
��

θf ( )0 , 
and χ that can be computed from (8).

Algorithm 1 summarizes the steps of the target system state evolution method. ■
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�e results on the determination of the connectivity of the objective function in the target state are included 
in �eorem 2.

Connectivity of the objective function in the target state. 
�eorem 2. (Connectivity of the objective function in the target state). �e i j( , )  pairs of the si,j edges of G, 

∀ si,j ∈ S, in a target objective function = ∑
∗

∀ ∈
∗C z C z( ) ( )s S si j i j, ,

 associated to 
��

θ∗f ( ) can be determined from 
��

θ∗, 

where ∗C z( )si j,
 is an objective function component associated to si,j.

Proof. Let G = V S( , )  be the connectivity graph10 associated with the QG quantum gate structure of the quantum 

computer (see De�nition 3), and let 
��

θ∗ be evaluated as given in (14). Let X be the input space and let K be a ker-
nel machine, de�ned for a given X∈x y,  via kernel function88, as 

K = Γ Γx y x y( , ) ( ) ( ) , (15)
T

where 

X HΓ →: (16)

is a nonlinear map from X to the high-dimensional Reproducing Kernel Hilbert Space (RKHS) H associated 
with K. Without loss of generality, 

H Xdim( ) dim( ) , (17)

and we assume that the map Γ in (16) has no inverse.

�e connectivity of the objective function and the pairwise connectivity of the quantum computer’s hardware are 
not related, since these connections are represented in di�erent layers10. While the physical-layer connectivity is 
determined by the QG quantum gate structure of the �xed quantum hardware, the connectivity of the C z( )  objec-
tive function is determined in the logical-layer that formulates a computational pathway. As a corollary, the pro-
posed algorithm works on �xed quantum hardware and iterates in the logical layer to determine the connectivity 
of the objective function such that the objective function is maximized.

Let 
��

κ  be the vector of si,j edges, ∀ si,j ∈ S, and let 
��

Ω be the vector of the actual C z( )si j,
 objective function values 

associated with the si,j edges. �e initial computational path of the quantum computer is therefore 

∑ ∑= Ω =

κ

κ

∀ ∈

C z C z( ) ( ) ,

(18)s S

s

i

i

i j

i j

,

,

where κi and Ωκi
 identify the i-th elements of 

��

κ  and 
��

Ω, respectively.

�en, let ϒ0 be an element of the input space X, de�ned as 

��

��

κϒ = Ω( , ) , (19)
T

0

and let τ0 be the map of ϒ0 in H, as 

��

τ λθ= Γ ϒ =( ) , (20)0 0 0

where λ is a matrix of eigenvectors associated with the edge and objective function values in ∣ ⟩
��

θ0 .

�en, let ϒ* be the target element in X subject to be determined, 

�� ���

κϒ = Ω
∗ ∗ ∗( , ) , (21)T

where 
��

κ∗ and 
���

Ω
∗ are target vectors that identify the connectivity of the ∗C z( )si j,

 objective function values in the 

target state ∣ ⟩
��

θ∗ , such that the ∗C z( )  computational path can be evaluated as 

Algorithm 1. System state evolution of the quantum computer for a target objective function.
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∑ ∑= Ω =

κ

κ
∗ ∗

∀ ∈

∗

∗

∗C z C z( ) ( ) ,

(22)s S

s

i

i

i j

i j

,

,

where κ ∗i  and Ωκ
∗
∗

i
 refer to the i-th elements of 

��

κ∗ and 
���

Ω
∗, respectively.

�en, let τ* be the map of the target Xϒ ∈
∗  in H, de�ned as 

��

τ λ θ= Γ ϒ =
∗ ∗ ∗ ∗( ) , (23)

where λ* is a matrix of eigenvectors associated with the edge and objective function values in state ∣ ⟩
��

θ∗ .

Since (23) is linear, in the ∣ ⟩
��

θ∗  state, the maps 
��

κΓ( )  and 
��

Γ Ω( )  of 
��

κ∗ and 
���

Ω
∗, can be rewritten as 

��

��

κ µθΓ =
∗( ) (24)

and 

�� ��

νθΓ Ω =
∗( ) (25)

with 

λ µ ν= .
∗ ( , ) (26)

T

Since (23) can be evaluated from (20) in H, the task here is therefore to identify ϒ* in X from τ*. As ϒ* is deter-

mined, the target vectors 
��

κ∗ and 
���

Ω
∗ for the target objective function in (22) are also found.

Since the map Γ in (16) has no inverse, �nding ϒ* in X from τ* de�nes an ill-posed problem93,94,99–101. In this 
setting, the determination of ϒ* from τ*, requires the use of a P projector on τ0(20) in H, which yields a P τ( )0  
element in H. If τ* lies in (or close to) the span of Γ ϒ{ ( )}i , where ϒi is an i-th training data, Xϒ ∈i , from a train-
ing set S

X
 of N training data, 

S
X
= ϒ … ϒ{ , , } , (27)N1

then τ* can be represented as a linear combination of the training data93–95. As a corollary, P τ( )0  yields a close 
approximation of τ* in H: 

Pτ τ≈ .
∗ ( ) (28)0

�e P τ( )0  projection is de�ned as 

P ∑τ β=

=

V( ) ,
(29)i

n

i i0

1

where Vi is a matrix of normalized eigenvectors of K, while βi-s are projections as 

K∑β α= ϒ ϒ

=

∗( , ) ,

(30)
i

j

N

j
i

j

1

while αi is an i-th coe�cient in the eigenvector V as 

∑α τ=

=

V ,
(31)i

N

i i

1

where τi is the map of training data ϒi, as 

τ = Γ ϒ .( ) (32)i i

�en, based on (30) and (31), a j-th component of χ from (8), χ χ= ={ }
j j
N

1
, can be determined as 

K ∑χ α= ϒ ϒ

=

∗( , ),
(33)

j
i

N

i
j

i

1

where ϒi is a training data from a training set S
X
 , such that the constraint92,93 of 
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S
X
 ∑µ Γ = Γ ϒ =

=
N

( ( ))
1

( ) 0

(34)j

N

j

1

holds for S
X
 , where S

X
µ Γ( ( )) is the mean of the Γ-mapped training points S

X
 , while αi

j is an i-th coe�cient of 
a j-th eigenvector Vj, 

  ∑α= Γ ϒ .

=

V ( )
(35)

j

i

N

i
j

i

1

As it can be proven92–94, the constraint in (34) satis�ed, if the relation of 

⟨ ⟩
��

�� ��

α λα=K N , (36)

holds for a particular training set S
X

, where 
��

α is the set of eigenvectors of 
��

K  with eigenvalues λ, while ⟨ ⟩
��

K  is the 
centered kernel matrix of K, de�ned as 

⟨ ⟩ I I I I
�� �� �� �� ��

= − − +K K K K K , (37)

where 
��

K  is the kernel matrix of K, while I is as 

I
��

= −I J , (38)

where I is the identity matrix, while 
��

J  is an N × N matrix of ones.

�erefore, χ from (8) can be determined via the use of ⟨ ⟩
��

K  in (36) for a given S
X

, which guarantees that (34) is 
satis�ed, i.e., the S

X
Γ( )  mapped training data have zero mean that allows us to evaluate χ in an exact form.

�e goal of projection P is to minimize the Pτ τ∗f ( , ( ))
d 0  distance in H, where 

P P P   τ τ τ τ τ= − = Γ ϒ − .
∗ ∗ ∗f ( , ( )) ( ) ( ) ( ) (39)d 0 0

2
0

2

�us, at a given (29) and (39), the term in (21) can be rewritten as an optimality criteria 

P

X

τ τϒ = .
∗

ϒ ∈

∗

∗

farg min ( , ( ))
(40)d 0

By introducing a non-negative regularization parameter Φ93 to weight the distance of  ϒ − ϒ
∗

0
2, the result in 

(39) at a given Xϒ ∈0  can be rewritten as 

P

P

K K

� � � �

ℓ∑

τ τ

τ

ζ

= Γ ϒ − + Φ ϒ − ϒ

= ϒ ϒ − ϒ ϒ

+ Φ ϒ ϒ + ϒ ϒ − ϒ ϒ +

∗

∗ ∗

∗ ∗

=

∗

∗ ∗ ∗

f ( , ( ))

( ) ( )

( , ) 2 ( , )

(( ) ( ) 2 ) , (41)

d

i

N

i i

T T

0

0
2

0
2

1

0 0 0

where ζ refers to terms independent of ϒ*, while ℓi is de�ned as 

 ∑β α=

=

,
(42)

i

k

n

k i
k

1

where n is associated to the projection P τ( )0 , since τ0 is projected to the subspace spanned by the �rst n eigenvec-
tors V1, …, Vq.

�e result in (41) can be simpli�ed by removing all terms independent of ϒ*, such that Pτ τ∗f ( , ( ))
d 0  can be min-

imized for arbitrary K, as 

P K

K∑

τ τ = ϒ ϒ

− ϒ ϒ + Φ ϒ ϒ − ϒ ϒ

∗ ∗ ∗

=

∗ ∗ ∗ ∗

f ( , ( )) ( , )

2 ( , ) (( ) 2 ),
(43)

d

i

N

i i
T

0

1

0

where 
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K τ τϒ ϒ = Γ ϒ Γ ϒ = .
∗ ∗ ∗ ∗ ∗ ∗( , ) ( ) ( ) ( ) (44)T T

At a P τ( )0  with relation (43), ϒ* is determined as follows. Using (43) with an arbitrary K, ϒ* can be evaluated as 

P
K∑

τ τ
ϒ =

+ Φ
ϒ ϒ ϒ + Φϒ

∗

∗

=

∗1

( )
( , ) ,

(45)i

N

i i i
0 1

0

where the Φ regularization coe�cient achieves the stability of ϒ*, while 

P P K∑τ τ = Γ ϒ Γ ϒ = ϒ ϒ
∗ ∗

=

∗( ) ( ) ( ( )) ( , ),
(46)i

N

i i0 0

1

where P τ( )0  is de�ned in (29).

�en let K′ be the derivative of K such that it formulates the gradient with respect to ϒ* as 

P

K

f( ( , ( )))

( , )( ) ( )
(47)

d

i

N

i i i

0

1

0∑

τ τ∇

= ′ ϒ ϒ ϒ − ϒ + Φ ϒ − ϒ .

ϒ
∗

=

∗ ∗ ∗

∗

As follows, for a 
��

θ∗, the target 
��

κ∗ and 
���

Ω
∗ can be determined for an arbitrary K via a stable solution ϒ*(45), such 

that 
��

κ∗ contains the i j( , )  pairs of the si,j edges for ∗C z( )si j,
, while 

���

Ω
∗ identi�es the values of ∗C z( )si j,

 in ∣ ⟩θ∗ .

�e proof is concluded here. ■

Computational pathway of the optimal state of the quantum computer. 
Lemma 1. �e ∗C z( )  computational pathway of the optimal quantum state ∣ ⟩

��

θ∗  can be determined for an arbitrary 
K.

Proof. To construct an iteration method for the determination of ∣ ⟩
��

θ∗  via ϒ*, some preliminary conditions are set 
as follows. For the P τ( )0  projection, we set the condition 

P


τ ≠( ) 0, (48)0

therefore 

Pτ τ > .
∗ ( ) 0 (49)0

�en, let ε ϒ∗( )  be the extremum of ϒ* de�ned94,95 as 

∑
∑

ε
σ

σϒ = ϒ
∗( )

1
,

(50)j j
i i i

where 

Kσ ε= ′ ϒ ϒ .
∗( ( ) , ) (51)i i i

�e gradient with respect to ε ϒ∗( )  is 

Pε τ∇ Γ ϒ = .ε ϒ
∗

∗ f( ( ( ( )), ( ))) 0 (52)d( ) 0

As K is smooth, it can be shown that the condition of (49) always holds, since there is a neighborhood of the 
extremum93,94 of Pε τΓ ϒ

∗f ( ( ( )), ( ))
d 0 .

To provide the stability of ϒ∗i  in an i-th iteration step, we utilize the Φ regularization coe�cient from (43) for the 
evaluation ϒ∗i , and for the computation the ⋅f ( )

d
i( )  is the distance function associated to an i-th iteration step.

�e steps are given in Algorithm 2. ■
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Conclusions
Gate-model quantum computers represent an implementable way for near-term experimental quantum compu-
tations. �e resolution of a computational problem fed into a quantum computer can be modeled via reaching the 
target value of an objective function. �e objective function is determined by the actual computational problem. 
To satisfy the target objective function value, a quantum computer must reach a target system state. In the target 
system state, the gate parameters of the unitaries pick up values that set the objective function into the target 
value. Finding the target system state is a challenge that requires several rounds of measurement and system 
state preparations via the quantum computer. Here, we proved that the target state of the quantum computer can 
be evaluated from an initial system state and an initial objective function. �e solution signi�cantly reduces the 
cost of objective function evaluation, since the proposed method requires no the preparation of intermediate 
system states via the quantum computer between the initial and target system states. We de�ned a method for the 
evaluation of the computational path of the quantum computer for the target state, and an algorithm to solve the 
computational path problem in an iterative manner.
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