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Abstract. We present a new version of integration of time-adapted processes with respect

to creation, annihilation and conservation processes on the full Fock space. Among the new

features, in the first place, there is a new formulation of adaptedness which is both simpler and

more general than the known ones. The new adaptedness allows for processes which are not

restricted to be elements of some norm closure of the ∗-algebra which is generated by the basic
creation processes.

1. Introduction. In Kümmerer, Speicher [5] and Speicher [8] a theory of integration

with respect to the basic noise processes on the full Fock space was introduced. (See also

Fagnola [3] where the calculus is treated by generalizing the methods of Accardi, Fagnola,

Quaegebeur [1].) In these notes we present a new treatise of a quantum stochastic calculus

on the full Fock space. Our motivation to return to this subject is to find a calculus on

the full Fock module which is the analogue of the full Fock space in the category of

Hilbert modules; see [2, 6]. Since we are restricted in space to few pages, we decided

to restrict ourselves to the case of Hilbert spaces and publish the more general case

separately in [7]. We emphasize, however, that any definition and statement in these

notes generalizes literally to Hilbert modules. But also in the case of Hilbert spaces our

method has sufficiently interesting new features.

In the case of the calculus on the boson Fock space Γ(H) over a Hilbert space H

adaptedness is defined by means of the functorial property Γ(G⊕H) = Γ(G)⊗Γ(H); see

[4]. An operatorA on Γ(G⊕H) is adapted to the “past”G, if it is of the form (AG⊗id) for a

suitable operatorAG on Γ(G). We find an analogue decomposition F(G⊕H) = F(G)⊗FH

for the full Fock space where, however, FH is not just the full Fock space F(H) to the

“future” H ; see Equation (2). Like in the Bose case an operator on F(G⊕H) is adapted, if
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it is of the form (AG⊗id) for some AG ∈ F(G). Like the new definition of adaptedness our

whole theory does not rely on processes being contained in a closure of what is generated

by basic creation and annihilation processes with respect to a suitable norm.

On the other hand, we restrict ourselves to processes which are continuous in the

∗-strong topology. (Recall that the ∗-strong topology on B(H) is given by the families

T 7→ ‖Tx‖ , T 7→ ‖T ∗x‖ (x ∈ H) of semi-norms. Observe that B(H) is complete in the

∗-strong topology.) This restriction has the advantage that we are concerned exclusively

with vector-valued Riemann integrals of continuous functions. If one wishes to do so, our

results may be extended in ∗-strong topology to step functions. This together with the

estimate in Lemma 4.3 can be used as a basis for an extension of our theory to more

general classes of processes which may approximated by step functions.

Our treatment contains the case of arbitrary many degrees of freedom. In other words,

we consider the full Fock space over L2(R, H) with H being an arbitrary Hilbert space.

This is more general than [5, 8] whereH = C. Our results extend easily to the “projective

tensor product” of the space of processes and the space of differentials; see [7] for details.

Unlike in [3], our theory does not rely on an explicit orthonormal basis ofH . On the other

hand, we do not consider unbounded coefficients; see [3]. Due to the lack of space we also

do not investigate quantum stochastic differential equations. This topic is contained in

[7]. We do not consider an initial space, because this case is contained and generalized

considerably in the case of Hilbert modules; see [7]. Also for reasons of space we leave

the proof of the Ito formula (Equation (8)) a little bit undetailed.

In Section 2 we define the full Fock space and spaces of operators relevant to us. We

consider the norm ‖·‖1 introduced in [5] as one of the most fundamental ideas which

plays a crucial role also for us. The norm ‖·‖1 is based on the natural graduation of

F(H). A more detailed analysis of this property can be found in [7]. In Section 3 we

define adaptedness and study the algebraic consequences which lie at the heart of Ito’s

formula. Section 4 introduces the relevant spaces of processes. We define a generalized

conservation integral and prove Ito’s formula for this integral. In Section 5 we show that

our generalized conservation integral splits into four cases which precisely correspond to

the creation, the annihilation, the usual conservation and the time integral. Our single

Ito formula is shown to contain the full 4× 4-Ito table for these four types of integrals.

2. Operators on full Fock space

Definition 2.1. Let H be a Hilbert space. Then the full Fock space over H is the

Hilbert space

F(H) =

∞
⊕

n=0

H⊗n

where H⊗0 = CΩ and Ω is the vacuum. The vacuum expectation E0:B(F(H)) → C is

the state defined by E0(A) = 〈Ω, AΩ〉.
F(H) has a natural graded vector subspace which is given by the vector space direct

sum over the homogeneous subspaces H(n) = H⊗n (n ∈ N0). Also the elements of H(n)

are called homogeneous. We define the Banach space F1(H) to be the Banach space L1-
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direct sum of all the H(n). This means F1(H) consists of all families
(

x(n)
)

n∈Z
(x(n) ∈

H(n)) for which ‖x‖1 =
∑

n∈Z
‖x(n)‖ < ∞. Since ‖x‖ ≤ ‖x‖1, we have F1(H) ⊂ F(H).

Definition 2.2. For n ∈ Z we denote by B(n) ⊂ B(F(H)) the space consisting of

all operators with offset n in the number of particles , i.e. A(n) ∈ B(n), if A(n)(H⊗m) ⊂
H⊗(m+n) (where we set H⊗m = {0} for m < 0). Also B(F(H)) has a natural graded vec-

tor subspace B0 with B(n) (n ∈ Z) being the homogeneous subspaces. Any A ∈ B(F(H))

allows a (strong) decomposition into A =
∑

n∈Z
A(n) with A(n) ∈ B(n). We define

the Banach space B1 as the space consisting of all A ∈ B(F(H)) for which ‖A‖1 =
∑

n∈Z
‖A(n)‖ < ∞. Again, we have ‖A‖ ≤ ‖A‖1, so that B1 ⊂ B(F(H)).

A bilinear mapping j:B0 × B0 → B0 is called even, if j(B(n),B(m)) ⊂ B(n+m).

Obviously, B(n)B(m) ⊂ B(n+m) so that the multiplication on B0 is an even mapping.

Notice also that B(n)∗ ⊂ B(−n). Clearly, also B(n) is ∗-strongly complete.

Lemma 2.3 ([5]). Let j:B0 × B0 → B0 be an even bilinear mapping and M > 0 a

constant such that

‖j(A,B)‖ ≤ M ‖A‖ ‖B‖ (1)

for all homogeneous elements A,B ∈ B0. Then j extends to a (unique) bilinear mapping

B1 ×B1 → B1, also denoted by j, such that (1) is fulfilled for all A,B ∈ B1. An analogue

statement is true for even multi-linear mappings.

P r o o f. We show that (1) extends to arbitrary A,B ∈ B0. (Of course, such a mapping

j extends by means of continuity to a unique bilinear mapping on B1 × B1 also fulfilling

(1).) Indeed,

‖j(A,B)‖ =
∥

∥

∥

∑

n∈Z

∑

m∈Z

j(A(m), B(n−m))
∥

∥

∥
≤ M

∑

n∈Z

∑

m∈Z

‖A(m)‖ ‖B(n−m)‖

= M ‖A‖ ‖B‖ .

Corollary 2.4 ([5]). B1 is a Banach ∗-algebra.
Lemma 2.5. Let

(

jλ
)

λ∈Λ
be an increasing net of even bilinear mappings jλ:B1×B1 →

B1 all fulfilling (1) with a constant M > 0 which is independent of λ. Furthermore,

suppose that for homogeneous A and B the net jλ(A,B) converges ∗-strongly (of course,

to a homogeneous element in B0). Then jλ(A,B) converges ∗-strongly to an element

j(A,B) in B1 for all A,B ∈ B1 where j is the extension to B1 × B1 of the mapping

(A,B) 7→ limλ jλ(A,B) on B0 ⊗ B0 according to Lemma 2.3. As in Lemma 2.3 the

statements remain true for even multi-linear mappings.

P r o o f. Let A,B ∈ B1, X 6= 0 in F(H) and ε > 0. We may choose A0, B0 ∈ B0 such

that

‖jλ(A,B)− jλ(A0, B0)‖ <
ε

3 ‖X‖ and ‖j(A,B)− j(A0, B0)‖ <
ε

3 ‖X‖
for all λ ∈ Λ. Furthermore, choose λ0 ∈ Λ such that

‖j(A0, B0)X − jλ(A0, B0)X‖ <
ε

3
and ‖j(A0, B0)

∗X − jλ(A0, B0)
∗X‖ <

ε

3
for all λ ≥ λ0.



372 M. SKEIDE

Rema r k 2.6. We mention without proof that Lemmata 2.3 and 2.5 remain true for

B1-valued multilinear mappings on the spaces P1 and A1 of processes to be introduced

in Section 4.

Definition 2.7. Let x ∈ H . The creation operator (or creator) ℓ∗(x) on F(H) is

defined by setting

ℓ∗(x)xn ⊗ · · · ⊗ x1 = x⊗ xn ⊗ · · · ⊗ x1.

The annihilation operator (or annihilator) is the adjoint operator, i.e.

ℓ(x)xn ⊗ · · · ⊗ x1 = 〈x, xn〉xn−1 ⊗ · · · ⊗ x1

for n ≥ 1 and 0 otherwise.

Let T ∈ B(H). The conservation operator (or conservator) p(T ) on F(H) is defined

by setting

p(T )xn ⊗ · · · ⊗ x1 = (Txn)⊗ xn−1 ⊗ · · · ⊗ x1

for n ≥ 1 and 0 otherwise.

Proposition 2.8. We have ℓ∗(x) ∈ B(1), p(T ) ∈ B(0) and ℓ(x) ∈ B(−1). The map-

pings x 7→ ℓ∗(x) and T 7→ p(T ) depend linearly on their arguments. The mapping

x 7→ ℓ(x) depends anti-linearly on its argument.

We have ‖ℓ∗(x)‖ = ‖ℓ(x)‖ = ‖x‖ and ‖p(T )‖ = ‖T ‖.
We have

p(TT ′) = p(T )p(T ′) and p(T ∗) = p(T )∗

so that T 7→ p(T ) defines an injective homomorphism of C∗-algebras. Finally, we have

the relations

p(T )ℓ∗(x) = ℓ∗(Tx) ℓ(x)p(T ) = ℓ(T ∗x) ℓ(x)ℓ∗(x′) = 〈x, x′〉.
P r o o f. Obvious.

Definition 2.9. For X ∈ H⊗n we define the generalized creator L∗(X) ∈ B(n) by

L∗(X)xm ⊗ . . .⊗ x1 = X ⊗ (xm ⊗ . . .⊗ x1) ∈ H⊗n ⊗H⊗m ∼= H⊗(n+m) ⊂ F(H).

We define the generalized annihilator L(X) ∈ B(−n) to be the adjoint of L∗(X), i.e.

L(X)xn+m ⊗ . . .⊗ x1 = 〈X, xn+m ⊗ . . .⊗ xm+1〉xm ⊗ . . .⊗ x1

and L(X)H⊗m = {0}, if m < n.

Proposition 2.10. Let X ∈ H⊗n. We have ‖L∗(X)‖ = ‖L(X)‖ = ‖X‖. For T ∈
B(H) we have

p(T )L∗(X) = L∗(p(T )X)

where we consider X also as an element of F(H). Moreover , for Y ∈ H⊗m we have

L(X)L∗(Y ) = L∗(L(X)Y ) or L(X)L∗(Y ) = L(L(Y )X)

depending on wether n < m or n > m. For n = m we have

L(X)L∗(Y ) = 〈X,Y 〉.
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P r o o f. Clear.

R ema r k 2.11. The definitions of L∗(X) and L(X) extend easily to elements X ∈
F1(H), because ‖L∗(X)‖1 = ‖L(X)‖1 = ‖X‖1. In particular, we find for A ∈ B1 that

‖L∗(AΩ)‖ ≤ ‖L∗(AΩ)‖1 = ‖AΩ‖1 ≤ ‖A‖1 so that L∗(AΩ) is a well-defined element of

B1 ⊂ B(F(H)). It is not difficult to see that L∗(X) is not necessarily a bounded operator

when X is an arbitrary element of F(H).

Corollary 2.12. Let At ∈ B1 such that t 7→ At is strongly continuous. Then both

mappings t 7→ L∗(AtΩ) and t 7→ L(AtΩ) are ‖·‖1-continuous.

3. Adaptedness

Proposition 3.1. Let G,H be Hilbert spaces. Then

F(G⊕H) ∼= F(G) ⊗ (CΩ ⊕ (H ⊗F(G⊕H))) (2)

in a canonical way.

P r o o f. Let n,m ≥ 0, xi ∈ G (i = 1, · · · , n), y ∈ H ,zj ∈ G ⊕H (j = 1, · · · ,m). It

is easily checked that the mapping sending (xn ⊗ . . . ⊗ x1) ⊗ (y ⊗ zm ⊗ . . .⊗ z1) on the

right-hand side to xn ⊗ . . . ⊗ x1 ⊗ y ⊗ zm ⊗ . . . ⊗ z1 on the left-hand side (and sending

(xn ⊗ . . .⊗ x1)⊗Ω to xn ⊗ . . .⊗ x1 and Ω⊗ (y⊗ zm ⊗ . . .⊗ z1) to y⊗ zm ⊗ . . .⊗ z1) and,

of course, sending Ω⊗ Ω to Ω) extends as an isometry onto F(G⊕H).

Definition 3.2. An operator A in B(F(G⊕H)) is called adapted to G, if there is a

(unique) AG ∈ B(F(G)) such that A = (AG ⊗ id) in the decomposition according to (2).

R ema r k 3.3. The set of all operators adapted to G is precisely B(F(G)) ⊗ id ∼=
B(F(G)). The identification is, indeed, the canonical one. In particular, the creator

ℓ∗(x) ∈ B(F(G)) (x ∈ G) embedded via (ℓ∗(x) ⊗ id) into B(F(G ⊕ H)) coincides with

the creator ℓ∗(x) ∈ B(F(G⊕H)) where now x is considered as an element of G⊕H . The

∗-algebra generated by all creators to elements x ∈ G is strongly dense in B(F(G)) so

that we may identify the ∗-subalgebra of B(F(G⊕H)) consisting of all operators adapted

to G with the strong closure of the ∗-algebra generated by all creators on F(G ⊕H) to

elements in G ⊂ G⊕H .

Under the above isomorphism also the Banach ∗-algebra B1 ⊂ B(F(G)) coincides

(isometrically in ‖·‖1) with the Banach ∗-algebra of all elements in B1 ⊂ B(F(G ⊕H))

which are adapted to G.

Corollary 3.4. Let x ∈ G, T ∈ B(G) and X ∈ F1(G). Then ℓ∗(x), ℓ(x), p(T ),

L∗(X) and L(X) are adapted to G. Also the identity is adapted. Moreover , whenever

L∗(X) ∈ B1 is adapted to G then X ∈ F1(G).

Lemma 3.5. Let A ∈ B1 be adapted to G and T in B(H). Then

Ap(T ) = L∗(AΩ)p(T ) (3)

and

p(T )A = p(T )L(A∗Ω). (4)
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P r o o f. It is sufficient to prove (3), because (4) follows by considering the adjoint of

(3). Now (3) follows from the observation that the range of p(T ) is contained in
(

H ⊗
F(G⊕H)

)

and from AΩ = AGΩ where we identify AGΩ ∈ F(G) with the corresponding

element in F(G⊕H).

Corollary 3.6. Let A,B ∈ B1 both be adapted to G and let T, T ′ be in B(H). Then

p(T )ABp(T ′) = p(TE0(AB)T ′).

P r o o f. By Remark 2.11 we may assume that A ∈ B(n) and B ∈ B(m). First, suppose

n 6= m. Then E0(AB) = 0. Without loss of generality assume n < m. From Proposition

2.10 and Lemma 3.5 we find

p(T )ABp(T ′) = L∗(p(T )L(A∗Ω)BΩ)p(T ′) = 0,

because L(A∗Ω)BΩ is an element of G⊗(m−n) and T vanishes on G. If n = m, we find

p(T )ABp(T ′) = p(T )L(A∗Ω)L∗(BΩ)p(T ′) = p(T )E0(AB)p(T ′). Therefore, in both cases

we obtain our claimed result.

Corollary 3.7. Suppose A ∈ B(0) is adapted to G and T ∈ B(H). Then

Ap(T ) = E0(A)p(T ).

4. Processes

Definition 4.1. Let H be a Hilbert space. We identify L2(R+)⊗H with L2(R+, H).

For 0 ≤ t ≤ ∞ we denote Ht = L2([0, t), H) ⊂ L2(R+, H) = H∞. We work on the full

Fock space F = F(L2(R+, H)).

The C∗-algebra of processes P consists of all families F =
(

Ft

)

t≥0
of elements Ft ∈

B(F) which are ∗-strongly continuous as mappings t 7→ Ft and for which

‖F‖ = sup
t∈R+

‖Ft‖ < ∞.

The C∗-algebra of adapted processes A consists of all F ∈ P such that Ft is adapted to

Ht.

By P(n) and A(n) we denote the sets of all processes F in P and A, respectively, for

which Ft ∈ B(n) for all t ≥ 0. By P1 we denote the Banach ∗-algebra consistining all

F ∈ P for which ‖F‖1 =
∑

n∈Z
‖F (n)‖ < ∞. We set A1 = A ∩P1.

Let F01 = CΩ ⊕H∞. We regard F01 as a Banach subspace of F1 := F1(H∞). Our

particular interest lies on processes in L∗(F01)A1 and A1L(F01). Our interest to these

spaces of processes will become clear in Section 5 where the integrals of the present Section

are reduced to usual stochastic integrals. Notice that these processes are elements of P1

but, in general, not of A1.

Definition 4.2. Let T > 0. By PT =
{

P = (t0, . . . , tN): 0 = t0 < . . . < tN =

T (N ∈ N)
}

we denote the increasing net of partitions of the interval [0, T ] ordered by

refinement. The norm of a partition P is ‖P‖ = max1≤k≤N (tk − tk−1).

By L∞(R+,B(H)) we understand the set of all functions on R+ with values in B(H)

which are norm limits (in the supremum norm) of finitely-valued, measurable functions.

We consider elements of L∞(R+,B(H)) as operators on H∞ which act by pointwise

multiplication. For T ∈ L∞(R+,B(H)) we set dptk(T ) = p(χ(tk−1,tk]T ).
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Lemma 4.3. Let F = F̄L(X) ∈ A1L(F01) and G = L∗(Y )Ḡ ∈ L∗(F01)A1 with

F̄ , Ḡ ∈ A1 and X,Y ∈ F01. Furthermore, let T ∈ L∞(R+,B(H)). Then

∥

∥

∥

n
∑

k=1

Ftk−1
dptk(T )Gtk−1

∥

∥

∥

1
≤ ‖T ‖ ‖F̄‖1‖Ḡ‖1 ‖X‖1 ‖Y ‖1

for all P ∈ PT and all T > 0.

P r o o f. The mapping F ×G 7→
∑n

k=1 Ftk−1
dptk(T )Gtk−1

gives rise to an even map-

ping A1 × L(F01) × L∗(F01) × A1 → B1. By Lemma 2.3 it is sufficient to show the

inequality for processes F = F̄L(X) and G = L∗(Y )Ḡ where F̄ , Ḡ,X, Y are homoge-

neous elements.

We have to distinguish the four cases when X and Y are equal to Ω or elements of

H∞, respectively. First, suppose that X = Ω. Observe that F ∗
t Ft′ is an element of B(0)

which is adapted to Hmax(t,t′) and that dptk(T
∗) dptℓ(T ) = δkℓ dptk(T

∗T ). Combining

this with Corollary 3.7 we find
∣

∣

∣

n
∑

k=1

Ftk−1
dptk(T )Gtk−1

∣

∣

∣

2

=

n
∑

k,ℓ=1

G∗
tk−1

dptk(T
∗)F ∗

tk−1
Ftℓ−1

dptℓ(T )Gtℓ−1

=

n
∑

k=1

G∗
tk−1

dptk(T
∗E0(F

∗
tk−1

Ftk−1
)T )Gtk−1

≤ ‖T ‖2 ‖F‖2
n
∑

k=1

G∗
tk−1

dptk(id)Gtk−1
= ‖T ‖2 ‖F‖2

∣

∣

∣

n
∑

k=1

dptk(id)Gtk−1

∣

∣

∣

2

. (5)

If also y = Ω, we obtain by (5)

∥

∥

∥

n
∑

k=1

dptk(id)Gtk−1

∥

∥

∥

2

=
∥

∥

∥

n
∑

k=1

G∗
tk−1

dptk(id)
∥

∥

∥

2

≤ ‖G‖2 .

If y ∈ H∞, we find
∥

∥

∥

n
∑

k=1

dptk(id)Gtk−1

∥

∥

∥

2

=
∥

∥

∥

n
∑

k=1

dptk(id) ℓ
∗(y)Ḡtk−1

∥

∥

∥

2

≤
∥

∥Ḡ2
∥

∥

n
∑

k=1

‖ℓ(y) dptk(id) ℓ∗(y)‖ = ‖Ḡ‖2 ‖y‖2 .

The converse case when y = Ω and x ∈ H∞ is treated by considering adjoints. The last

yet missing case when x, y ∈ H∞ follows from the observation that
n
∑

k=1

‖ℓ(x) dptk(id) ℓ∗(y)‖=
n
∑

k=1

∣

∣〈x, χ[tk−1,tk]y〉
∣

∣ =

n
∑

k=1

∣

∣〈χ[tk−1,tk]x, χ[tk−1,tk]y〉
∣

∣ ≤ ‖x‖ ‖y‖

by the Cauchy-Schwarz inequality for elements of Cn.

Definition 4.4. We say an element X ∈ F01 is simple, if it is a finite linear combi-

nation of Ω and functions x = χIξ ∈ H∞ where ξ ∈ H and I ⊂ R+ is a finite interval.

We say an element T ∈ L∞(R+,B(H)) is simple, if it is a finite linear combination of

functions of the form χIτ where τ ∈ B(H) and I is an arbitrary measurable subset of R+.
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The simple elements of F01 and L∞(R+,B(H)) are dense in F01 and L∞(R+,B(H)),

repectively.

Lemma 4.5. Let F,G be as in Lemma 4.3 where, however , X,Y and T = χIτ are

simple. Furthermore, let T0 > 0. Then the net
(

n
∑

k=1

Ftk−1
dptk(T )Gtk−1

)

P∈PT

is a ∗-strong Cauchy net uniformly in T ∈ (0, T0]. In other words , (denoting the sum to

a certain partition P by ΣP ) for arbitrary Z ∈ F and ε > 0 we can find δ > 0 such that

‖(ΣP − ΣP ′)Z‖ < ε (6)

for all T ∈ (0, T0] and P, P ′ ∈ PT with ‖P‖ < δ and ‖P ′‖ < δ and an analogue statement

for the adjoints of the sums.

P r o o f. Let us first reduce the problem. Clearly, by symmetry under adjoint it is

sufficient to show only (6). By Lemma 4.3 the assumptions of Lemma 2.5 are fulfilled

so that we may reduce to homogeneous elements as in the proof of Lemma 4.3. Finally,

by Lemma 4.3 the net is bounded so that it is sufficient to check strong convergence on

elementary tensors Z = zn⊗ · · ·⊗ z1 with zi being simple elements of H∞, because these

Z span a dense subset of F . The proof splits into the quite different cases when X = Ω

and X ∈ H∞.

First, let X = Ω. By (5) we find

∥

∥

∥

n
∑

k=1

Ftk−1
dptk(T )Gtk−1

Z
∥

∥

∥
=

∥

∥

∥

n
∑

k=1

L∗(Ftk−1
Ω) dptk(T )Gtk−1

Z
∥

∥

∥

≤ ‖T ‖ ‖L∗(FΩ)‖ ‖GZ‖ . (7)

Clearly, the same estimate also holds for step functions Gs
t and F s

t . So by the usual tech-

nique of joint refinement of pairs of partitions used in Riemann integral our statements

are clear, because L∗(FtΩ) (by Corollary 2.12) and GtZ (because Gt is strongly contin-

uous) are norm continuous functions, which may be approximated in supremum norm

by step functions (uniformly on [0, T0] and stably under refinement of partitions). Notice

that this argument does not depend on the special nature of Z.

Now let X = χI′ξ. We are finished, if we show that Ftk−1
dptk(T )Gtk−1

Z is dominated

by a positive multiple of λ([tk−1, tk]) (where λ denotes the Lebesgue measure on R+). In

the case when Y = χI′′ζ we find L(X) dptk(T )L
∗(Y ) = 〈ξ, τζ〉λ([tk−1 , tk] ∩ I ∩ I ′ ∩ I ′′).

Notice that also this argument does not depend on the form of Z. Now suppose that

Y = Ω. We may assume that G ∈ A(−n) where n ≥ 0 (otherwise the sum is 0 by Lemma

3.5). Choose Z = zn ⊗ · · · ⊗ z1 ⊗ z ⊗ z′m ⊗ · · · ⊗ z′1 where z = χI′′η and η ∈ H . We find

L(X) dptk(T )Gtk−1
Z =

〈ξ, τ〈Ω, Gtk−1
zn ⊗ · · · ⊗ z1〉η〉z′m ⊗ · · · ⊗ z′1 λ([tk−1, tk] ∩ I ∩ I ′ ∩ I ′′).

We remark that (7), obviously, also holds here at least for our particular choice of Z.
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Theorem 4.6. The integral

T\
0

Ft dpt(T )Gt := lim
P∈PT

n
∑

k=1

Ftk−1
dptk(T )Gtk−1

extends in ‖·‖1-norm to arbitrary elements F ∈ L∗(F01)A1, G ∈ A1L(F01) and T ∈
L∞(R+,B(H)) by means of norm continuity. The process M =

(

Mt

)

t≥0
defined by MT =TT

0
Ft dpt(T )Gt is an element of A1.

P r o o f. Assume F and G are given like in Lemma 4.3. The claimed extension follows

from Lemma 4.3. To see strong continuity (which by symmetry under building adjoints

implies ∗-strong continuity), we may assume that X and Y are homogeneous. If X ∈ H∞

or Y ∈ H∞, then we see by Lemma 4.3 that Mt even is norm continuous. (In ‖Mt−Mt′‖
we obtain a factor

√

|t− t′|.) If X = Y = Ω, then we find strong continuity in the same

manner, if we replace in (7) GZ with 〈Ω, Gzn ⊗ · · · ⊗ z1〉(χ(0,T ]z) ⊗ z′m ⊗ · · · ⊗ z′1 like

in the last step of the preceding proof. Adaptedness follows from the observation that

dptk(T )ℓ
∗(x) = ℓ∗(χ(tk−1,tk]Tx) is adapted to Htk .

Theorem 4.7. Let M,M ′ be processes in A1 given by integrals

MT =

T\
0

Ft dpt(T )Gt and M ′
T =

T\
0

F ′
t dpt(T

′)G′
t

where F, F ′ ∈ L∗(F01)A1, G,G′ ∈ A1L(F01) and T, T ′ ∈ L∞(R+,B(H)). Then the

product MM ′ =
(

MtM
′
t

)

t≥0
∈ A1 is given by

MT M
′
T =

T\
0

Ft dpt(T )GtM
′
t +

T\
0

MtF
′
t dpt(T

′)G′
t +

T\
0

Ft dpt(TE0(GtF
′
t )T

′)G′
t. (8)

P r o o f. Again we may assume that F,G (and also F ′, G′) are given like in Lemma

4.3 and, furthermore, that T, T ′ and the elements X,X ′, Y, Y ′ appearing in F, F ′, G,G′

are simple. We investigate the product of the sums ΣP and Σ′
P which approximate MT

and M ′
T , respectively, to the same partition. Since the approximation of MT and M ′

T by

ΣP and Σ′
P , respectively, is ∗-strong, the weak limit of ΣPΣ

′
P is MT M

′
T . We are finished,

if we show that ΣPΣ
′
P converges weakly to right-hand side of (8).

We split the double sum over k and ℓ into the parts where k > ℓ, k < ℓ and k = ℓ

ΣPΣ
′
P =

[

∑

1≤ℓ<k≤n

+
∑

1≤k<ℓ≤n

]

Ftk−1
dptk(T )Gtk−1

F ′
tℓ−1

dptℓ(T
′)G′

tℓ−1

+

n
∑

k=1

Ftk−1
dptk(T )Gtk−1

F ′
tk−1

dptk(T
′)G′

tk−1
. (9)

Let us apply the first summand to Z
∑

1≤ℓ<k≤n

Ftk−1
dptk(T )Gtk−1

F ′
tℓ−1

dptℓ(T
′)G′

tℓ−1
Z. (10)

Choosing a partition P of sufficiently small norm the part
∑k−1

ℓ=1 F ′
tℓ−1

dptℓ(T
′)G′

tℓ−1
Z

is close to M ′
tk−1

Z (by Lemma 4.5) for all partitions finer than P . Of course, we would

like to insert this into (10) and then perform the limit ‖P‖ → 0, because in this way
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we would obtain the first summand (8) (applied to Z). Let us check that this procedure,

indeed, is allowed. In other words, let us check, if the part
∑k−1

ℓ=1 F ′
tℓ−1

dptℓ(T
′)G′

tℓ−1
Z

enters (10) in norm. This assertion, however, follows precisely as in the proof of Lemma

4.5 with Gtk−1
Z replaced by Gtk−1

∑k−1
ℓ=1 F ′

tℓ−1
dptℓ(T

′)G′
tℓ−1

Z. In this way we even show

that the convergence of the first summand is strong. An analogous procedure in the case

k < ℓ yields that the second summand converges to the second summand of (8) at least

weakly.
For the last summand of (8) observe that E0(GtF

′
t ) = 0, whenever Y ∈ H∞ or

X ′ ∈ H∞. Let us check if this is also true for the limit of the last summand of (9). For

instance, assume that Y = χIζ ∈ H∞. If X = Ω, we find by computations like (5) that

the last summand converges to 0 even in norm. If X ∈ H∞, the part Ftk−1
dptk(T )Gtk−1

is bounded by a multiple of tk − tk−1 and the part F ′
tk−1

dptk(T
′)G′

tk−1
Z is bounded by a

multiple of
√
tk − tk−1 (see proof of Lemma 4.5), so that in this case the sum converges

to 0 strongly. By considering the adjoint we see that the summand converges to 0 at

least weakly in the case when X ′ ∈ H∞. In the remaining case Y = X ′ = Ω we have

GF ′ ∈ A(n). Then our claim follows immediately from Corollary 3.6 and Theorem 4.5.

Corollary 4.8. In the usual differential notation where MT =
TT
0
dMt with dM =

F dp(T )G and d(MM ′) = dM M ′ +M dM ′ + dM dM ′ we find the Ito formula

dM dM ′ = F dp(TE0(GF ′)T ′)G′.

5. The usual quantum stochastic integrals and Ito table. Our integrals ap-

parently are concerned only with (slightly generalized) conservation integrals. It remains

to extract the usual quantum stochastic integrals with respect to creators, annihilators

and also dt from our notation. They correspond (together with the usual conservation

integral) precisely to the four cases when X and Y are equal to Ω or elements of H∞,

respectively.

Definition 5.1. Let T > 0 and F,G ∈ A1. Let X = x and Y = y be in H∞. Define

the bounded mesaure µx,y on R+ by µx,y(I) = 〈x, χIy〉. We define the µx,y-integral as

T\
0

F dµx,y G =

T\
0

FtL(X) dpt(id)L
∗(Y )Gt.

Let X = x ∈ H∞. We define the creator integral and the annihilator integral as

T\
0

F dℓ∗(x)G =

T\
0

Ft dpt(id)L
∗(X)Gt and

T\
0

F dℓ(x)G =

T\
0

FtL(X) dpt(id)Gt,

respectively. Let T ∈ L∞(R+,B(H)) we define the conservator integral as

T\
0

F dp(T )G =

T\
0

Ft dpt(T )Gt.

Theorem 5.2. Let Mt =
Tt
0
F dlG be one of the integrals in Definition 5.1. Then

M =
(

Mt

)

t≥0
is an element of A1. Moreover , given another M ′

t =
Tt
0
F ′ dl′G′. Then

(using the formal notation) dM dM ′ = F dl′′ G′ where dl′′ has to be chosen according to
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the Ito table

dl\dl′ dµx′,y′

dℓ∗(x′) dℓ(x′) dp(T ′)

dµx,y 0 0 0 0

dℓ∗(x) 0 0 0 0

dℓ(x) 0 dµx,E0(GF ′)x′

0 dℓ(T ′∗E0(GF ′)x)

dp(T ) 0 dℓ∗(TE0(GF ′)x′) 0 dp(TE0(GF ′)T ′).

Rema r k 5.3. In [8] the C-valued function E0(GF ′) is always written outside the

integrators. This can be done without any effect. However, in view of [7] we have in mind

a generalization to Hilbert modules where E0 is not an expectation with values in C,

but, a conditional expectation with values in an algebra. Only if we write our formulae

precisely as we did, our definitions, results and proofs generalize to Hilbert modules.
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[5] B. Kümmerer and R. Speicher, Stochastic integration on the Cuntz algebra O∞, J.

Funct. Anal. 103 (1992), 372-408.

[6] M. Skeide, Hilbert modules in quantum electro dynamics and quantum probability , Com-

mun. Math. Phys. 192 (1998), 569–604.

[7] M. Skeide, Quantum stochastic calculus on full Fock modules, Preprint, Cottbus, 1998, in

preparation.

[8] R. Speicher, Stochastic integration on the full Fock space with the help of a kernel calculus,

Publ. RIMS Kyoto Univ. 27 (1991), 149-184.


