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ABSTRACT

A new type of quantum interferometer was recently realized that employs parametric amplifiers (PAs) as the wave splitting and mixing ele-
ments. The quantum behavior stems from the PAs, which produce quantum entangled fields for probing the phase change signal in the
interferometer. This type of quantum entangled interferometer exhibits some unique properties that are different from traditional beam
splitter-based interferometers such as Mach–Zehnder interferometers. Because of these properties, it is superior to the traditional interfer-
ometers in many aspects, especially in the phase measurement sensitivity. We will review its unique properties and applications in quantum
metrology and sensing, quantum information, and quantum state engineering.

© 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0004873., s

I. INTRODUCTION

Interferometry, a technique based on wave interference, played
a crucial part in the development of fundamental ideas in physics
as well as in the technological advances of mankind. It has become
an indispensable part in precision measurement and metrology ever
since its inception. Most of the physical quantities such as distance,
local gravity fields, and magnetic fields that can be measured by the
interferometric technique are associated with the phases of the inter-
fering waves. It is the extreme sensitiveness to the phase change in
interferometry that leads to wide applications of the technique in
precision measurement and metrology.

In traditional interferometry, as shown in Fig. 1(a), an input
field is split into two by a beam splitter (BS1). One of the beams,
serving as the probe, is phase modulated so as to encode a phase
change (δ) onto it. It then interferes with the other beam, serving
as a reference, at another beam splitter (BS2). This converts the
phase change to an intensity change, and the outputs of BS2 are
directly measured and analyzed with intensity detectors. Regard-
less of the difference in design between different schemes, the
sensitivity of traditional interferometers is limited by the vacuum

quantum noise or the so-called shot noise inherited from the input
field and the vacuum field injected from the unused BS input ports1

[dashed line in Fig. 1(a)]. The sensitivity limit of this kind of inter-
ferometer is referred to as the shot noise limit (SNL) or some-
times the standard quantum limit (SQL), i.e., the general 1/

√
N-

dependence at a large phase sensing photon number N. In order
to reduce the vacuum quantum noise, squeezed states are prop-
erly injected into interferometers by replacing the vacuum state.1

The result of the squeezed state injection is the reduction of the
detection noise below the shot noise level and thus the enhance-
ment of phase measurement sensitivity. Experimental efforts and
progress were made in the generation and application of these quan-
tum states to optical interferometry systems.2,3 In fact, such a tech-
nique was recently applied to km-scale large size interferometers
with the goal of improving the sensitivity for gravitational wave
detection.4–6

SU(1,1) interferometers are a new type of quantum interferom-
eters, which are quite different from the traditional interferometers
in that the linear beam splitters are replaced by nonlinear optical
devices of parametric amplifiers (PAs), as shown in Fig. 1(b). The
name of SU(1,1) stems from the type of interaction involved in
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FIG. 1. Comparison between (a) a traditional Mach–Zehnder interferometer and
(b) an SU(1,1) interferometer.

parametric processes for nonlinear wave mixing, which is differ-
ent from the SU(2)-type interaction for linear wave mixing by a
beam splitter. SU(1,1) interferometers were first proposed by Yurke
et al.7 to reach the Heisenberg limit (HL), i.e., the general 1/N-
dependence at a large phase sensing photon number N. This is the
ultimate quantum limit8 in precision phase measurement at large N
although it can be broken9 at small N. However, the original ver-
sion is not practical because it starts with vacuum and thus has a low
photon number. That is why there was no experimental implemen-
tation until recently when a modified version with a photon number
boost by coherent state injection was proposed,10,11 which has since

been realized in atomic four-wave mixing,12–15 bulk χ(2)-nonlinear

medium,16 and nonlinear optical fiber.17–19 In the meanwhile, the-
oretical investigations on SU(1,1) interferometers were also carried
out for various input states and differentmeasurement strategies20–22

and were based on quantum Fisher information, leading to the
quantum Cramer–Rao bound.21,23–26

The difference between SU(1,1) interferometers and traditional
interferometers lies in the beam splitting andmixing elements. Para-
metric amplifiers are active quantum devices that generate quantum
fields, whereas beam splitters are passive devices and rely on injec-
tion of quantum states to achieve quantum advantages. So, com-
pared to the traditional interferometers with quantum state injec-
tions, SU(1,1) interferometers exhibit some distinct features that
make them more desirable in practical applications. The first one
is that the involvement of nonlinear optical processes for wave mix-
ing allows the coherent superpositions of waves of different types
such as atomic spin waves, light waves, and acoustic waves. This
type of mixing is impossible for linear beam splitters. The second
is that the employment of parametric amplifiers leads to amplified
noise levels at outputs that are much larger than the vacuum noise
level. This means the outputs are immune to losses, which are detri-
mental to quantum information because of the vacuum noise cou-
pled in through the loss channels. The third is that the quantum
entanglement generated by parametric amplifiers leads to correlated
quantum noise, which can be canceled at destructive interference.
This gives rise to higher signal amplification than noise amplifica-
tion and thus improved the signal-to-noise ratio (SNR) or enhanced
sensitivity.

Interference effects involving nonlinear optical processes were
demonstrated as soon as the nonlinear optical effects such as sec-
ond harmonic generation were discovered.27 Because of the involve-
ment of nonlinear optical processes, these nonlinear interference

effects have some interesting applications in spectroscopy,28 opti-
cal imaging,29,30 and spatial and temporal shaping.31,32 They can
be mostly understood with classical wave theory. At the quantum
level of single photons when the gain of the parametric amplifiers
is low, interferometers consisting of spontaneous parametric down-
conversion were used to study two-photon or multi-photon inter-
ference,33,34 which cannot be explained by classical theory. These
quantum interferometric effects are the basis for optical quantum
information sciences.35 Moreover, recently a mind-boggling photon
interference effect36 between two spontaneous parametric processes
also found interesting applications in quantum imaging with unde-
tected photons.37–41 All these phenomena were recently reviewed in
a comprehensive article.42

On the other hand, when the gain of the parametric amplifiers
in SU(1,1) interferometers is high, the quantum noise performance
of the interferometers is totally different. Early research develop-
ment of SU(1,1) interferometers in this regime was covered in the
comprehensive review article.42 However, since the publication of
the article, there has been significant progress in the field, especially
in the realization of many variations of the SU(1,1) interferometer
and its applications in quantum metrology, quantum information,
and quantum state engineering that are not covered by the review
article. Furthermore, there is some misunderstanding in the early
research about the working principle of the interferometer for sen-
sitivity improvement, which leads to non-optimized performance.
The roles of each nonlinear element in the interferometer were also
better understood now, which reveals the underlying physics of the
interferometer.

In this paper, we will explain the basic working principle
of SU(1,1) interferometers with the goal of practical implementa-
tion and applications. We will concentrate on the quantum noise
performance of SU(1,1) interferometers in the high gain regime
with an emphasis on improving the phase measurement sensitiv-
ity. We will have an in-depth discussion on the special features
of the interferometer in this case, especially on the role played
by quantum entanglement. Based on this discussion, we will find
the optimum operation conditions for the best performance in the
form of phase measurement sensitivity and compare it to the opti-
mum classical measurement sensitivity. We will reveal the differ-
ence and similarity between SU(1,1) interferometers and squeezed
state-based traditional interferometers. These are covered in Secs. II
and III. For the experimental implementation of SU(1,1) inter-
ferometers, we will review in Secs. IV and V recent realizations
of different forms of the interferometer including those with dif-
ferent types of waves. We will discuss in Sec. VI its applications
in multi-parameter measurement, quantum information splitting,
quantum entanglement measurement, and mode engineering of
quantum states. We conclude in Sec. VII with prospects for future
development.

II. PERFORMANCE OF TRADITIONAL
INTERFEROMETRY

The interferometry technique is usually based on interferome-
ters such as the Mach–Zehnder (MZ) type shown in Fig. 2, where an
incoming field in a coherent state of |α⟩ is split by a beam splitter
(BS1) of transmissivity T1 and reflectivity R1 and then recombined
by another of the same type (BS2) but of transmissivity T2 and
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FIG. 2. A traditional Mach–Zehnder interferometer with vacuum (|v⟩) or squeezed
(|r⟩) states at the unused port (dashed line). |αps, r⟩ is a coherent squeezed state

with αps ≙ α
√
R1 for phase sensing.

reflectivity R2. It is straightforward to find the photon number
outputs of the interferometer given by

I
(o)
1 ≙ ∣α∣2(T1T2 + R1R2 − 2

√
T1T2R1R2 cosφ),

I
(o)
2 ≙ ∣α∣2(T1R2 + R1T2 + 2

√
T1T2R1R2 cosφ),

(1)

where φ is the overall phase difference between the two arms of the
interferometer and T1,2 + R1,2 = 1. Note the energy conservation:

I
(o)
1 + I

(o)
2 ≙ ∣α∣2 ≡ Iin. For a small phase change δ, which is to be

measured, the change in the output photon number is

δI
(o)
1 ≙ −δI(o)2 ≙ 2∣α∣2δ

√
T1T2R1R2 sinφ. (2)

Because the two outputs are 180○ out of phase, we can make full use

of the two outputs by measuring the difference I
(o)
− ≙ I

(o)
1 − I

(o)
2 ,

which gives twice the change,

δI
(o)
− ≙ 4∣α∣2δ

√
T1T2R1R2 sinφ. (3)

Obviously, the change δI
(o)
− is maximum when φ = π/2, which is the

operational point we will take in the following.
The measurement sensitivity, on the other hand, depends on

the noise level at detection. For the input of a coherent state |α⟩, the
detection noise is the photon number fluctuation, which has the

Poissonian statistics: ⟨Δ2I
(o)
1,2 ⟩ ≙ I

(o)
1,2 . Since the two outputs are

also in coherent states so that their fluctuations are uncorrelated
quantum mechanically, we have

⟨Δ2
I
(o)
− ⟩ ≙ ⟨Δ2

I
(o)
1 ⟩ + ⟨Δ

2
I
(o)
2 ⟩ ≙ I

(o)
1 + I

(o)
2 ≙ ∣α∣2. (4)

If the signal-to-noise ratio (SNR) is defined as

SNR ≡ (δI
(o)
− )2

⟨Δ2I
(o)
− ⟩

, (5)

we obtain the SNR for the MZ interferometer,

SNRMZ ≙ 16∣α∣2δ2T1T2R1R2 ≙ 16T1T2R2Ipsδ
2, (6)

where Ips ≡ R1|α|
2 = I2 is the number of photons in the field

that probes the phase change. This quantity is an important fig-
ure of merit for fair comparison of different schemes of phase
measurement. With T2 + R2 = 1, we find the optimum SNR,

SNR
(op)
MZ ≙ 4Ipsδ

2, (7)

when T2 = R2 = 1/2 and T1 → 1. The minimum measurable phase

shift is δm ≙ 1/2
√
Ips when SNR

(op)
MZ ≙ 1. This is the optimum phase

measurement sensitivity that is achievable with a classical probing
field for a given phase sensing photon number Ips. Since the detec-
tion noise is from photon number fluctuation of Poissonian nature
and is the same as the shot noise in an electric current, this phase
measurement sensitivity is known as “the shot noise limit (SNL),”
a term preferred by experimentalists. Moreover, since the photon
number fluctuation is originated from quantum nature of light,
this limit is also called “standard quantum limit (SQL)” of phase
measurement, a term favored by theorists.

Note that the optimum condition T1 ≈ 1 leads to extremely
unbalanced photon numbers in the two arms of the interferome-
ter. This is in contrast to the popular balanced implementation of
the interferometer.2,11 This gives rise to the controversy of two clas-
sical limits of phase measurement for the comparison with quan-
tum measurement.43 However, the unbalanced scheme is consis-
tent with the homodyne measurement technique where the local
oscillator (LO) has much stronger intensity than the signal field.
Here, in the unbalanced scheme, the phase-encoded field (â2) can be
regarded as the signal field to be measured, whereas the other arm
(â1) with a much larger photon number is treated as the LO. The
condition of T2 = R2 = 1/2 corresponds to balanced homodyne mea-
surement.44 Thus, the balanced homodyne measurement technique
achieves the optimum phase measurement sensitivity in classical
interferometry.

Perhaps, a better way to understand why we need to have an
unbalanced interferometer for optimum sensitivity is through the
intrinsic phase uncertainty Δ

2φ in any optical field.45 The interfer-
ence method measures the phase difference φ = φ1 − φ2 so that
the measurement uncertainty is Δ

2φ = Δ
2φ1 + Δ

2φ2 if the phase
fluctuations in the two arms are independent (indeed, the quan-
tum fluctuations are independent for coherent states). However,
it was shown45 that the intrinsic phase uncertainty Δ

2φi(i = 1, 2)
is inversely proportional to Ii. Making I1 ≫ I2 gives Δ

2φ1 ≪ Δ
2φ2

so that Δ
2φ ≈ Δ

2φ2 = Δ
2φps ∼ 1/Ips (the subscript ps denotes

the phase sensing field). However, for a balanced interferome-
ter, I1 = I2 or Δ

2φ1 = Δ
2φ2, so we have Δ

2φ = 2Δ2φps. Hence,
the unbalanced interferometer has half the measurement uncer-
tainty as the balanced one11 and thus better sensitivity with twice
the SNR.43

Note that, here, we only use one arm for sensing and the opti-
mum condition is T1 ≈ 1 ≫ R1. If two arms are used for sensing
such as the situations of Sagnac interferometers for rotation sensing
and Laser Interferometer Gravitational Wave Observatory (LIGO)
for gravitational wave sensing, the optimum condition will be
T1 = R1 = 1/2 to give balanced interferometers.

The shot noise limit can be surpassed if we inject a squeezed
state |r⟩ into the unused port âin2 (dashed line) of the interferometer,1

as shown in Fig. 2. Under the optimum operational condition of T2

= R2 = 1/2 and T1 → 1, R1 ≪ 1, the probe field becomes a coherent
squeezed state |αps, r⟩ with αps ≙ α

√
R1 and squeezing parameter

r, which is related to the amplitude gains G = cosh r, g = sinh r
(r > 0) of a degenerate parametric amplifier generating the squeezed
state.46 As mentioned before, the second BS is equivalent to a bal-
anced homodyne measurement and it is straightforward to find the
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photon number fluctuation at this time as44

⟨Δ2
I
sq
− ⟩ ≙ ∣α∣2e−2r ≙ ∣α∣2/(G + g)2, (8)

which gives rise to the signal-to-noise ratio as

SNR
sq
MZ ≙ 4Ipsδ

2(G + g)2. (9)

Note that this SNR for the squeezed state interferometry has an
enhancement factor of (G + g)2 = e2r compared to the optimum clas-
sical SNR in Eq. (7) or δ

sq
m ≙ e−r/2

√
Ips ≙ δme

−r when SNR
sq
MZ ≙ 1.

Since the detection noise in Eq. (8) is smaller than the shot noise
level in Eq. (4), this leads to the sub-shot noise interferometry.2,3

In the expressions above, we assumed R1|α|
2 ≫ g2 = sinh2 r

so that the coherent state provides most of the photons for
phase sensing. At a large r-value, the squeezed state contributes
a sizable photon number for Ips and optimization between r
and α will lead to the so-called Heisenberg limit of phase
measurement.47,48

In practice, interferometers are usually operated at the dark
fringe mode. This is because high sensitivity requires high Ips [see
Eq. (7)], which can saturate the detectors. This requires φ = π,
T1 = T2 ≫ R1 = R2. To avoid electronic noise, homodyne measure-

ment is performed at the dark port (â
(o)
2 ). In this case, the output

noise is simply the vacuum noise or the squeezed noise from the

unused input port (â
(in)
2 in Fig. 2), so it can be easily shown1 that the

SNR in this case is the same as the optimized classical SNR given by
Eq. (7) or the squeezed state case given by Eq. (9).

III. SU(1,1) INTERFEROMETERS

A new type of interferometer, known as the so-called “SU(1,1)
interferometer,”7,10–13 is formed when we replace the beam split-
ters in a Mach–Zehnder interferometer (MZI) with paramet-
ric amplifiers (Fig. 3), which can split and mix two input
fields coherently for interference. It is well known that para-
metric amplifiers are active devices and produce quantum states
by themselves,49,50 so the fields inside the interferometers pos-
sess some unique quantum behaviors even without the input of
quantum fields. This new type of interferometer is of quantum
nature by itself and will exhibit some advantages over traditional
interferometers.

FIG. 3. SU(1,1) interferometer, where beam splitters of traditional interferometers
are replaced by parametric amplifiers (PA1, PA2) of gain G1, G2, respectively.
Ips ≙ g21 ∣α∣2 is the photon number of the field sensing the phase change δ.

A. Parametric amplifiers as beam splitters

Parametric amplifiers are a result of three-wave or four-wave
mixing in a nonlinear optical process. The interaction Hamiltonian
is in the form of

ĤPA ≙ ih̵ξâ†

1 â
†

2 − ih̵ξ
∗
â1â2, (10)

where ξ is some parameter proportional to the nonlinear coefficient
and the amplitudes of strong pump fields, which can be treated as
classical waves. The other two relatively weak fields are the quantum
fields described by the operators â1, â2. To have better comparison
with traditional interferometers with BS, we use the Heisenberg pic-
ture here and describe the systemwith operator evolution. The input
and the output relation of the quantum fields for the Hamiltonian in
Eq. (10) are

â
(o)
1 ≙ Gâ(in)1 + gâ

(in)†
2 , â

(o)
2 ≙ Gâ(in)2 + gâ

(in)†
1 , (11)

with G = cosh r, g = sinh r as the amplitude gains and r ∝ ξ. Note
that we set the phase of r to zero for convenience without loss of
generality.

If quadrature-phase amplitudes are defined as X̂ ≙ â + â†,
Ŷ ≙ i(â† − â), we have from Eq. (11)

X̂
(o)
1,2 ≙ GX̂

(in)
1,2 + gX̂

(in)
2,1 , Ŷ

(o)
1,2 ≙ GŶ

(in)
1,2 − gŶ

(in)
2,1 . (12)

Note from the relation above that the output amplitudes are mix-
tures of the two input amplitudes, and thus, parametric amplifiers
can act as beam splitters for wave splitting and mixing. The dif-
ference is that the outputs for parametric amplifiers are amplified
because G = cosh r > 1.

B. Interference fringe patterns

Assume that the input field âin1 is in a relatively strong coherent
state |α⟩(|α|2≫ 1) and âin2 is in vacuum, and the fields in the two arms
experience phase shifts of φ1,2. Using Eq. (11) for the two parametric
amplifiers, we find the output photon numbers as

I
(o)
1 ≙ ∣α∣2∥G2

1G
2
2 + g

2
1g

2
2 + 2G1G2g1g2 cos(φ1 + φ2)∥,

I
(o)
2 ≙ ∣α∣2∥G2

1g
2
2 +G

2
2g

2
1 + 2G1G2g1g2 cos(φ1 + φ2)∥, (13)

where G1, g1 and G2, g2 are the amplitude gains of the two paramet-
ric amplifiers, respectively.

Comparing Eq. (13) to Eq. (1), we find three unique features
that differentiate SU(1,1) interferometers [SU(1,1)] from Mach–
Zehnder interferometers (MZI):

(i) The two outputs of SU(1,1) are in phase in contrast to 180○

out of phase for MZI in Eq. (1).
(ii) The interference fringes depend on the phase sum of φ1, φ2

instead of the phase difference in MZI.
(iii) The outputs are amplified when the gain parameters G2, g2

are large.

The first property of in-phase fringes was demonstrated exper-
imentally in the first realization of the SU(1,1) interferometer12

and in the atom-light hybrid interferometer.51 This property leads

to I
(o)
1 − I

(o)
2 ≙ ∣α∣2, which, unlike Eq. (3) of the traditional
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MZI, is completely independent of the phase, making it impossi-
ble to obtain any phase change information in the intensity dif-
ference between the two outputs. This also indicates that the pho-
ton numbers of the two outputs are highly correlated, which is a
property of parametric processes known as the Manley relation.52

The second property makes it impossible to have the common
path rejection property in such devices as Sagnac interferometers
but can give rise to signal enhancement when both beams are
used to probe the phase change, as we will show in Sec. IV C.
The third property leads to the enhancement of the signal size due
to a small phase change δ in φ2 of the probe field,

δI
(o)
1 ≙ δI(o)2 ≙ 2δ∣α∣2G1G2g1g2 sin(φ1 + φ2)

≈ 2G2g2Ipsδ sin(φ1 + φ2) for g1 ≫ 1, (14)

where Ips ≡ g21 ∣α∣2 ≙ I2. The enhancement factor is G2g2 as compared
to the MZI in Eq. (3) at the optimum condition of R1 ≪ 1, T2 = R2

= 1/2. This is because of the amplification of the second parametric
amplifier when it mixes the two interfering fields.

C. Quantum noise performance of SU(1,1)
interferometers

Although the signal due to the phase change is increased in
SU(1,1) as compared to MZI, one may argue that this is not surpris-
ing at all because of the amplification of the second PA in SU(1,1).
We can achieve the same effect if we place an amplifier at the outputs
of the MZI. However, as we will see, there is a significant difference
in the noise performance. An amplifier at the outputs of theMZI will
amplify not only the signal but also the noise. So, the use of an ampli-
fier at best keeps the signal-to-noise ratio. As a matter of fact, due to
added noise from its internal degrees of freedom, such an amplifier
often degrades the signal-to-noise ratio, leading to reducedmeasure-
ment sensitivity.53–55 The SU(1,1), on the contrary, will not amplify
the noise as much as the signal, leading to an enhancement of the
signal-to-noise ratio. The key is in the destructive interference of the
quantum noise, and it can be understood from the following three
perspectives.

1. Quantum noise reduction by destructive quantum
interference

Assume a coherent state |α⟩ input to the SU(1,1) and we make

homodyne detection (HD) of X̂(θ) ≙ âe−iθ + â†eiθ at the outputs of
PA2. It is straightforward to calculate the quantum fluctuations as11

⟨Δ2
X̂
(o)
1 (θ)⟩ ≙ ⟨Δ

2
X̂
(o)
2 (θ)⟩

≙ ∣G1G2 + g1g2e
i(φ1+φ2)∣2

+ ∣G1g2 + g1G2e
i(φ1+φ2)∣2

≙ (G2
1 + g

2
1)(G2

2 + g
2
2)

+4G1G2g1g2 cos(φ1 + φ2). (15)

The dependence on φ1 + φ2 is a result of quantum interference in
SU(1,1), just as in the output photon numbers in Eq. (13). Although
we find from Eq. (14) that the measured signal is maximum when
φ1 + φ2 = π/2, the minimum noise is achieved at the dark fringe
when φ1 + φ2 = π and at balanced gain of G2 = G1, g2 = g1 for a given
G1, g1,

⟨Δ2
X̂
(o)
1 (θ)⟩m ≙ ⟨Δ

2
X̂
(o)
2 (θ)⟩m

≙ 1 + 2(G1g2 −G2g1)2

≙ 1 when G1 ≙ G2, g1 ≙ g2. (16)

Since the noise in each arm of the SU(1,1) after PA1 is G2
1 + g21

≙ 1+2g21 > 1, the noise is reduced at the outputs of the SU(1,1) (PA2).
This is because of the destructive quantum interference between the
two arms that cancels the large quantum noise at each arm. Such
a noise reduction effect was observed by Hudelist et al. in the first
measurement of quantum noise performance of SU(1,1).13

Note that Eq. (16) is independent of the quadrature angle θ,
which means that the noise is minimum for all quadrature-phase

amplitudes X̂
(o)
1,2 (θ). This is quite different from squeezed state inter-

ferometry1–3 where only the squeezing quadrature has noise reduc-
tion. This indicates that the underlying physics for noise reduction
here is quantum destructive interference, which reduces noise for
the whole field including all quadrature-phase amplitudes, in con-
trast to the squeezed state interferometry where noise depends on
the angle of quadrature-phase amplitudes.

2. Quantum beam splitter as a disentanglement tool

To understand how quantum interference occurs at PA2, we
just need to recall Eq. (12), which shows the superposition of the
quadrature-phase amplitudes of the incoming fields. Note that the
relations are in quantum mechanical operator form, which means
that quantum fluctuations or noise can be subtracted or added
depending on the phase, giving rise to quantum interference. This
shows that a parametric amplifier can act as a quantum beam split-
ter to split and mix waves. In this sense, the roles of a PA and a
BS are the same in the mixing of waves: incoming waves are all
superposed coherently. It is known that the two outputs of PA1 are
entangled in the continuous variables of phases and amplitudes49,50

and two entangled fields can be transformed by a 50:50 beam splitter
into two independent squeezed states with noise reduced at orthog-
onal quadratures.56–58 In this case, the BS acts as a disentangler that
transforms two entangled fields into two unentangled fields. Since
a PA and a BS are the same in wave mixing, the role of PA2 in
the SU(1,1) interferometer is then a disentangler. This happens
when the gains of PA1 and PA2 are equal, producing two unentan-
gled fields at the outputs with noise at the vacuum level, as shown
in Eq. (16).

On the other hand, the difference between a parametric ampli-
fier (PA) and a linear beam splitter (BS) lies in the fact that a
parametric amplifier (PA2) has amplified outputs. This feature can
lead to the loss-tolerant property of SU(1,1) interferometers that
we will discuss later in Sec. III E. It also leads to the following
understanding.

3. Quantum noiseless amplification due to noise
cancellation

The action of the SU(1,1) interferometer can be analyzed from
another perspective, that is, quantum amplification. When viewed
as an amplifier, one of the inputs of PA2 is regarded as the signal
input, while the other input is treated as the internal mode of the
amplifier.53–55 Normally, the internal mode of the amplifier is inac-
cessible from outside and is left in the vacuum state, which adds in
vacuum noise to the amplified signal. This added noise is the extra
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noise in addition to the input signal noise, leading to a degraded
signal-to-noise ratio for the amplified signal compared to the input.
If the internal mode can be accessed, as in the case of a parametric
amplifier, squeezed states can be injected to it to reduce the extra
added noise.54,55 This is the case when the input signal and the inter-
nal mode are uncorrelated. On the other hand, if the input signal
and the internal mode are correlated, further noise reduction can be
achieved. This was first studied by Ou59 as early as in 1994 and was
recently demonstrated60 with an arrangement similar to an SU(1,1)
interferometer. To understand this, we go back to the input–output
relation in Eq. (12) for the parametric amplifier. We select field 1 as
the signal field (s) and field 2 as the internal mode (int) and rewrite
it as

X̂
(o)
s ≙ GX̂(in)s + gX̂

(in)
int . (17)

If the signal and internal modes are independent, we have

⟨Δ2
X̂
(o)
s ⟩ ≙ G2⟨Δ2

X̂
(in)
s ⟩ + g

2⟨Δ2
X̂
(in)
int ⟩. (18)

The second term in the expression above is the extra noise for the
output that degrades the output SNR as compared to the input.
However, if the input signal and the internal modes are correlated,
we have from Eq. (17)

⟨Δ2
X̂
(o)
s ⟩ ≙ G2⟨Δ2(X̂(in)s + λX̂

(in)
int )⟩, (19)

with λ ≡ g/G. If the signal and the internal modes are in the EPR-

type entangled state such as those generated from the first PA, X̂
(in)
s

and X̂
(in)
int are quantum mechanically correlated so that ⟨Δ2(X̂(in)s

+ λX̂
(in)
int )⟩ can be smaller than the corresponding vacuum value of

1 + λ2. In fact, it was shown59 that noiseless quantum amplification
can be achieved with the proper adjustment of the parameter. Such
an effect of noise reduction in amplifiers due to entanglement was
demonstrated first by Kong et al.60 in an atomic vapor system and
later by Guo et al.17 in a nonlinear fiber amplifier.

D. Signal-to-noise ratio and the optimum phase
measurement sensitivity in SU(1,1) interferometers

The sensitivity of SU(1,1) interferometers for phase measure-
ment is determined not only by the noise level of the outputs but
also by the signal size due to the phase change. It is usually charac-
terized by the signal-to-noise ratio (SNR), especially in experiment.
Although the signal size due to the phase change is usually the best
at half of the fringe size, i.e., the overall phase is at π/2, it is bet-
ter to operate at the dark fringe for practical reasons, similar to the
Mach–Zehnder interferometer in Sec. II, and we make homodyne
measurement of Ŷ = i(â† − â). Referring to Fig. 3, when input field
1 to the interferometer is in a strong coherent state of |α⟩ and the
overall phase φ1 + φ2 is set at π for minimum at both outputs, we
obtain the signals at the two outputs for a small phase change δ in
one arm of the interferometer,61

⟨Ŷ(o)1 ⟩ ≙ 2g1g2∣α∣δ, ⟨Ŷ
(o)
2 ⟩ ≙ 2g1G2∣α∣δ. (20)

With the output noise given in Eq. (15), we obtain the SNRs at the
two outputs as

SNR
(1)

SU(1,1)
≙ ⟨Ŷ

(o)
1 ⟩

2

⟨Δ2Ŷ
(o)
1 ⟩

≙ 4g22g
2
1 ∣α∣2δ2

(G2
1 + g21)(G2

2 + g22) − 4G1G2g1g2

≙ 4g22 Ipsδ
2

(G2
1 + g21)(G2

2 + g22) − 4G1G2g1g2
(21)

and

SNR
(2)

SU(1,1)
≙ 4G2

2g
2
1 ∣α∣2δ2

(G2
1 + g21)(G2

2 + g22) − 4G1G2g1g2

≙ 4G2
2Ipsδ

2

(G2
1 + g21)(G2

2 + g22) − 4G1G2g1g2
, (22)

where Ips ≙ g21 ∣α∣2 is the photon number of the phase sensing field.

When g2 > g1 and g2 ≫ 1 so that G2
2 ≙ 1 + g22 ≈ g22 , the SNR takes the

maximum value of61

SNR
(1,2)op

SU(1,1)
≙ 2(G1 + g1)2Ipsδ2, (23)

which gives δ
SU(1,1)
m ≙

√
2δm/(G1 + g1) when SNR

(1,2)op

SU(1,1)
≙ 1.

Note that the optimum SNR is obtained not with equal gains
of the two PAs but under the condition of g2 > g1, g2 ≫ 1.62 The
former was the operational condition commonly used in earlier dis-
cussions7,8,10,11 and experimental realizations of SU(1,1)12,13 and cor-
responds to the minimum noise level at the outputs, as shown in
Eq. (16). However, it leads to an SNR of (G1 + g1)2Ipsδ2, which is a

factor of 2 smaller than the optimum value given in Eq. (23).61

Comparing Eq. (23) to the optimum classical SNR in Eq. (7),
we obtain an SNR enhancement factor of (G1 + g1)2/2. This is
a factor of 2 smaller than that of the squeezed state interferome-
try given in Eq. (9). The reason for this is related to the optimum
scheme of SU(1,1) for phasemeasurement and will be discussed later
in Sec. IV C.

Figure 4 shows a typical result of phase measurement by both
an SU(1,1) interferometer (red, SU11) and a Mach–Zehnder inter-
ferometer (black, MZ) under the condition of the same phase sens-
ing intensity.63 The peaks are the phase modulation signal, and the

FIG. 4. Phase modulation signals and noise levels for an SU(1,1) interferometer
(red) and a Mach Zehnder interferometer (black). Adapted with permission from
Du et al., Opt Lett. 43, 1051 (2018). Copyright 2018 Optical Society of America.

APL Photon. 5, 080902 (2020); doi: 10.1063/5.0004873 5, 080902-6

© Author(s) 2020

https://scitation.org/journal/app


APL Photonics PERSPECTIVE scitation.org/journal/app

flat floor is the noise level of measurement. As can be seen, both
the signal and noise are amplified for SU(1,1) as compared to MZI,
but the signal gain is more than noise gain. We can extract SNRs
from Fig. 4. Since it is in log-scale, the SNR of phase measurement
is simply the difference of the peak value and the floor value. It is
found that SNRSU (1,1) = 6.9 dB and SNRMZI = 3.9 dB, leading to an
improvement of 3.0 dB in SNR by SU(1,1) over MZI.

Since both outputs of PA2 contain the information about the
phase change, it is suggested15,43 to measure the joint quantity

ŶJM ≡ Ŷ
(o)
1 + Ŷ

(o)
2 to combine the information. It is straightfor-

ward to show61 that in this case, the SNR is independent of g2

and has the optimum value given in Eq. (23), SNRJM ≙ SNR
(1,2)op

SU(1,1)

≙ 2(G1 + g1)2Ipsδ2, but with no further improvement. The extra out-
put nonetheless can be used for quantum information tapping (see
Sec. VI C and Ref. 17).

It should be noted that the SNR enhancement of SU(1,1)
interferometers over the classical SNR is due to the employment
of parametric amplifiers, which require strong pumping for high
gain and thus consume more energy or resources than traditional
interferometers.

E. Effect of losses

It is well known that with some loss L such as detection inef-
ficiency involved in the squeezed state, the noise reduction effect is
degraded with Eq. (8) modified to

⟨Δ2
I
sq
− ⟩ ≙ ∣α∣2[(1 − L)e−2r + L], (24)

where the loss L is modeled as a beam splitter with a transmissiv-
ity of 1 − L. The above can be considered as contributions from
two parts: the transmitted squeezed noise |α|2e−2r with a probabil-
ity of 1 − L and the vacuum noise of size |α|2 reflected from the
unused port with a probability of L, all scaled to the shot noise level

of ⟨Δ2Isnl− ⟩ ≙ ∣α∣2. Note that in the existence of loss L, the best noise
reduction achievable is L at infinite squeezing (r → ∞). After con-
sidering the reduction of the signal due to loss, we arrive at the
best SNR enhancement factor as (1 − L)/L for the squeezed state
interferometry.

On the other hand, the output noise for the SU(1,1) is amplified
by the second PA,making it much larger than the vacuumnoise level
so that the extra noise coupled in through loss is negligible. This is
shown in Eq. (15), which becomes

⟨Δ2
X̂
(o)
1 (θ)⟩ ≙ ⟨Δ

2
X̂
(o)
2 (θ)⟩

≙ (G2
1 + g

2
1)(G

2
2 + g

2
2) − 4G1G2g1g2

≙ 1 + 2(G1g2 −G2g1)2

≫ 1 for G2 ≫ G1 > 1 (25)

at dark fringe when φ1 + φ2 = π. So, the noise for Ŷ
(o)
1 after the loss

L is

⟨Δ2
Ŷ
(o)
1 ⟩L ≙ (1 − L)⟨Δ

2
Ŷ
(o)
1 ⟩ + L

≈ (1 − L)⟨Δ2
Ŷ
(o)
1 ⟩. (26)

FIG. 5. Dependence of the measured quantum noise level Iamp
JM as a function for

the detection losses for various gain of the parametric amplifier (PSA gain). The
value of 2 corresponds to the vacuum noise level. Reproduced with permission
from Li et al., Opt. Express 27, 30552 (2019). Copyright 2019 Optical Society of
America.

With the signal drop by a factor of 1 − L, ⟨Ŷ(o)1 ⟩
2
L ≙ (1 − L)⟨Ŷ(o)1 ⟩

2,
we obtain the SNR due to loss,

SNR
L
SU(1,1) ≙

⟨Ŷ(o)1 ⟩
2

L

⟨Δ2Ŷ
(o)
1 ⟩L

≈ ⟨Ŷ
(o)
1 ⟩

2

⟨Δ2Ŷ
(o)
1 ⟩
≙ SNRSU(1,1). (27)

So, the losses outside of the interferometer such as transmission and
detection losses have almost no effect on the SNR of SU(1,1) for large
G2 and the ability of loss tolerance increases withG2 of PA2.

11,61 This
loss-tolerant property of SU(1,1) was first observed in Ref. 13 and
confirmed later in Refs. 16 and 64. Figure 5 shows the result from
Ref. 64, which plots the measured quantum noise level I

amp
JM (value of

2 corresponds to the vacuum level) as a function of loss for various
gain of the parametric amplifier (PA2). It clearly demonstrates that
the effect of loss is mitigated by the amplification (PSA gain). The
gray straight line (PSA gain = 1) corresponds to the case of direct
detection and is described by the linear dependence in Eq. (24).

In fact, the amplified quantum noise from PA2 can not only
overcome the vacuum noise introduced through losses, but it can
also fight against excess classical noise. This strategy was used in
microwave detection to tackle the enormous thermal noise back-
ground in a microwave circuit65 (see Sec. V A).

SU(1,1)’s immunity to losses is only for the output fields of
the SU(1,1). For losses inside the interferometer, however, it was
shown11,66 that the effect is exactly the same as that on the squeezed
state. So, SU(1,1) is not immune to its internal losses. This suggests
that all the quantum advantage is from the quantum entanglement
created in the first PA (PA1), whereas the second PA is simply a
device for superposition to disentangle the two fields in the two arms
of the interferometer.

Indeed, as variations of SU(1,1), we can replace the second PA
with any linear device that can mix the two fields and achieve the
same performance as SU(1,1), as we will see in the following.

IV. VARIATIONS OF SU(1,1) INTERFEROMETERS

A. The Scheme of a parametric amplifier and a beam
splitter (PA + BS)

It has been known almost since the discovery of squeezed states
and EPR-entangled states that in the case of degenerate frequency,
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they can be converted from each other by a 50:50 beam splitter.56,67

Since an EPR-type entangled state can be generated with a paramet-
ric amplifier,50 we can use a beam splitter to convert it to squeezed
states and measure the phase change with reduced quantum noise,
similar to the squeezed state interferometry. However, the state-
ments above are for states with no coherent components and the
photon number of squeezed states with no coherent component is
too low to have any practical use.

To boost the photon number, we can inject a coherent state,
just like what we did in Sec. III. This forms a variation of the SU(1,1)
interferometer with a PA for beam splitting and a BS for wave super-
position and interference (PA + BS scheme). The actual scheme is
shown in Fig. 6. For a large injection |α|2 ≫ 1, it is straightforward
to calculate58 the output intensity at output port 2 as

I
(o)
2 ≙ Ips∥1 − V cos(φ1 + φ2)∥, (28)

where Ips ≙ g21 ∣α∣2 and visibility V ≡ 2G1g1
√
TR/(g21 + R). Note that

the fringe depends on the sum of the phases of the two arms, sim-
ilar to Eq. (13). 100% visibility in interference fringe at output port
2 can be achieved with T ≙ G2

1/(G2
1 + g21),R ≙ 1 − T for the beam

splitter. However, when Ŷ
(o)
2 is measured at output port 2 by homo-

dyne detection (HD), the optimum SNR for phase measurement is
achieved when T ≙ (G2

1 + g21)2/(8G2
1g

2
1 + 1),R ≙ 4G2

1g
2
1/(8G2

1g
2
1 + 1)

with

SNR
(op)
PA−BS ≙ 4δ

2
Ips(G2

1 + g
2
1). (29)

This is a factor of G2
1 + g21 improvement over the optimum classical

SNR in Eq. (7).
If we use a 50:50 beam splitter, as in Ref. 56, it is straightfor-

ward to find that the output noise will be (G1 − g1)2, while the signal
is 2Ipsδ

2, and the SNR is exactly the same as that in Eq. (23). So,
this variation of SU(1,1) gives the same SNR improvement factor as
the SU(1,1) over the traditional interferometer. It is interesting to
note if we switch the positions of PA and BS, that is, using BS for
beam splitting and PA for wave superposition, the result will not be
that given in Eq. (29) but is the same as that in Eq. (7) for classi-
cal interferometers.58 This further demonstrates that the quantum
advantage originates from the quantum entanglement in the phase
probing beam produced by the first parametric amplifier. Note fur-
ther that since we use a BS to superpose the signal and idler fields,

FIG. 6. The scheme of the parametric amplifier and beam splitter for a variation of
the SU(1,1) interferometer. Adapted with permission from J. Kong, Z. Y. Ou, and
W. Zhang, Phys. Rev. A 87, 023825 (2013). Copyright 2013 American Physical
Society.

they must be frequency degenerate and the scheme is sensitive to
losses just like squeezed state interferometry.

B. Truncated SU(1,1) interferometer

Although waves need to be superimposed in order to show the
interference effect, the method of superposition can vary. We have
already seen the methods using a parametric amplifier and using
a beam splitter. In these cases, the waves are physically superim-
posed and interference occurs at the optical fields of the outputs of
the wave-combining devices. In particular, for the PA + BS scheme
in Fig. 6, it requires the two fields from PA1 have the same fre-
quency because of the use of the beam splitter for wave superposi-
tion. On the other hand, since homodyne detection makes quantum
measurement of the quadrature-phase amplitude of the field, the
photo-current from homodyne detection can be thought of as the
quantum copy of the amplitude of the field. So, the mixing of
the photo-currents after homodyne detections is equivalent to the
superposition of the detected fields and we can replace the beam
splitter with a post-detection current mixer to achieve field super-
position. This is the idea behind the so-called “truncated” SU(1,1)
interferometer proposed and reported by Anderson et al.,15,43 as
shown in Fig. 7 where only the first parametric amplifier remains
as compared to SU(1,1) interferometers in Figs. 1(b) and 6. The
mixer for photo-currents from the homodyne detectors (HD) plays
the same role as the second parametric amplifier in Fig. 1(b) and
the beam splitter in Fig. 6 to superimpose the two fields in the
interferometer for interference. The current after mixing shows the
phase signal δϕ as well as the quantum noise cancellation effect
due to entanglement in a typical SU(1,1) interferometer. It was
shown43,61 that the SNR for phase measurement is the same as that
in Eq. (23) in the ideal lossless condition. The truncated version of
SU(1,1) was recently used in atomic force microscopy with quantum
enhancement.68

Because direct detection is used in the truncated scheme and
the PA + BS scheme of SU(1,1) interferometers, losses will have a
significant effect on the quantum enhancement factor in a similar
way to the squeezed state interferometry.

C. Dual-beam SU(1,1) interferometers

In the SU(1,1) interferometers we discussed so far, the SNR for
phase measurement is given in Eq. (23), which shows an improve-
ment factor of (G1 + g1)2/2 over the optimum classical SNR in
Eq. (7). This is a factor of 2 smaller than the improvement factor

FIG. 7. The scheme of the truncated SU(1,1) interferometer. Reproduced with per-
mission from Gupta et al., Opt. Express 26, 391 (2018). Copyright 2018 Optical
Society of America.
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by squeezed state interferometry given in Eq. (9). The reason for
this is quantum resource sharing in phase and amplitude measure-
ment,61 which will be discussed later in Sec. VI B. This means that
the current SU(1,1) interferometer is not optimized for phase mea-
surement. To look for the optimized phasemeasurement scheme, we
note in Eqs. (13) and (28) that the interference fringe depends on the
sum of the phases of the two arms of the interferometer. Therefore,
if we use both fields from PA1 to sense the phase change signal, we
will double the signal size δ. This is the dual-beam scheme proposed
by Li et al.61 and realized by Liu et al.,69 which is shown in Fig. 8. As
expected, it can be shown61 that the homodyne detection signals at
both output ports are

⟨Ŷ1⟩2 ≙ 4(G1G2 + g1g2)2∣α∣2δ2,
⟨Ŷ2⟩2 ≙ 4(G1g2 + g1G2)2∣α∣2δ2.

(30)

With the noise power given in Eq. (15) [quantities X̂
(o)
1,2 (π/2) are the

same as Ŷ1,2 here] and at the dark fringe of φ1 + φ2 = π, the SNR for
the dual-beam scheme is

SNR
(1)
DB ≙

4(G1G2 + g1g2)2Ipsδ2
(G2

1 + g21)∥(G2
1 + g21)(G2

2 + g22) − 4G1G2g1g2∥ ,
SNR

(2)
DB ≙

4(G1g2 + g1G2)2Ipsδ2
(G2

1 + g21)∥(G2
1 + g21)(G2

2 + g22) − 4G1G2g1g2∥ ,
(31)

where Ips ≙ (G2
1 + g21)∣α∣2 is the photon number of the dual phase

sensing fields. When g2 → ∞ and G2 ≈ g2, we have the optimum
SNR,

SNR
(1)
DB ≙ SNR

(2)
DB ≙ 2(G1 + g1)4Ipsδ2/(G2

1 + g
2
1)

→ 4(G1 + g1)2Ipsδ2 for g1 ≫ 1,
(32)

which is the same as the one for squeezed state interferometry in
Eq. (9) at large g1.

Note that at finite g1, the SNR in Eq. (32) is still smaller than
that for squeezed state interferometry. This is again because of quan-
tum resource distribution, which we will discuss in Sec. VI B. Note
that the SNRs in Eq. (31) are for one output only, but we have two
outputs for PA2. So, we can make full use of these two outputs by
performing a joint measurement Ŷ JM ≡ Ŷ1 + λŶ2 of the two outputs,
as shown in Fig. 8. With λ = 1 and any g2, it is shown that the SNR
for the joint measurement is

SNR
JM
DB ≙ 4(G1 + g1)2Ipsδ2 for arbitrary g1. (33)

So, we recover the SNR of squeezed state interferometry when we
make full use of the resource.

FIG. 8. The dual-beam scheme of the SU(1,1) interferometer for phase measure-
ment. Reproduced with permission from Liu et al., Opt. Express 27, 11292 (2019).
Copyright 2019 Optical Society of America.

From the result above, we find that SU(1,1) at best matches
the sensitivity of squeezed state interferometry. This seems to con-
tradict the fact that SU(1,1) can reach the Heisenberg limit of
phase measurement.7 However, the result in Eq. (33) is obtained
under the condition of strong coherent state injection to boost
overall phase sensing photon number Ips. With no coherent state

injection, it was shown11 that the Heisenberg limit is recovered.
It was further shown58 that when the gain parameter g1 of PA1
is comparable to the injected coherent state photon number, the
Heisenberg limit can also be reached, similar to squeezed state
interferometry.47,48

It was shown61 that when dual-beam phase sensing is imple-
mented in the truncated scheme and the PA + BS scheme, the factor
of 2 is also recovered, leading to the same SNR as the squeezed state
interferometry. However, because of the second PA, the dual-beam
SU(1,1) scheme here is tolerant to losses outside of the interferom-
eter, similar to the original SU(1,1) interferometer in Fig. 3. Fur-
thermore, different from the PA + BS scheme, the employment of
separate homodyne detectors in the truncated scheme and the sec-
ond PA in the dual-beam SU(1,1) scheme does not require the same
frequency for the two fields from the first PA in both schemes. The
experimental implementation of the dual-beam SU(1,1) interferom-
eter was realized by Liu et al.,69 and about 3 dB improvement over
the single-beam scheme was demonstrated.

D. Multi-stage SU(1,1) interferometers

Similar to multi-path interferometers such as Fabry–Perot
interferometers and multi-slit interference in optics, we can also
add more PAs to form multi-stage SU(1,1) interferometers. In order
to have all the PAs playing the same role in the multi-path inter-
ference, we usually work at a low gain regime of the PAs so that
spontaneous emission dominates and two-photon states are gener-
ated. This variation of the SU(1,1) interferometer finds its applica-
tion in the modification of mode structures (temporal and spatial)
in the output field for mode engineering of the output quantum
states. The detail of this application can be found later in Sec. VI E.
In the following, we will present the general principle for this
scheme.

Consider the multi-stage interferometer shown in Fig. 9 where
the kth PA is described by the small amplitude gain parameter
0 < gk≪ 1 so that the power gain G2

k ≙ 1+ g2k ≈ 1(k ≙ 1, 2, . . . ,N). In
between the PAs sandwiched are phase shifters Θ̂(θ). For simplicity,
we assume the phase shifters have the same phase of the amount
θ for the two fields of the PAs together. In the low gain limit, in
order to better describe the performance of the system and reveal
the underlying physical principle, we will work in the Schödinger
picture with quantum states. Let us start with the quantum state of
one PA.

With the Hamiltonian in Eq. (10) for the parametric amplifier,
the state evolution in the time interval Δt for the system is described

FIG. 9. Multi-stage SU(1,1) interferometer.
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by a unitary evolution operator,

Û(Δt) ≙ exp(ĤΔt/ih̵)
≈ 1 + (gâ†

s â
†

i + h.c.) when g ≡ ξΔt ≪ 1, (34)

where we replace the labeling of the fields in Eq. (10) by s, i, which
stand for “signal, idler” due to historic reason, and assume g ≡ ξΔt
is a positive number and only keep the first order in the expansion
of the exponential. Then, with vacuum input, the output state is a
two-photon state of the form

∣Ψ⟩PA ≙ Û(t)∣vac⟩ ≈ ∣vac⟩ + gâ
†
s â

†

i ∣vac⟩
≙ ∣vac⟩ + g∣1s, 1i⟩. (35)

For the multi-stage interferometer in Fig. 9, the output state is
then

∣Ψ⟩mPA ≙ ÛN(Δt)Θ̂(θ)⋯Û2(Δt)Θ̂(θ)Û1(Δt)∣vac⟩

≈ ∣vac⟩ + ( N

∑
k≙1

gke
−i(N−k)θ)∣1s, 1i⟩, (36)

where the operator Θ̂(θ) adds a total phase of θ to the signal and
idler field together. So, the multi-stage interferometer is equivalent
to one PA but with amplitude gain equal to the sum of the amplitude

gains of all PAs involved: gT ≙ ∑N
k≙1 gke

−i(N−k)θ. This is the result
of two-photon interference: each PA can generate a pair of photons
with amplitude gk, and the final state is a superposition of all the
two-photon states.

In the special case when all the PAs have the same gain, gk = g,
we have

gT ≙ g
N

∑
k≙1

e
−i(k−1)θ ≙ ge−i(N−1)θ/2H(θ), (37)

where H(θ) ≡ sinNθ/2
sin θ/2 is the multi-path interference factor, which

recovers the familiar function of cos θ for N = 2. It first appears in
multi-slit interference such as optical grating and has an enhance-
ment factor of N2 for the two-photon production rate as compared
to the single PA. This is the same physics underlying cavity enhanced
parametric processes70 and can provide active filtering for spectral
mode shaping (see Sec. VI E for details).

The high gain case is not easy to treat because of the general
non-commuting nature of the Hamiltonian for different PAs.71 Nev-
ertheless, it still gives rise to the modification of the mode structure
at the output similar to the low gain case.

V. SU(1,1) INTERFEROMETERS OF DIFFERENT WAVES

A. SU(1,1) interferometer with microwaves

Parametric amplifiers were first realized in radio frequency and
microwaves.72 However, thermal and electronic noise is often so
large that it overwhelms the quantum noise in detection processes.
So, it is hard to study the quantum behavior of the amplifiers in radio
frequency and microwave regimes. This was changed recently when
near quantum limit low noise parametric amplifiers were invented.73

Although thermal and electronic noise is still very high in detection
processes, Flurin et al.65 utilized the low noise parametric amplifier
at high gain as a beam splitter to reveal the EPR-type quantum corre-
lation between two entangled microwave fields generated by another

FIG. 10. SU(1,1) interferometer for microwaves. Adapted with permission from
Flurin et al., Phys. Rev. Lett. 109, 183901 (2012). Copyright 2012 American
Physical Society.

low noise parametric amplifier. Similar to the role played for loss
tolerance by the second parametric amplifier in an SU(1,1) inter-
ferometer, Flurin et al.65 used the low noise parametric amplifier to
amplify the quantum noise to a level that is much larger than the
thermal and electronic background noise in the detection process. In
this way, they achieved the measurement of the correlated quantum
noise from EPR-entangled microwave fields even in the presence of
the enormous thermal and electronic background noise.

Working on the goal to demonstrate the EPR-type entangle-
ment between microwave fields, Flurin et al.65 inadvertently real-
ized an SU(1,1) interferometer in the microwave regime. In their
arrangement shown in Fig. 10, the first amplifier (PA1) is the EPR-
entangled source (entangler), while the second one (PA2) is the
one that measures the entanglement (analyzer). This geometry is
exactly in the form of Fig. 3 and is an SU(1,1) interferometer but
without seeding of a coherent state. Indeed, the measurement result
shows an interference pattern that depends on the phase difference
Δφ of the pumps.65 Note that during the experiment described in
Ref. 65, the gain of the analyzer (PA2) is much larger than 1 and
is always larger than that of the entangler (PA1). This is exactly
the setting for achieving the optimum performance of the SU(1,1)
interferometer presented in Eq. (23). The large gain in the ana-
lyzer (PA2) also satisfies what is required for PA2 to act as an
entanglement measurement device (see more later in Sec. VI D
and Ref. 64).

B. Atom-light hybrid interferometers

One of the key differences of an SU(1,1) interferometer from
a traditional interferometer is the way of wave splitting and super-
position for interference: it is through nonlinear mixing of waves.
This method can therefore couple different types of waves for inter-
ference, which is basically impossible in a traditional interferome-
ter. This leads to hybrid interferometers where the two interfering
waves are different types of waves. One such interferometer is the
atom-light hybrid interferometer, first realized by Chen et al. in
2015.51

Similar to the all-optical SU(1,1) interferometer in the original
realizations,12,13 the wave splitting and superposition elements in an
atom-light hybrid interferometer are Raman amplifiers, which are a
special kind of parametric process. As shown in the inset of Fig. 11, a
Raman process couples light waves of strong Raman pump field AW

and Stokes field âS with an atomic collective excitation wave Ŝa (also
known as a pseudo-spin wave) between two lower states (g, m) via
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FIG. 11. Hybrid atom-light interferometers. (a) Schematic diagram of the interfer-
ometer; PBS: polarization beam splitter, BS: beam splitter, M: mirror, D: detector, B:
magnetic field for atomic phase change. (b) Time sequence of light pulses. (c) MZ
interferometer-equivalent interference paths for atomic spin wave Sa and optical
wave aS, RA1, RA2: Raman amplifiers. Inset: atomic levels and optical waves.

an excited state (e). The Raman interaction Hamiltonian74,75 has the
same form as the parametric interaction Hamiltonian in Eq. (10),

ĤR ≙ ih̵ηAW â
†

S Ŝ
†
a − ih̵η∗A∗W âSŜa, (38)

except that one of the light fields, say â2, is replaced by the atomic
spin wave Ŝa and the other field â1 is renamed as the Stokes
field âS.

In most applications of Raman amplifiers, the atomic states are
treated as inaccessible internal states of the amplifier, which are often
in the vacuum state (unexcited state) and are not taken into con-
sideration. They are responsible for the spontaneous emission noise
of the amplifier. For the action of the SU(1,1) interferometer, as we
see from Sec. III, it requires the atomic spin wave to participate as
one of the interfering fields. Therefore, the atomic spin wave is a
part of the waves participating in the interference together with the
optical Stokes field. So, the interference fringe will depend on both
the atomic phase and the optical phase, thus forming an atom-light
hybrid SU(1,1) interferometer. The schematic diagram is shown in
Fig. 11(a). The input Stokes field aS1, after interacting with atoms
pumped by the first writing field W1 [see Fig. 11(b) for the time
sequence], is amplified as aS2. In the meantime, an atomic spin wave
Sa is also generated in the atomic ensemble. This is the wave split-
ting process [RA1 in Fig. 11(c)]. Since the atomic spin wave stays
in the atomic ensemble, to combine it with the amplified Stokes, we
send back with a mirror (M) the delayed Stokes field a′S2 together
with the second write field W2 [RA2 in Fig. 11(c); see Fig. 11(b) for
the time sequence]. This design is somewhat similar to a Michelson
interferometer where one BS is used for dual purpose.14 The output
aS3 is detected by D to reveal the interference fringe as the optical or
atomic phase is scanned. The atomic phase can be changed by the
external magnetic field via the Zeeman effect, as demonstrated by
Chen et al.51

The atomic phase can also be altered by shining an off-resonant
light beam on the atoms via the AC Stark shift.76 Thus, an interesting
application of the atom-light interferometer is to measure the pho-
ton number of the off-resonant light field in the sense of quantum
non-demolition (QND) measurement.77 This approach is similar to
the QNDmeasurement scheme for microwave photons.78

C. Atomic SU(1,1) interferometer

The atomic interferometer discussed in Sec. V B is a hybrid ver-
sion involving optical waves in interference. An all-atom version of

the SU(1,1) interferometer in a spinor Bose–Einstein condensate was
first discussed by Gabbrielli et al.79 and experimentally realized by
Linnemann et al.80 This subject was covered in an excellent review by
Pezzé et al.81 The nonlinear interaction responsible for atomic wave
splitting and superposition is the spin exchange collision between
87Rb atoms of spin F = 2 manifold and has a Hamiltonian of the
form similar to Eq. (10) for the parametric process,

Ĥat ≙ h̵κâ†

↑ â
†

↓ +H.c., (39)

where â↑, â↓ correspond to the atomic fields in the spin states of
|↑⟩ ≡ |F = 2, mF = 1⟩ and |↓⟩ ≡ |F = 2, mF = −1⟩, respec-
tively. The effective nonlinear coupling κ ≡ gN0 is related to
the microscopic nonlinearity g, arising from coherent collisional
interactions and the number of colliding atoms N0 in the ini-
tial state of |F = 2, mF = 0⟩, acting as the pump mode.
Figure 12 shows the schematic of the interferometer (a) and the
phase-dependent atomic numbers with their average showing the
interference pattern (b). Note that the sum of the two output chan-
nels is measured because they are in phase, which is the unique
property of the SU(1,1) interferometer. This version of the SU(1,1)
interferometer is the unseeded one without coherent state injec-
tion since initially there is no atom in either |↑⟩ or |↓⟩ state.
Nonetheless, phase measurement sensitivity beyond the SQL was
demonstrated.

The atom-light hybrid interferometer discussed in Sec. V B and
the atomic SU(1,1) interferometers discussed here all involve atomic
internal states. An atomic interferometer usually refers to interfer-
ometers involving the de Broglie matter waves of atoms via their
external motional states.82 An SU(1,1) of this type requires matter
wave amplifiers,83,84 which can be realized by four-wave mixing of
matter waves.85

For the hybrid atom-light interferometer involving the external
translational degrees of freedom of atoms, we need to go back to
Raman amplification but deal with ultra-cold atoms in a BEC86–88

where super-radiance of light is correlated with the atomic motional
states in a similar way as in Eq. (38).

D. Phonon SU(1,1) interferometer

Parametric amplifiers are the essential ingredients for an
SU(1,1) interferometer. Nonlinear interactions are usually involved
for them as we have seen before in Raman amplifiers and para-
metric processes. Opto-mechanical systems couple light fields with
a mechanical oscillator and can realize similar nonlinear interac-
tion for parametric amplification. The opto-mechanical coupling
between a mechanical oscillator and a single optical cavity mode has
an interaction Hamiltonian given by89

ĤOM ≙ h̵γâ†
âx̂m, (40)

where x̂m ≙ b̂+b̂†, â and b̂ are the annihilation operators for the opti-
cal cavity mode and the phonon mode of the mechanical oscillator,
respectively, and γ is the opto-mechanical coupling constant. With
a strong coherent optical field, we can make a linear approximation
â = α + âs, and the Hamiltonian in Eq. (40) becomes

ĤOM ≈ h̵Γ(â†
s b̂ + h.c.) + h̵Γ(â†

s b̂
† + h.c.), (41)
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FIG. 12. Atomic SU(1,1) interferome-
ter. (a) Interferometric scheme with the
wave splitting and recombination pro-
cesses equivalent to parametric ampli-
fiers (PAs). (b) The output atomic num-
ber distributions as the phase of the
atomic waves changes. Reproduced with
permission from Linnemann et al. Phys.
Rev. Lett. 117, 013001 (2016). Copyright
2016 American Physical Society.

where Γ = γα is the effective opto-mechanical coupling rate. The
first term in Eq. (41) has the form of the well-known beam split-
ter Hamiltonian, whereas the second term is similar to a parametric
amplification process given in Eq. (10). The derivation above is over-
simplified without considering the multi-mode nature of the optical
field. With a multi-mode model, the interaction can be viewed as
a Raman process so that the second term in Eq. (41) corresponds
to the Stokes scattering, while the first term corresponds to the
anti-Stokes scattering. Whichever term dominates the interaction
depends on the cavity resonance to the Stokes or anti-Stokes com-
ponent of the optical field. In analogy with a Ramsey interferometer,
Qu et al.90 utilized the beam splitter-like Hamiltonian in the first
term of Eq. (41) to realize an opto-mechanical Ramsey interferom-
eter. Of course, had they used the second term of Eq. (41), it would
have become a hybrid photon–phonon SU(1,1) interferometer in
the same spirit of the atom-light hybrid interferometer discussed
in Sec. V B.

For an all-phonon SU(1,1) interferometer, strong nonlinear
interaction betweenmechanical oscillators is required. This was real-
ized by Patil et al.,91 who demonstrated parametric amplification of
phonons and thermo-mechanical noise squeezing. Equipped with
phonon parametric amplifiers, Cheung et al.92 realized a PA + BS

version of the all-phonon SU(1,1) interferometer (Sec. IV A) where
the second parametric amplifier is replaced by a beam splitter.

VI. APPLICATIONS OF SU(1,1) INTERFEROMETERS

The primary application of SU(1,1) interferometers is in phase
measurement. It was shown in Sec. III D that the phasemeasurement
sensitivity can beat the standard quantum limit. On the other hand,
as we have found in Sec. III C 1, the noise reduction in SU(1,1) is due
to quantum destructive interference, which reduces all noise of the
whole output fields of the interferometer. So, the sensitivity enhance-
ment effect is not limited to phase measurement and can also be
applied to the measurement of other quadrature-phase amplitudes
such as amplitude measurement, as we will show next.

A. Multi-parameter measurement

As is well known, phase and amplitude are conjugate vari-
ables so that the Heisenberg uncertainty principle prevents their
simultaneous measurement with precision beyond what the uncer-
tainty principle allows. However, this limitation is on one object
and the entanglement between two objects can break this lim-
itation, which is what leads to the famous EPR paradox in an
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apparent violation of the Heisenberg uncertainty relation.49,50,93

However, Braunstein and Kimble57 made use of this seemingly
contradicting behavior of the entangled source to achieve simul-
taneous measurement of phase and amplitude with measurement
precision, beating the limit set by the Heisenberg uncertainty rela-
tion. The experimental demonstration of this phenomenon was
first performed by Li et al.94 following a proposal by Zhang and
Peng,95 which is a variation of the quantum dense coding scheme of
Braunstein andKimble.57 More recently, Steinlechner et al.96 applied
the same technique to a prototype interferometer for gravita-
tional wave detection with simultaneous measurement of two non-
orthogonal quantities.

A look at the quantum dense coding scheme by Braunstein and
Kimble reveals that it is just the PA + BS scheme of the SU(1,1) inter-
ferometer that we discussed in Sec. IV A. Since the role of the BS is
the same as the second parametric amplifier in the SU(1,1) interfer-
ometer to superpose the two entangled fields, the original SU(1,1)
interferometer with two parametric amplifiers should be able to
accomplish the same task as the quantum dense coding scheme.
Indeed, it was theoretically shown61 that while homodyne detection
of Ŷ1 at the signal output port of PA2 (port 1 in Fig. 3) gives rise to
the measurement of the phase modulation δ with an SNR of

SNR
(1)
Ph
≙ 4g22 Ipsδ

2

(G2
1 + g21)(G2

2 + g22) − 4G1G2g1g2

→ 2(G1 + g1)2Ipsδ2 for g2 > g1 and g1 ≫ 1, (42)

as presented in Eq. (21), homodyne detection of X̂2 at the idler out-
put port of PA2 (port 2 in Fig. 3) leads to the measurement of the
amplitude modulation with an SNR of

SNR
(2)
Am ≙

4G2
2Ipsε

2

(G2
1 + g21)(G2

2 + g22) − 4G1G2g1g2

→ 2(G1 + g1)2Ipsε2 for g2 > g1 and g1 ≫ 1, (43)

where ε is the amplitude modulation signal. Similar to the phase
measurement sensitivity given in Eq. (42), the sensitivity of the
amplitude measurement presented in Eq. (43) also beats the stan-
dard quantum limit. Figure 13 shows the schematic of the SU(1,1)
interferometer for the simultaneous measurement of both a phase
shift δ and an amplitude change ε in the signal field. Note that the
phase measurement [HD1 for X̂s(ϕ1) with ϕ1 = π/2] and ampli-
tude measurement [HD2 for X̂i(ϕ2) with ϕ2 = 0] are performed at
different ports (signal and idler output ports) that are independent
of each other. Therefore, we can make the simultaneous measure-
ment of encoded phase and amplitude signals with their sensitivities
simultaneously beating the standard quantum limit.

The above application of the SU(1,1) interferometer to the
simultaneous measurement of phase and amplitude was experimen-
tally demonstrated by Liu et al.19 Furthermore, the measurement
scheme is extended to simultaneous measurement of multiple non-
commuting observables, which are not necessarily orthogonal [HD1
for X̂s(ϕ1), HD2 for X̂s(ϕ2), HD3 for X̂s′(ϕ3) in Fig. 13 with arbi-
trary ϕ1, ϕ2, ϕ3]. Since outputs are amplified, we can further split the
signal output without introducing vacuum noise for the simultane-
ous measurement of another modulation non-orthogonal to phase
and amplitude by HD3 of X̂s′(ϕ3).

The advantages of the SU(1,1) interferometer over the quan-
tum dense coding scheme57 are as follows: (1) more than two non-
commuting quantities can be simultaneously measured and (2) it is
tolerant to propagation and detection losses.

B. Quantum resource sharing

When using SU(1,1) interferometers for the simultaneous mea-
surement of phase and amplitude, there exists an interesting rela-
tion between the optimum sensitivities of the two measurements.
Expressed in terms of the signal-to-noise ratios, the relation is
written as61,97

SNRPh + SNRAm ≙ SNRop, (44)

where SNRop is the optimized SNR of the corresponding measure-
ment when the resource is all devoted to that measurement so that it
is impossible to make the other measurement. This can be seen from
Eqs. (42) and (43) where, if we set themodulation signals equal, δ = ε,
and add the two SNRs, we have

SNR
(1)
Ph

+ SNR
(2)
Am ≙ 4(G1 + g1)2Ipsδ2 ≙ SNRop, (45)

where SNRop is given by Eq. (33) for the optimum phase measure-
ment sensitivity obtained in the dual-beam scheme. In fact, the less-
than-optimized results in Eq. (32) for finite g1 in the dual beam
scheme can be attributed to the relation in Eq. (45) of quantum
resource sharing. When Y1 is measured for the phase modulation
signal, the other port can still be used for amplitude measurement,
but a straightforward calculation gives an SNR of

SNR
(2)
Am ≙ 2Ipsε

2/(G2
1 + g

2
1), (46)

where we set g2 > g1 and G2 ≈ g2 ≫ 1 for the optimum value and
ε is the amplitude modulation signal. This, when set to have ε = δ,
together with the SNR for phase modulation in Eq. (32) leads to
Eq. (45) for quantum resource sharing even at finite g1. Furthermore,
although the phase measurement result of the joint measurement
between the two ports in Eq. (33) gives SNRop, since both ports are
used for phase measurement, which leaves no room for amplitude
measurement, namely, SNRAm = 0, this again satisfies Eq. (45) for

FIG. 13. Simultaneous phase (δ) and
amplitude (ε) measurement by using an
SU(1,1) interferometer. HD: homodyne
detection and BS: beam splitter. Repro-
duced with permission from Liu et al.
Opt. Express 26, 27705 (2018). Copy-
right 2018 Optical Society of America.
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quantum resource sharing. Note from Eq. (46) that when g1 →∞,

SNR
(2)
Am → 0, indicating that the dual-beam scheme discussed in

Sec. IV C is not suitable for amplitude modulation measurement.
The reason for this can be traced to the intensity correlation between
the two entangled fields from the first parametric amplifier or the
so-called twin beam effect:98 noise in the intensity difference is
reduced due to intensity correlation, whereas the amplitude mod-
ulation signal encoded in the two fields is also canceled, leading to
no amplitude modulation signal in the intensity difference.

C. Quantum information tapping

It is well known99 that when quantum information is split
with a beam splitter, vacuum noise comes in from the unused port,
leading to degradation of SNRs of the split signals as compared to
the input. Shapiro suggested using squeezed states to combat the
vacuum noise and preserve the SNRs of the split signals.99 This
is the so-called quantum information tapping. Such a scheme was
implemented by Bruckmeier et al.100

The SU(1,1) interferometer discussed here can be used for
quantum information tapping. Consider the two outputs of PA2.We
have from Eq. (23) for g2 > g1 and G2 ≈ g2 ≫ 1

SNR
(1)

SU(1,1)
≙ SNR(2)

SU(1,1)
≙ 2(G1 + g1)2Ipsδ2. (47)

So, the two outputs are identical copies of each other, which can
be thought of as the two split signals for the modulated phase
signal encoded to the input field before PA2. The input SNR
is obtained from the direct measurement and is given as SNRin

≙ 2(G1 + g1)2δ2Ips.61 Hence, we have the transfer coefficients, which

are defined as T
(1,2) ≡ SNR(1,2)

SU(1,1)
/SNRin, satisfying the relation for

quantum information tapping,

T
(1) +T

(2) ≙ 2. (48)

Note that the classical tapping limit is T
(1) + T

(2) ≤ 1.99 The
experimental implementation of the quantum information tapping
scheme from an SU(1,1) interferometer was realized by Guo et al.,17

which is basically the amplifier version101 of quantum informa-
tion tapping but with quantum entangled fields as the input in
order to achieve noiseless quantum amplification.59,60 A variation
of this scheme is the much improved dual-beam encoding scheme
in an SU(1,1) interferometer.69 It was demonstrated for the first
time by the quantum information tapping technique that a quan-
tum enhanced signal can be split into two while still maintaining
the quantum enhancement property. The SU(1,1) scheme of quan-
tum information tapping was extended by Liu et al.102 to a three-
way quantum information tapping scheme for quantum information
cascading.

D. Measurement of entanglement
in continuous variables

Verification of quantum entanglement between two light
sources is a basic experimental technique in quantum informa-
tion. For continuous variables, it is usually done via the homodyne
detection technique by directly measuring the quadrature-phase
amplitude correlations of the two fields: ⟨Δ2X̂−⟩ and ⟨Δ2Ŷ+⟩ with
X̂− ≡ X̂1 − X̂2 and Ŷ+ ≡ Ŷ1 + Ŷ2.

49,50,103,104 Quantum entanglement

satisfies the inseparability criterion: I ≡ 1
4
(⟨Δ2X̂−⟩ + ⟨Δ2Ŷ+⟩) < 1.105

However, this traditional homodyne method is prone to loss, which
severely limits the application of entanglement. On the other hand,
as we have shown in Sec. III A, parametric amplifiers (PAs) can act
as non-conventional beam splitters for mixing of two fields, which is
exactly performed when quantities X̂− ≡ X̂1 − X̂2 and Ŷ+ ≡ Ŷ1 + Ŷ2

are measured, forming an SU(1,1)-type interferometer. We analyze
this scheme next.

As shown in Fig. 14, the two fields â1 and â2, whose entan-
glement property needs to be characterized, enter the input ports
of a parametric amplifier (PA) of amplitude gain parameters G, g.
We perform homodyne detections (HD1, HD2) at the two outputs,

one for the X-quadrature (X̂
(o)
1 ) and the other for the Y-quadrature

(Ŷ
(o)
2 ), similar to the scheme of joint measurement of phase and

amplitude. According to Eq. (12), we obtain the input and output
relations for the X, Y-quadratures as

X̂
(o)
1,2 ≙ GX̂1,2 − gX̂2,1, Ŷ

(o)
1,2 ≙ GŶ1,2 + gŶ2,1, (49)

where we dropped the input label (in) for clarity and added a π phase
to g so that it changes sign. Then, the results of measurement are

⟨Δ2
X̂
(o)
1 ⟩ ≙ ⟨Δ

2(GX̂1 − gX̂2)⟩
≙ G2⟨Δ2(X̂1 − kX̂2)⟩ ≙ G2⟨Δ2

X̂
(k)
− ⟩,

⟨Δ2
Ŷ
(o)
1 ⟩ ≙ ⟨Δ

2(GŶ1 + gŶ2)⟩
≙ G2⟨Δ2(Ŷ1 + kŶ2)⟩ ≙ G2⟨Δ2

Ŷ
(k)
+ ⟩, (50)

where k ≡ g/G→ 1 for largeG and X̂
(k)
− ≡ X̂1−kX̂2, Ŷ

(k)
+ ≡ Ŷ1+kŶ2. If

we block the two inputs and make measurement for vacuum input,
we can obtain the result of uncorrelated vacuum for comparison.
Taking the ratio for the two measurements, we have

I
(1,2)
amp ≡

⟨Δ2X̂
(o)
1,2⟩ + ⟨Δ2Ŷ

(o)
1,2 ⟩

⟨Δ2X̂
(o)
1,2⟩v + ⟨Δ2Ŷ

(o)
1,2 ⟩v

≙ ⟨Δ
2X̂
(k)
− ⟩ + ⟨Δ2Ŷ

(k)
+ ⟩

2(1 + k2) → I for k→ 1. (51)

Therefore, we can make direct measurement of the inseparability
quantity I with a high gain parametric amplifier (k→ 1). The advan-
tage is its tolerance to any loss at detection (LD), as in all applications

FIG. 14. Entanglement measurement with the help of a parametric amplifier (PA).
HD: homodyne detection. LD: detection loss. Reproduced with permission from
Li et al., Phys. Rev. A 101, 053801 (2020). Copyright 2020 American Physical
Society.
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of SU(1,1) interferometers. The other advantage is the simultane-
ous measurement of X̂−, Ŷ+ with no parameter adjustment. The
disadvantage is the need to have a relatively high gain.

Furthermore, if we make joint measurement for the quantities

X̂
(o)
− ≡ X̂(o)1 − λX̂

(o)
2 and Ŷ

(o)
+ ≡ Ŷ(o)1 + λŶ

(o)
2 at the two outputs, one

at a time, it can be shown106 that with a proper adjustment of the
electronic coefficient λ = (kG − g)/(G − kg), we can always obtain

I
JM
amp ≙

⟨Δ2X̂
(o)
− ⟩ + ⟨Δ2Ŷ

(o)
+ ⟩

⟨Δ2X̂
(o)
− ⟩v + ⟨Δ2Ŷ

(o)
+ ⟩v

≙ ⟨Δ
2X̂
(k)
− ⟩ + ⟨Δ2Ŷ

(k)
+ ⟩

2(1 + k2) ≙ I(k) (52)

for any gain parameters G, g. Notably, we have IJMamp ≙ I with
λ = 1. Note that whenG = 1, g = 0, this is exactly the method of direct
homodynemeasurement,49,50,103,104 but with the help of a parametric
amplifier of G, g ≫ 1, the scheme is immune to losses.

The discussion above is for the single-mode case. For the multi-
mode case, parametric amplifiers have the ability to select the dom-
inating mode.106 This is because different modes have different
parametric gains. In the high gain limit, the mode with the largest
gain will dominate. Thus, application of parametric amplifiers to
entanglement measurement can also filter out unwanted higher
order modes and concentrate on the dominating mode. By using
the mode engineering technique on parametric amplifiers discussed
in Sec. VI E, we can select the mode of our interest.

The scheme discussed above for entanglement measurement
was implemented experimentally by Li et al.64 with fiber optical
parametric amplifiers, demonstrating the loss-tolerant and mode
selecting properties for the high gain case.

E. Mode engineering of quantum states with SU(1,1)
interferometers

Another interesting application of SU(1,1) interferometers is
the modification of the mode structure of the quantum state in
the output fields to achieve quantum state engineering. The mode
structure of quantum states has recently attracted a lot of atten-
tion because it increases the degrees of freedom for quantum fields
and is especially appealing to quantum information science because
of its ability to achieve multi-dimensional quantum entanglement
(see a comprehensive review by Fabre and Treps107). Modes of pho-
tons play essential roles in quantum interference because they define
the identity of photons and often lead to distinguishability.108 It
is crucial to have mode match between interfering fields in order
to achieve high visibility. Our discussion so far on SU(1,1) inter-
ferometers has assumed perfect mode match. Multi-mode behav-
ior of SU(1,1) is also quite different from linear interferometers.
In fact, a recent work demonstrated the mode cleaning ability
of SU(1,1).64,106 In the following, we will discuss the ability of
SU(1,1) for tailoring the mode structure of quantum fields to our
need.

The modification of the mode structure is achieved by engi-
neering the phase change in between the two PAs. This idea was
put into action31,32 soon after the first experimental realization of
the SU(1,1) interferometers.12,13 It can be used to modify both
spatial31,109,110 and temporal/spectral32,111–115 profiles of the output
fields. More recently, a multi-stage SU(1,1) (Sec. IV D) was imple-
mented for precise and versatile engineering of the spectral mode
function of the output quantum states.116 As an example, we present

here the interferometric scheme to achieve flexible and precise spec-
tral mode engineering for the two-photon state produced from
spontaneous parametric emission (SPE) processes.

When pumped by an ultra-short pulse (∼100 fs), SPE pro-
cesses generate a broadband two-photon state of the form similar
to Eq. (35) but with a multi-frequency mode description,

∣Ψ2⟩ ≙ ∣vac⟩ + g ∫ dΩsdΩiF(Ωs, Ωi)â†
s (Ωs)â†

i (Ωi)∣vac⟩, (53)

where F(Ωs, Ωi) is the normalized joint spectral function (JSF)
describing the joint spectral properties of the signal (subscript s) and
idler (subscript i) photons and has the form of

F(Ωs, Ωi) ≙Ne
−(Ωs+Ωi)

2/2σ2p sinc(ΔkL/2), (54)

with Δk as the wave vector (phase) mismatch among all the waves in
a nonlinear medium of length L. g(≪1) is similar to the same quan-
tity in Eq. (35). It is proportional to L and the nonlinear coefficient
and is related to the peak amplitude of the pump field. N is the nor-
malization constant. Note that Eq. (54) is written in terms of the
frequency offsets Ωs, Ωi(Ωl ≡ ωl − ωl0, l = s, i) from the central fre-
quencies ωs0, ωi0 of the generated fields, which are determined by
the phase matching condition Δk = 0 and the center frequency of the
pump field.

If the frequencies of the signal and idler photons are close to
each other, that is, |ωs0 − ωi0| ≪ ωs0, ωi0, then the sinc-function
in F(Ωs, Ωi) has a broad bandwidth much wider than the pump
bandwidth σp. In this case, F(Ωs, Ωi) is mainly determined by the
exponential function and forms a strip along −45○, as shown in
Fig. 15(a). The strip orientation of −45○ reflects the frequency anti-
correlation between the signal and idler photons due to energy con-
servation of photons. This shape of JSF gives rise to a two-photon
state with multiple temporal modes and is not desirable for quan-
tum interference in quantum information applications. Single-mode
two-photon states are preferable, corresponding to a factorable JSF
with a shape such as a round circle.

The JSF of the two-photon state can be modified by using an
SU(1,1) interferometer with a spectrally dependent phase θ by using

FIG. 15. Contour plot of the joint spectral function F(Ωs, Ωi ) (JSF) of a two-photon
state generated from four-wave mixing processes in optical fibers, but the variables

are in wavelengths, as in the original paper113 (Ωl ≡ ωl − ωl 0, λl = 2πc/ωl , l = s, i).
(a) A single parametric process. (b) An SU(1,1) interferometer with spectrally
dependent phase for the modification of JSF. Marginal intensity distribution I(Ωs)
is below the horizontal axes. Reproduced with permission from Su et al., Opt.
Express 27, 20479 (2019). Copyright 2019 Optical Society of America.
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FIG. 16. Contour plot of the joint spectral function F(Ωs, Ωi )
(JSF) for the output state from a multi-stage SU(1,1) inter-
ferometer. N = (a1) 3, (a2) 4, and (a3) 5. The variables are
in wavelengths as in Fig. 15. Reproduced with permission
from Su et al., Opt. Express 27, 20479 (2019). Copyright
2019 Optical Society of America.

a linear dispersive medium sandwiched in between the two PAs,
as shown in Fig. 9 with N = 2. Then, the interference term H(θ)
= 2 cos θ in Eq. (37) will modify the single PA term g or the JSF F(Ωs,
Ωi) in Eq. (54) for the broadband case. For the case of near degen-
erate frequencies of |ωs0 − ωi0|≪ ωs0, ωi0, the first-order dispersion
disappears and second-order dispersion leads to θ ≙ β(Ωs−Ωi)2LDM
with β being proportional to the second-order dispersion coefficient
and LDM as the length of the linear dispersive medium. Figure 15(b)
shows the modified JSF together with the marginal intensity I(ωs) of
the signal field, showing the interference fringe. The island structure
of the modified JSF is a result of two-photon interference and forms
a multi-dimensional two-photon state with entanglement between
different islands.117 Filters can be used to select the roundest island
for a nearly factorable JSF (yellow dashed lines). The shape of the
islands can be adjusted depending on the pump bandwidth σp and
the length LDM of the dispersive medium.

The cleanliness and thus better quality of the selected island
depend on the visibility of interference. This can be improved with
a multi-stage design, presented in Sec. IV D, where the interfer-

ence term H(θ) ≙ sinNθ/2
sin θ/2 will make the islands well separated with

increasing stage number N, as shown in Fig. 16. The improved vis-
ibilities in the interference pattern shown in the marginal intensity
should give a cleaner JSF with better quality as N increases. How-
ever, the well-known mini-peaks of the H(θ) function between the
main islands are troublesome. Further shaping of the H(θ) function
can be done with a design of uneven gain gk or gain medium length
Lk(gk∝ Lk) distribution amongN PAs. It was shown that a binomial
distribution Lk = L1(N − 1)!/(k − 1)!(N − k)! (k = 1, 2, . . ., N) will
eliminate the mini-peaks, leading to an improved JSF.118

With SU(1,1) interferometers, there are many degrees of free-
dom for adjustment and fine tuning in the modification of the JSF
of the two-photon state to achieve what we want. Although the
discussion is for the low gain case (g ≪ 1), it was shown exper-
imentally that the interferometric technique works equally well in
the high gain regime for the precise engineering of the mode struc-
ture of entangled fields in continuous variables.111,112,115,118 How-
ever, all the theoretical treatment112,118 in this case does not consider
the non-commuting property of the Hamiltonian between different
PAs.71

VII. SUMMARY AND FUTURE PROSPECTS

SU(1,1) interferometers are a new type of interferometers that
employ nonlinear interactions such as parametric processes to split

and mix beams for interference. They possess some unique proper-
ties, making them advantageous over the traditional beam splitter-
based interferometers. These properties include higher sensitivity,
detection loss tolerance, and mixing of different types of waves. A
key feature of the interferometer is the quantum correlation between
the two interfering arms of the interferometer, which is respon-
sible for the enhancement of phase measurement sensitivity. The
involvement of the parametric amplifier in the superposition of the
interfering waves leads to the loss tolerance property that has some
practical implications in quantum metrology. The nonlinear mixing
of different types of waves for interference opens up doors for poten-
tially much wider application of this new type of interferometer than
the traditional interferometers. These advantages originate from the
employment of parametric amplifiers in the interferometers. Para-
metric amplifiers are active elements requiring strong pumping and
are thus very resource intensive. Despite these demonstrated advan-
tages, we still have many challenges, both fundamental and tech-
nological, in the further development of the technique of SU(1,1)
interferometers.

Among these advantageous properties, the ability to mix waves
of different types in SU(1,1) interferometers will make them more
promising than others for sensing applications in wide areas. It will
be especially attractive to those waves that lack an efficient way
of detection such as THz and far infrared waves. SU(1,1) interfer-
ometers allow sensing of phase changes in these waves but make
detection at other waves for which detection efficiency is high, so
long as there is a coupling between these waves for nonlinear mix-
ing. In fact, this idea has already been applied to spectral sens-
ing and imaging of an object with photons at one wavelength but
detecting at another.28,37–41 This should also widen our capability
to construct sensors for measuring a variety of physical quantities
through these waves. For example, coupling an atomic de Broglie
wave through translational degrees of freedom to light by super-
radiance87,88,119 will allow us to sense gravitational field. An all-
matter wave SU(1,1) interferometer can also be used to measure
gravity and will require matter wave mixing85 for its realization.
To make these applications possible, we need to look for nonlin-
ear mixing between waves of our interest. Of course, these inter-
actions may not be in the form of parametric interaction given
in Eq. (10) and the interferometers constructed with them will
not be SU(1,1)-type as we discussed in this paper. They will have
totally different properties yet to be explored. An example is the
engineered multi-particle interaction for phonons in trapped ion
systems.120
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The experimental realizations discussed in this paper aremostly
proof-of-principle experiments, and they are operated under rel-
atively small phase sensing photon numbers (Ips). For their wide
applications in sensing, we still need to see how they can be adapted
to practical situations and different environments. For example, for
surpassing the performance of traditional interferometers in actual
sensing applications, we need to increase the absolute sensitivity.
This is achieved by increasing the phase sensing photon number Ips.
However, this usually leads to saturation of the parametric amplifiers
and other unwanted nonlinear effects such as self-phase modula-
tion in optical fibers. Perhaps, the solution to this problem lies in
the selection of operating points at relatively low overall gain of the
interferometer with double injection, as suggested in Ref. 10 and
realized in Ref. 94. A recent proposal suggests to tap some of the
pump photons for sensing to increase Ips.

25 Different applications
require different variations of SU(1,1) interferometers. For exam-
ple, how can SU(1,1) interferometers be adapted to measure rota-
tion like Sagnac interferometers do? This is not obvious since the
SU(1,1) interferometers depend on the phase sum instead of phase
difference.

To take the quantum advantages for realization of quantum
sensing, we need to have an effective way to control the inter-
nal losses of the interferometers. Although SU(1,1) interferometers
are relatively immune to external losses such as detection inef-
ficiency, what limits the enhancement of sensitivity is the inter-
nal losses experienced by the fields in between the two PAs or
the losses suffered by the PAs.11,66 These losses will introduce
uncorrelated vacuum noise that cannot be canceled by quantum
destructive interference, leading to extra noise and reducing SNRs.
This is not fundamental but poses practical challenges in device
construction.

As we discussed at the end of Secs. IV D and VI E, the high gain
case inmulti-stage SU(1,1) has not been treated theoretically because
of the issue of non-commuting Hamiltonian of different PAs. The
high gain regime of the parametric amplifier is important because it
can generate EPR-type quantum entanglement in continuous vari-
ables.49,50 It is the basis for complete quantum state teleportation and
quantum metrology applications. Thus, this will be a challenge for
future theoretical investigation of SU(1,1).

SU(1,1) interferometers have the potential to reach the ulti-
mate Heisenberg limit (HL) of phase measurement sensitivity. How-
ever, as we have seen, internal losses are the main obstacle for
improving sensitivity. How will losses affect the ability of SU(1,1)
interferometers to reach the Heisenberg limit?

The approach of SU(1,1) interferometers is to change the struc-
tures of interferometers by replacing beam splitters with paramet-
ric amplifiers. This is in contrast to the approach of inputting dif-
ferent quantum states for sensing in traditional interferometers. It
is known that parametric amplifiers are quantum devices produc-
ing quantum states by themselves, whereas beam splitters are clas-
sical devices that do not produce quantum states by themselves
but rely on the injection of quantum states to achieve quantum
sensing. The former approach can be thought of as the hardware
change of devices, whereas the latter as the software program-
ming of input states. The general condition for optimum quantum
states was derived before.8 Is there an optimum interaction or hard-
ware design in the construction of the non-traditional interferom-
eters for sensing or other applications? Answer to this and other

aforementioned questions will likely broaden our knowledge and
applications of non-traditional interferometers.
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