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ABSTRACT
We present a simple algebraic argument for the conclusion that the low energy limit of a

quantum theory of gravity must be a theory invariant, not under the Poincaré group, but un-
der a deformation of it parameterized by a dimensional parameter proportional to the Planck
mass. Such deformations, called κ-Poincaré algebras, imply modified energy-momentum re-
lations of a type that may be observable in near future experiments. Our argument applies in
both 2+1 and 3+1 dimensions and assumes only 1) that the low energy limit of a quantum
theory of gravity must involve also a limit in which the cosmological constant is taken very
small with respect to the Planck scale and 2) that in 3 + 1 dimensions the physical energy
and momenta of physical elementary particles is related to symmetries of the full quantum
gravity theory by appropriate renormalization depending on Λl2P lanck. The argument makes
use of the fact that the cosmological constant results in the symmetry algebra of quantum
gravity being quantum deformed, as a consequence when the limit Λl2P lanck → 0 is taken one
finds a deformed Poincaré invariance. We are also able to isolate what information must be
provided by the quantum theory in order to determine which presentation of the κ-Poincaré
algebra is relevant for the physical symmetry generators and, hence, the exact form of the
modified energy-momentum relations. These arguments imply that Lorentz invariance is
modified as in proposals for doubly special relativity, rather than broken, in theories of
quantum gravity, so long as those theories behave smoothly in the limit the cosmological
constant is taken to be small.
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1 Introduction

The most basic questions about quantum gravity concern the nature of the fundamental

length, lp =
√

h̄G/c3. One possibility, which has been explored recently by many authors

(see Refs. [1] and references therein), is that it acts as a threshold for new physics, among
which is the possibility of deformed energy-momentum relations,

E2 = p2 + m2 + αlpE
3 + βl2pE

4 + . . . (1)

As has been discussed in many places, this has consequences for present and near term ob-
servations [1]. However, when analyzing the phenomenological consequences of (1), there are
two very different possibilities which must be distinguished. The first is that the relativity of
inertial frames no longer holds, and there is a preferred frame. The second is that the rela-
tivity of inertial frames is maintained but, when comparing measurements made in different
frames, energy and momentum must be transformed non-linearly. This latter possibility,
proposed in Ref. [2], is called deformed or doubly special relativity (DSR) 1.

Both modified energy momentum relations, (1) and DSR should, if true, be consequences
of a fundamental quantum theory of gravity. Indeed, there are calculations in loop quantum
gravity[5, 8] and other approaches[6, 7] that give rise to relations of type (1). However, it has
not been so far possible to distinguish between the two possibilities of a preferred quantum
gravity frame and DSR. Some calculations that lead to (1), such as [5], may be described
as studies of perturbations of weave states, which themselves appear to pick out a preferred
frame. Further these states are generally non-dynamical in that they are not solutions to
the full set of constraints of quantum gravity and there is no evidence they minimize a
hamiltonian. That there are some states of the theory whose excitations have a modified
spectrum of the form of (1) is not surprising, the physical question is whether the ground
state is one of these, and what symmetries it has.

In Ref. [8], one of us tried to approach the question of deformed dispersion relations by
deriving one, for the simple case of a scalar field, from a state which is both an exact solution
to all the quantum constraints of quantum gravity and has, at least naively, the full set of
symmetries expected of the ground state. This is the Kodama state[11], which requires that
the cosmological constant be non-zero. The result was that scalar field excitations of the
state do satisfy deformed dispersion relations, in the limit that the cosmological constant Λ is
taken to zero, when the effective field theory for the matter field is derived from the quantum
gravity theory by a suitable renormalization of operators, achieved by multiplication of a
suitable power of

√
Λlp.

The calculation leading to this result was, however rather complicated, so that one should
wonder whether it is an accident or reflects an underlying mathematical relationship. Fur-
thermore, one may hope to isolate the information that a quantum theory of gravity should
provide to determine the energy momentum relations that emerge for elementary particles

1Various consequences of and issues concerning this hypothesis are discussed in Ref. [3, 4] and references
therein.
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in the limit of low energies. The purpose of this paper is to suggest that there is indeed a
deep reason for a DSR theory to emerge from a quantum gravity theory, when the latter
has a non-zero bare cosmological constant, and the definition of the effective field theory
that governs the low-energy flat-spacetime physics involves a limit in which Λl2p → 0. Our
argument has the following steps.

1. We first argue that even if the renormalized, physical, cosmological constant vanishes,
or is very small in Planck units, it is still the case that in any non-perturbative back-
ground independent approach to quantum gravity, the parameters of the theory should
include a bare cosmological constant. It must be there in ordinary perturbative ap-
proaches, in order to cancel contributions to the vacuum energy coming from quantum
fluctuations of the matter fields. A nonzero, and in fact positive, bare Λ is also re-
quired in non-perturbative, background independent approaches to quantum gravity,
such as dynamical triangulations [9] or Regge calculus [10], otherwise the theory has
no critical behavior required for a good low energy limit. There is also evidence from
loop quantum gravity that a nonzero bare Λ is at least very helpful, if not required,
for a good low energy limit[8, 11]. To extract the low energy behavior of a quantum
theory of gravity, it will then be necessary to study the limit Λl2p → 0.

2. We then note that when there is a positive cosmological constant, Λ, excitations of the
ground state of a quantum gravity theory are expected to transform under represen-
tations of the quantum deformed deSitter algebra, with z = ln q behaving in the limit
of small Λl2p as,

z ≈
√

Λlp for d = 2 + 1 [12, 13, 14] (2)

z ≈ Λl2p for d = 3 + 1 [15, 16, 17, 18] (3)

Below we will summarize the evidence for this expectation.

3. For d = 2 + 1 we note that the limit in which Λl2p → 0 then involves the simultaneous

limit z ≈ √Λlp → 0. We note that this contraction of SOq(3, 1), which is the quantum
deformed deSitter algebra in 2 + 1 dimensions, is not the classical Poincaré algebra
P(2 + 1), as would be the case if q = 1 throughout. Instead, the contraction leads to a
modified κ-Poincaré [19], algebra Pκ(2 + 1), with the dimensional parameter κ ≈ l−1

p .
It is well known that some of these algebras provide the basis for a DSR theory with
a modified dispersion relation of the form (1).

4. For d = 3 + 1 we note that the contraction Λl2p → 0 must be done scaling q according
to (3). At the same time, the contraction must be accompanied by the simultaneous
renormalization of the generators for energy and momentum of the excitations, of the
form

Eren = E

(√
Λlp
α

)r

, P i
ren = P i

(√
Λlp
α

)r

(4)
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where Eren is the renormalized energy relevant for the effective field theory description
and E is the bare generator from the quantum gravity theory. (The power r and
constant α must be the same in both cases to preserve the κ-Poincaré algebra.) This is
expected because, unlike the case in 2 + 1, in 3 + 1 dimensions there are local degrees
of freedom, whose effect on the operators of the effective field theory must be taken
into account when taking the contraction.

We then find that when r = 1 the contraction is again the κ-Poincaré algebra, with
κ−1 = αlp. However when r > 1 there is no good contraction, whereas when r < 1 the
contraction is the ordinary Poincaré symmetry. This was found also explicitly for the
case of a scalar field in Ref. [8].

5. This argument assures us that whenever r = 1 the symmetry of the ground state in
the limit Λl2p → 0 will be κ deformed Poincaré. However, there remains a freedom in
the specification of the presentation of the algebra relevant for the physical low energy
operators that generate translations in time and space, rotations and boosts, due to
the possibility of making non-linear redefinitions of the generators of κ-Poincaré. Some
of the freedom is tied down by requiring that the algebra have an ordinary Lorentz
subalgebra, which is necessary so that transformations between measurements made
by macroscopic inertial observers can be represented. The remaining freedom has to
do with the exact definition of the energy and momentum generators of the low energy
excitations, as functions of operators in the full non-linear theory. As a result, the
algebraic information is insufficient to predict the exact form of the energy-momentum
relation, however it allows us to isolate what remaining information must be supplied
by the theory to determine them.

Hence, for the unphysical case of 2 + 1 dimensions we then argue that so long as the
low energy behavior is defined through a limit Λl2p → 0, there is a very general argument,
involving only symmetries, that tells us that that limit is characaterized by low energy exci-
tations transforming under representations of the κ-Poincaré algebra. This means that the
physics is a DSR theory with deformed energy momentum relations (1), but with relativity
of inertial frames preserved.

In the physical case of 3 + 1 dimensions we conclude that the same is true, so long as an
additional condition holds, which is that the derivation of the low energy theory involves a
renormalization of the energy and momentum generators of the form of (4) with r = 1.

Hence we conclude that there is a very general algebraic structure that governs the
deformations of the energy-momentum relations at the Planck scale, in quantum theories of
gravity where the limit Λl2p → 0 is smooth.

Sections 2 and 3 are devoted, respectively, to the cases of 2+1 and 3+1 dimensions. One
argument for the quantum deformation of the algebra of observables in the 2+1 dimensional
case is reviewed in the appendix. Section 3 relies on results on observables in 3+1 dimensional
quantum gravity by one of us[18].

4



2 DSR symmetries in 2 + 1 Quantum Gravity

2.1 2 + 1 Quantum Gravity

In this subsection we will review the basics of quantization of general relativity in 2 + 1
dimensions and how quantum groups come into play.

2 + 1 quantum gravity has been a subject of extensive study since mid 80’s and now this
is a well understood theory (at least in the simple case when there is no continuous matter
sources). For nonzero cosmological constant the theory is described by the following first
order action principle

S = − 1

2G

∫
(dωij − ωi

k ∧ ωkj − Λei ∧ ej) ∧ elεijl, (5)

where ωij is an SO(2,1)-connection 1-form, ei is a triad 1-form, i, j = 0, 1, 2 and G is the
Newton constant. The equations of motion following from the action (5)

dωij − ωi
k ∧ ωkj − 3Λei ∧ ej = 0 (6)

simply mean that the curvature is constant everywhere and therefore geometry doesn’t have
local degrees of freedom. The theory is not completely trivial however. One can introduce
so called topological degrees of freedom by choosing a spacetime manifold which is not
simply connected. Coupling to point particles may be accomplished by adding extrinsic
delta-function sources of curvature which represent point particles [20].

Below we consider spacetime M to be M = Σ2×R1, where Σ2 is a compact spacelike
surface of genus g.

The easiest way to solve 2+1 gravity is through rewriting the action (5) as a Chern-
Simons action for G = SO(2, 2) or SO(3, 1) , depending on the sign of the cosmological
constant [12], which reads

S =
k

4π

∫
(dAab − 2

3
Aa

t ∧ Atb) ∧Acdεabcd, (7)

where a, b = 0, 1, 2, 3, and k = (lp
√

Λ)−1 is the dimensionless coupling constant of the Chern-
Simons theory. (5) is obtained by decomposing say SO(2,2)-connection Aab as Aij = ωij and
Ai3 =

√
Λei. The action (7) leads to the standard canonical commutation relations

[Aab
α (x), Acd

β (y)] =
2π

k
εαβεabcdδ2(x, y) (8)

and equations of motion saying that the connection Aab is flat.
By now it is well understood that the resulting theory is described in terms of the quan-

tum deformed deSitter algebra, SOq(3, 1) with q given by q = e2πı/k+2 [12, 13, 14]. For
interested readers we review one approach to this conclusion, which is given in the appendix.
However, the salient point is that in the theory particles are identified with punctures in
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the 2 dimensional spatial manifold. These punctures are labeled by representations of the
quantum symmetry algebra SOq(3, 1) [14]. However, in the limit of Λ → 0 and of low en-
ergies, these particles should be labeled by representations of the symmetry algebra of the
ground state. Furthermore, as there are no local degrees of freedom in 2 + 1 gravity there is
no need to study a limit of low energies, it should be sufficient to find the symmetry group
of the ground state in the limit Λ → 0 to ask what the contraction is of the algebra whose
representations label the punctures. We now turn to that calculation.

2.2 Contraction and κ-Poincaré algebra in 2 + 1 dimensions

In the previous subsection we have seen that in 2 + 1 dimensional quantum gravity with
Λ 6= 0 a quantum symmetry algebra SOq(3, 1) or SOq(2, 2) arises as a result of canonical
non-commutativity of the Chern-Simons (anti)deSitter connection, and its representations
label the punctures that represent particles. . The canonical commutation relations of the
Chern-Simons theory determine the deformation parameter z to be linear in

√
Λ as in (2).

The next step in our argument is to describe the Λ → 0 limit of 2+1dimensional quantum
gravity, focusing on the structure of the symmetry algebra that replaces SOq(3, 1) in the
limit.

In order to rely on explicit formulas let us adopt an explicit basis for SOq(3, 1). We
describe SOq(3, 1) in terms of the six generators M0,1, M0,2, M0,3, M1,2, M1,3, M2,3 satisfying
the commutation relations:

[M2,3, M1,3] =
1

z
sinh(zM1,2) cosh(zM0,3)

[M2,3, M1,2] = M1,3

[M2,3, M0,3] = M0,2

[M2,3, M0,2] =
1

z
sinh(zM0,3) cosh(zM1,2)

[M1,3, M1,2] = −M2,3

[M1,3, M0,3] = M0,1

[M1,3, M0,1] =
1

z
sinh(zM0,3) cosh(zM1,2)

[M1,2, M0,2] = −M0,1

[M1,2, M0,1] = M0,2

[M0,3, M0,2] = M2,3

[M0,3, M0,1] = M1,3

[M0,2, M0,1] =
1

z
sinh(zM1,2) cosh(zM0,3) (9)

with all other commutators trivial.
The reader will easily verify that in the z → 0 limit these relations reproduce the SO(3, 1)

commutation relations. In addition, it is well known that upon setting z = 0 from the
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beginning (so that the algebra is the classical SO(3, 1)) we should make the identifications

E =
√

ΛM0,3

Pi =
√

ΛM0,i

M = M1,2

Ni = Mi,3 (10)

This makes manifest the well known fact that the Inonu-Wigner [21] contraction Λ → 0 of
the deSitter algebra SO(3, 1) leads to the classical Poincaré algebra P(2 + 1).

However, in quantum gravity, we cannot take first the classical limit z → 0 and then the
contraction Λ→ 0 because, by the relation (2), the two parameters are proportional to each
other. The limit must be taken so that the ratio

κ−1 =
z√
Λ

= lp (11)

is fixed. The result is that the limit is not the classical Poincaré algebra, it is instead the
κ-Poincaré [19] algebra Pκ(2+1). This is easy to see. We rewrite (9) using (10) and assuming
(2) we find,

[N2, N1] =
1

z
sinh(zM) cosh(zE/

√
Λ) =

1

lp
√

Λ
sinh(lp

√
ΛM) cosh(lpE)

[M, Ni] = εijN
j

[Ni, E] = Pi

[Ni, Pj] = δij

√
Λ

1

z
sinh(zE/

√
Λ) cosh(zM) = δij

1

lp
sinh(lpE) cosh(lp

√
ΛM)

[M, Pi] = εijP
j

[E, Pi] = ΛNi

[P2, P1] = Λ
1

z
sinh(zM) cosh(zE/

√
Λ) =

√
Λ

lp
sinh(Lp

√
ΛM) cosh(LpE) (12)

From this it is easy to obtain the Λl2p → 0 limit:

[N2, N1] = M cosh(lpE)

[M, Ni] = εijN
j

[Ni, E] = Pi

[Ni, Pj] = δij
1

lp
sinh(lpE)

[M, Pi] = εijP
j

[E, Pi] = 0

[P2, P1] = 0 (13)
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which indeed assigns deformed commutation relations for the generators of Poincaré trans-
formations. The careful reader can easily verify that, upon imposing κ = l−1

p , Eq. (13) gives
the commutation relations2 characteristic of the P(2 + 1)κ κ-Poincaré algebra described in
Ref. [22].

It is striking that the fact that the z → 0 and Λl2p → 0 limit must be taken together,
for physical reasons, leaves us no alternative but to obtain a deformed Poincaré algebra.
This is because the dimensional ratio (11) is fixed during the contraction, and appears in
the resulting algebra. No dimensional scale appears in the classical Poincaré algebra, so the
result of the contraction cannot be that, it must be a deformed algebra labeled by the scale
κ3.

At the same time, there is freedom in defining the presentation of the algebra that results
in the limit. This is possible because we can scale various of the generators as we take the
contraction. For physical reasons we want to exploit this. A problem with the presentation
just given in (13) is that the generators of the SO(2, 1) Lorentz algebra do not close on
the usual Lorentz algebra, hence they do not generate an ordinary transformation group.
However if the generators of boosts and rotations are to be interpreted physically as giving
us rules to transform measurements made by different macroscopic intertial observers into
each other, they must exponentiate to a group, because the group properties follow directly
from the physical principle of equivalence of inertial frames.

We would then like to choose a different presentation of the κ-Poincaré algebra in which
the lorentz generators form an ordinary Lie algebra. There is in fact more than one way to
accomplish this, because there is freedom to scale all the generators as the contraction is
taken by functions of lpE. The identification of the correct algebra depends on additional
physical information about how the generators must scale as the limit Λl2p → 0 is taken.

In the absence of additional physical input, we give here one example of scaling to a
presentation which contains an undeformed Lorentz algebra. It is defined by replacing (10)
by the following definitions of the energy, momenta, and boosts [25],

E =
√

ΛM0,3 , exp[zE/(2
√

Λ)]P1 =
√

ΛM0,1 , exp[zE/(2
√

Λ)]P2 =
√

ΛM0,2

exp[zE/(2
√

Λ)]

(
N1 − z

2
√

Λ
MP2

)
= M1,3 , M = M1,2

exp[zE/(2
√

Λ)]

(
N2 +

z

2
√

Λ
MP1

)
= M2,3 . (14)

2We note that the P(2 + 1)κ algebra can be endowed with the full structure of a Hopf algebra (just like
SOq(3, 1)), and that it is known in the literature that the full Hopf algebra of P(2+1)κ can be derived from
the quantum group SOq(3, 1) by contraction. However, in this paper we focus only on the commutation
relations needed to make our physical argument.

3To our knowledge this is the first example of a context in which a Inonu-Wigner contraction takes one
automatically from a given quantum algebra to another quantum algebra. Other examples of Inonu-Wigner
contraction of a given quantum algebra have been considered in the literature (notably in Refs. [23, 24]), but
in those instances there is no a priori justification for keeping fixed the relevant ratio of parameters, and so
one has freedom to choose whether the contracted algebra is classical or quantum-deformed.
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We again take the contraction keeping the ratio (11) fixed. Then the P(2+1)κ commutation
relations obtained in the limit Λl2p → 0 take the following form [19, 25].

[N2, N1] = M

[M, Ni] = εijN
j

[Ni, E] = Pi

[N2, P2] = −1− e2lpE

2lp
− lp

2
P 2

1 +
lp
2

P 2
2

[N1, P1] = −1− e2lpE

2lp
− lp

2
P 2

2 +
lp
2

P 2
1

[M, Pi] = εijP
j

[E, Pi] = 0

[P1, P2] = 0 . (15)

In the literature this is called the bicross-product basis [19, 25].
We see that the Lorentz generators form a Lie algebra, but the generators of momentum

transform non-linearly. This is characteristic of a class of theories called, deformed or doubly
special relativity theories [2, 3, 4], which have recently been studied in the literature from
a variety of different points of view. The main idea is that the relativity of inertial frames
is preserved, but the laws of transformation between different frames are now characterized
by two invariants, c and κ (rather than the single invariant c of ordinary special-relativity
transformations). This is possible because the momentum generators transform non-linearly
under boosts. In fact, the presentation just given was the earliest form of such a theory to
be proposed [2].

One consequence of the fact that the momenta transform non-linearly under boosts is
that the energy-momentum relations are modified because the invariant function of E and
Pi preserved by the action described above in (15) is no longer quadratic. Instead, the
(dimensionless) invariant mass is given by4

M2 ≡ cosh(lpE)− l2p
2

~P 2eLpE , (16)

This gives corrections to the dispersion relations which are only linearly suppressed by the
smallness of lp, and are therefore, as recently established [1, 6], testable with the sensitivity
of planned observatories.

To conclude, we have found that the limit Λl2p → 0 of 2+1 dimensional quantum gravity
must lead to a theory where the symmetry of the ground state is the κ-Poincaré algebra.
Which form of that algebra governs the transformations of physical energy and momenta,
and hence the exact deformed energy-momentum relations, depends on additional physical
information. This is needed to fix the form of the low energy symmetry generators in terms
of the generators of the fundamental theory.

4We can also express the invariant mass M in terms of the rest energy m by M2 = cosh(Lpm).
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3 The case of 3 + 1 Quantum Gravity

Now we discuss the same argument in the case of 3 + 1 dimensions.

3.1 The role of the quantum deSitter algebra in 3 + 1 quantum
gravity

The algebra that is relevant for the transformation properties of elementary particles is the
symmetry algebra. In classical or quantum gravity in 3 +1 or more dimensions, where there
are local degrees of freedom, this cannot be computed from symmetries of a background
spacetime because there is no background spacetime. Nor is this necessarily the same as the
algebra of local gauge transformations. So we have to ask the question of how, in quantum
gravity, we identify the generators of operators that will, in the weak coupling limit, become
the generators of transformations in time and space? That is, how do we identify the
operators that, in the low energy limit in which the theory is dominated by excitations of a
state which approximates a maximally symmetric spacetime, become the energy, momenta,
and angular momenta?

The only answer we are aware of which leads to results is to impose a boundary, with
suitable boundary conditions that allow symmetry generators to be identified as operations
on the boundary. In fact we know that in general relativity the hamiltonian, momentum
and angular momentum operators are defined in general only as boundary integrals. Further
they are only meaningful when certain boundary conditions have been imposed. A necessary
condition for energy and momenta to be defined is that the lapse and shift are fixed, then
the energy and momenta can be defined as generators parameterized by the lapse and shift.

In seeking to define energy and momentum, we can make use of a set of results which have
shown that in both the classical and quantum theory boundary conditions can be imposed
in such a way that the full background independent dynamics of the bulk degrees of freedom
can be studied [15]. There are further results on boundary Hilbert spaces and observables
which show that physics can indeed be extracted in quantum gravity from studies of theories
with boundary conditions, such as the studies of black hole and cosmological horizons [26].

We argue here that this method can be used to extract the exact quantum deformations
of the boundary observables algebra, and that the information gained is sufficient to repeat
the argument just given in one higher dimension. More details on this point are given in a
paper by one of us [18].

In fact it has already been shown that the boundary observables algebras relevant for 3+1
dimensional quantum gravity become quantum deformed when the cosmological constant is
turned on, with

q = e2πı/k+2 (17)

with the level k given by[15, 16, 8, 17]

k =
6(ı)π

GΛ
(18)
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where the ı is present in the case of the Lorentzian theory and absent in the case of the
Euclidean theory. This gives (3) in the limit of small cosmological constant. These stem from
the observation that classical gravity theories, including, general relativity and supergravity
(at least up to N = 2) can be written as deformed topological field theories, so that their
actions are of the form of

Sbulk =
∫
M

[
Tr(B ∧ F − Λ

2
B ∧ B)−Q(B ∧ B)

]
(19)

Here B is a two form valued in a lie algebra G, F is the curvature of a connecton, A, valued
in G and Q(B ∧ B) is a quadratic function of the components5. Were the last term absent,
this would be a topological field theory.

In the presence of a boundary, one has to add a boundary term to the action and impose
a boundary condition. One natural boundary condition, which has been much studied, for
a theory of this form is

F = ΛB (20)

pulled back into the boundary. The resulting boundary term is the Chern-Simons action of
A pulled back into the boundary,

S = Sbulk + Sboundary, Sboundary =
k

4π

∫
∂M

Y (A)CS (21)

where Y (A)CS = Tr(A ∧ dA + 2
3
A3) is the Chern-Simons three form. Consistency with

the equations of motion then requires that (18) be imposed. This leads to a quantum
deformation of the algebra whose representations label spin networks and spin foams, as
shown in Ref. [15, 16]. It further leads to a quantum deformation of the algebra of observables
on the boundary[15].

In 3 + 1 dimensions there are several choices for the group G, that all lead to theories
that are classically equivalent to general relativity (for non-degenerate solutions). One may
take G = SU(2), in which case Q(B ∧B) can be chosen so that the bulk action, Sbulk is the
Plebanski action and the corresponding hamiltonian formalism is that of Ashtekar[29]. In
this case the addition of the cosmological constant and boundary term leads to spin networks
labeled by SUq(2), with (18). One can also take G = SO(3, 1) and choose Q(B ∧B) so that
Sbulk is the Palatini action. From there one can derive a spin foam model, for example the
Barrett-Crane model[30]. By turning on the cosmological constant, one gets the Noui-Roche
spin foam model[31], based on the quantum deformed lorentz group SOq(3, 1), with q given
still by (18).

However, as shown in [32, 18],in the case of non-zero Λ we can also choose G to be the
(A)dS group, SO(3, 2) or SO(4, 1). In this case, as shown in [18] one can also study a different
boundary condition, in which the metric pulled back to the boundary is fixed. This has the
advantage that it allows momentum and energy to be defined on the boundary, as lapse and
shift can be fixed. In this case we can take the boundary action to be the Chern-Simons

5This form holds in all dimensions, see [27], it also extends to supergravity with G a superalgebra[28].
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invariant of the (anti)deSitter algebra group, with the SO(4, 1)/SO(3, 1) coset labeling the
frame fields [18].

The resulting algebra of boundary observables is studied in [18], where it is shown that
the boundary observables algebra includes the subgroup of the global 3 + 1 deSitter group
that leaves the boundary fixed. For Λ > 0 this is SOq(3, 1), with q given again by (18).
Furthermore, the operators which generate global time translations, as well as translations,
rotations and boosts that leave the boundary fixed can be identified, giving us a physically
prefered basis for the quantum algebra SOq(3, 1).

This tells us that, were the geometry in the interior frozen to be the spacetime with
maximal symmetry, the full symmetry group must be SOq(4, 1) with the same q6.

3.2 Contraction of the quantum deSitter algebra in 3 + 1.

We now study the contraction of the quantum deformed deSitter algebra in 3 + 1 dimen-
sions. We first give a general argument, then we discuss the boundary observables algebra
of Ref. [18].

Our general argument is based on the observations reported in the previous subsection
concerning the role of the quantum algebras SOq(4, 1) and SOq(3, 2), with ln q ∼ Λl2p (for
small Λ), in quantum gravity in 3+1 dimensions.

Now, it is in fact known already in the literature [24] that the Λ → 0 contraction of
these quantum algebras can lead to the κ-deformed Poincaré algebra Pκ(3+1), if the Λ→ 0
is combined with an appropriate ln q → 0 limit. The calculations are rather involved, and
are already discussed in detail in Ref. [24]. Hence, for our purposes here it will be enough
to focus on how the limit goes for one representative SOq(3, 2) commutator. What we want
to show is that quantum gravity in 3+1 dimensions has the structure of the ln q → 0 limit,
which is associated to the Λ→ 0 limit through (3), that leads to the κ-Poincaré algebra.

6Another argument for the relevence of the quantum deformed deSitter group comes from recent work
in spin foam models. Several recent papers on spin foam models argue for a model based, for Λ = 0,
on the representation theory of the Poincaré group[33]. This fits nicely into a 2-category framework[33].
When Λ > 0 one would then replace the Poincaré group by the deSitter group, but agreement with the the
previously mentioned results would require it be quantum deformed, so we arrive at a theory based on the
representations of SOq(3, 2).

Yet another argument leading to the same conclusion comes from the existence of the Kodama state[11, 8],
which is an exact physical quantum state of the gravitational field for nonzero Λ, which has a semiclassical
interpretation in terms of deSitter. One can argue that a large class of gauge and diffeomophism invariant
perturbations of the Kodama state are labeled by quantum spin networks of the algebra SUq(2) with again
(18)[8]. However, of those, there should be a subset which describe gravitons with wavelengths

√
Λ > k >

EPlanck, moving on the deSitter background as such states are known to exist in a semiclassical expansion
around the Kodama state[8]. One way to construct such states is to construct quantum spin network states
for SOq(3, 2), and decompose them into sums of quantum spin network states for SUq(2). The different
states will then be labeled by functions on the coset SOq(3, 2)/SUq(2).
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The SOq(3, 2) commutator on which we focus is [24]

[M1,4, M2,4] =
1

2

sinh (z(M12 + M04)) + sinh (z(M12 −M04))

sinh(z)

+
1− eiz

4eiz

[
(iM03 −M34)

2 − eiz(iM03 + M34)
2
]

(22)

In the contraction the generators M1,4, M2,4, M34, play the role of the boosts N1, N2, N3,
the generator M1,2 plays the role of the rotation M3 and the generators M0,3 and M0,4

are classically related to the P3 and energy E ≡ P4 by the Inonu-Wigner-contraction re-
lation Pµ =

√
ΛM0,µ. However when taking the contraction in the quantum-gravity 3+1-

dimensional context we should renormalize according to (4), and therefore

Pµ,ren =

(√
Λlp
α

)r√
ΛM0,µ (23)

Adopting (23), and taking into account that z is given by (3), one can easily verify that
the Λ → 0 limit of (22) is singular for r > 1, while for r < 1 the limit is trivial and (22)
reproduces the corresponding commutator of the classical Poincaré algebra. The interesting
case is r = 1, where our framework indeed leads to the κ-Poincaré algebra Pκ(3 + 1) in the
Λ→ 0 limit. For r = 1 and small Λ the commutation relation (22) takes the form

[N1, N2] =
sinh

(
M3l

2
pΛ
)

sinh(l2pΛ)
cosh (αlpEren) +

+
l2pΛ

4

[
α2P 2

3,ren

Λ
− 2α

P3,renN3 + N3P3,ren

lpΛ
+ iα(P3,renN3 + N3P3,ren)

]

→ M3 cosh (αlpEren) +
1

4
α2l2pP

2
3,ren −

1

2
αlp[P3,renN3 + N3P3,ren]. (24)

This indeed reproduces, for κ = (αlp)
−1, the [N1, N2] commutator obtained in Ref. [24]

for the case in which the contraction of SOq(3, 2) to Pκ(3 + 1) is achieved. The reader can
easily verify that for the other commutators again the procedure goes analogously and in our
framework, with r = 1, one obtains from SOq(3, 2) the full Pκ(3 + 1) described in Ref. [24].

However, as we discussed in the 2+1-dimensional case, the resulting presentation of the
algebra suffers from the problem that the boosts do not generate the ordinary lorentz algebra.
Hence, we must choose a different basis for Pκ(3+1) that does have a Lorentz subalgebra. In
3+1 dimensions a basis that does have this property was described by Majid-Ruegg in [25].
To arrive at the physical generators, we should rewrite their basis in terms of renormalized
energy-momentum Eren, Pi,ren. One finds then a presentation of the κ-Poincaré algebra, with
an ordinary Lorentz subalgebra. In this case the deformed dispersion relation is given by,

cosh(αlpm) = cosh(αlpEren)− α2l2p
2

~P 2
reneαlpEren . (25)
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Having discussed the general structure of the contraction SOq(3, 2) → Pκ(3 + 1) which
we envisage for the case of quantum gravity in 3+1 dimesions, we turn to an analysis which
is more specifically connected to some of the results that recently emerged in the quantum-
gravity literature. Specifically, we consider the boundary observables algebra derived in
Ref. [18]. This is in fact (9) with the identifications (10), only here it is interpreted as
the algebra of the boundary observables in the 3 + 1 dimensional theory. However, now
we want to take the limit appropriate to the 3 + 1 dimensional quantum deformation, (3),
and renormalize according to (4). From a technical perspective this requires us to repeat
the analysis of the previous Section (since the symmetry algebra on the boundary of the
3+1-dimensional theory is again SOq(3, 1) as for the bulk theory in 2+1 dimensions), but
adopting the renormalized energy-momentum (4) and the relation (3) between q and Λ which
holds in the 3+1-dimensional case: z = ln q = l2pΛ. The reader can easily verify that these
two new elements provided by the 3+1-dimensional context, compensate each other, if r = 1,
and the contraction of SOq(3, 1) proceeds just as in Section 2, leading again to Pκ(2 + 1).
In the context of the 3+1-dimensional theory we should see this symmetry algebra as the
projection of a larger 10-generator symmetry algebra which, in the limit Λ → 0 and low
energies, should describe the symmetries of the ground state. And indeed it is easy to
recognize the 6-generator algebra Pκ(2 + 1) as the boundary projection of Pκ(3 + 1).

Thus, we reach similar conclusions to the 2 + 1 case, with the additional condition that
in 3 +1 dimensions the outcome of the contraction of the symmetry algebra of the quantum
theory depends on the parameter r that governs the renormalization of the energy and
momentum generators (4). For the contraction to exist we must have r ≤ 1. For r < 1
the contraction is the ordinary Poincaré algebra. Only for the critical case of r = 1 does a
deformed κ-Poincaré algebra emerge in the limit.

However, when this condition is satisfied, the conclusion that the symmetry of the ground
state is deformed is unavoidable, the contraction must be some presentation of κ-Poincaré.
As in 2+1 dimensions, the exact form of the algebra when expressed in terms of the generators
of physical symmetries cannot be determined without additional physical input. The algebra
is restricted, but not fixed, by the condition that it have an ordinary undeformed Lorentz
subalgebra. To fully fix the algebra requires the expression of the generators of the low
energy symmetries in terms of the generators that define the symmetries of the full theory.
These presumably act on a boundary, as is described in [18].

4 Outlook

Quantum gravity is a complicated subject, and the behavior of the low energy limit is one
of the trickiest parts of it. It has been argued by many people recently, however, that quan-
tum theories of gravity do make falsifiable predictions, because they predict modifications in
the energy-momentum relations. The problem has been how to extract the energy momen-
tum relations reliably from the full theory, and in particular to determine whether lorentz
invariance is broken, left alone, or deformed.
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Here we have shown that the answers are in fact controlled by a symmetry algebra, which
constrains the theory and limits the possible behaviors which result. Assuming only that
the theory must be derived as a limit of the theory with non-zero cosmological constant,
we have argued here that in 3 + 1 dimensions the symmetry of the ground state and the
resulting dispersion relation is determined partly by two parameters, r and α, which arise
in the renormalization of the hamiltonian, (4). The additional information required to de-
termine the energy-momentum relations involves an understanding of how the generators of
symmetries of the low energy theory are expressed in terms of generators of symmetries of
the full, non-perturbative theory.
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Appendix: Quantum symmetry in 2 + 1 dimensions.

We summarize here one route to the quantization of 2 + 1 gravity which shows clearly the
role of quantum symmetries, given by Nelson and Regge[13].

The route taken to quantize the theory is to solve the constraints first and then apply
quantization rules to the resulting reduced phase space. As the connection Aab is flat by
constraint equations the reduced phase space is the moduli space of flat connections modulo
gauge transformations. This space can be parameterized as the space of all homomorphisms
from the fundamental group of the surface Σ, π1(Σ), to the gauge group. Such homomor-
phism can be realized by taking holonomies of the connection Aab along non-contractible
loops which arise due to handles of the surface Σ and punctures with particles inserted in
them. The fundamental group π1(Σ) thus depends on the genus of the surface g and the
number of punctures with particles N , and consists of 2g + N generators ui,vi,mj , where
i = 1...g, j = 1...N . To each of these generators should be associated an element of the
gauge group Ui = ρ(ui),Vi = ρ(vi),Mj = ρ(mi), satisfying the following relation:

U1V1U
−1
1 V −1

1 ...UgVgU
−1
g V −1

g M1...MN = 1. (26)

The physical observables are now gauge invariant functions of Ui,Vi,Mj , and the canoni-
cal commutation relations (8) define a poisson structure on the space of such functions. In
quantum theory the poisson brackets has to be replaced by commutators and as a conse-
quence the algebra of functions on the gauge group representing the physical observables
becomes a noncommutative algebra. This can be understood as a quantum deformation of
the gauge group.

The detailed description of the poisson structure on the space of functions of Ui,Vi, andMj

can be found in [34]. Here we will illustrate the origin of quantum group relations on a simple
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example of two intersecting loops as it was first done in [13]. Let u and v be two elements
of the fundamental group associated to the same handle (so that the corresponding loops
intersect). To each of them is associated an element of the gauge group U = ρ(u), V = ρ(v).
Given that SO(2, 2) ∼ SL(2, R)⊕SL(2, R) and SO(3, 1) ∼ SU(2)⊕SU(2)∗ each element can
be decomposed as a sum of irreducible 2×2 matrices U = U+⊕U−, V = V +⊕V −. The gauge
invariant functions that can be constructed from them are c±(u) = TrU±, c±(v) = TrV ±,
and c±(uv) = TrU±V ±. In quantum theory they satisfy the following commutation relation
induced by (8)

[c±(u), c±(v)] = ± ih̄2π

k
(c±(uv)− c±(uv−1)) = ± ih̄4π

k
(c±(uv)− c±(u)c±(v)),

[c±(u), c∓(v)] = 0. (27)

For definiteness let us consider the case of negative cosmological constant in which the gauge
invariant functions defined above are real and restrict ourselves to the ’+’ sector of the gauge
group. By introducing new variables c+(uv) = sin µ, K± = eiz/2c+(u)±ic+(v)e±iµ, where
2πh̄k−1 = −2 tan(z/2) the commutation relations (27) can be rewritten as the following
algebra

[µ, K±] = ±zK±, [K+, K−] = sin z sin 2µ. (28)

This algebra up to rescaling coincides with the algebra SLq(2, R). Analogously one can derive
the algebra of functions on the ’-’ sector of the gauge group which is also SLq(2, R). By
combining them together one finds that the gauge group in the case of negative cosmological
constant is SOq(2, 2) and analogously in the case of positive cosmological constant it is
SOq(3, 1).
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