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ABSTRACT. Quantum information gives rise to some puzzling epistemic prob-

lems that can be interestingly investigated from a logical point of view. A char-
acteristic example is represented by teleportation phenomena, where knowledge
and actions of observers (epistemic agents) play a relevant role. By abstracting
from teleportation, we propose a simplified semantics for a language that consists
of two parts:

1) the quantum computational sub-language, whose sentences α represent pie-

ces of quantum information (which are supposed to be stored by some quan-
tum systems);

2) the classical epistemic sub-language, whose atomic sentences have the fol-
lowing forms:
agent a has a probabilistic information about the sentence α;
agent a knows the sentence α.

Interestingly enough, some conceptual difficulties of standard epistemic logics can
be avoided in this framework.
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1) the quantum computational sub-language, whose sentences α represent
pieces of quantum information (which are supposed to be stored by some
quantum systems);

2) the classical epistemic sub-language, whose atomic sentences have the fol-
lowing forms:

• agent a has a probabilistic information about the sentence α;
• agent a knows the sentence α.

We will see how some conceptual difficulties of standard epistemic logics can be
avoided in this framework. We can mention for instance the unrealistic situations
of epistemic logical omniscience, according to which knowing a given sentence
should imply knowing all its logical consequences.

1. Basis-changes and truth-perspectives

Quantum computation and quantum computational logics are usually formu-
lated by referring to the canonical orthonormal basis B(1) of the two dimen-
sional Hilbert space C2. We have: B(1) = {|0〉, |1〉}, where |0〉 = (1, 0) and
|0〉 = (0, 1) represent the two classical bits in this context. By definition, a
qubit is a unit vector of C2 whose canonical form is |ψ〉 = a|0〉 + b|1〉. Let

H(n) =
n⊗
C2 be the n-fold tensor product of C2. The canonical basis of H(n)

is the set B(n) =
{|x1〉 ⊗ · · · ⊗ |xn〉 : |x1〉, . . . , |xn〉 ∈ B(1)

}
. As usual, we will

briefly write |x1, . . . , xn〉 instead of |x1〉⊗· · ·⊗|xn〉. By definition, a quregister is
a unit vector of H(n) whose canonical form is |ψ〉 = ∑

i

ai|xi1 , . . . , xin〉. Quregis-

ters correspond to pure states: maximal pieces of knowledge about the quantum
systems that are supposed to store a given amount of quantum information. In
quantum computation one also needs mixtures of quregisters: density operators
ρ of H(n), which will be briefly termed qumixes. We will denote by D(H(n)) the
set of all qumixes of H(n), while D =

⋃
n

{
D(H(n))

}
will represent the set of all

possible qumixes.

One can wonder whether founding the semantics of quantum computational
logics on the canonical bases of the spaces H(n) might represent a logical lim-
itation, since the choice of an orthonormal basis for a given Hilbert space is
obviously conventional. What happens if the whole semantic construction is de-
veloped by taking as a starting point a different basis for C2? Any basis-change
can be regarded as determined by a unitary operator U of C2. As an example,
let U be the Hadamard operator

√
I. Then, U determines the following new

orthonormal basis:

B
(1)
U =

{√
I|0〉,√I|1〉

}
=

{(
1√
2
,
1√
2

)
,

(
1√
2
,− 1√

2

)}
.
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From an intuitive point of view, any basis-change can be imagined as a change
of our truth-perspective. While in the canonical case, the truth-values truth and
falsity are identified with the two classical bits |1〉 and |0〉, assuming a different
basis corresponds to a different idea of truth and falsity. On this ground, one can
guess that different epistemic agents (who may have different semantic ideas) are
associated to different bases for the same space C2.

Any unitary operator U of H(1) can be canonically extended to a unitary
operator U (n) of H(n) (for any n ≥ 1), which is defined as follows:

U (n)|x1, . . . , xn〉 = U |x1〉 ⊗ · · · ⊗ U |xn〉.

Hence, any choice of a unitary operator U of H(1) determines an orthonormal

basis B
(n)
U for H(n) such that:

B
(n)
U =

{
U (n)|x1, . . . , xn〉 : |x1, . . . , xn〉 ∈ B(n)

}
.

Instead of U (n)|x1, . . . , xn〉 we will also write |x1, . . . , xn〉U . Of course, we will
have:

U (n)−1 |x1, . . . , xn〉U = |x1, . . . , xn〉.
The elements of B

(1)
U are called the U -bits of H(1), while the elements of B

(n)
U

are called the U -registers of H(n).

Let BU represent the infinite sequence B
(1)
U , B

(2)
U , . . . that is determined by

the unitary operator U . We will call BU a general basis, while B will represent
the canonical general basis. Of course, BU = B iff U is the identity operator I.

For any choice of a general basis BU , we define now the notions of truth,
falsity and probability with respect to BU .

���������� 1.1 (True and false registers)�

• |x1, . . . , xn〉U is a true register of B
(n)
U iff |xn〉U = |1〉U .

• |x1, . . . , xn〉U is a false register of B
(n)
U iff |xn〉U = |0〉U .

In other words, the truth-value of an U -register (which corresponds to a se-
quence of U -bits) is determined by its last element.1

Let RU
T (RU

F ) represent the set of the true U -registers (the false U -registers)

of B
(n)
U .

1As we will see, the application of a classical reversible gate to a register |x1, . . . , xn〉 transforms

the bit |xn〉 into the target-bit |x′
n〉, which behaves as the final truth-value. This justifies our

choice in Definition 1.1.
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���������� 1.2 (Truth and falsity)�

• The U -truth of H(n) is the projection operator PU1
(n)

that projects over
the closed subspace spanned by RU

T .

• The U -falsity of H(n) is the projection operator PU0
(n)

that projects over
the closed subspace spanned by RU

F .

In this way, truth and falsity are dealt with as mathematical representatives
of possible physical properties. Accordingly, by applying the Born-rule, one can
naturally define the probability value of any qumix with respect to the general
basis BU .

���������� 1.3 (U -Probability)�
For any ρ ∈ D(H(n)),

pU (ρ) := Tr(PU1
(n)
ρ),

where Tr is the trace-functional.

In other words, pU (ρ) represents the probability that the information ρ sat-
isfies the truth-property (with respect to the basis BU ). In the case of the
canonical general basis we will write p(ρ) instead of pI(ρ).

As is well known, quantum information is processed by quantum logical gates
(briefly, gates): unitary operators that transform quregisters into quregisters in
a reversible way. We will first introduce some gates that play a special role both
from the computational and from the logical point of view.

���������� 1.4 (The negation)�
For any n ≥ 1, the negation on H(n) is the linear operator NOT(n) such that, for
every element |x1, . . . , xn〉 of the basis B(n),

NOT(n)(|x1, . . . , xn〉) = |x1, . . . , xn−1〉 ⊗ |1− xn〉.
In particular, we obtain:

NOT(1)|0〉 = |1〉; NOT(1)|1〉 = |0〉,
(according to the classical truth-table of negation).

���������� 1.5 (The Toffoli gate)�
For any n,m, p ≥ 1, the Toffoli gate is the linear operator T(n,m,p) defined on
H(n+m+p) such that, for every element |x1, . . . , xn〉 ⊗ |y1, . . . , ym〉 ⊗ |z1, . . . , zp〉
of the basis B(n+m+p),

T(n,m,p)(|x1, . . . , xn〉 ⊗ |y1, . . . , ym〉 ⊗ |z1, . . . , zp〉)
= |x1, . . . , xn〉 ⊗ |y1, . . . , ym〉 ⊗ |z1, . . . , zp−1, xnym+̂zp〉,

where +̂ represents the addition modulo 2.
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���������� 1.6 (The XOR gate)�
For any n,m ≥ 1, the XOR gate is the linear operator XOR(n,m) defined on H(n+m)

such that, for every element |x1, . . . , xn〉 ⊗ |y1, . . . , ym〉 of the basis B(n+m),

XOR(n,m)(|x1, . . . , xn〉 ⊗ |y1, . . . , ym〉)
= |x1, . . . , xn−1〉 ⊗ |y1, . . . , ym−1〉 ⊗ |xn, xn+̂ym〉.

In particular, we obtain:

XOR(1,1)(|x, y〉) = |x, x+̂y〉.
Hence, XOR(1,1) behaves like a classical reversible exclusive disjunction (aut).

���������� 1.7 (The Hadamard-gate)�

For any n ≥ 1, the Hadamard-gate on H(n) is the linear operator
√
I
(n)

such
that for every element |x1, . . . , xn〉 of the basis B(n):

√
I
(n)

(|x1, . . . , xn〉) = |x1, . . . , xn−1〉 ⊗ 1√
2
((−1)xn |xn〉+ |1− xn〉) .

In particular we obtain:
√
I
(1)

(|0〉) = 1√
2
(|0〉+ |1〉);

√
I
(1)

(|1〉) = 1√
2
(|0〉 − |1〉).

Hence,
√
I
(1)

transforms bits into genuine qubits.

Notice that the system consisting of the gates Negation, Toffoli , XOR and
Hadamard is, to a certain extent, redundant. In fact, as proved by Shi and Aha-
ranov ([10], [1]), Toffoli and Hadamard give rise to an approximately universal
system of gates, in the sense that any gate G (defined on H(n)) can be approx-
imately simulated by a convenient combination of Toffoli and Hadamard up to
an arbitrary accuracy. In this system Toffoli plays the role of a classical uni-
versal gate, which permits us to define exactly all classical reversible gates. For
instance, the reversible conjunction AND and the reversible negative conjunction
NAND can be defined as follows, for any |ψ〉 ∈ H(n) and any |ϕ〉 ∈ H(m):

AND(|ψ〉, |ϕ〉) = T(n,m,1)(|ψ〉 ⊗ |ϕ〉 ⊗ |0〉);
NAND(|ψ〉, |ϕ〉) = T(n,m,1)(|ψ〉 ⊗ |ϕ〉 ⊗ |1〉).

The gate Hadamard, instead, represents a genuine quantum gate, that creates
uncertain outputs (quregisters), starting from certain inputs (classical registers).
Using independent definitions of NOT and of XOR is, however, more useful for
computational aims, since such definitions permit us to avoid a non-economical
increasing of the dimension of the Hilbert spaces in play.

All gates can be naturally transposed from the canonical (general) basis B to
the (general) basis BU that is determined by the unitary operator U . Let G(n)
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be any gate defined with respect to the canonical basis B(n). The twin-gate

G
(n)
U , defined with respect to the basis B

(n)
U , is determined as follows:

∀|x1, . . . , xn〉U ∈ B
(n)
U : G

(n)
U (|x1, . . . , xn〉U ) := U (n)(G(n)(|x1, . . . , xn〉)).

All U -gates can be canonically extended to the set D of all qumixes. Let G
(n)
U

be any gate defined on H(n). The corresponding qumix gate (also called unitary

quantum operation) DG
(n)
U is defined as follows for any ρ ∈ D(H(n)):

DG
(n)
U (ρ) = G

(n)
U ρG

(n)∗

U ,

where G
(n)∗

U is the adjoint of G
(n)
U .

On this basis, one can uniformly define on the set D a system of operations
that correspond to the U -gates considered above.

���������� 1.8 (The operations Negation, Hadamard, Toffoli and XOR)�

1. For any ρ ∈ D(H(n)), NU (ρ) = DNOT
(n)
U (ρ).

2. For any ρ ∈ D(H(n)),
√
IU (ρ) = D

√
I
(n)

U (ρ).

3. For any ρ ∈ D(H(n)), for any σ ∈ D(H(m)) and for any τ ∈ D(H(p)),

TU (ρ, σ, τ) = DT
(n,m,p)
U (ρ⊗ σ ⊗ τ).

4. For any ρ ∈ D(H(n)) and for any σ ∈ D(H(m)),

XU (ρ, σ) = DXOR
(n,m)
U (ρ⊗ σ).

For any choice of a general basis BU , the set D can be pre-ordered by a
relation that is defined in terms of the probability-function pU . We will see
how this preorder will play an important role in the quantum computational
semantics.

���������� 1.9 (U -Preorder)�
ρ �U σ ⇐⇒ pU (ρ) ≤ pU (σ) and pU (

√
IU (ρ)) ≤ pU (

√
IU (σ)).

In the case of the canonical general basis, we will write ρ � σ instead of
ρ �I σ.

We introduce now the notion of U -quantum computational structure, based
on the set D of all qumixes.

���������� 1.10 (U -quantum computational structure)�
Let BU be any general basis. The following structure

SU = (D, �U , NU , √IU , TU , XU , PU0
(1)
, PU1

(1)
)

is called the U -quantum computational structure

By canonical quantum computational structure we mean the structure SU

where U is the identity operator I.
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�	��
�� 1.1� Any U -computational structure is isomorphic to the canonical
computational structure.

P r o o f. For any n ≥ 1, consider the unitary quantum operation

DU (n) : D(H(n)) → D(H(n)),

such that for any ρ ∈ D(H(n)), DU (n)(ρ) = U (n)ρU (n)∗. Consider then the
following operation that is uniformly defined on the set D:

∀ρ ∈ D(H(n)) : U(ρ) = DU (n)(ρ).

We have:

(1) U is a bijection.

(2) ∀ρ ∈ D : p(ρ) = pU (U(ρ))

(3) U(N(ρ)) = NU (U(ρ)).

(4) U(
√
I(ρ)) =

√
IU (U(ρ)).

(5) U(T(ρ, σ, τ)) = TU (U(ρ),U(σ),U(τ)).

(6) U(X(ρ, σ)) = XU (U(ρ),U(σ)).

(7) ρ � σ ⇐⇒ U(ρ) �U U(σ).

�

2. Holistic semantics and
absolute quantum computational logic

Quantum computational logics (QCL′s) represent a natural logical abstrac-
tion from quantum computational circuits.2 In these logics sentences α are
supposed to denote pieces of quantum information (generally qumixes), living
in a Hilbert space whose dimension depends on the linguistic complexity of α.
At the same time, the logical connectives correspond to qumix gates that are
processing the qumixes expressed by the sentences in question.

Let us first introduce a formal (sentential) language LQC forQCL′s. This lan-
guage contains atomic sentences (say, “the spin-value in the x-direction is up”),
including two privileged sentences t and f that represent the truth-values Truth
and Falsity, respectively. We will use q, r, . . . as metavariables for atomic sen-
tences, and α, β, . . . as metavariables for sentences. The connectives of LQC are:
the negation ¬ (which corresponds to the qumix gate Negation), the squareroot

of the identity
√
id (which corresponds to Hadamard), a ternary conjunction

∧
(which corresponds to the reversible conjunction defined in terms of Toffoli), the
exclusive disjunction

⊎
(which corresponds to XOR), the composition-connective �

2See [6], [4].
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(which describes compositions of quantum systems). For any sentences α and

β, the expressions ¬α, √idα,
∧
(α, β, f ) (the ternary conjunction of α, β, f ),

α
⊎
β are sentences. For any sentences β1, . . . , βn, the expression �(β1, . . . , βn)

(the composition of β1, . . . βn) is a sentence. The connectives ¬, √id,
∧
,
⊎

are
called gate-connectives. We will use the following metalinguistic abbreviations:

α ∧ β :=
∧

(α, β, f ); β1� . . . �βn := �(β1, . . . , βn).

Before defining the basic notions of the quantum computational semantics,
let us first introduce some useful syntactical notions.

���������� 2.1�

• α is called a gate-sentence iff either α is atomic or the principal connective
of α is a gate-connective.

• α is called a compositional sentence iff α = β1� . . . �βm, where β1, . . . , βm
are gate-sentences.

���������� 2.2 (The atomic complexity of a sentence)�
The atomic complexity At(α) of a sentence α is the number of occurrences of
atomic sentences in α.

For instance, At(
∧
(q,q, f )) = 3. We will also indicate by α(n) a sentence

whose atomic complexity is n. The notion of atomic complexity plays an impor-
tant semantic role. For, the meaning of any sentence whose atomic complexity
is n is supposed to live in the domain H(n). For this reason, H(At(α)) (briefly
indicated by Hα) will be also called the semantic space of α.

Any sentence α can be naturally decomposed into its parts, giving rise to a
special configuration called the syntactical tree of α (indicated by STreeα).

Roughly, STreeα can be represented as a finite sequence of levels :

Levelk(α)
...

Level1(α),

where:

• each Leveli(α) (with 1 ≤ i ≤ k) is a compositional sentence β1� . . . �βm
that contains the atomic sentences of α;

• the bottom level (Level1(α)) is α;

• the top level (Levelk(α)) is the sentence q1� . . . �qt, where q1, . . .qt are the
atomic occurrences in α;
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• for any i (with 1 ≤ i < k), Leveli+1(α) is the compositional sentence
obtained by dropping the principal gate-connective in all molecular gate-
sentences occurring at Leveli(α), and by repeating all the atomic sentences
that possibly occur at Leveli(α).

By Height of α (indicated by Height(α)) we mean the number of levels of the
syntactical tree of α.

As an example, consider the following sentence: α = q ∧ ¬q =
∧
(q,¬q, f ).

The syntactical tree of α is the following sequence of levels:

Level3(α) = q�q�f ;

Level2(α) = q�¬q�f ;
Level1(α) =

∧
(q,¬q, f ).

Clearly, Height(
∧
(q,¬q, f )) = 3.

More precisely, the syntactical tree of a sentence (whose atomic complexity
is t) is defined as follows.

���������� 2.3 (The syntactical tree of α)�
The syntactical tree of α is the following sequence of sentences:

STreeα = (Level1(α), . . . ,Levelk(α)),

where:

• Level1(α) = α;

• Leveli+1 is defined as follows for any i such that 1 ≤ i < k. The following
cases are possible:
(1) Leveli(α) does not contain any gate-connective.

Hence, Leveli(α) = q1� . . . �qt and Height(α) = i;
(2) Leveli(α) is the compositional sentence β1� . . . �βm, and for at least

one j, the principal connective of βj is a gate-connective. Consider
the following sequence of sentences:

β′
1, . . . , β

′
m,

such that:

β′
h =

{
βh, if βh is atomic;

β∗
h, otherwise,

where:

β∗
h =

⎧⎪⎨⎪⎩
δ, if βh = ¬δ or βh =

√
id δ;

γ�δ�f , if βh =
∧
(γ, δ, f );

γ�δ, if βh = γ
⊎
δ.
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Then,

Leveli+1(α) = β′
1� . . . �β

′
m.

The syntactical tree of α (which represents a purely syntactical object) uni-
quely determines a sequence of qumix gates that are all defined on the semantic
space of α, for any choice of a general basis BU . This gate-sequence is called the
U -qumix tree of α.

As an example, consider again the sentence α =
∧
(q,¬q, f ) and its syntactical

tree. Apparently, Level2(α) is obtained from Level3(α) by repeating the first
occurrence of q, by negating the second occurrence of q and by repeating f .
Hence the qumix gate that corresponds to Level2(α) will naturally be DI(1) ⊗
DNOT

(1)
U ⊗ DI(1). Finally, Level1(α) is obtained from Level2(α) by applying to

the three sentences occurring at Level2(α) the ternary conjunction. Hence the
qumix gate that corresponds to Level1(α) will naturally be DT(1,1,1). On this
basis, the U -qumix tree of the sentence α =

∧
(q,¬q, f ) can be identified with

the following sequence consisting of two U -qumix gates:(
DI(1) ⊗ DNOT

(1)
U ⊗ DI(1),DT

(1,1,1)
U

)
.

The general definition of U -qumix tree is the following:

���������� 2.4 (The U -qumix tree of α)�
Let α be a sentence such that Height(α) = k. The U -qumix tree of α is the
sequence of qumix gates

QumTreeαU =
(
DGαU(k−1)

, . . . ,DGαU(1)

)
,

that is defined as follows. Suppose that

Leveli−1(α) = β
(t1)
1 � . . . �β(tm)

m ,

(where 1 ≤ i ≤ k). We put:

DGαU(i−1)
= DX

(t1)
U(1)

⊗ · · · ⊗ DX
(tm)
U(m)

,

where any DX
(tj)
U(j)

is a qumix gate defined on H(tj) such that:

DX
(tj)
U(j)

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

DI(tj), if β
(tj)
j is atomic;

DNOT
(tj)
U , if β

(tj)
j = ¬δ;

D
√
I
(tj )

U , if β
(tj)
j =

√
id δ;

DT
(r,s,1)
U , if β

(tj)
j =

∧
(γ(r), δ(s), f );

DXOR
(r,s)
U , if β

(tj)
j = γ(r)

⊎
δ(s).
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Consider now a sentence α and let
(
DGαU(k−1)

, . . . ,DGαU(1)

)
be the U -qumix

tree of α. Any choice of a qumix ρ in Hα determines a sequence (ρk, . . . , ρ1) of
qumixes of Dα, where:

ρk = ρ

ρk−1 = DGαU(k−1)
(ρk)

...

ρ1 = DGαU(1)
(ρ2).

The qumix ρk can be regarded as a possible input-information concerning the
atomic parts of α, while ρ1 represents the output-information about α, given the
input-information ρk. Each ρi corresponds to the information about Leveli(α),
given the input-information ρk.

How to determine an information about the parts of α under a given in-
put? It is natural to apply the reduced state function that (according to the
quantum theoretic formalism) determines for any state ρ of a composite system

S = S1 + · · · + Sn the state Redi1,...,im(ρ) of any subsystem Si1 + · · · + Sim
(where 1 ≤ i1 ≤ n, . . . , 1 ≤ im ≤ n.) As is well known, a characteristic case
that arises in entanglement-phenomena is the following: while ρ (the state of the

global system) is pure (a maximal information), the reduced state Redi1,...,im(ρ)
is generally a mixture (a non-maximal information). Hence our information
about the whole cannot be reconstructed as a function of our pieces of infor-
mation about the parts. Such situations play a relevant role in the quantum
computational semantics.

Consider the syntactical tree of α and suppose that:

Leveli(α) = βi1� . . . �βir .

We know that the U -qumix tree of α and the choice of an input ρk (in Hα)
determine a sequence of qumixes:

ρk � Levelk(α) = q1� . . . �qt

...

ρi � Leveli(α) = βi1� . . . �βir

...

ρ1 � Level1(α) = α
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We can consider Redj(ρi), the reduced information of ρi with respect to the jth
part. From a semantic point of view, this object can be regarded as a contextual
information about βij (the subformula of α occurring at the jth position at
Leveli(α)) under the input ρk.

We will now give the basic definitions of our semantics. The main concept is
the notion of quantum computational model : a map that assigns to any sentence
α of the language LQC a meaning, a qumix living in the semantic space Hα.
Of course (like in the standard semantic approaches), the map shall respect the
logical form of α. We will consider a holistic version of semantics, which has
been naturally inspired by the characteristic holistic features of the quantum
theoretic formalism. In this semantics any model assigns to any sentence a
global meaning that determines the contextual meanings of all its parts (from
the whole to the parts!). It may happen that one and the same sentence receives
different meanings in different contexts.

We will distinguish two possible “levels of semantic holism”, which correspond
to different notions of holistic model. Accordingly, we will speak of superholistic
semantics and of normal holistic semantics, respectively. The superholistic se-
mantics is the most liberal one: sentences may receive different meanings even in
the framework of one and the same context. In other words, different occurrences
of one and the same subformula in a given sentence may have different contex-
tual meanings. Such a liberal point of view might appear somewhat strange in
the case of scientific languages. However, it is quite reasonable for natural and
artistic languages. Consider a very “long” expression γ (for instance, a novel
or a poem): why should all occurrences of a part of γ have a constant con-
textual meaning? The normal holistic semantics is more restrictive: although
sentences may receive different meanings in different contexts, all occurrences of
a subformula in a given sentence receive a constant contextual meaning.3

���������� 2.5 (Superholistic model)�
A superholistic model of the language LQC with respect to the general basis BU
is a map HolU that associates a meaning HolU (Leveli(α)) to each level of the
syntactical tree of α, for any sentence α of LQC . The following conditions are
required:

(1) HolU (Leveli(α)) ∈ D(Hα).
In other words, the meaning of Leveli(α) under HolU belongs to the se-
mantic space of α.

3We extend here to any general basis the semantic notions, defined in [4] with respect to the

canonical basis.
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(2) Let
(
DGαU(Height(α)−1)

, . . . ,DGαU(1)

)
be the U -qumix tree of α and let

1 ≤ i < Height(α). Then,

HolU (Leveli(α)) =
DGαU(i)

(HolU (Leveli+1(α))).

In other words the global meaning of each level (different from the top
level) is obtained by applying the corresponding gate to the meaning of
the level that occurs immediately above.

(3) Let Leveli(α) = β1� . . . �βr. Then:

βj = f � Redj(HolU (Leveli(α))) = PU0
(1)

;

βj = t � Redj(HolU (Leveli(α))) = PU1
(1)

, for any j (1 ≤ j ≤ r).
In other words, the contextual meanings of f and of t are always the Falsity
and the Truth, respectively.

On this basis, we put:

HolU (α) := HolU (Level1(α)),

for any sentence α.

Unlike standard compositional semantics, any HolU (α) represents a kind of
autonomous semantic context that is not necessarily correlated with the mean-
ings of other sentences. At the same time, given a sentence γ, HolU determines
the contextual meaning, with respect to the context HolU (γ), of any occurrence
of a subformula β in γ.

���������� 2.6 (Contextual meaning of a subformula)�
Let β be a subformula of γ.

1. Suppose that β is a gate-sentence and let β[ij ] be an occurrence of β at the
jth-position of the ith-level of the syntactical tree of γ. Then

Hol
γ
U (β[

i
j ]) := Redj(HolU (Leveli(γ))).

2. Suppose that β is a compositional sentence occurring as a subformula at
the ith-level of the syntactical tree of γ. In other words, β has the form
β1� . . . �βm and Leveli(γ) = δ1� . . . �β1[

i
j1
]� . . . �βm[ijm ]� . . . �δr. Then,

Hol
γ
U (β1[

i
j1 ]� . . . �βm[ijm ]) = Redj1,...,jm(HolU (Leveli(γ))).

Hence, in particular, we have for any sentence γ

Hol
γ
U (γ) = HolU (Level1(γ)) = HolU (γ).

Apparently, Hol
γ
U is a partial function that only assigns meanings to the

occurrences of subformulas of γ. Given a formula γ, we will call the partial
function Hol

γ
U a contextual holistic model of the language.
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���������� 2.7 (Normal holistic model)�
A normal holistic model of the language LQC is a superholistic model HolU that
assigns to any occurrence of a subformula β of γ in the syntactical tree of γ the
same contextual meaning, which will be uniformly indicated by Hol

γ
U (β).

In the following we will always refer to normal holistic models with respect
to a general basis BU (briefly called U -holistic models).

Suppose that β is a subformula of two different formulas γ and δ. Generally,
we have:

Hol
γ
U (β) = HolδU (β).

In other words, sentences may receive different contextual meanings in differ-
ent contexts also in the case of the normal holistic semantics.

We can now define the notions of truth and logical consequence.

���������� 2.8 (Truth)�
A sentence α is true in the model HolU (abbreviated as |=HolU α) iff

pU (HolU (α)) = 1.

When U = I we will speak of canonical truth.

���������� 2.9 (Logical consequence)�
A sentence β is a logical consequence of a sentence α with respect to the general
basis BU (α |=BU

β) iff for any sentence γ such that α and β are subformulas
of γ and for any model HolU , Hol

γ
U (α) �U Hol

γ
U (β) (where �U is the preorder

relation defined in Section 1).

On this basis, we can semantically characterize a particular form of quantum
computational logic that will be termed absolute quantum computational logic
(AbsQCL).

���������� 2.10 (Absolute quantum computational logic)�
A sentence β is a logical consequence of a sentence α in the logic AbsQCL
(α |=AbsQCL β) iff for any general basis BU , α |=BU

β.

While the concepts of probability and of truth are obviously dependent on
the choice of the general basis BU , one can prove that the notion of logical
consequence is invariant with respect to any basis-change.

�	��
�� 2.1� α |=AbsQCL β iff α |=BI
β.

P r o o f. The left-right arrow is trivial. In order to prove the right-left ar-
row, suppose that there exist two sentences α and β such that: α |=BI

β and
α �AbsQCL β. Then, there exist a formula γ including α and β as subformulas,
a general basis BU and a model HolU such that:

Hol
γ
U (α) �U Hol

γ
U (β).
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Define a canonical model HolI as follows: for any sentence δ, HolI(Leveli(δ)) =
U−1(HolU (Leveli(δ))) (where U is the map defined in the proof of Theorem 1.1).
As a consequence, we have: HolI(γ) = U−1(HolU (γ)); Hol

γ
I (α) = U−1(HolγU (α));

Hol
γ
I (β) = U−1(HolγU (β)). Hence, by Theorem 1.1, HolγI (α) � Hol

γ
I (β). Against

the hypothesis. �

3. Epistemic situations in quantum teleportation

We will now briefly illustrate the puzzling epistemic situations that arise in
quantum teleportation phenomena. Two observers, Alice and Bob (also called
epistemic agents) have a partial access to a composite quantum system S =
S1 + S2 + S3, consisting of three particles (say, three photons). At any time
ti of a given time-sequence (to, . . . , tn), both of them have a global or a partial
information about the state of S. Furthermore, both of them can modify the
state of S (or of a subsystem of S) either by applying some quantum logical
gates or by performing a measurement (which induces a collapse of the wave
function).

Alice and Bob are supposed to have interacted in the past with the composite
system S2 + S3, whose parts are separated at time t0: S2 is accessible to Alice,
while S3 is accessible to Bob. As a consequence, at time t0, Alice and Bob
have the same information about the state of the subsystem S2 + S3, which is
supposed to be entangled :

|ψS2+S3〉(t0) = 1√
2

(|0, 0〉+ |1, 1〉).
In other words, at time t0 both agents know that two cases are possible with
equal probability (12 ):

1. The state of both parts (S2, S3) is the bit |0〉.
2. The state of both parts (S2, S3) is the bit |1〉.

At time t0, Alice has also access to the first particle S1, whose state is the qubit

|ψS1〉(t0) = a|0〉+ b|1〉.
The epistemic situation of either agent at any time t (of the considered time-
sequence) can be represented as a pair consisting of

a) the physical system SAgent t that is physically accessible to our agent;

b) the state ρAgentt that represents the agent’s information about a given
system (which may include SAgentt as a subsystem).
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We will write:

Inf(Agent t) = (SAgentt , ρAgentt).

Notice that the “theoretic” information ρAgentt concerns a system that is gener-
ally larger than the system accessible to our agent at time t.

We can now represent the epistemic situations of Alice and Bob at time t0 as
follows.

Alice at time t0

Inf(Alicet0) =
(
(S1 + S2)t0 , |ψS〉t0

)
,

where

|ψS〉t0 =
(
a|0〉+ b|1〉)⊗ 1√

2

(|0, 0〉+ |1, 1〉)
=

1√
2
(a|0〉 ⊗ (|0, 0〉+ |1, 1〉)+ 1√

2
(b|1〉 ⊗ (|0, 0〉+ |11〉).

Bob at time t0

Inf(Bobt0) =
(
(S3)t0 , |ψS2+S3〉t0

)
,

where

|ψS2+S3〉t0 =
1√
2
(|0, 0〉+ |1, 1〉).

As is well known, the basic goal of quantum teleportation is transmitting a
state to a “far” agent by means of a non-local quantum phenomenon. In this
particular case, Alice wants to transmit to Bob the state a|0〉+ b|1〉 that particle
S1 has at time t0. As expected, the operations performed by Alice in order to
obtain this aim will transform her epistemic situation.

Alice at time t1

In the interval [t0, t1] Alice applies the gate XOR(1,1) to the subsystem S1 + S2

(accessible to her). As a consequence, we obtain:

Inf(Alicet1) =
(
(S1 + S2)t1 , |ψS〉t1

)
where:

|ψS〉t1 =
[
XOR(1,1) ⊗ I(1)

]
|ψS〉t0

=
1√
2
(a|0〉 ⊗ (|0, 0〉+ |1, 1〉)+ 1√

2
(b|1〉 ⊗ (|1, 0〉+ |0, 1〉).

It is worth-while noticing that theoretically Alice is acting on the whole system
S, while materially she is only acting on the subsystem S1+S2 that is accessible
to her.
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Alice at time t2

In the interval [t1, t2] Alice applies the gate Hadamard to the system S1 (whose
state is to be teleported). Hence, we obtain:

Inf(Alicet2) =
(
(S1 + S2)t2 , |ψS〉t2

)
,

where:

|ψS〉t2 =
[√

I
(1) ⊗ I(1) ⊗ I(1)

]
|ψS〉t1

=
1√
2

1√
2
{[a(|0〉+|1〉)⊗ (|0, 0〉+|1, 1〉)]+[b(|0〉−|1〉)⊗ (|1, 0〉+|0, 1〉)]}

=
1

2
[(|0, 0〉 ⊗ (a|0〉+ b|1〉)) + (|0, 1〉 ⊗ (a|1〉+ b|0〉))

+ (|1, 0〉 ⊗ (a|0〉 − b|1〉)) + (|1, 1〉 ⊗ (a|1〉 − b|0〉))].
Alice at time t3

In the interval [t2, t3] Alice decides to perform a measurement on the subsystem
S1 +S2 (accessible to her). As a consequence (by collapse of the wave function)
she will obtain with equal probability (= 1

4 ) one of the four following quregisters:

1. |ψSt3
1 〉 = |0, 0〉 ⊗ (a|0〉+ b|1〉)

2. |ψSt3
2 〉 = |0, 1〉 ⊗ (a|1〉+ b|0〉)

3. |ψSt3
3 〉 = |1, 0〉 ⊗ (a|0〉 − b|1〉)

4. |ψSt3
4 〉 = |1, 1〉 ⊗ (a|1〉 − b|0〉)

We have:

Inf(Alicet3) =
(
(S1 + S2)t3 , |ψSi 〉t3

)
,

where: |ψSi 〉t3 is one of the four states considered above.

Notice that after Alice’s measurement (at time t3) the original superposed
state a|0〉+ b|1〉 of particle S1 has disappeared. The state of S1 is now:

|ψS1〉t3 = Red1(|ψSi 〉t3),
(which is a bit |x〉).

As a consequence of her measurement, Alice also knows the qubit representing
the state at time t3 of particle S3 (accessible to Bob). In fact, by quantum non-
locality, the state of particle S3 has been transformed into one of the four possible
qubits:

|ϕS3
i 〉t3 = Red3(|ψSi 〉t3), with 1 ≤ i ≤ 4.

Apparently, only |ϕS3
1 〉t3 is a|0〉+b|1〉, the original state of particle S1 (accessible

to Alice). Anyway, by application of a convenient gate, all states |ϕS3
i 〉t3 can be

transformed into the state a|0〉+ b|1〉. We have:
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• I(1)(|ϕS3
1 〉t3) = a|0〉+ b|1〉

• NOT(1)(|ϕS3
2 〉t3) = a|0〉+ b|1〉

• Z(1)(|ϕS3
3 〉t3) = a|0〉+ b|1〉

• NOT(1)Z(1)(|ϕS3
4 〉t3) = a|0〉+ b|1〉,

where Z(1) is the Pauli matrix (
1 0
0 −1

)
.

In this situation, Alice can give an “order” to Bob, by using a classical com-
munication channel (say, a phone) during the interval [t3, t4]. The order will
be:

• “apply I(1)!” (i.e. “don’t do anything!”), in the first case.

• “apply NOT(1)!”, in the second case.

• “apply Z(1)!”, in the third case.

• “apply NOT(1)Z(1)! in the fourth case.

Suppose that Bob follows Alice’s order in the interval [t4, t5]. His final epis-
temic situation (at time t5) will be:

Inf(Bobt5) =
(
(S3)t5 , |ψS3〉t5

)
,

where |ψS3〉t5 = a|0〉+ b|1〉.
Teleportation is now completed. At the end of the process, the original qubit

a|0〉+ b|1〉 has disappeared for Alice, because at the final time the system S1 is
storing a classical bit. Bob, instead, has acquired the information a|0〉 + b|1〉,
which is stored by “his” particle S3, whose original state was the mixture:

Red2
(|ψS2+S3〉t0

)
= Red2

(
1√
2
(|0, 0〉+ |1, 1〉)

)
=

1

2
P

(1)
0 +

1

2
P

(1)
1 .

When discussing teleportation, one often stresses that Alice might ignore the
qubit a|0〉+b|1〉 that is transmitted to Bob. Such observation (which may appear
prima facie somewhat puzzling) can be interpreted as follows.

• At time t0 Alice has physical access to particle S1;

• Alice knows that the state of S1 (at time t0) is pure: a qubit whose form
is a|0〉+ b|1〉;

• in spite of this, Alice ignores the actual values of the two amplitudes a and
b, which are dealt with by her as complex number variables.

One could also say that what Alice knows is not a real qubit, but rather
a kind of metaqubit (which ranges over all possible qubits). Such ignorance,
however, does not prevent Alice to perform all operations that are needed in
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order to transmit the “real” qubit to Bob. Of course, she can physically act
on the subsystem S1 + S2 (accessible to her) both by applying the convenient
material gates and by performing the measurement that determines the final
collapse of the wave function. At the same time, she can theoretically calculate
the metastates that correspond to the states |ψS〉t1 , |ψS〉t2 , |ψS〉t3 (where a and
b are dealt with as complex number variables).

In this perspective, the epistemic situation of any agent at a given time t
should be more adequately dealt with as a triplet:

Inf(Agent t) = (S, ρ, ρ̃),

where:

• S is a physical system accessible to Agent t;

• ρ is a (pure or mixed) state for a system S′ such that S is a subsystem
of S′;

• ρ̃ is a metaqumix for ρ.

The notion of metaqumix can be precisely defined as follows:

• Let ρ corresponds to the quregister

|ψ〉 =
∑
i

ai|xi1 , . . . , xin〉.

We say that |ψ̃〉 is a metaqumix for |ψ〉 iff |ψ̃〉 is the result of a uniform
substitution of some of the (constant) amplitudes ai with corresponding
complex number variables ãi.

• Let ρ be the qumix
∑
i
wiP|ψi〉. We say that ρ̃ is a metaqumix for ρ iff ρ̃ is

the result of a uniform substitution of some of the (constant) weights wi
with corresponding real number variables w̃i.

When ρ̃ is a metamix for ρ, we will also write: ρ̃ �� ρ. Accordingly, in the

logical applications we will be entitled to use holistic metamodels H̃ol such that

for any sentence α, H̃ol(α) is a convenient metaqumix.

4. A quantum-classical epistemic semantics

By abstracting from quantum teleportation phenomena we will now propose
an epistemic semantics which consists of two components: a classical and a
quantum computational one. To this aim, we consider two languages:

1) the quantum computational language LQC (introduced in Section 2), whose
sentences represent pieces of quantum information, stored by some quan-
tum systems.
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2) A classical epistemic language LEp, whose atomic sentences have the fol-
lowing forms:

• Iaα (the epistemic agent a has a probabilistic information about the
sentence α of LQC);

• Kaα (the epistemic agent a has a certain knowledge about the sen-
tence α of LQC),

The molecular sentences of LEp are built up by means of the classical con-
nectives (¬C , ∧C).

We will now introduce the basic notions of our semantics. The central concept
is the notion of epistemic model M of the language LEp.

From an intuitive point of view, M can be described as a system characterized
by the following elements:

1. a time-sequence.

2. A set of epistemic agents evolving in time.

3. Any agent has a truth-perspective that determines his/her idea of truth
and probability. We assume that the truth-perspective of each agent is
constant in time.

4. Any truth-perspective is associated to a holistic quantum computational
model that interprets the sentences of LQC as convenient qumixes.

5. At any time any agent has a characteristic epistemic situation, determined
by the following elements:
a) a quantum system on which the agent can physically operate. This

system can be also regarded as a “material source” for our agent’s
information.

b) A quantum piece of information ρ that represents the agent’s epis-
temic universe.

c) A metastate ρ̃ for ρ. We can think that ρ̃ represents a contingent sub-
jective ignorance of our agent about the objective piece of information
represented by ρ.

We will now give the precise definitions of epistemic model and of truth for
the sentences of the language LEp.
���������� 4.1 (Epistemic model)�
An epistemic model of the language LEp is a system

M = (T, Ag, den, TrPersp, Hol, Inf),
where:

(1) T is a time-sequence.

(2) Ag is a set of epistemic agents a represented as functions of t in T . We
will write at instead of a(t).
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(3) den is a map that assigns to any name a an agent in Ag. By simplicity,
we put: den(a) = a.

(4) TrPersp is a map that assigns to any agent a a general basis Ba: the
truth-perspective of a.

(5) Hol is a map that assigns to any Ba a holistic model of the language LQC .
(6) Inf is a map that assigns to any at a triplet

Inf(at) = (Sat
, ρat

, ρ̃at
) ,

where:
6.1) Sat

is a physical system, which is supposed to be accessible to at.
6.2) ρ represents the state of a physical system S′ such that Sat

is a sub-
system of S′. The information ρat

is supposed to be described by a
sentence γat

such that

HolBa
(γat

) = ρat
.

6.3) ρ̃at
�� ρat

(i.e. ρ̃at
is a metaqumix for ρat

). As a consequence, there

is a metamodel H̃olBa
such that H̃olBa

(γat
) = ρ̃at

.

���������� 4.2 (Truth for atomic sentences)�
LetM = (T, Ag, den, TrPersp, Hol, Inf) be an epistemic model for the language
LEp. For any time t of T the truth at time t of an atomic sentence of LEp is
defined as follows:

1) |=t Iaα iff
• α is a subformula of γat

.

• H̃olγatBa
(α) = Hol

γat

Ba
(α).

2) |=t Kaα iff |=t Iaα and pBa
(Hol

γat

Ba
(α)) = 1.

Apparently, the sentence Iaα is true at time t when the following conditions
are satisfied:

a) α is a subformula of the sentence γ that describes the epistemic universe
of agent a at time t.

b) Although the subjective epistemic universe of agent a at time t may only
represent a metainformation, the contextual information of α under γ
is a genuine information. Hence, one can say that our agent at time t
understands the meaning of α.

The truth of the sentence Kaα at time t means that:

a) α is understood by agent a at time t.

b) Furthermore, a assigns probability 1 to the contextual meaning of α un-
der γ.
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���������� 4.3 (Truth for molecular sentences)�
The definition is given according to the usual rules of classical semantics.

The following lemma illustrates some important properties of our epistemic
semantics, which permit us to overcome some crucial shortcomings of most stan-
dard approaches to epistemic logics.

���� 4.1�

1. |=t Kaα� ¬CKa¬α, but not the other way around!
Hence, knowledge is consistent at any particular time.

2. |=t Ka(α ∧ β) � |=t Kaα and |=t Kaβ, but not the other way around!
Hence, knowledge is not generally closed under conjunction.

3. |=t Kaα and α |=AbsQCL β =⇒ |=t Kaβ.
Hence, the unrealistic logical omniscience of epistemic agents is avoided.

Let us now go back to the quantum teleportation phenomena. By simplicity
we refer to a situation where Alice knows the amplitudes a and b of the qubit
|ψS1〉t0 to be teleported. The teleportation case gives rise to a special example
of an epistemic model

M = (T, Ag, den, TrPersp, Hol, Inf),

where:

• T is the time-sequence t0, . . . , t5 (considered in the experiment).

• Ag contains the two individuals Alice (a) and Bob (b), represented as
functions of the times t0, . . . , t5.

• The truth-perspective is the canonical general basis BI both for Alice and
Bob.

• All states involved in the teleportation phenomenon are supposed to be
described by convenient sentences of the language LQC . In particular, we
assume that γat0

has the form

st01 �s
t0
2 �s

t0
3 ,

where st01 , s
t0
2 , s

t0
3 are three atomic sentences that describe the states at

time t0 of S1, S2, S3, respectively. Furthermore:

HolI(γat0
) = ρat0

= (a|0〉+ b|1〉)⊗ 1√
2
(|0, 0〉+ |1, 1〉).

Hence we have:
Hol

γat0
I (st01 ) = a|0〉+ b|1〉.

Hol
γat0
I (st02 ) = 1

2P
(1)
0 + 1

2P
(1)
1 .

Hol
γat0
I (st03 ) = 1

2P
(1)
0 + 1

2P
(1)
1 .
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As a consequence, we obtain:

|=t0 Iast01 ; �t0 Kast01 .

In other words, at time t0 Alice has a probabilistic information and no certain
knowledge about the sentence st01 .

For Bob, instead, we have:
γbt0

= st02 �s
t0
3 .

HolI(γbt0
) = ρbt0

= 1√
2
(|0, 0〉+ |1, 1〉).

Hol
γbt0
I (st02 ) = 1

2P
(1)
0 + 1

2P
(1)
1 .

Hol
γbt0
I (st03 ) = 1

2P
(1)
0 + 1

2P
(1)
1 .

Hence:

|=t0 Ibst02 ; �t0 Kbst02 .

|=t0 Ibst03 ; �t0 Kbst03 .

This construction can be developed in a similar way for all other times (t1, . . . , t5).
Supposing that the result of Alice’s measurement is the register |1, 1〉, we will
finally obtain:

Hol
γat5
I (st51 ) = |1〉.

Hence: |=t5 Kast51 . At the same time:

|=t5 Ibst53 ; �t5 Kbst53 .

So far, we have dealt with epistemic operators that are expressed in a clas-
sical epistemic language. An interesting question is the following: is it possible
to extend the quantum computational language LQC to an epistemic language
where the epistemic operators are interpreted as special kinds of Hilbert space
operations? We discuss this problem in [7].
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