
Di Candia et al. EPJ Quantum Technology  (2015) 2:25 

DOI 10.1140/epjqt/s40507-015-0038-9

RESEARCH Open Access

Quantum teleportation of propagating
quantum microwaves
R Di Candia1*, KG Fedorov2,3, L Zhong2,3,4, S Felicetti1, EP Menzel2,3, M Sanz1, F Deppe2,3,4, A Marx2,
R Gross2,3,4 and E Solano1,5

*Correspondence:
rob.dicandia@gmail.com
1Department of Physical Chemistry,
University of the Basque Country
UPV/EHU, Apartado 644, Bilbao,
48080, Spain
Full list of author information is
available at the end of the article

Abstract

Propagating quantummicrowaves have been proposed and successfully
implemented to generate entanglement, thereby establishing a promising platform
for the realisation of a quantum communication channel. However, the
implementation of quantum teleportation with photons in the microwave regime is
still absent. At the same time, recent developments in the field show that this key
protocol could be feasible with current technology, which would pave the way to
boost the field of microwave quantum communication. Here, we discuss the
feasibility of a possible implementation of microwave quantum teleportation in a
realistic scenario with losses. Furthermore, we propose how to implement quantum
repeaters in the microwave regime without using photodetection, a key prerequisite
to achieve long distance entanglement distribution.

1 Introduction

In , CH Bennett et al. [] proposed a protocol to disassemble a quantum state at

one location (Alice) and to reconstruct it in a spatially separated location (Bob). They

proved that, if Alice and Bob share quantum correlations of EPR type [], then Bob can

reconstruct the state of Alice by using classical channels and local operations. This phe-

nomenon is called ‘quantum teleportation’, and it has important applications in quantum

communication []. The result inspired discussions among physicists, in particular, on

the experimental feasibility of the protocol. Despite some controversies in technical is-

sues, the first experimental realisation of quantum teleportation was simultaneously per-

formed in  in two groups, one led by A Zeilinger in Innsbruck [], and the other

by F De Martini in Rome []. In both experiments, the polarisation degrees of freedoms

of the photons were teleported. It was shown that, even within the unavoidable experi-

mental errors, the overlap between the input state and the teleported one exceeded the

classical threshold achievable when quantum correlations are not present. After the suc-

cess of the first experiments, alternatives for a variety of systems and degrees of freedom

emerged. Of particular interest is the continuous-variable scheme studied by L Vaidman

[] and SL Braunstein et al. [], whose experimental implementation was realised by A Fu-

rusawa et al. [] in the optical regime. This experiment consisted in teleporting the infor-

mation embedded in the continuous values of the conjugated variables of a propagating
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electromagnetic signal in the optical regime. Optical frequencies were preferred because

of their higher detection efficiency, essential to achieve a high fidelity performance [, ],

and because propagation losses are almost negligible. During the last years, an impressive

progress in teleporting quantum optical states to larger distances, first in fibers [, ],

and afterwards in free-space [–], was made. This rapid progress may even allow us to

realise quantum communication via satellites in near future with corresponding distances

of about  km. In optical systems, the long-distance teleportation is, to some extent,

straightforward, because of the high transmissivity of optical photons in the atmosphere.

Nevertheless, unavoidable losses are setting an upper limit for the teleportation distance.

However, there were fundamental theoretical studies on how to allow for a long-distance

entanglement distribution. The underlying concepts are based on quantum repeaters [,

], whose implementation on specific platforms needs an individual study. So far, the en-

tanglement sharing and quantum teleportation was reported for cold atoms [–], and

even for macroscopic systems [].

In this article, we discuss the possibility of implementing the quantum teleportation

protocol of propagating electromagnetic quantum signals in the microwave regime. This

line of research is justified by the recent achievements of circuit quantum electrodynamics

(cQED) [, ]. In cQED, a quantum bit (qubit) is implemented using the quantum de-

grees of freedom of a macroscopic superconducting circuit operated at low temperatures,

i.e. <∼- mK, in order to suppress thermal fluctuations. Superconducting Josephson

junctions are used to introduce non-linearities in these circuits, which are essential in

both quantum computation and the engineering of qubits. Typical qubits are built to have

a transition frequency in the range - GHz (microwave regime), and they are coupled

to an electromagnetic field with the same frequency. This choice is determined by readily

available microwave devices and techniques for this frequency band, such as low noise

cryogenic amplifiers, down converters, network analysers, among others. We note that

apart from its relevance in quantum communication, quantum teleportation is also cru-

cial to perform quantum computation, e.g. it can be used to build a deterministic CNOT

gate [].

Recently, path-entanglement between propagating quantum microwaves has been in-

vestigated in Refs. [–]. Followingwhat was previously done in the optical regime [],

a two-mode squeezed state, in which the modes were spatially separated from each other,

was generated. The two entangled beams could be used to perform with microwaves a

protocol equivalent to the one used in optical quantum teleportation [, ]. These articles

represent the most recent of a large amount of results presented during the last years [,

–], which are the building blocks of a quantum microwave communication theory.

Inspired by the last theoretical and experimental results, we want to discuss the feasibility

of a quantum teleportation realisation for propagating quantummicrowaves. The article is

organised in the following way: In Section , we introduce the continuous-variable quan-

tum teleportation protocol and its figures of merit. In Section , we describe the prepa-

ration of a propagating quantum microwave EPR state. In Section , we show how to im-

plement a microwave equivalent of an optical homodyne detection, by using only linear

devices. The Section  is focused on the analysis of losses. In particular, we consider an

asymmetric case in which the losses in Alice’s and Bob’s paths are different. In Section ,

we discuss the feedforward part of the protocol in both a digital and an analog fashion.
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Finally, as the entanglement distribution step is affected by losses, we present in Section 

how to implement a quantum repeater based on weak measurements in a cQED setup, in

order to allow the entanglement sharing at larger distances.

2 The protocol

In this section, we briefly explain the quantum teleportation protocol introduced in [,

], and we introduce some useful figures of merit to quantify the quality of the scheme

in a realistic setup. The protocol consists in teleporting a continuous variable state, and

it has already been applied in the optical regime to both a Gaussian state [, ] and a

Schrödinger cat state []. An equivalent scheme for microwaves is still missing, there-

fore a specific treatment, in which the restriction imposed by the technology is taken into

account, is mandatory to analyse its feasibility. Let us consider a situation in which two

parties, Alice and Bob, want to share a quantum state. More specifically, Alice, labelled

with A, wants to send a quantum state |φ〉T , whose corresponding system is labelled by T ,

to Bob, denoted by B. Additionally, let them share an ancillary entangled state |ψ〉AB given
by

(x̂A + x̂B)|ψ〉AB = δ(xA + xB), (p̂A – p̂B)|ψ〉AB = δ(pA – pB), ()

where x̂ and p̂ are quantum conjugate observables obeying the standard commutation rule

[x̂, p̂] = i. After Alice performs a Bell-type measurement on the system T-A,

xT + xA = a, pT – pA = b, ()

where a and b are the outcomes of themeasurement. The resulting values of Bob’s quadra-

ture would be

xB = xT – a, pB = pT – b. ()

By displacing adaptively Bob’s state by a + ib, i.e. xB is shifted by a and pB by b, we finally

have x̂B|φ〉B = x̂T |φ〉T and p̂B|φ〉B = p̂T |φ〉T , where |φ〉B is the final state of Bob. There-

fore, the final state of Bob is the state of the system T . Note that Bob needs to perform

local operations conditioned to Alice’s measurement outcomes. As the outcomes are two

numbers, wemay allowAlice and Bob to communicate throughout a classical channel, see

Figure . Bennett et al. [] called this protocol a quantum teleportation [].

A state fulfilling () can be seen as a two-mode squeezed state with infinite squeezing.

In fact, its Wigner function can be written as

WA-B(xA,pA,xB,pB)

=


π
exp

{

–
e–r



[

(xA – xB)
 + (pA + pB)


]

–
e+r



[

(xA + xB)
 + (pA – pB)


]

}

∼ 

πer
exp

{

–
e–r



[

(xA – xB)
 + (pA + pB)


]

}

δ(xA + xB)δ(pA – pB), ()
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Figure 1 Scheme of the proposed quantum teleportation protocol. The generation of an EPR state is
obtained by amplifying the orthogonal vacuum quadratures of A and B with two Josephson parametric
amplifiers (JPAs). The generated entanglement is then shared between Alice and Bob. Alice uses this resource
to perform a Bell-type measurement with the state that she wants to teleport. This is realised by superposing
her two signals with a beam splitter, and then measuring a quadrature in each of the outputs. The quadrature
measurement is performed via amplifying the signal with a JPA and a HEMT amplifier in series, and then
measuring via homodyne detection. Finally, after a classical transfer of Alice results, a local displacement on
the Bob state is needed to conclude the protocol. The figure indicates where losses (labelled as ηA,B , α , β )
may be present.

where r is a squeezing parameter [] and, also, we have considered an asymptotic be-

haviour for large r. For finite r, the state of the system A-B fulfils

x̂A + x̂B = ξ̂x, p̂A – p̂B = ξ̂p, ()

where ξ̂x|ψ〉AB and ξ̂p|ψ〉AB have real Gaussian distributions withmean value equal to zero

and variance e–r . If we perform the teleportation protocol with this state, the finalWigner

function for Bob’s state is the weighted integral

WB(xB,pB) =

∫

dξx dξpP(ξx)P(ξp)WT (xB – ξx,pB + ξp), ()

where P(ξx,p) are the probability distributions of the outcomes of ξ̂x,p. After introducing

the variables xB – ξx = X, pB + ξp = Y , and defining α = X + iY , zB = xB + ipB, we get

WB(zB) =

∫

dαPc

(

z∗
B – α∗)WT (α), ()

where Pc is the complex Gaussian distribution with mean value zero and variance σ̄  =

e–r , i.e. Pc(β) =


πσ̄ exp{–|β|
σ̄ }. In the limit of infinite r, Pc approaches to the delta func-

tion, and thenWB =WT . In the following, we will refer only to the variance of the quadra-

tures, regardless of whether they are noisy or not. Therefore, our treatment is general, and

it includes also the lossy case, in which we do not have a perfect two-mode squeezed state

as a resource. In order to evaluate the performance of the protocol, entanglement fidelity

[] can be used. If T is in a pure state, the entanglement fidelity is given by

F = π

∫

dzB dz

TWB(zB)WT (zT ). ()

If Alice is restricted to teleport coherent states, the protocol works better than in the clas-

sical case corresponding to r =  if F > 

[]. Let us remark that the performance of
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the protocol for coherent states, and in general for Gaussian states, depends only on the

variances �ξ 
x,p ≡ 〈�ξ̂ 

x,p〉. Indeed, one can verify that []

F =


√

( +�ξ 
x )( +�ξ 

p )
, ()

and F > 

is valid if and only if

� ≡
(

 +�ξ 
x

)(

 +�ξ 
p

)

< . ()

More general cases could also be discussed, but this does not provide any additionally

insight into the question under which conditions the protocol is feasible. The condition

in Eq. () defines our limit between classical and quantum teleportation. While in the

noiseless case this condition is satisfied for any positive squeezing, the situation changes

when we take losses into account. From now on, we assume the case of coherent state

teleportation, and the symmetric case, where �ξ  ≡ �ξ 
x,p and �ξ 

⊥ ≡ 〈�(x̂A – x̂B)
〉 =

〈�(p̂A + p̂B)
〉.

3 Generation of EPR state

Following Refs. [, ], propagating quantum microwave EPR states are prepared in the

following way. We can generate a microwave vacuum state with a  Ohm resistor at low

temperatures T ∼  mK, as its blackbody radiation corresponds to a thermal state with

number of photons nω = (e�ω/kT – )–, with nω ≪  for frequencies ω/π ∼ - GHz. By

sending the vacuum to a Josephson parametric amplifier (JPA) [, ], we can create a

one-mode squeezed state, in which the squeezed quadrature is defined by the phase of the

JPA pump signal. The relation between the input âin and the output âout of a JPA []

âout = âin cosh r + â†
in sinh r, ()

is the same as for a squeezing operator. Notice that the amplified quadrature is defined by

x̂out = (âout + â†
out)/

√
, and the squeezed quadrature is the orthogonal one. A two-mode

squeezed state [] can be generated by sending two one-mode squeezed states, squeezed

with respect to orthogonal quadratures, to a hybrid ring, acting as a microwave beam

splitter [, ]. In this way, the resultingWigner function is given by Eq. (), and the two

output modes are spatially separated (see Figure ).

In general, the quality of the entanglement between the two modes is affected by the

losses of the JPA. To take into account the inefficiency, we write down the Hamiltonian of

the JPA and take into account a finite coupling of the resonator mode ĉ with an environ-

ment, as depicted in Figure :

H =Hfree + i
�χ



(

c – c†
)

+ i�

√

k

π

∫

dω
[

a(ω)c† – ca†(ω)
]

+ i�

√

γ

π

∫

dω
[

h(ω)c† – ch†(ω)
]

, ()
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Figure 2 Scheme of a Josephson parametric

amplifier (JPA). The field outside the resonator
interacts with the resonator mode with a coupling
rate k. The resonator mode is evolving under the
squeezing Hamiltonian with a coupling χ . The losses
are taken into account by introducing an
environment mode ĥ, and let it interact with the
resonator mode with a coupling rate γ .

whereHfree = �ωcc
†c+

∫

dω�ωa†(ω)a(ω) +
∫

dω�ωh†(ω)h(ω) is the free Hamiltonian. The

second term in Eq. () is the squeezing Hamiltonian, the third term models the interac-

tion between the cavity field and the input and output signals, and the last term takes into

account the losses. The output mode of the JPA is defined as the steady state of â. One can

write down these equations in the Heisenberg picture, and look at input-output relations

of the fields:

x̂aout =
χ + k – γ

χ – k – γ
x̂ain +


√

kγ

χ – k – γ
x̂hin ≡ √

gxx̂ain +
√
sxx̂hin , ()

p̂aout =
χ – k + γ

χ + k + γ
p̂ain –


√

kγ

χ + k + γ
p̂hin ≡ 

√
gp
p̂ain –

√
spp̂hin , ()

where the hin label refers to the input noise, assumed to be a thermal state fulfilling the

relation sxsp = (
√

gx/gp –)
 []. The quantities�ξ  and�ξ 

⊥ introduced at the end of the

Section  can be easily retrieved by using Eqs. ()-() and the beam splitter relation:

�ξ  =


gp
+ sp�phin , �ξ 

⊥ = gx + sx�xhin . ()

Note that γ =  corresponds to a noiseless parametric amplifier, whose input-output rela-

tions are shown in Eq. (), with er ≡ √
gx =

√
gp. Generally, the JPA generates a squeezed

thermal statewhose squeezed quadrature has variance σ 
s .Wehave entanglement between

the outputs of the hybrid ring if σ 
s < σ 

vac, where σ 
vac ≡ . is the variance of the vacuum.

The variance measured in [] is σ 
s ≃ ., which leads, considering a beam splitter with

. dB of power losses, to an EPR state with �ξ  ≃ . (�ξ 
⊥ ≃ .) and � ≃ . < .

In the following, we will use these values as reference, although we believe that these pa-

rameters can be improved with better JPA designs.

4 Quadraturemeasurement

Measuring a quadrature of a weak microwave signal is considered a particularly difficult

task, since the low energy of microwave photons makes it difficult to realise a single-

photon detector. Therefore, the standard homodyne detection scheme is not applica-

ble. Typically, one has to amplify the microwave signal in order to detect it. Cryogenic

high electronic mobility transistor (HEMT) amplifiers are routinely used in quantummi-

crowave experiments [, , , –, ], because of their large gains in a relatively

broad frequency band. However, HEMT amplifiers are phase insensitive and add a signifi-

cant amount of noise photons, sufficient to make the quantum teleportation protocol fail.

Their input-output relations are []

âout =
√
gH âin +

√

gH – ĥ†
H , ()
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where âin, âout and ĥH are annihilation operators of the input field, output field and noise

added by the amplifier, respectively, with gH ∼  for modern high-performance cryo-

genic amplifiers. We can assume ĥH to be in a thermal state with thermal population nH .

For instance, commercial cryogenic HEMT amplifiers have a typical number of added

noise photons nH ∼ - for the considered frequency regime.

To measure x̂T + x̂A and p̂T – p̂A, we need to send the state A and the state T to a hybrid

ring, obtaining

â =
âT + âA√


, â =

âT – âA√


, ()

and then measure the x-quadrature of the mode  and the p-quadrature of the mode . If

we amplify this signal with a HEMT and then measure it afterwards, the state of Bob after

the local displacement is

x̂B = x̂T + ξ̂x +

√

(gH – )

gH
x̂hH , ()

and analogously for p̂B. One can easily check that even if the added noise photons are at

the vacuum level, we get F ≤ 

and the protocol fails.

To avoid this situation, we can adopt a scheme based on anti-squeezing the target

quadrature before the HEMT amplification [, ], see Figure . Corresponding outputs

of the amplification JPAs with a gain gJ , followed by a HEMT amplification with gain gH ,

are

x̂′
 =

√
gHgJ x̂ +

√
gHsx̂hJ +

√

gH – x̂hH , ()

and similar for p̂′
. We assume, for the sake of simplicity, the symmetric case, where both

quadratures have the same amplification, and the amount of added noise is the same in

both modes. The state of Bob after the displacement step is

x̂B = x̂T + ξ̂x +

√

(gH – )

gJgH
x̂hH +

√

s

gJ
x̂hJ , ()

and analogously for p̂B. In the limit of large gJ , the noise of the HEMT amplifier is sup-

pressed and the inefficiencies of the JPA are negligible, provided that as �xhJ and s are

small. By defining the JPA quadrature noise AJ ≡ s
gJ

�x̂hJ , and the HEMT quadrature noise

AH ≡ gH–
gH

�x̂hH , we have to analyse for which experimental values the total noise

A≡ 

(

AJ +
AH

gJ

)

()

is lowest, since for A >  the protocol fails. In the recent experiments on quantum state

tomography of itinerant squeezed microwave states [], an additional JPA with a de-

generate gain gJ ≃  was used as a preamplifier. Corresponding figures of merit are

AJ ≃ ., and in case of AH ≃ , we get A ≃ .. With these values, if we take into

account the quality of the EPR state mentioned at the end of Section , the protocol fails,
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as � = ( + �ξ  + A) ≃ . > . However, the HEMT quadrature noise can realistically

reach a value of AH ≃ , and this gives us an upper bound to the JPA quadrature noise

in order for the quantum teleportation protocol to work, i.e. AJ < .. This bound does

not take into account losses and measurement inefficiencies, which are considered in the

next section. Moreover, we believe that JPA values can certainly be improved within the

next years, as JPA technology is considerably advancing both in the design and materials

[–].

5 Protocol with losses

So far, we have not taken into account possible losses in the protocol. Typically, losses

in the microwave domain are much larger than in the optical domain, and therefore can

significantly affect the quality of the teleportation protocol. In the following, we analyse

the protocol with all possible loss mechanisms, see Figure . Note that losses after the

HEMT amplification are negligible, and therefore omitted.

To characterise the losses, we use a beam splitter model. Following Figure , the fields

after collecting the losses in the entanglement sharing step are

x̂′
A =

√
ηAx̂A +

√

 – ηAx̂vA , x̂′
B =

√
ηBx̂B +

√

 – ηBx̂vB , ()

where ηA,B are the transmission coefficientsmodelling the losses in Alice’s and Bob’s chan-

nel respectively, and x̂vA,B are modes in a thermal state (similar formulas hold for p̂A,B).

Then,

x̂′
A + x̂′

B =

√
ηA +

√
ηB


(x̂A + x̂B) +

√
ηA –

√
ηB


(x̂A – x̂B) +

√

 – ηAx̂vA +
√

 – ηBx̂vB

≡ ξ̂ ′, ()

and

�ξ ′ =
(
√

ηA +
√

ηB)



�ξ  +

(
√

ηA –
√

ηB)



�ξ 

⊥

+ ( – ηA)

(

nvA +




)

+ ( – ηB)

(

nvB +




)

. ()

We note that the second term in Eq. () results from an asymmetry of the losses in Al-

ice’s and Bob’s channel and it increases with squeezing level in the EPR JPAs. In the optical

domain, η ∼ , allowing to neglect this term even for asymmetric channels. Moreover, in

this frequency range, nvA,B ≪  even at room temperature. In the microwave domain, in-

stead, we have nvA,B ∼  at room temperature and typical power losses of % per meter.

In this case, the entanglement would collapse after ∼ mm regardless of the value of gx.

Thus, in the following we assume that the entanglement distribution is possible at  mK,

i.e. nvA,B ≪ . As already pointed out, if ηA = ηB, then�ξ ′ contains a term linearly increas-

ing with the JPA gain gx. Equation () explains why the ideal quantum teleportation, i.e.

F = , is not possible in a realistic experiment even with in the limit of infinite squeezing

as input. From Figure (a), we see that the allowed difference between ηA and ηB decreases

with decreasing �ξ . In Figure (b), instead, we see that for large differences between ηA
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Figure 3 The quantity to �ξ ′2 defined in Eq. (24), which describes the amount of correlations

between Alice and Bob, plotted as a function of the transmission coefficients ηA,B modelling the

losses in Alice’s and Bob’s channel. The case �ξ ′2 ≥ 1 corresponds to a classically reachable performance.
We see that the quality of the protocol depends on a compromise between squeezing, given by �ξ 2 , and
transmissivity coefficients, given by ηA,B . (a) �ξ̂ ′2 plotted as a function of ηB for fixed ηA = 0.70 and for
various values of �ξ 2 , assuming ηB < ηA and noiseless EPR-JPAs. �ξ 2 determines the entanglement in the
lossless case: the entanglement increases with decreasing �ξ 2 . We see that the window of the allowed
difference between the losses in Alice’s and Bob’s channel reduces for larger entanglement. (b) Here, �ξ̂ ′2 is
plotted as function of ηB and ηA for fixed �ξ 2 = 0.14. From Eq. (24), we see that for a too large asymmetry
between Alice’s and Bob’s channel, it is opportune to symmetrize them by attenuating one of the signals in
order to increase the amount of correlations between the two parties. For instance, for ηB = 0.3 and
0.8 < ηA < 1, we find that �ξ̂ ′2 increases with increasing ηA .

and ηB, it is convenient to attenuate the signal of Alice. For instance, if ηB < ηA, we can

easily see that this happens when ∂�ξ ′
∂ηA

> , i.e.

√

ηB

ηA
<
(�ξ  +�ξ 

⊥)/ – (nvA + 

)

(�ξ 
⊥ –�ξ )/

. ()

As Alice’s measurement step takes a finite amount of time, we typically have ηB < ηA.

Concerning Alice’s measurement, we may define the quantities characterising the noise

added by losses as

Aα ≡  – α

α
�xvα , Aβ ≡  – β

β
�xvβ . ()

Here, α is the transmission coefficient from the output of the hybrid ring to the JPA, taking

into account the hybrid ring losses. Moreover, β is the transmission coefficient from the

JPA to HEMT amplifier. Hence, the total noise is

A = 

(

Aα +
AJ

α
+
Aβ

αgJ
+

AH

αβgJ

)

, ()

where AJ and AH were defined in the previous section.

In Table , we estimate a bound on AJ for typical losses, taking into account the feed-

forward (discussed in the following section), and for several distances. These numbers

imply that the device experimentally investigated in Refs. [, ], two of the few avail-
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Table 1 Tables with the maximum value of Amax

J
allowed in order for the quantum

teleportation protocol to work

Distance (m) �ξ ′2
A
max

J

a1

≪ 1 0.482 0.164
1 0.500 0.155
10 0.734 0.046
20 0.867 unf.

Distance (m) �ξ ′2
A
max

J

b1

≪ 1 0.476 0.166
1 0.486 0.162
10 0.623 0.098
20 0.737 0.045

Distance (m) �ξ ′2
A
max

J

a2

≪ 1 0.789 0.020
1 0.802 0.014
10 0.895 unf.

Distance (m) �ξ ′2
A
max

J

b2

≪ 1 0.666 0.078
1 0.677 0.073
10 0.767 0.031

The abbreviation ‘unf.’ means ‘unfeasible’. We assume an EPR state with the values discussed in Section 3, i.e. �ξ2 ≃ 0.47,

�ξ2⊥ ≃ 16.77, and typical values for connector losses leading to α ≃ 0.933 (Aα ≃ 0.036), β ≃ 0.891 (Aβ ≃ 0.061). Moreover, we

assume a JPA gain gJ ≃ 180, and HEMT noise AH ≃ 7. The noise parameter Amax
J

is estimated from the formulas

� ≡ (1 +�ξ ′2 + A)2 ≤ 4, which defines the quantum regime. Here, �ξ ′2 is defined in Eq. (24) and A is introduced in Eq. (27). We

assume Alice and Bob symmetrically situated with respect the EPR sources. The distance is referred to the cable length from

the EPR sources to Alice (Bob). The estimations take into account of the feedforward, and Amax
J

is evaluated for various

distances and in four different situations. In a1 we assume cable power losses of 0.1 dB per meter and zero time

measurement. In a2 we assume cable power losses of 0.1 dB per meter and 200 ns for measuring and processing the

information in Alice. These two tables give an insight on how much the measurement duration, which result in a delay line in

Bob, affects the quality of the protocol. In b1 we assume a more optimistic value for cable power losses, i.e. 0.05 dB per meter,

and zero time measurement. In b2 we assume 0.05 dB of power losses per meter and 200 ns for measuring the processing the

information in Alice. In all the tables, when Eq. (25) holds, we have applied a proper attenuator in Alice in order to

optimise �ξ ′2 .

able studies of JPA noise in the degenerate mode, are already close to the threshold where

a benefit over classical approaches can be achieved. We immediately see that the largest

contributions to � come from AJ and �ξ ′. For example, a version of the protocol would

work if the noise added by the detection amplifiers is reduced by a good factor of three to

AJ < ., corresponding to  m distance from the EPR source. Similarly, improvements

in the EPR state generation would help via a reduced �ξ ′. Regarding the latter, particu-

lar attention should be given to the distance over which an EPR pair can be distributed.

For our numbers, assuming a superconducting coaxial cable of  m length, the dominating

contributions to the losses still come from the beam splitter and connectors. Therefore, an

implementation of our protocol for the quantummicrowave communication between two

adjacent chips of a superconducting quantumprocessor or two superconducting quantum

information units in nearby buildings seems feasible with some reasonable technological

improvements. In this context, we want to reiterate that the big advantage of the quan-

tum microwave teleportation lies in the fact that microwaves are the natural operating

frequencies of superconducting quantum circuits.

6 Analog vs. digital feedforward

In the quantum teleportation protocol, Alice needs to measure and send the result of the

measurement to Bob via a classical channel. Then, Bob uses this information to apply a

displacement in his system. This process is called a feedforward, and is considered tough

to implement, independently of the considered system. In particular, in the microwave

case, the measurement process may be slow, resulting in an ultimate loss of fidelity. In re-

alistic experiments, a quantum microwave signal has to be amplified before detection. If

the amplification is large, the signal becomes insensitive to losses at room temperature.
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Figure 4 Scheme of the analog feedforward. Here, Alice is not digitising the signals, but is amplifying and
superposing them. The output signal is robust to the environment noise, and it contains all the information
that Bob needs to perform the local displacement. This displacement is then implemented with a high
transmissivity directional coupler, whose inputs are the signal of Bob, and the output signal of Alice. In the
figure, âF is the output signal of Alice, âB is the signal of Bob, â′

B is the output of the teleportation scheme,
while τ ≃ 1 is the transmissivity and Sij the scattering matrix of the directional coupler.

Therefore, an idea is to use the output signal of Alice to perform classical communica-

tion without digitally measuring it. This analog feedforward is depicted in Figure , and

it works in the following way. Let us assume the lossless case, and send the two ampli-

fied signals of Alice to a hybrid ring. One of the two outputs of the latter provides us

with

x̂F =




(

√
gJgH –

√

gH

gJ

)

x̂A +




(

√
gJgH +

√

gH

gJ

)

x̂T +

√

gH – 



(

x̂hH + x̂hH

)

, ()

p̂F =




(

–
√
gJgH +

√

gH

gJ

)

p̂A +




(

√
gJgH +

√

gH

gJ

)

p̂T –

√

gH – 



(

p̂hH + p̂hH

)

, ()

where the label ‘F ’ stands for the feedforward. Indeed, Bob may use this signal to perform

the displacement.

A displacement operator can be implemented by sending a strong coherent state and

the field which we want to displace to a high-transmissivity mirror []. Hence, the trans-

mitted signal is

âout =
√

τ âin +
√
 – τα, ()

where α is without a hat because it represents a coherent state. If we choose τ ∼  and

|α| ≫  such that
√
 – τα = z, we obtain

âout =
√

τ âin + z ≃ âin + z, ()

which approximates a displacement operator. In a microwave experiment, the operation

() can be implemented with a microwave directional coupler. If we send signals B and

F as inputs to a directional coupler with transmissivity τ ≃  – 
gJ gH

, the corresponding
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output is

x̂′
B =

√
τ x̂B +

√
 – τ x̂F

=

(

 +


gJ

)

x̂T +

√

 –


gJgH
x̂B +

(

 –


gJ

)

x̂A

+

√

(gH – )

gJgH
(x̂hH + x̂hH ) ≃ x̂T + ξ̂x, ()

p̂′
B =

√
τ p̂B +

√
 – τ p̂F

=

(

 +


gJ

)

p̂T +

√

 –


gJgH
p̂B +

(



gJ
– 

)

p̂A

–

√

(gH – )

gJgH
(p̂hH + p̂hH ) ≃ p̂T – ξ̂p, ()

where the last approximation holds for gJ ≫ , and, for the sake of simplicity, we have

considered the lossless case. Considering the typical values gH ∼  and gJ ∼ , we

would need a reflectivity factor –τ ∼ –. For this value, small errors in τ would result in

a large error in the displacement operator. This problem can be overcome by attenuating

at low temperatures the signal F before the directional coupler, in order to neglect the

attenuator noise. In this case, setting τ =  – 
ηattgJ gH

, the transmitted signal is the same as

in ()-(). For instance, if we choose ηatt ∼ –, we derive a reasonable value for the

reflectivity:  – τ ∼ –.

The described analog method allows us to perform the feedforward without an actual

knowledge of the result of Alice’s measurement. Indeed, the JPA and HEMT amplifiers

work as measurement devices. On the one hand, the advantage is that we save the time

required to digitalised the signal. On the other hand, the disadvantage is that all the noise

sources inAlice aremixed, resulting in a doubling of the noiseA, as we see in Eqs. ()-()

(the same claim holds for the lossy case). Therefore, one should carefully evaluate whether

the digital feedback is convenient against the analog one, by comparing A, which quantify

the loss of fidelity in the analog feedforward case, with the noise added due to the delay

line added in Bob in the digital feedforward case. This can be done by estimating the digi-

tisation time and the corresponding losses in the Bob delay line, which strongly depends

on the available technology. Indeed, currently available IQ mixers and FPGA technology

requires tp ∼ - ns formeasuring and processing the information. During this time,

the signal needs to be delayed in Bob’s channel. If we consider a delay line where the group

velocity of the electromagnetic field is v ≃ × m/s, tp corresponds to a delay line in Bob

of -m. Comparing the values of�ξ ′ for the zeromeasurement time and the realistic

 ns measurement time, we see a change in �ξ ′ of ∼. in the case of  m distance

(assuming . dB per meter of power cable losses), which is considerably lower than the

current values achievable for A. Notice that this discrepancy decreases with the distance

between Alice and Bob. This means that the digital feedforward is currently preferable to

the analog one, but the analog feedforward can become a useful technological tool when

the JPA technology will reach a reasonable noise level.
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7 Quantum repeaters

As we have discussed in the previous sections, the entanglement distribution between the

two parties, Alice and Bob, is particularly challenging due to the large losses involved.

Moreover, while in the optical case the noise added by a room temperature environment

corresponds to the vacuum, in the microwave regime, this noise would correspond to a

thermal state containing ∼ photons. Even in the most favourable situation in which

we build a cryogenic setup to share the entanglement, we would have a collapse of the

correlations after∼m due to the detection inefficiency and losses. The implementation

of quantum repeaters in the microwave regime could potentially solve this issue. A quan-

tum repeater is able to distillate entanglement and to share it at larger distance, at the

expense of efficiency. A protocol for distributing entanglement at large distance in the

microwave regime has been recently proposed in [], but it relies on the implementa-

tion of an optical-to-microwave quantum interface [], which has not yet been realised

experimentally.

Here, we discuss the microwave implementation of quantum repeater based on a non-

deterministic noiseless linear amplification via weak measurements []. A noiseless lin-

ear amplifier [, ] can be modelled as an operator g n̂ applied to its input state. For

example, for a input coherent state |α〉, we would have |gα〉 as output, resulting in a am-

plification of all quadratures without adding noise. Let us consider a two-mode squeezed

state |ψAB〉 ∝
∑∞

n=(tanh r)n|n〉A|n〉B. Notice that the amount of entanglement increases

on increasing r. If we are able to implement the operator g n̂, with g >  on one mode, say

Bob, we have

g n̂B |ψAB〉 ∝
∞

∑

n=

(gλ)n|n〉A|n〉B =
∞

∑

n=

λ′n|n〉A|n〉B, ()

with λ = tanh r and λ′ ≡ gλ > λ. A similar argument holds, if we have losses in each of the

two modes. In fact, the state after the loss mechanism is

|ψloss〉 ∝
∞

∑

n=

n
∑

kA=

λn

n
∑

kB=

(–)n–kA–kBη
kA/
A η

kB/
B ( – ηA)

(n–kA)/

× ( – ηB)
(n–kB)/

√

(

n

kA

)(

n

kB

)

|kA〉A|kB〉B|n – kA〉lA |n – kB〉lB , ()

where lA,B correspond to the loss modes. If we apply the operator g n̂B , the output state

has the same form but with the new effective parameters [] ηB → η′
B =

gηB
+(g–)ηB

and

λ → λ′′ = λ
√

 + (g – )ηB, which is accompanied by an increase of the entanglement. Ac-

cordingly, the final �ξ ′ would be lower, which corresponds to higher values of Amax
J in

Table . Note that if λ = , i.e. no entanglement at the input, then the output state is not

entangled either. Therefore, in order to increase the amount of entanglement, we need a

minimum of entanglement at the input.

The operator g n̂ corresponds to a noiseless phase-insensitive linear amplifier, and it can-

not be implemented deterministically. However, there exist probabilistic methods to re-

alise it approximately. A probabilistic noiseless linear amplification scheme has already
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Figure 5 Quantum repeater scheme with weak measurement and postselection. A probabilistic
noiseless linear amplifier is applied to one of the two parties, via the implementation of a weak cross-Kerr
interaction with an ancillary signal. This interaction emerges as a fourth order expansion of the dynamics of
the signal and the ancilla coupled with a transmon quantum bit, modelled as a three level system, in a
non-resonant regime. The ancilla is then measured, and the result is sent classically to Alice for post-selection.

been demonstrated in the optical regime [, ], but it relies on the possibility of count-

ing photons. In contrast, the weak measurement scheme [] requires quadrature mea-

surements that can be applied in the microwave regime.

Let Bob’s mode interact with an ancillary system in a coherent state |α〉 accordingly

to the cross-Kerr Hamiltonian ĤKerr = �kn̂ancn̂B, where k is a coupling constant. Let us

further consider low-time interaction, i.e. k�t ≪ . If we postselect the ancilla in the state

|p〉, i.e. the eigenstate of the p̂ quadrature corresponding to the eigenvalue p, the whole

final state is

|ψfinal〉 = |p〉〈p|e–iĤKerr�t/�|α〉|ψ〉AB ≃ |p〉〈p|(I – ik�tn̂ancn̂B)|α〉|ψ〉AB

= |p〉〈p|α〉(I – ik�tAwn̂B)|ψ〉AB ≃ |p〉〈p|α〉e–ik�tAwn̂B |ψ〉AB

= |p〉〈p|α〉e–ik�tRe(Aw)n̂B
(

ek�t Im(Aw)
)n̂B |ψ〉AB, ()

whereAw ≡ 〈p|n̂anc|α〉
〈p|α〉 = α– i

√
αp is called ‘weak value’, and, in the second approximation,

we have assumed k�t|Aw| ≪ . By choosing appropriately the values of α and p, we can

induce a value of Aw, whose imaginary part is positive. If we set g ≡ ek�t Im(Aw), we have a

scheme to implement g n̂B up to a known phase-shift e–ik�tRe(Aw)n̂B , with success probabil-

ity density |〈p|α〉| = √
π
e–(p–Im(α)) . For instance, by choosing Im(α) =  and Re(α) < , we

have a gain for any p > , which happens with a % probability. In this case, an imperfect

quadrature measurement can be corrected by just shifting the allowed results of the an-

cilla measurement, with a consequent lost of efficiency. Note that, due to the probabilistic

nature of the scheme, Alice and Bob need to communicate classically in order to distillate

the entanglement, see Figure . However, this classical communication can be performed

at the end, in a post-selection fashion, as Alice does not need to perform any operation on

her system.

The cross-Kerr effect, characterised by a Hamiltonian of the kind ĤKerr = �kn̂ancn̂B, has

already been proposed in cQED in the context of single-photon resolved photodetectors,

see [, ]. Basically, this interaction emerges in the fourth order expansion of the dy-

namics of two microwave modes coupled with a transmon in a non-resonant regime. By
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modelling the transmon as a three-level system, the system Hamiltonian is

H = �ωaa
†a + �ωbb

†b + �(ω –ω)|〉〈| + �(ω –ω)|〉〈|

+ �ga
[

a|〉〈| + a†|〉〈|
]

+ �gb
[

b|〉〈| + b†|〉〈|
]

, ()

where a represents the ancillary mode and b Bob’s mode. In the interaction picture with

respect H = �ωaa
†a + �ωbb

†b + �ωa|〉〈| + �ωb|〉〈|, the new Hamiltonian is

HI = ��a|〉〈| + ��b|〉〈| + �ga
[

a|〉〈| + a†|〉〈|
]

+ �gb
[

b|〉〈| + b†|〉〈|
]

, ()

where �a = ω – ωa, �b = ω – ωb, and we have set ω = . If we set the parameters in

order to have ga, gb ≪ �a,�b, |�a–�b|, and we inizialize the transmon in |〉, the effective
Hamiltonian is

Heff
I = �

gb
�b

b†b|〉〈| + �
gag


b

�a�b

(



�b

–


�a

)

a†ab†b|〉〈|, ()

where we have implemented a fourth order expansion of the Magnus series, and we have

used the rotating wave approximation. Typical parameters allowing this are (ω–ω)/π =

ωa/π ≃  GHz, (ω –ω)/π = (ωb + �̃)/π , with �̃ =  MHz and ωb/π ≃  GHz, and

ga,b ≃  kHz. TheHamiltonian in Eq. () represents the cross-Kerr effect up to a known

phase, that can be corrected at the end. In this scheme, dissipations are negligible, as we

are interested in very low interaction times.

8 Conclusions

We have considered a quantum teleportation protocol of propagating quantum mi-

crowaves. We have analysed its realisation by introducing figures of merit (i.e. � and A)

that takes into account losses and detector efficiency. In particular, we have underlined

the difference between the optical case (where photodetectors are available, and losses

are negligible) and the microwave regime. Indeed, we have considered JPAs in order to

perform single-shot quadrature measurements, and we have proposed an analog feedfor-

ward scheme, which does not rely on digitisation of signals. Moreover, we have discussed

the losses mechanisms, highlighting in which measure they limit the realisation of the

protocol. We have used typical parameters of present state-of-art experimental setups in

order to identify the required improvements of these setups to allow for a first proof-of-

principle experiment. Finally, we have introduced a quantum repeater scheme based on

weak measurements and postselection.
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