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QUANTUM  THEORY  OF  A  MASSLESS
     RELATIVISTIC  SURFACE  AND
    A  TWO-DIMENSIONAL  BOUND
            STATE  PROBLEM(*)

JENS  HOPPEC**,

(1989ff 8 ,E] 8 H eemp)

ABSTRACT

PART  ONE

   A  massless  relativistic  surface  is defined in a  Lorentz invariant way  by  letting its action

be proponional to  the  volume  swept  out  in Minkowski- space.-  The  system  is described in

light cone  coordinates  and  by going to a  Hamiltonian forinalism one  sees  that the dynamics

depend  only  on  the transverse coordinates  X  and  Y. The  Hamiltonian H  is invariant

under  the  group of  area  preserving reparametrizations'whose  Lie algebra  can  be shown  to

correspond  in some  sense  to the Large N-limit of  SU(AU. Using this one  anives  at a

SU(IW invariant, large N-two-matrix  model  with  a  quartic interaction [X, Y]2.

PART  TWO

   The  problem  of  N  partices with  nearest  neighbors  a-function interactions is defined by

reguiarizing  the 2 body problem and  deriVing an  eigenvalue  integral equation  that is equiva-

lent to the Schrbdinger equation  (for bound  states).  The  3 body  problem  is discussed ex-

tensively and  it is argued  to be free of  irregularities, in contrast  with  the known  results  in 3

dimensions. The  crucial  role  of  the dimension is displayed in looking at the limit of  a

short-range  potential.

 
'
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PART  ONE

QUANTUM  THEORY  OF  A  MASSLESS
        RELATIVISTIC  SURFACE

INTRODUCTION  
-
 

･-

   As  a natural  generalization of  the  rnassless  string  theoryi),  but also  of  interest in its

own  right, as an  example  in which  geometry, classical  relativity  and  qpantum  mechanicS  are

deeply connected,  one  can  define the dynamics of  a massless  closed  M  dimensional surface
in a  Lorentz- and  coordinate  invariant way  by letting its agtion  be proportional to  the

M+1  diniensional voiume  Swept out  in the D  dimensional (generalized) Minkowski'spdce

SOt. A  particular observer  with  coordinate  system  x.  =  (t, x`)  would  dgscribe the shape  he
                           -

sees  by r`(t, Ai, ･･････,  A"), where  A is a  parametrization of  the surface  and  the time  like pa-
rameter  Ae of  the M+1-dimension'al manifold  was  chosen  to be  t. Related  to  the  arbit-

rariness  of  the choice  of  parametrization, not  all of  the x"  and  their conjugate  momenta  p"
are  independent. 

'

    It turns out  to be extremely  convenient  to describe the system  in terms  of  light cone

coordinates  T(=-e(t+  t;Ofi')), g(=-t- cD-')  and  
-x(!ii([=i,

 
･･････,

 [zrD-Z)),  because the  Hamilto-

nian  turns out  to be independent of  g and2)  one  can  take te and  the conjugate  momentum  P
as  the independent dynamicai variables.  In the classical theory  g is determined via  con-

straint  equations,  which  are  consistent  provided

    ( Ji' ･p].,.  -  ,a-f
'.･-QS`45J(:StM2,,[

 
')
 --aS(il5sgM,.( 

])
 ･ gi'. 

--
 o ,

where  ca(A) is a  chosen  density. These constraints  fortunately do not  cause  a  problem as  .

their poisson bracket (commutator in the quantum  theory) with,  the Hamiltonian is O. (In
the  quantum theory  they  are  interpreted as  constraints  acting  on  the  wave  functions di.)

[z' , p'L.,. are  the generators of  volume  preserving (time independent) X-reparametrizations,
which  form  a  symmetry  group that remains  in orthonormal  gauge.

   After tlie general theory  is described, everything  eise  will  be for the case  M  =2,  D=4,

with  the parameter space  (Ai, A2) taken  to  have the topology  of  a  2-sphere. (Two examples
of  solutions  to the equations  of  motion  are  given to become a  little bit more  familiar with
the geometry of  the problem and  the parametrizations).
   The  Hamiltonian  which  becomes

   H  =  f sin  caad¢  Ips+p;+ 
,i.i,e

 ( aaXe ･-g4q  
--I34t

 ･ 
aaXq

 )2l
is invariant under  the group G  of  areapreserving  reparametrizations  of  S2(and x+iy  -  eta

(x+iy)). The Lie algebra  G  consists  of all smooth  functions3) of  e and  ep, a basis of  which

one  can  take to  be the usual  spherical  harmonics(leaving out  Y6,).

   In Part B  it wilJ  be proved that the structure  constants  of  G  in the Yl..basis are  in fact                                                  '
equal  to. the. N  -  oo  limit of the  structure  constants  of SU(IV), in a panicultir, properly                                  t t
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chosen  basis. This proof, which  from a  math.ematical  point of  view  turns out  to be much
more  natural  than  the  construction  first seems  to  be, makes  use  of  the fact that  the  M.  are

the hannonic polynolnials (restricted to the unit  sphere  S2) which  one  writes  as

     3

    Z  aY･?.1.,,X,, ･･･  X,,･
    ia=T

   4 basis of  the fundamental representation  of SU(N) can  then  be define.d as

    T,. -  za:-ge",,s,, ･･･  s,,

where  S, is a N.dimensional representation  of  SO(3). A  co.mpact  formula for the structu;e
constants  of  SU(N) in this basis and  others  differing from T,. by N  and  l dependent nor-
malization  factors so  to  make  the structure  constants  have a finite non-zero  totally antisym-

,m,:::.:,N.,TsT,
 
ci;,

 
igy'k

 fi2",.b,2,S.erl'Gedi .Thi:i.?5i.l[`N.';i7yft'ta;VTIftel219"ve."s,Oee,,gl;s.bg.zea
a.p:r

£:.,Lm7tignAlg-H,i,2';,as?g,,N.,tet,h.g,zeai,e::a:.t:e,-i,ifesrsiei,,2f,g2ezd,s,m,,cg,;,rs,s:o,:g,`g,xo,

2  N) have been cut  off.

   Note that both H  and  H. are  hamiltonians for a  gauge theory  in 2+1  dimensions with

spatial  derivatives ==  O :

    HcM =  ili] ((PZ)2+(pZ)2+(l,iY'. 
{.MbcXbY.)2

 )
       =  Tr (ES+E;+B2)
where  xb  e  Ai , and  B  =  [nf, AZ.  The  conditions  fCM.b, lil, . I, ==  O which  are  needed  as
                                                     --+ -

a consistency  condition  for H,M to be well  defined translates into [A, E] :==  O which  is exactly
Gauss's law (when the spatial  derivatives are  o). Bjorken5) has looked at the analogde  of
                                         -- -

this for SU(N  =  3) in 3 dimensions (H ==  Tr (E2+B2), with  the vectors  now  having 3
components)  and  seems  to have shown  that the lowest lying set  of  energy  levels is a  rota-

tional band  corresponding  td 3-dimensional rotations.  We  have so  far been unable  to con-

firm this result.  The  last chapter  contains  some  work  on  or  related  to HN.

    One would  hope  to,be  able  to find out  much  about  the spectrum  of  HN by using  (or
finding new)  techniques  for large N.matrix models6).  The  work  on  this during the past
months,  however, has provided puzzles rather  than  insight. 

'

   Though  the original  classical action  is manifestly  Lorentz invariant, we  are  quantizing
in a  particular Lorentz frame and  will  have to demonstrate the Lorentz.invariance of  our

theory. A  satisfactory  method  would  be to construct  the generators of  Lorentz transforma-

tions, but we  have been unable  to do this. A  weaker  method,  which  would  give only  a

necessary  condition,  is to show  that the spectrum  is consistent  with  Lorentz invariance, i.e.,
that the states  fall into multiplets  characterized  by mass  and  spin.  We  have not  carried  our

study  of  the dynamics far enough  to see  if this is true, aithough  there is some  indication
that H.  (N -  oo)  will  have a highdegeneracy of  its energy  levels.

A. The  Action and  the Hamiltonian Formalism

I. 71ie action  S and  an  exampte

   A.rpassless M.dimensional closed  surface  moving  in D.dimensional Minkowski  space

can  be defined by letting its action  be proportional to the M+1  dimensional volume  swept
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          (-IlO.IIF -gi.)  at OM
                          D-1

   Ill =(xi,  
-t････,

 ,:P-i),  i2 =  Z  tttt
                          l]1

   gvs !i  
-O.a:"asa:u

 
--

 +O.IEa.Z  (as a.t =
 O for Ae =

 t)

It is convenient  to  partially fix the  parametrization by requiring

    (i) 
'G..

 =1-i2=  +g  (g iiE det glrsE  lgtsb
    (ii) GoT ==  Gro ==  Illa.Iii ==  O

This choice  is possible provided x"  satisfies the equations  of  metion  : (ii
parametrization A' of  the  surface  at  time  t =  t,, one  chooses  the

ly later time  t,+  dt to be such  that the intersections

at equal  Ar. Further one  certainly  can  choose  the parametrization

     gi  gi'. 
aai'.

 .is1-}2

at  a  given time. But  given (ii) (for all times) the pt =  O part of  Eq. (A2)

     a,(k.")-o;

so  {i) is true for all t. Note  that (A4) is still inVariant under  volume

pendent reparametrizations  of  the surface  (as those are  exactly  the

invariant).

   It is not  difficult to find a solution  of  the classical equations
=  4 (the physical case), The Ansatz

   X"  
=:

 (s(tt)..) ,a  ='  (sin 0 COS  ep , sin  e sin  ep, cos e)
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out  in Minkowski  space  (which is invariant under  both Lorentz transformations  and  general
reparametrizations  (Aa -  aa') of  the surface  :

    S=-7i  
.(:X.:.

a,`dAOd"AvX(i-

 (Al)

where  G  is (-)", The determinant of  the metric  G., i  
aoaA):･

 
aa`iArf

induced on  the M+1  dimensional manifold  M  by Minkowski space;  x"  =  x"(Aa)  a.r-e, the

space  tirne coordinates  of  EI)} : Lt =:  O, 1, ･･････  D-1  ; a  =  O, ･･････, M,  a"b.  =  aObO-Zaibi

for two  D-vectors; and  7h is the surface  energy  density (tension) of  dim Energy/(}ein--gth)M

rl?1fi2:Ie'l61ifro--m
.,l;,O,,-w.o,",,,b.e.7yt.l:.,L(g",,e,,c,,az,a,'rrg,ysyp,:`.iL,li",g"..d`,m..s"g`s.naa.\r,e.","ffiL･

equation  of  motion  by setting  the variation  6S  of  the action  ==  O :

    6s =  
-S

 fdM+iAVGGacs(a.x"a,x.)
      

=

 fdM+i AV(r ait. fa a.(sldGacofi x")
gives
     I
       a.(V( Gecanx")=O  (A2)
    GChoosing

 the timelike parameter AO of  the manifold  to be t, one  has 
'

   G., ..  
i-}2

 
-diO'i

 where  di =- ai  
,

 a.s !  ai  (r= i, ･･････, M)

(A3)

(A4)

                ) says  that giveq the

          parametrization at  a slight-

of  any  normal  with  the two  surfaces  are

            such  that

says  that

   preserving time  inde-

     ones  that  leave g

of  motion  for M  ==  3, D

(A5)
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      with  e and  op being the usual  angles  of  of  spherical  coordinates,  and  defining A' =- -cos  e

       i  st ,
 A2 =qgives  ,

          G., .,, (
ir

oo

S2

 -sz/O

osin2e
 

-,i:o,esJ,
 ) , V(;' =  S2Vi-=gii-

       
asS-2aeep,

-

s"2[ia-"rrs",)---,iO, b5,ar,Z.)5,=t.,iie ･ 
(aph)2

 
=

 
sin2

 
e･
 

The
 pt 

-

 
o
 part 

of
 
(A2)

 
(i-s2)-ii2

          S`=(const)(1-S2) (A6)
       while  the spatial  part, which,  using  (A6) becomes

          [ 2+  
,i:e

 Oe sin  e ae+,i.12e 02ep li ==  6

       is trivially satisfied  by definition of  i. The  solution  of  Eq. (A6), which  is equivalent  to

          t/so  
=

 £ s,
 k

       (S =:  maximal  radius),  is a periodic elliptic function which  can  easily  be expressed  in terms
       of  the standard  Weierstrass-P-function.

       II. Generalfonnalism in light cone  coordinates

          We  define light cone  coordinates  by:
                1

      Ti2(t+2)I     g=t-2

From  now  on  lff will

tWeen  x,  and  xi  (i =  1,

   GaBE(GGe.: 
Ge'

(Note that  t2 and  1
page). Now  i is a

   G  i  (-)" det G.B

A..(
ai

 
ai')

Therefore L  i!  -s/Zii'

where  r  i  2e-di2

and  u.  !  t'

o

                  always  stand  for

                   H.,-,  N

               -gvs  ) =  ( Org-
                  are  differently

                D-2-vector and  indicates differentiation with

                   =  det (
        g(Goo+G..G..g's)  ; (grs
having used  the fact that for a  completely  general square  matris

            with  invertible B  one  has

                  =  
-VEgi=F

                +grSurUS

          O.1-a.g  (u' !  grsu.)
If we  define canonical  momenta  by

 t ==  T+g'/2

             l
 z  ==  T-  g/2 1

      <.i, ･･･ny-･, thD-2) and  no  distinction will

iE D-2)  x"=(t,  Ii, x). Choosing AO =  r :

28- g..`a
-'8g

--

;
e

g
,/k') .

    defined from the tZ and  Z  appearing  in

   . respect  to T.

g:: 
"

g

Gv.O')=G,.g+G.rGosg'sg
 gbt E  8rt),

                          "

        iA1 -
 I611 a,-ztrB--ib  }.

       (A7)

be made  be-

the previous

}(A8>
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    J -  gL.. -  Vliil(t-uram
    u=:  gt2,--v![l

-

 (Ag)

we  find that

    J･ a.l+lla.g-o  (Alo)
This constraint  is a  direct consequence  of  the invariance of  S  under  t.dependent  repara-

metnzatlon,

    oz  ==fr(L  T)a.w  
,
 ag =f'(N  T)e.g

To  go to a  Hamiltonian formalism7), we  express  i . rk+ lle-L  ==  ij as a function of l 
,
 ll ,

}  
,
 g (This expression  is, of  course,  not  unique  because of  the relation  (AIO).):

    SEt･7+ta+VZi' 2e-t2+u.ur

      =  2e-lil,ll+.... IilF2-uru'-s+(2s-d!2+u.u')}

      =  2e-lii,II+ ...T  l8m ar gu 
'}

 (vr iii to.i)

while21dtz,gL-
 2e-12+u.urs

      
-2n

 

-
 vZi                          (3e-t2+u.ur)

           ' i!ll2-2v.u'+(a.IEu')2+(2e-IB2+ za.u')  l

      =  2 gt -f,  + ....  
I e- Wrur+  uru'  ] =  S (see above)

(in the iast step  we  used  : S(o.zur)2 ==  5a.zb.rxu'ur =  bu.u')
therefore ij ==  -4bEL. (All)

We  can  then obtain  the equations  of  motion  from the Hamiltonian

  ij' =  S+u'(la.Z+lla.g) treating l  
,
 g, J 

,
 ll and  ur  as

independent variables  : ,

    
a6H.;

 =  7;a.iE+llo.# =  o (H' ii  fdMAe)')
       e- 

a,'.'
 -  

-ei:h#,
 +uro.g

   } =  
-P/U+ura.l

 
,
 fi =  a.(llur)

   l= -a.  Iligg'S a.i+a.(za 
"7)

 (Al1')

( as +fge.  -  +  f4.S 6gt. -  
-fo.

 egg'so.i )sm

Note that H' =  tg'd"A and  H  =  fijdMX is invariant under  reparametrization  provided
that  p and  ll traiisform as  densities8Yt Also as a  consequence  of  Hamilton's equations,  u'

is equal  to u'  as  defined in (A8) (Just calculate  dia.Z-O.g from (All').

   To  discuss classical solutions,  we  can  always  choose  the time  variation  of  the paramet-
rization so  that u'  =  O. Since g is independent of  ge, in ･this gauge it =  O. We  are  still

NII-Electronic  Mbrary  
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free to make  a time.independent  reparametrization.  Since ll transforms  as a density we
can  make  it equal  to a constant  times a specified  A.dependence, II =  

-vzv(A).
 We  are

then  left with  the Hamiltonian

    H==  if;Z7,A) (l2+g) (A12)

to determine the motion  of  i. We  call  this gauge orthonormal  gauge (ONG). The con-

straint (AIO) becpmes ia.X ==
 rpzu(A)e.g which  we  can  solve  for g provided

    ar ,.k)  Po.IE-a. -li:(fiA) a.Ii}-o . (A13)

These constraints  are  consistent  with  the equatiQns  of  motion  derived from <A12) because
H  is still invariant under  reparametrizations  which  ieave the measure  zv(A)d"A  invariant.

   The  constants  of  the motion  p" may  be obtained  by comparing

               p.xU =  pOxO-pZx-l'. Z

             =  ibie +p-T-7;  ･ Ill.
               -

We  see  that since  P  generates transverse translations, -P'
 must  generate translations in g

and  P- must  be our  H  which  generates the motion  in r.  Thus

   i -  fPdMA
    P'  =  

-fUd"A
 =  nfw(A)dMA

and  p--ti7  f(p2+g) ::7,A). (Ai4)

le:.Of,.a.,gi5&,gh:7
'%e.,(,'.),

£yy2Lh,,4z:;;(2)SAtl.zg,').w,e.£?r,o,se.a=co.m,p,.ie,ts,o;`Po,:o,':si.s,si,og
canonically  conjugate  variables.  If we  take  ipe =

                                          Jh] , g  
which

 
depends

 
only

 
on

 a.I wM
be independent of  Z, and  we  find

   -

    P  =  PovXEU 
,
 P' =  rpw

    Pnt=2io(P:'.Z.l,p:'fgLf.ca7AA))

      -  ,;+ (?2+w( 
.z.,p:'f{

 kf:}3 1)
This relation  is of  the eorrect  relativistic form,
           --- -

    2p+p--p2  ( =  po'-pz2-p2)  =  m2  with

    m2  =  zv I .
£
,,pk+fg-f.{:?lfAl)

 ] !  Htnternat
depending only  on  the delrees of  freedom l. 

,
 i. , n  >  O･

    Of  the 6 homogenous  Lorentz transformations, 4 have remained  explicit. Hl., is
ciearly  invariant under  rotations  about  the z.axis,  x+iy  .  e`a (x+iy). Boosts along  the x-

axis are  generated by simply  changing  n to epe", so that P' -  P ±

e'U9).  jl,+KY and  JITKle
correspond  to the transformations  IP -  IP+ep' , p' .  p' , p- .  pr+S,i+-lli-p'.

    remaining  two,  Jl.-K,  and  .Jb+Kle  must  involve the internal degrees of  freedom  X.  
,

ThePn･.

    In order  to quantize this theory, we  use  the Hamiltonian
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    H  =  -f  iEl;.; d"A
with iE(A) , 7;(iL) , g(A) , ll(A) as  canonical  variable,s,  obeying  e.g.

  [x,(A) 
,
 pj(X)] =  in  aij6"(A- Af) with the constraints  on  the eigenstates  of  H  corresponding

to (AIO)
    (a.z･p+a.gll)l¢ >-o  . (Als)
These  constraints  are  consistent  with  each  other  and  with  Hip =  Edi since  they  are  the

generators of  the group of  reparametrizations.  Since H  is independent of  g we  can  find
eigenstates  which  are  also  eigenstates  of  U(A),
    ll(ablip>=-rpzv(A)lip> 

'
 (A16)

These will not  satisfy (A15). However, (A15) is equivalent  to the condition  that the wave-

functions gb[Ii}(A) 
,
 II(A)] are  invariant when  Il ,

 ll are  transformed by reparametrization  (ll
transforms  as  a  density.). We  can  always  construct  such  a  wave-fu'nction  from a  di satis-

fying (A16) and  invariant under  those reparametrizatioris  which  leave tv(A)' invariant.

Furthermore we  need  only  consider  a  single  specified  form pf xv(A)  since  all others  may  be

reached.by  reparametrization  and  rescaling  of  n. This invariance condition  is exactly  (A13)
interpreted as a constraint  on  ip. The classical discussion is now  exactly  paralleled by the

quantum  theory. We  must  find the eigenstates  of  H}., subject  to (A13). These  will  also

be eigenstates  of  J}. Clearly a  necessary  condition  for Lorentz invariance -is that for a

given eigenvalue  of  Hlq, the states.can  be arranged  into SO(3) multiplets  (i.e., that the num-
ber of  states  increases as  1J],1 decreases). It is possible to see  that in a  certain  sense  this is

also  a  sufficient  condition,  i.e., if it is satisfied  unitary  operators  realizing  Lorentz in-

variance  can  be constructed  level by Ievel of  Hl.,. However,  they  would  not  necessarily  be

related  in any  simple  way  to the canonical  variables.

    The  further discussion will  be restricted  to the case  M  =  2, D  =  4, xv(A)d"A  =='sin

t7cielalep. It is convenient  to define P =  p/sine so  that {with pt ±･ -cose)

[x(e, ep), P(e, q)] =  i/sine o(e'-e)ti(g'-ep) =  i6(#'-rds(ip'-ep)

Then {l1t=ifsin eded¢ (p2+g/sin2e] (A17)

and  g/sin2e  =  ( ,i:e  ( glt 
-giql--git;

 
aaXep

 ) )2 E  {x, y}2
where  we  define the Lie bracket of  two  functions A, B  by

    (A･ Bl =  
,iie

 
aa`(",;

 g)l (= ao`(A.t 
B.l)

 (Ais)

Area preserving trans'formations ate  of  the form

    6t, =  gxe fe+ 
aoxep

 fpa =  g'zfu+ gegfg
where  e,ifL"+a,JC9 =  O so  that

  f" =  aof,fp  =  
-oif

 =:  
-,ikeoof

 and  6h: =  {x, f}.
The  constraints  (A13) take the form ix, P.l+ly, P.l ==  O on  the st'ates. It is seen  that the

whole  theory now  depends on  the single  algebraic  stru6ture  IA, Bl. Part B  will depend
essestially  on  this fact.
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III. Another  example  and  a  compartson

    The  Ansatzzi(X)  ==  R(T, pt)(CPSq)  iR･a  (Alg)
                  XYI  Xsmep1
leads, in orthonormal  gaugeiO) to P =  nRiii,

    gg 
's

 =  ( Ro
2

 
RO,,
 ) ( R' !i kR constant  b R =' 

aaRr
 censtant  u, )

and  the equation  of  motion  readsiO)

    o2R  ==  R(RR')' (A20)

The  constraint  {i, Jl i  
aEip

-X

 grg-g2 g
-

S
'

 =o  is satisfied,

 as  fila.th ==  O (so both terms  =  O). Equivalently one  can  see  directly that the equations

for g are  integrable, for Z  of  the form (A19):

  e=es2I, =SR2+21n,R2R'2

  g' -  tl z' ==:  RRt

  a.rp=tl･a.i  =O  (A21)
The  integrability conditions  involving derivatives of  g with  respect  to ep are  trivially satisfied

(as g is independent of  ep), the one  involving e' gives exactly  (A20).
    One  particular solution  of  (A20) with  "tcos  e, is R(T, pt) ii R(T)  sin e, leading toii)
  " - ,
  R  ==  

-R3/
 rp2(o  R`+2o2R2=  Drp2 ;D=  const)  (A22)

and  (A21) becomes

  e 2`) eRz si.z  e+i,R4  cos2  e

  a,eg l'!i' RR  sinecos  e=5Rk  sin  (2e) (A23)
                                                     '
This will now  be integrated explicitly  from the second  equation

g ==  -  
R4i

 cos  (2e)+f(e) .  e =  f-t cos  2e(R!-R`/n2)
(using (A22) which  has to equal  (A23 i)

  ;ik2 sinZ  e+1/2rp2R` cosZe  
.
 .

                                                 '

Thhaetrefore f has to equal  i}k2+41rp,R`, 
which

 using  again  (A22) is t dd.(R,k), so

    g=  
R2R

 sin2 e+h(T);h=  2irp,R`(T) (Ai9)

Both because (A22) is eXactly  the equation  found earlier  for S(t) (the radius  of  the  breathing
solution  in a regular  Lorentz frame) and  because both (A5) and  Il ='R(T)  sin Ont are,most
simple  and  symmetric  soiutions,  one  would  think that they are  in fact the same  solution,

just looked at in different frames and  with  different variables.  This appears  to be wrong,
i.e.: the above  solution  R  =  R(t) ･ sin  0 is not  the R(r, pt) in Ii} =  R(t, pt)ei9 that corres-

ponds  to  the solution  x(t,  v, ep) ==  (t, S(t) ･
 1) nor  a  sirpple  Lorentz  transform  of  it.
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         One  can,  in fact, calculate  the parameter pt as  a  function of  t and  the geometric angle

     with  the 2-axis  e. -

     So  far

      ; ==  g(., pt), R  ==  R(., It) ; dR  =  RdT+R'du, dg  =  edT+g'du
     so  that du =  dg-e/g'dT.  On  the other  hand  one  could  extract  pt =  st(T, g) from  g(r, cb,
      R(T, Lt) and  think of  R  as  R(T, g), so  that dR  =  R.dT+Redg,  du ==  pt.dT+kdg  where

             ax  ax
        

tTr=
 aT 

constant
 
g,
 
Xg=

 ogr constantT

     By  comparing  the two  expressions  for du one  finds

         It. ==  
-e/g',

 pt,=  1/g'

     Noting that

       R =' 
OaRr

 
.
 =  RT+  Rg  

ai.
 

.
 =  R.+  Rge  and  R' ==  ZRpt 

.=
 R,g'

     and  putting this into (A21) one  gets

       8 
=

 S(Rr+Rge)2+21rp,R2R2,g'2
       e' =  (R.+R,e>R,g'
     from which  one  deduces

           1mRTRg
       e-
             R2g

       g'= RopR, 28r(RT+Rge)2  
=

 RijR2, 
1-2RTRg

     Therefore

            R(RtRg-1)  RR2g

       #'=op  1"2RTRg'""=rp  1-2R.R,  (A25)

     This expression  is true whenever  X =  R(T, y)( :lnSepep ). Now  one  specifies : the solution  (to

     A20) R(r, #) that corresponds  to the solution  (A5) (x" =  (t, S(t)n)) obeys  R2+x2  =  s2,

      R2+(T-g/2)2  =  S2(T+g/2). From  this it follows (e.g. R  1-2R.R,  =  S3) that

       ptg 
=

 4nls3 
(SOtS+z)2 , str 

=

 2nls, 
(S2(etS)i+x2-2S2) (2 !  r-g/2)

     and  therefore

             S+2S  1

       ltZ=-  27pas2 
,Xtt=2vs,l-S6+z2+zssl  .

     from which  one  can  determine "  as a function ef  t and  z,  or  t and  e;one  finds

                       vi=gT .2
         2,zLi =  

-
 cos  e ±                                 e+const                              sm

                          2

     (± for collapsing  sphere).

           growmg

     Summaily offormutae in Orthonorvnal gauge
                                                                   '

         For convenience,  the important equations  (in particular (All') are  written  out  explicitly

     for orthonormal  gauge :
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   ll ==  
"nxv(A)

 
,
 u.  =O

constraint  : ia.1:; ==  rpzv(A)O.g , IP/zu(A) , li}l =  O ;

  e 
==  Eenl: Xy2+,.(A) ･ 7; =  rpzva)t

 l ==  tar stt) a.i

 =>  i5I' ==  
-l/n

 =  +-;T, ,.k)  or 
-:ii(li;AS)

 asi}

For M  ==  2 a convenient  choice  is (used in AM):

   X  ii  p  i!  
'-

 cos  eE[-1,  +1]  (ee[O, ll])

   A2 =  ep, w(A)  =  1

(if pt ==  +1  (or -1),  all points with  different q-values have to be identified);
if Ai =  e, then  choqse  w(A)  = sin e･

B. The surface  problem  as  the limit of  a large IV matrix  problem

I. 71he group ofarea preserving reparametrizations  of S2 and  the structure  oj'its Lie aLgebra

   in connection  with  the sur:fbce  Hamiltonian

   The  Hamiltonian found in Section A  may  be writen  as :

   H  [x, y, p., pdi =  5J[]ctg2 (pk+pg+tx, g}2)
where  d9  i  drdep =-  sin  adedep

and  lx, ylE  
Oa',,

 
-:liep--gZ

 gXq=,i: e(aoXe 
-giepl--g4t

 
aaXrp)

 <Bi)

H  is invariant under  the group G  of  area  preserving diffeomorphisms of  S2 (that are  con-

nected  to the identity) meaning  that the functional dependence  of  H  (on i  and  P) will
not  change  under  a  smooth  reparametrization  of the parameter space  (a 2-sphere): (", ep) -

(g', q'), with  unit  Jacobian. This can  be seen  by looking at  infinitesimal transformations  pt'
=  pt+6)tt, of =  ep+aep, for which  the condition

J i.QLt'

 Eip'
aa o¢

aep' aept

Qu aq

==  1

is satisfied  (to first order)  if 6)ct =  +aof,  dn =  
-

 aif with  f being any  smooth  infinitesimal
function (defined by these equations  up  to a constant);  it fllows that for any  function z(pt, op)
one  has

  6zi =-  z("',  of)-z(pt, ep) =  a.xa,,f-  O.,IC}).x+o(]C2)

                   =  lz, f}+oif2)
and  (to first order  in f):

  oH  -  5fds2 (lpk+p}, fl+21x, ylolx, yl) =  o,

as fdS21g, fl =  O for any  g(pt, ep) (integrate by parts !).

Using the the Jacobi identity fori,lone has
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  01x, yl =  l6Zt, yl+Ix, 6yl ==  llx, fi, yl+lx, ly, fll
       =  llx, yl, fl
so  that

  aV  =  tfd91x, ylOlx, yi =  tfd9ilx, yl2, fl =  O

The  equations  of  motion  derived from  H  area*

  th =  IIx, yL yl
  g=-llx, yL xl  (B2)i2)
  The  Lie algebra  G  of  G  is the space  of  all smooth  functions f(e, q) with  f and  g  identi-

fied if they  differ only  by a  constant.  The  Lie bracket on  G  is

  if, g} i  
,i:e

 ('214t 
'gZopl

 
"'gitl

 
'214q

 )
      -  st 2g,-gz 

-24,
 (B3)

(Note that for more  than 2 parameters Ai, ･･････, Ar, ･･････, A", Jacobiafi !! 1 would  have still
                                         A A

given a.6;)L' 
--

 O, which  is solved  by f' E  6;X' =-=

 a.F'S provided F'S is an.  anti-symmetric
                                                       --

tensor  ; the  lie bracket on  the space  of  all divergence-free vector  fields f(A) is

  V, g}r =fs  
-Itl:gA.

 
-gs

 grt. = a.ifSgr-g9fr) (B4)

For  M  =  2 there is only  one  independent antisymmetric  tensor (E'S) so  that f' =  a.E'V,
so  that (B4) translates to the Lie bracket (B3) for functions f E  G.

   As  an  orthonormal  basis of  G  one  can  take the usual  spherical  harmonics Yi.(e, of.),},
and  define structure  constants  gr,m,i,.,i,m, by the equation  :

  lYi,mp Yi2m,Ii-igr,m,ltm21smsY*'l3ms (B5)
(Summation over  repeated  indices is understood,  unless  stated  otherwise;  (lm) will often  be

abbreviated  by a  or cr or  just by ( ).). Fer definiteness, the definitioni3) of  spherical  har-
momcs  ls glven :

  Y}.(e, ep) !i  (-)"nlVi.R.(cos e)e`Mep 

'
 

'
 (B6)

where

      tMifm2O
  7in!!ioif.go  !Vlmiim e
  R.(mst) .  (-)i+dm[ 

(1-2X,t2iMii2
 £;l:, (st2-1)i ii (1-st2)'Mii2 pi-,.,(-st)

is an  associated  Legefldre function of  
-ge

 i  cos  e).
   Upon  first inspection of  (B5),.one sees  that

parts!)g

 =  +ifdS2YlY,  YI is real (O. gives im) and  totally antisymmetric  (integration by

Yfm ==  (-)m Y}-nt (and g  real) =>  gho,o3 =  
-gti-mi

 l2-m2  ls-m3

                                      2

Y}m(rr-e, ep+n) =  (-)i Yim(0, ep) =>  g),o,o, ==  O if Zli even
                                      i=1

g oc  fe'ZMJ, ･･-･･･ ;g  =  O unlesS  Zmj' =  O

'

For  later comparison  it is useful  to evaluate  g  for two  simple  cases  ;

with  y;o =  V[lil;
'

 cos  e, y>o =  V[iiil;
'

 (3cos2 o-i)  and  y*t.=  (-)m y}-. one  finds :

NII-Electronic  



Soryushiron Kenkyu

NII-Electronic Library Service

SoryushironKenkyu

-158- Jens Hoppe ･*tt}f80-3
 (1989-1.2)

     gtmirm,io= +m(m)mV{  l;
'aiv6in-m,

     grmrm･io =  +m(-)MV[ii;;
'6in,J

 J.6fnecos  eYi.Y:L.

           =  3v[Iil
-m(-)mo.,..

 ( fit,,l., V<ZIilE:71Bi +o.-,  V[Slll3
                                                                  <B8)

where  in the  last step  the  decomposition of  coseKh  into the  linear combination  vf:'::-:17･
Yi+i,m+ ""'.

 YL-i,. has been used.

   The  group G  itself has been studied  in the mathematical  literature, and  although  not

relevant  for the further discussion of  the surface  problem  contained  in this thesis, some

properties will be listed.

    -G  is simplei4),  i.e., has no  nontrivial  invariant subgroup  H  (gHg-i =  HVgEG)

   -The  Homotopy classes  of  G  are  those of  SO(3) Stephen Smale'S) proved this for the

group of  all diffeomorphisms ; it then follows from a  theorem by Moseri6) that the same
thing is true for G

   -any  g E  G  has at  least two  fixed points (N. A. Nikishini7) and  C. P. Simoni8))

   
-given

 Pl, -･････ IlreSZ, Qi, -･････, QReS2- ]gEG  with  Q, ==  g(,PL) and  furthermore let

Ci, CR be an  arbitrary  collection  of  disjoint closed  curves  on  S2, then  there is a  1-parameter

group of  area  preserving transfOrmations  with  these  curves  as  orbits.

   Expanding  x,  y, p. and  p. (e, q) in spherical harmonics

   ar =  £ :im  Ylm(e, ep), trm  =  (-)Mxi-m (y,jb., p, analogously)
one  gets

    T  =  ili£ 1p7ml2+ 1prm12) E  ;'il,il.IPi,m12
and,  writing1v,  yl once  as  

-igt.tt.,,"."xi.yv.,
 Yr.."(e, g)) the other  time as  ==  1c, yl* ==

+  igMycr,x*oy*o･ Yl"m･t, ig]o･ot･ vS):yc*r X"m,･
          1
     V  

=
 2gtmolo,grmo3o4 ColYo, C:/3Yc*/,･

One  can  think of  H  ==  T+  V  as  describing infinitely many  particles (labelled by t and  m)

moving  in two  dimensions (xi. and  g,.) and  interacting through  the, not  very  symmetric,

quartic potential V. The  unitary  trapsformation

  ( :,`-i:, ) !E Ih ( +(-,(!M )
i,.,

 -1,)(.`i,

]`-iTth,)

 (the same  for y, p., p.)

corresponding  to a real  basis

  ]P',,., ==  g  cos  ] mI  epM.p}.  
,
 V,-,., =  a  sin  l ml  qlv}.R.

will make  xi ± ,., real. The  structure  constants

     gapTifdS2 9a1 9n, V71 .

are  still totally antisymmetric  (as the V,. are  orthonormal),  but obey  fewer selection  rules

than  the gkts

   Some  properties of  the real  
-Y-basis:
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     from Yl.'=(L)"nlV}.,e.e`M9 
'
 (see (B6)

                                                            '

          V,i.i ii  "f (-)iMiYL.i+ YL-i.i) 
=

 IVI.R.V2  cos  l.I ep .

          IPri-dmi i  Jfl711=I{t (-)'iMiYlimi- Yl-im,) =:  MmRmR  sin 1 m1  ep

       = > f Vim ]P'vmi =  6lrv61nm'

     so  thatg-fV{Y,  Vl

     is still totally antisymmetric.

        (/r,1i7Ai)-u( .X-i:i),u- th C
-

,,IiZ
ii.i

 e,) (Bg)

     ls umtary:

. 
u'u-5((-

1)i"i 
+i(I-

I.)uni)(nt(-,(1iM)

i,.,

 +li)=1
                      T ..

     for t(e,  ep) =  Zx,. YL. =!=  Z:fi.Yi.･

          ( ,Li:i)

     has to transforrn with  the complex  conjugate  of  U:

          (ii:i)=::U*(:;i:i);
     in shorthand  notation:

                - -

        Z=  U*!B, Y=  UY,

     so that e

         iim Y'i.+ E,-.]P',r. -  li;`'Ti' -l  G;tru+ uY  =  ztrTi; ;

     wrltten  out:

        thllmp ==  
!(:i}IIiliZil

 ( clsml+jtrlmF)  : kJ (-)lml ttlml+  cl-lmd)

        i}l-iml=-e) :"ml-[Z*l+lml)=  71ti(z 
L(-)IM[ttl.i+tt-i.1)･

        One  has

        l T{m, j5I'm'lpoisson =  6`tv6inmr6`w

     where  -

        (thlm, ilm) Ei  (fim, gim) fi  i' im,
     and-1  i. is now  the poisson bracket for functions of  the canonical  variables  xi.  and  pl..
     The  invariance of  H  under  G  is now  expressed  as

        IH, ganrtp '  ITIp i  IH, KLrlp =  O

     (which one  can  verify  explicitly)  The  constants  of  the motion

          KbEfd9Y.ll,JI  . . (Ble)

     are  the generators of  area  preserving transformations, and,  for the  light cone  coordinate  de-

     scriPtion  to be consistent,  one  has to have K}. ==  O  Vi.. Note  that, of  course,

          IKh, Khl ==  gaBTKr
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(see also  below). As  mentioned  in part A,  one  can  proceed to the quantum theory  via  the

correspondence  1,l.(-)- i[ , ), i.e.,
     [thk, PG] -  ia.6h, (R =  1)

for the hermitian operators  th3 and  PS. (From now  on  drop for the quantum mechanicai
operators.)

One  finds that

     [Kd, Kb] =  ig'abcKc

as  it must  (they are  a  basis of  the representation  of  G  as  operators  on  Hilbert space),  since

   [K}b Kti] =  [gaanZaJB, gboroZ7ial
           =::  gaafigb7elllFa[Pp, Ii}7 '

 Pal+[Ii}a, li}7 ' JalJp]
           =  gaapgbp rl 

rm
 i-a:a '  ]d6la or +  i-vT ' 7Sp aa dl

           ==  
-

 ig'basgbfi aZa  
'
 Ja+ ig- bafigb7aZ7  

'
 ifi

           
=::

 +i(.-gaaT l}bva+ga7o l?baor>Ii}a 
'
 7;6

           =-  
-i(gllzgZa)Za

 
'
 id (Jacobi identity!)

           =  +ighbcgbaaXa'l･o

           
:=::

 +ighbcK}

   Also one  can  check  that [K,, H] =  O. The  consistency  condition  (A13) requires

physical states 1 di >  to be singlets under  the symmetry  group, i.e., K. ip> =  O.=fzm]. The
change  of  a wave-functional  di[x] under  an  infinitesimal are  preserving reparametrization

characterized  by a function f(pt, ¢ ) is :

    6:,ip -  fds2ax, ,a.
¢

,

       i  fds?{xi, fFi9 l;ip,
       -  +  ifdS21x,, flpi¢

       -  -  ifdS2f(u, q)lx. p,lip

       ==  
-ifd9ca

 Va)(Kh Vp)ip

       =:  
-

 ij}t Ka  ip

II. jEncplicit  construction  and  proof  that a  basis of the fitndamentat representation  of SU(N)
    can  be chosen  such  that  for the structure  constants:

     lim AM67 =  glrnor･
     N-co

  The  aim  of  this section  is to establish  a correspondence  between the Lie algebra  G20) of

area  presrving transforrnations and  the  Lie algebra  SU(N)  for N  .  oo.  This correspondence

allows  one  to transform  the problem  of  finding the spectrum  of  the surface  Hamiltonian H

to that of  finding the spectrum  of  a large N-matrix Hamiltonian

     HNiSTrlpk+pk-k[x,  y]2l 
.

  (x, y, p. and  p, traceless hermitian NxN  =  matrices).  Going from H  to H. is a sort of

renormalization  as  one  is cutting  off  the degrees of  freedom corresponding  to Yi. with  l g
N  ("High frequencies") while  representing  the low frequencies (g s  N-1)  correctly  up  to

O(1/N>.
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  (BII) is subdivided  into 5 sections  as  follows.

  1. By  a  correspondence  to the solid  spherical  harmonics r`Y,.  (written as  harmonic
                                                                 e

polynomials) one  defines N2-1  linearly independent real, traceless N × N  matrices  T,. (l =

1,-ny･, N-1,  1 m[  <  l). 
rl[hey

 are  a  basis of  the  N-dime'nsional representation  of  SU(IV). Also
they are,  for given l, tensor  operators  of  degree l; so  is any  T,. differing from 

'i",.

 by N
and  l dependent (but m-independent!)  factor.

  2. Using the Wigner  Eckart theorem,  the structure  constants  of  SU(N), defined by the

relation  [Tt., Tv.,] ==  f(Mti,v,..r.,,Tt".", can  be calculated  in terms  of  the reduced  matrix  ele-

ments  RKI). The  answer  also  involves Wigner  3j- and  6j-symbOls.

  3. Intsead of  actually  calculating  the structure  constants  gl,ev of  G  (a is a 
･short-hand

notation  for (lin), a  proof is given that
              e ,,
      o  Ttm
     Tlm Ii

           ( N24- 1 )l-1
must  lead to structure  constants  f.ew that in the N-limit  are  equal  to the gz,n7 V.nr.  T7iis

proof  is the central  part of (BID. -

  4. Knowing  this one  can  deduce the  corresponding  choice  RMI), when  calculating  the N
-oo  limit of  the structure  constants  derived in (2). This limit then  is the formula for gz,p7･
In (5) the correct  choice  RMt) is derived without  using  3,

1. Definitionqfr't',.:

  Let S, be an  N-dimensional representation  of  the Lie algebra  SO(3), the spin  S=
(N-1)/2 representation.  Conventionally one  chooses  a  basis S,, S,, S, with

     <SmiIS31Sm> =  m6intm

     <m'iS,± iS.I>=  S(S+1)-m(m ± 1)･6in,.., (Bll)
  S3 and  S

±
 iii Si± iS2 are  real. One then  defines NxN  matrices  T,. as polynomials of  de-

gree l in the  S, which  correspond  in some  sense  to  the Y,.{e, ep). One  does this by re-

membering  that riY,.  are  homogeneous,  in fact harmonic, polynomials of  degree l in the
variables  x,  (rcose sine), x,  (! rsinO  sinep) and  x3  (=- rcose)

     gt. Ei  r`Yi.(e,  q) (B12)
        !!  Zl aSel,･,,j,x,jix,j!x3js= Z  aLM,,l'.,,, c,,.,.t,,

          
X=liffP=.1,2,3.)

 
ia=:Ua=:1,2,--l]

The  at･?1.,, defined this way  are  traceless between any  two  indices (e V2 g,. =  O) and  totally

symmetric.  For given l there are  21+1  independent ones.  Then define:
     o 3

     T,.iZaeM-,]",,Sh･･･S,, (B13)
          Sa=1

 The  first few ones  are:

     T,, ==  vCIillJs., t,, =  -V[gl;
-(s.+ts.),

 t,-, =  ue(s.-ts,)
     T!± i =  TV[gllli;

'(sxsz+s.s.

± i(s.s.+s.s,))

     T2± 2 ==  as(S2x-S2y± t(S.S.+S.S.))

     T2o -  VIil;(2si-s;-sz)
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   eAll

 T,. are  by definition real  ancl  traceless, but not  hermitian:
      a c e

     (Tim)' =  (Ttm)" =  (-)MTt-.
     (av･?1,,,)* ==  (-)ma/t,.el･,               o

  For  fixed l, the T,. form  a set of  tensor operators  of  rank  l, i. e., for a rotation  R:

     u(R)'i',.u(R)-i= SE 'i",.,Rin.,(R)

 (Bi4)
                    mt=-l

where  R'.., are  the rotation  matrices  for angular  momentum  l(see for instance Messiah II,

p. 1070) and  U(R) is a N-dimensional representation  of  the rotation  R). [If R  c  SO(3), N
would  have to be odd,  and  later one  would  take lim f`M; (N odd)but  are  might  as well  take

R E  SU(2) which  does not  alter anything  as the l"J'eo Lie algebras  SU(2) and  SO(3) are  the
                                   o

same.]  Changing the normalization  of  the T,.,s in an  m-independent  way  will  not  alter  the

transformation  properties. Therefore any  T,. =  U(l, N) 
'i',.

 will  obey  the Wigner  Eckart

theorem2i):

      <Sm,ITfM,.ISim,>=(-)S-Mi(-S.,  
,,;,)RMI>

 (B15)
where  ( ) denotes the 3j-symbol" and  R.{`' the reduced  matrix  element  (real for real U(l,
N)). RKI) -  Rexl)･U(N', l) has been left general, as  different normalizatiens  will  be useful
in different situations.

  One  may  now  define structure  constants  flMvv,mm,m" by:

     [Tim, Tvm'] ==  flMvt"mm'm"Tr'mh (B16)
  By  using  (B15) and  standard  formulag concerning  coupling  of  angular  momenta  one  can

proceed to calculate  Tr(T.Tpt) and  f`M. This is done in the next  section.

2. Calculation ofTr(TT'), Tr(TT'), Tr(TTT),  and  choice  ojCRKI)

  From  (B15) one  has

     TrTimT:･m･ =  Z  <  mi1Tim1m2>Im21T"m･Imi>

                 MIM2

              =R.(l)R.(lt)z(-)2s-mi-m!+m'(-S.,  1 ,jl,)(-S.,
 -IL,, ,;,)

  As  the second  3j-symbol is 0 unless  m,  =  m2+m',  2S-m,-m,+m'  has to be even  and

(-)2s-m,-m2+M' therefore =  +1.  Further

     £ ( '( ]=m;mi(-S-,
'

h A,)(-S., -`h･  -S.,)

             -Z(,jl,  
,;,
 h)(,)l, h

',

 ;l,),-,t+v
             -(-)i+vz(A,  

,jl,
 k)(,;, 

,ji,
 h

't)

                            1
             ..  (-)t+l'OlvSinm･
                          21+1,

where  in the first step  m,  was  changed  to 
-m,;

 in the second  step  2nd and  3rd column  of

the first 3j-symbol were  interchanged (giving factor (-)2S'i) and  in the second  3j-symbol the
sign  of  the lower row  was  changed  (i, e., 

-m.-+m.,
 giving a  factor (-)2S'i); in the  third
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step  invariance of(  )under cyclic  permutations of  the 3 columns  was  used;  the last step  is

true because of  Eq. (C15a), p. 1057, MII. Therefore

                        R2Kl)
     Tr(TimT'i'm') ==  6i't6ntFm                                                                    (B17)
                        (21+1)
  i. e.,  the Ti.,s are  orthogonal  (with the choice  R{.') iii V27 FI' they  would  be orthonor-

mal.)  Note that T,.>Oforl}rN=2S+1,  as(S  .f. 
S)

 =othen.  .

  But this means  that one  has constructed  this way  exactly  N2-1  (3+5+-･･+N-1) inde-
pendent traceless real  NxN  matrices.  They, therefore, furnish a basis of  the fundamental

(i. e., N-dimensional) representation  of  the Lie algebra  SU(N),  and  the f`.Mew defined via

(B16) are  the structure  constants  of  SU(N)  in this basis. They  will  now  be calgulated:

     Tr(Tt,m,Tt!nt!Ti!ms)

      -.i;,l..(-)3N-m-m･-m-t,ij.,RKi,)(-S.  
,;i,
 

,jl.)(-S.,
 

,Sli,
 

,jl,)(-S..
 

,#3,
 Sl)

  Now  change  summation  variables  to M,  E  
-m,

 M,  E  
-m',

 Mi  
-m",

 in all three 3j-

symbols  interchange 2nd and  3rd row,  picking up  a  factor of  (-)eS'Xii =  (-)2"'X`t altogether;

use  formula (C33), p. 1064 in MII, with  the identification (li, mt)  e  ijt, mt)  and  Ji =  J2 =  Js.
E  S, M,  e  M,  to get:
     Tr(TtimiTi2m2Ti3m3)

     -  iiR,,(i,)(-)2s+"-(,li, 
,i2,
 a3,)Ci 1i 13]

  where  l l denbtes the Wigner  6j-symbol.

     Tr(Ti,m!TtrmiTi3m3)

     =(fiR"(IL))(-)2S(,li,  )i2, 
,#3,)(l,i

 
l,2
 
l,31

  as l l.is invariant under  interchange of  two  columns,  while  ( ) has to be multiplied  by
(-)ti+t2+is. Therefore,

                   
RMI,)RMI,)

 
l,
 

l,
 

l,
 

l,
 
l,
 
l,)

 (M -f  lllzl3MIM2M3  

-

                                                                    (B18)
  Note thatf-Oif  one  l, satisfy  the triangle

inequalities. (B18) was  obtained  from (B16)
     [Ta" Ta2] ==  .t2ria2a3T

     =>  TrTa,[Tai, Ta2]

  (B18) is a formula for the structure  constants  of  SU(N)  in the basis Ti. ==  im･U(N, l).

  Particular choices  for RKI) =  Rexl)･U<N, l) are:

   i) R=Ro

  ii) R=  RKI) t  mi

  This choice  will  mal!Ee  f`M totally antisymmetric  for all N. (= 'f,.-basis  orthonormal)

(any R  differing from R  by an  l-dependent factor will  not  have this property).

  iii) R  =  
(-)NiflilZiEIII

 leads to

  RMI,) (213+1)2(-)"(m, 
m,
 

m3)Is
 

s
 

s

   (if Z]li odd)
O (if Zll, even)

                :

   A,

  =  Lflria2a3Rkl3)(2 1, +  1)-')
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     flMit2t3mm2ms=(,ili, 
,ll2,
 S3,)Il,' i2 i,Sl

  iv) R=rm･N3/2=:R,(l)･N3i2is  (B19)
totally antisymmetric  (V.), but in addition,  the corresponding  fCM will have a finite, non-

zerO  limit as  N  .oo,  as

      I1i 12 .i3].N-3i2

for S -  oo  (see below). Therefore, if there is any  choice  of  RMat  all) for which

      limN. .,f'  UMB 7  =  glt fi v

one  can  use  the above  choice  R  =  N31iV21 Fi' to calculate  glrp7 (up to a constant  indepen-
dent of  c49 and  7--which turns out  to be (16n)-i!2). The  

"correct"
 choice  is

     RMi) (NN-+iEb, 
!(II:l;!7"is/2z Fi' (B2o)

and  is based on  the proof given in the next  section.  (As N  -  oo,  R. differs frorn (B19) only
by  i/Vi6}F.

3. There  is a basis 
't
 W. of  SU(N)  with  lim rwsT =  glrew (constructiveproqf)

                                 N-,eo

  First loek at  the process that determines glrp7:

     yl. i  rtyl.  :-=  zayge.i, vi,-t･ vi,

are  harmonic polynomials, a traceless  (and symmetric  of  course).

     if(o, ep), g(e, ep>} =- 
,i:e(uZit;

 
rlllopll

 
-
 
'gltii

 
"211ep;)

is in fact what  one  gets when  one  restricts the space  of  all polynomial functions f(xix2x3)
with  the Lie bracket defined as

     lf, gl iii eijicxtajg'altg  
･
 (B21)

to functions on  the until  sphere  (xi+x:+x:=: S2 =  1). That (B21) really  defines a  Lie

bracket (i. e.,l  isatisfies the Jacobi identify; lf, fl =  O is trivial) is shown  in III; there in

fact for Eijic being replaced  by any  Ci,. antisymmetric  in j' and  k and  satisfying  the Jaeobi

identify. Therefore:

     lgitn, yvm･l ==  Zil}",il.isaLM･,1.'.wlxi,･･･ ct,, cj,･･･xh･I  (B22)
                           IV

             =  Za(M)i,",ti21Sl?ll.jt,X Z  ti,ny'`xia-i  cj,'"  vjp-i  (cta, :jpl JvjB+i'"  vjv via-i"'  rit
                           a=IB=1

using  be, bl =flg,  bl+{f, bl g. The  order  is, of  course,  completely  irrelevant, as  every-

thing commutes,  and  with  lx,., xjel  =  E,.j6lexh  one  gets (B21) as  one  must.  There  were/are

two  reasons  for haying written  down  (B22). The  first is that it makes  siightly  more  apparent

the following decomposition of  ly,., y,,.,l-which is a  hornogeneous but no  longer harmonic

polynomial Pi.tJ-, into a sum  of  harmonic polynomials of  degree l+  l'-1 and  lower:

     P,.i,-, ==: 
`t`'-i

 dwi...,.,,( c2)'L'Le l!=!Lt 
ii.y*i..,,

 (B23)
             m"tt"=:1(t+tLl-l"even}

(corresponding to making  aX･e?.,,,avei.),,,,E,.,,, traceless and  totally simmetric).  By  restriction  to

the  unit  sphere,  one  sees  that d,,,,. =  
-igt,,,,,

 (see B5). The  second  reason  is that (B22)
stresses  the connection  between Y,. and  

'i",.
 as the expression  for ['i',.,, 

'i',,.,]

 will be exactly
like (B22) just with

      ti 
--

 Si and  l tta vjnl -  [Si., Sjfi](= iEi.jp inSit)'
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 eo

[Tim, Tvm･] i  Qt+v-i is a  homogeneous  polynomial in the S, of  degree l+  l'-1. The decom-

position of  Q,.,-, into

     ,,..,,,i',tLiLMII....,felMi'v'mm'm''(zN)'i't'm･･(with
 xN !  s(s+1) =  (N2i1) (B23')

howqver is more  complicated,  as  the S, are  non  cornmuting  objects  so  that the process of

making  a(M)aC"')e,.jB, traceless and  symmetric,  which  involves moving the S, arbund,

     using  SiSj=SjSi+  IEij icS  it (B24)
will give lower order  polynomials. Therefore
      o  t+  l'-1- tF o

               =  Z] fEcai't"ntm'm"'XSf2 
'
 (B25)     flMifi"mm'm"(XN)

                 a=e{aeven)

with  highest order  term

     .1:t}iiif･'.-Si;ii`l;'VIAT/ k'i'-i-"' ii .fl,,,,..,..V;xrk'"-'-"'

will contain  lower powers of  ly. .x.･i 
=- s?-t-s;+sg =  

N2ii･i
 of  course  arises  from the

               . But  what  is important  is that all terms  in(B23()pf degree    contributions)                                                               l+l'-1(X.tracehas

 degree 2, T," degree i"), i. e., all terms

     JF}irt"mm,m"xNl
±'!t[1!Z!LTi

 t..,J(no summation)

arose  from  always  picking up  the first term  in (B24), i. e., treating the S, as  commuting  ob-

jects, in effect.  TherefOre: 
'

     fli't"mm'm''=idwi"ntm'm" (B26)
the l, as  [,] gives an  extra  l compared  with  i l). This means  that for 'f",.

 ii  
'ir,./xk'

 lead-

mg  to

     [rr,., T,,.･] ==:  Zpt･,･･..･.･･lfi･."
               t"m"

one  has
                i+l,-IJ,-1

     rwi"..,." 
=

 
XNit.t,:2fi

 
l.E'l""M'":"

 + O('llk ) =

 idivi"mm'm"+ O(tt)

     id ==
 i(-ig)=g  <t.-lzgrw･i･Fmm･m･･=gri･i･･..･.･･ (B28)

Thus  one  has the desired result.

4. CatculationofglrB,･ ,

  Because  of  (B28) 6ne can  now  use  (B18)(for proPerly chosen  RKI)) to calculate  glrA..

First one  has to find out  the  behayior of(ls'  
ls2
 
ls31
 as N  -- co.

  Racah's formula [see i. e.,  MII, p. 1065],

for 1g  l, S  l, g  l,, l,+l, g.2S  ==  N-1
is

     {1i l2 13}=l,ll,!l,!v[!ZIIIIEIII llil ll il?lgi!iEIZg .(-)i3-i  
-

                 
                  .(-)2S+1

                 

                ･i:zeit3i,2,S.'f3-'if-'ill!
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                X!(li+l2-l3-x)!(li-x()ffl\-x)!(l,+x-l,)!(l,+.)!
 (B29)

         i  J(l,)HR,)(-)rv`i'.£
t=ilt3G(x,

 li)'rtiiil:ZZJ[ 
,)l,)

 (B29')

[i.e., J includes all N  and  x-independent  factors; H. consists  of  the remaining  x-

independent factors (apart from (-)'D G, depends on  both x  and  N, F  is independent of
N] as  N.  oo:

     HN =  rrY..,m e  = IT?=,((N+l,)(N+l,-1)-･･(N-l,))-i12.N-3!2N-ii-i2-i!,

the leading term  in GN  is Nii'i2'i3'i. However,  any  independent term  in GN will give O, as
F(x; l,) is invariant under  x-  (l,+l,-l,)-x, the  # of  terms  in Zl is even  (as l,+l,-l, is

odd),  and  therefore.IIi V-(t: =  O. The The  leading contributing  term in

The leading term  inIls' 
ls2
 
ls3]
 as N-  oo,is  therefore:

     J'N-3!!(-)"( li+l2+ J3+1)ii'.Zil: 
t3

 
`Ci
 :i.F  IX (B29")

and
      [M
     f      tlt213MIM2M3

     .-  l}iK,5i,).R,M,l2))(2i,+i)･2･(zi,+i)･J･i'Lit3,X,gli\,,･(,i', 
,512,
 )#3,)(i+o(Si))

where

     J-  l,ll,Tl,!(-)i3-iV<ZiliEIZi (B3o)

and

     F(x) ii x!(l,+l,-l,-x)!(l,-x)!(i,-x)!(x+l,-l,)!(x+l,-l,)!,

     1S  l, -< l, S  l,, l,+l, SN-1

(these two  conditions  are  slightly  artificial  as  they  are  only  necessary  to write  down

(l,' 
l,2
 
l,31
 as explicitly as in(B2g))･

  Because of  (B18), and  because RN has to behave like N3f2mb  const.  for lafge N(so to

make(B30)finite  and  totally antisymmetric  as N  -  co),  glrB. can  be calculated  as:

     limf`aMp7[RMI) =  N312M ;const.]
     N-oo

where  the constant  can  be determined by comparing  g  and  limf`M (calculated via(30))  in
                                                N-"eo

just one  simple  case, e. g., [8 +11
 -11]. As  not  more  work  is involved one  calculates  fcM

for the case  [6 h -im]:with2m

     (6 ,L
 -l.)-(-)t-m(,,.,Y,(l+i)

(B30) gives, for R  =  N3f2mb･(const.):

     fltl =

      om-m
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　　　　　　　　＝ 2、／i．i「〃z（→ m ・const ．

which 　agrees 　with

　　　　・eill．m

− m （一）
m

〜屠 　 　 　 　 　 　 　 （fr・m ・・）

provided　const ＝ 1／V嘛 ，　and 　provides　already 　a　first　check ，　as　l　and 　m 　are 　general　in

［濫 ∴ユ・・

　　　　・R ）一 纛 N3 ／2
舸 　 　 　

．

　 　 　 　 （B31 ）

can 　be　used 　to　calculate 幽 βγ

　　　　翫 一 一
一

鮃 跳 一 ［R”1）一 　k ．
3／lpm ・ ん 一

　　　　「 か 11＋ 1・・ 1・＋ ・）・1，pm … （ム偏 γ罫 織 ） 　 （・・2）

（1 ≦ 1， ≦ 12≦ 1，， Σユ1‘ odd
， JandFasinB30 ）

Since　gごβ γ
is　totally　antisymmetric

，　it　can 　be　calculated 　via （B32 ）for　all （姻γ）．　We 　check

（B32）… ［1ん環］・U … g

　　　　（濫 蝪）≦（一）
・−M2

・

（、1＋、痒舞粥 拜嬲 ＋ 1）、l

one 　finds　that　f2u＋ 10m ＿
配

calculated 　via （B32），　agrees 　with

　　　　− 一・

一 ・蒔 嬲 （
一

）
・ （‘

キ昜辛Bil欝 ）
… m 　 　 圃

　Finally　it　is　useful 　to　calculate 　fN　for　l， ＝ 1，十 lz− 1： with 　the　notation 　as　in （B29
’

）one

has　for　this　case

　　　　
自

罫・編 輪 一 tlo、N ＋

（
祟懇 、浦  

　　　　　　　　　　　　　　　　　　一

。｝。）（
　 （N 十 13）！　　　　　 （N 十 13十 1）！

N −
（1，十 12十 1）！　 （N 十 1− （1，十 12十 1）），）

　　　　　　　　　　　　　　　　　　一 去（讚皇1，），（N ＋ 1，

− N − 1，− 1）

　　　　　　　　　　　　　　　　　　一 ≠竪 高｝
）！
（ 

Therefore，　using （B18）and （B29）：

　　　　儡 一
一

一1−
−

R 試

灘 1難 ll2
− 1）・2 ・（梯∴ 1

− 1

）

　　　　　　　　　　　　　　　　・（
− 2

鵲
‘2）・・（・・

− 1、＋ ’、

一
・）

　　　　　　　　　　　　　　　　　　 N − 1一 1！　 N − 12− 1 ！　 （N 十 1，十 lz− 1）！　　　　　　　　　　　　　　　　●
（N ＋ 1、）！ （N ＋ 1，）！ Nrli − 12

　　　　（B33 ）
The　proof　in（BII3）showed 　in　particular　tbat　R　corresponding 　to
　　　　　　　　　　 ゆ

↑

マ章
・

N 工工
一Eleotronio 　Library 　
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leads to TM that is independent of  N  for l3 ==  li+l2-1. A  factor

        N+l!
       (N-l-1)!
                        A A

must  therefore be  contained  in R.. This factor :  Nt'ii2 as  N  .  co.  To  have R. oc  N3i2 (as
N-  oo),  which  is needed  so  that .fECM has a finite non-zero  limit, one  must  include another
factor that is ;  Ni"i (as N  -  oo).  Because of

     T =  T/v![lil Iil-t-i

one  is led to choose  this factor to be Vi<ii-=i]'i-t. Putting all together

     RN-i[Iliilil! 
i-i
 

-
 (B2o)

5. Direct catcutation  ofRN

 Rather than by making  heavy use  of  the proof BII3 and  deducing R,  by the above  argu-

ments,  R.  can  be derived directly from the correspondence  to the Y,. and  the properties ef

that  R will  then  provide a  check  on  the  proof, rather  than  relying  on  it!

     tti :i!2)lge(Sr+tSy)'  =>  (frem (B12))
      e

     2Rlex+i)1 =  Tr(TiiTab  =  (4.xl!)222iTr(SfS!)
                       (21+1)!

     Tr(StSL)

      =Z]<mlS.lm-1><m'llS.imm2>-<m+lrllS.lm-l>

         m

        '<m'-ll  S-Im+1-l>-<m-ll  S- l m>
         +s  

'

      ==  Z  (S(S+1)-m(m+1))(･･･)･･･(S<S+1)-(.-l+1)(m-l))
        M=l-S

        N-t-1

      :=:  2] (S(S+1)-(l-S+a)(l-S+a-1))'(S(S+1)-(-S+a+1)(nyS+a))
         as=o

                 (=(S-(l+a))(S+lm(l+a))) (=(S-(a+1))(S+1'(a+1))
     m  =  l-s+a,N=2s+1
        N-l-1

      =  ]E] (N(l+a)'(l+a)!)''"'(N(a+l)-(a+1))
         a;=o

        N-l-1

      =  Z  (a+1)(a+2)"'(a+l)'(N"(a+1))'r'(Nm(a+l))
         a=o

        N-l-1  l

       =  2] II(a+B)(N-(a+fi))
         a=o  p=1

      =  (i!),N>:.;T,i (a-l
-

 
i)(Nm l

-a)

 =:  (i!)2(2Ni++ 
ii)

          (l!)2 (N+l)!
         (21+1)! (N-l-1)!
(B34) can  be Proved in the fbllowing way:  Since one  has

     (1-x)-n-i ..  4(n;r)xr

(B17)

(due to (Bll))

(B34)

NII-Electronic  
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one  has (1-x)fim-1(1-x)-n-1 =  ;.lls(M;' 
r)xr+s(n;S)

but also

       =  a-x)-m-n-2 =,  >p(M+nt+i+t)xt

     -..Z..l.,(M;r)(M,+  
S)

 =  (m+nt+ 
i+t)

so  that

       =(m.+.nX:t)  
,

Since

     (a;i)(N-l
-a)

 .  (a7i)(.N--,
 l7E 

.)

one  obtains  (B34) by identifying

     ae  r, le  m,  N-1-l-aes

     me  l, r+s=teN-n-l,  m+n+1e21+1

Using (B30) one  has

     RMi)== (Sll!',E)i)! lz}7op･
and
            e

      A R.
     R.=
          VIx l-1

          !(lili;I (rGl!',l'i,,viffi=i"-i
As  was  done  in the previous section,  one  can  explicitly

ture constants  of  the stretched  position (l3 =:=  li+ l2-1)
significance  appears  in the next  section.

-169-

        (which agree  with  B20)

see,  that for this choice,  the struc-

are  indgpendent of  N, a  fact whose

III. An  Uhderlying Mathematical Reason for the Above  Construction

  Having  found explicitly  the  correspondence  between the  Lie algebra  of  area  preserving
transfOrmations  and  an  N-dimensional representation  of  SU(N)  (N .  oo)  by constructing  a

basis (the 71.) as  polynomials in the S, (a basis of  the N-dimensional representation  of

SO(3)) one  might wonder  whether  there  is not  an  underlying  mathematical  reason  for this
construction  to work.  This would  provide some  additional  understanding  and  also  possibly
lead to generlizations. In particular, most  statements  would  be independent of  a  particular
representatlon.

  It turns out  that it is the space  of  the y}.'s withl,land  the role  of  the abstract  Lie algeb-
ra  SO(3) which  have a natural  generalization, while  SU(N)  arises  as  the space  in which  N-
dimensional unitary  representation  of  SO(3) lie. (In'this sense  SO(3) is special,  as  for a

general Lie algebra  there will not  be exactly  on  irreducible inequivalent representation  fbr
each  N. Also there  will  be in general more  than  one  Casimir operator  that when  going to
an  N-dimensional rgprsentation  will  carry  the  N-dependence.)

  Let G be a Lie algebra  over  the complex  numbers,  whose  adjoint  representation  is c6m-

pletely reducible,  and  G  be the adjoint  group23). Let x,  ･･･  x.  be a basis of  G. 77ie envelop-
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ing aigebra  U(G), which  is defined in rather  abstract  terms24), can  be taken25) to be the ten-

sor  algebra  r(G)  <i. e., the space  of  all polynomials a,, ･･･  ,.  x,, ･･･  x,.)  with  two  elementS

identified if they  are  equal  using  the commutation  relations  [x,, x,]  =  cl,x,;  the set of  all

      vti`t;l2 
･･･

 tAn (1'7 2  O, Z].iv >  O)

is therefore a  basis of  U(G), and  u  E  U  will  be written  as

     Xa(jU,)'j.xfi ''･  x'i"

Define Ui as  the space  of  all u  E  U  with  degree

     (! Zi.) S  l uiuit  g;l ui+ic

and  the Ui are  called  a  filtration of  U. There  is a  natural  Poisson bracket defined on  U: [U,
U'] =:  utt'-u'u;  then  [Uts Ui] g  Uit.i"i-

  7)Pie symmetric  aigebra  S(G) defined as  the  space  of  all polynomials in n  commuting  ob-

jects xi  
･･･

 x..  This space  also  has

     l c"  ･･･  cA"1jr  )  O, ZjT >  O}

as  a basis, but xx'-x'x  =  0 in S(G). S(G) can  (and will from now  on)  be regarded  as  the

space  of  poly nomial  functions f on  the dual space  G' =  R", (then s E  S is a polynomial in
n  real  variables,  with  complex  coefficients).  Let S,CS be the set of  all homogeneous

polynomials of  degree =  k. One can  define a Poisson bracket l I on  S, with  IS,, S,l E

S,.,-,, by defining the following surjective  homomorphism T,: u,-  S, (which has u,-,  as

kernel):

      uic =  Z] a,"-,".j.xfi "' xA"-  Z  a,"-,".j.xti "'  xAn  C  Sh
          £ tnSE  2ipt[ic

and  letting

     ISit,, Sdel Eli de"  Tic,+ic,-1([ult,, Ulp])

where  the ,uly are  some  elements  of  Uk, with  T,,(u,,)=  Sh. I I is well  defined, as u,,  is
ambiguous  only  in the terms of  degree fe,, so  that [uin, uic,]  is some  ute,+h,-i,  with  an  ambi-

guity only  in the  terms  of  degree ki+k2-1,  which  makes  rit,+it,-i(ute,+le2-i) E  Sit,+he-i Un-

ambiguous  (uniquely defined). The so  defined Poisson bracket 1]C, gl of  two polynomial func-
tions f, g  E  S(G) is in fact equal  to

     cSicxiOJLICE)-,g 
'
 (B35)

where  cj-ic are  the (not necessarily  totally antisymrnetric)  structure  constants26)  of  G. One
can  verify  explicitly  that (C9) defines a Poisson bracket, i. e.,

     lf,fl :=  cS･,x,a,:faif  =  o(as cS,  ==  
-ck)

and

     Zll tr;,,, f},,I, .fL,I(v Cyclic  permutation of  (1, 2, 3))
      v

         ==  cs,x,a,(cg,x.a.f],,otf;,,)a,fL,

         =  2] cS,c  .r,x,  (i.  a.fL, atfl,, eU), +  Z  cg ,c  .',x,x.(  a; .fL,)  OifLufkfL,
            v v

            +Z]cSiccgtxtx.aaf;,,(ag･if],,)Oalfl,,
              v

the fist term ==  xi(c'.tcSte+cJiscS-t+clitcSs)aofl,,Otfl,,aVl,i

          =O  (by Jacobi identity of  c,a.)

One then  sees  that,the second  and  third term  cancel,  using  only  cS,  ==  
-ck,.

  Following B. Kostant27), one  can  characterize  the structure  of  U  and  S and  the relation

between them  in the following way:

  1. S  =  JXH  (every element  of  S can  be written,as  Z]'.h. with  ]'. E  J, ha E  H)
where  J  is defined as the space  of  all polynomials invariant under  the group action  [which
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is induced by the adjoint  action  of  G  ,on G, for madicies:  x  e  G  -  g-ing  E  G]

and  H  EE  the set  of  aiI G-harmeRic  polynomials, i. e.', all f E  S such  that a  f 
=

 O for ev-

ery  homogeneotis differential operator  a with  constant  coefficients,  that commutes  with  the

group action.  In our  case:  the only  such  O is V2  (and funchais of  v2), H  i  space  of  har-

eonic polynomials in the usual  sense(72h  
=

 O), any  nonconstant  f(x,x,x3) can  be wilden  as

Zh(r)(Z]aimr` Ylrn(el ep)), which  is the usual  separation  of  variables.
I;1  m

  2. Let O. denote the G-orbit in G  of  x  E  G, and  let S(O.) be the ring of  all functions

on  O.  defined by restricting  S to O.; let r  be the rank  of  G;  then  dimO.  4  n-r  and  for

every  x  E  G  such  that dimO.  =  n-r,  H  and  S(O.) are  isomorphic as  G-modules  [a G-
module  is a vector  space  Y  together  with  a map  G.  GL(V),  g(gle V) ==  Cggle)V], For G  =

so(3>, dimO. ==  3-1  ==  2Vx.G･

  3. U  ==  Z  C2b E  where  Z  !!  Center of  U  (i. e., all Z  with  [Z, u]  =  OVu  E  U)  and  E!
space  spanned  by all powers  xit, for all nilpotent  elements  x  E  G  (x E  G  is galled nilpotent

if (atin;)" ==  O for some  M,  where  ade  is the adjoint  representation  of  x,  which  is a nXn

matrix)  [for G  =  SO(3):

     Z !  al1 poiynomials in X  E  xi+x;+x;

     ad  a;t ii  St all (Si)jic =  
-iEijic,

     A -a,s-,  -=  -t  (-,
O

?, -

ae,

 aa

,i)
satisfies

     A3+A(ai+a;+ag)==O  
,
 Z2=af+a;+aZ

as

     det(A-Al) =  -(A3+  Ail2)

has to vanish  for A==A.'Therefore A3  ==  O for a2 =  0 and  one  has:

     xic==  (Eaixi)it
       =  Z(aiiai2"'aiDxiixi2''`:tth

        -  Xat,-tit.-. iic l]ilXiic

x  nilpotent  o  52 ==  O o  a totally traceless. As  a  is by definition a  symmetric  tensor,  one

has: E(SO(3)) C  U(SO(3)) is the space  of  all u  with  a,,,.,,," traceless (and symmetric,)
     Eit ='  UhnE  is (2k+1) dimensional.]

 
'
 4. J X  H  and  Z  X  E  are  isomorphic as  G-modules.

  5. Now  look at the Poisson structures  of  S and  U;  uSing  and  3 one  finds

     [ehfnit, elml] =  uit+l-1

                ts+l-ldiMCEi)

              =  Zl ZdkMnuttm;(Xa)eimi
                 i!1  Mt=1

where  the

     ejm,(1S  mj  <m dim(E,)) .

denote a  basis of  Ej and  dha`] im,(xa)  E  Z
is a polynomial in the indendent Casimir operators  zlt 

'

                       it+l-1

     lhna,,h,.,I= S,.,-, =  IEr ZdNtLntil h,.,
                       i==1 Mt
                             MhMt
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     where  h,.j E  Hj  
-==

 SjnH

is a  basis of  H,  which  one  chooses  to be the one  given by the isomorphism between  E  and

H  and  dha'`,,., E  T  is just a  set  of  complex  numbers  when  restricting  S(G) to S(O.). [The Y
`s

 are  a basis of S(O.) for G  ==  SO(3) and  1Il =  1.] Because of  the way  l I was  defined via

z, in terms  of  [,] one  has dny.`.=t,'M""` =  dttit,',thr"M` [if one  has chosen  e,.,  e  hj., according

to the isomorphism between E  and  H]. d2,'`-i is, of  course,  independent of  x. anyway  (just
ceunting  powers); it is therefore also  the same  for all representations  of  U. Let the mapping
llN from  U  into the set of  all complex  NXN  matrices  be such  a  N-dimensional representa-

tion of  U.

     111v( Xa) and  d`te' 
mM`,tmt(au

 ]Ca))
then  just become a  set of  numbers  and  11N(E) is a  Lie algebra  with  structure  constants  d, at

depend on  N  via  x: i  llk(Xa)･

  The  earlier  proof that limfrM ==  g relied  on  the fact that for SO(3) there is only one  inde-

pendent Casimir op'erator  x(i  Si+S;+S;), (exactly) one  irreducible representation  for each

                   N2-1
     N, and  utX) =

 4
                        -+oo  as  N-oo.

C. The  Nature of  the Spectrum of  HN

I. Somegeneralremarks

  In Section B  it was  shown  that the strueture  constants  g.B7 appearing  in

     H  =  e fdg(pi+ps+{., y}2)

          1
        

=

 li .;a.)(i;a'i;a*+gae7gaeE
 rs  y7 v:y.*)

are  equal  to the N.oo  limit of  the SU(N)  structure  constants  f`.Mp.･The Hamiltonian

     S' :Z2 ]l.l (7a'P: +.fW]n ifaMeexe y7x'ay:)

invoiving only  a  finite number  of  degrees of  freedom  is, therefore, a  good  approximation  to

H  as  N  -  oo.  It is invariant under  the finite group SU(N). Defining traceless hermitian
NXN  matrices  X  ==  x.T.,  Y  =･･-,  the above  Hamiltonian becomes

      C･IeTr(Pk+PZ-[X,Y]2)]
where

     Tr(TaTa') ii  6MiOaa' i ( IVh  +O(N2))

                  See B17  and  B20
One  is, of  course,  always  free to change  the relative  strength  of  potential to kinetic energy

by rescaling  x  and  Y. (See B17  and  B20).

  One  could  have gone directly from the surface  Hamiltonian H  to the above  matrix

llilMeAitrOe/riaanci:gOti
'

Xne? }?,a}S, 
dge)}Pbeyntlloxn,iyy]on

 
the

 
aigebraic

 
structure

 
{
 
,

 
}
 
which

 
is
 
preserved

     (and fd9- C･Tr)
Note'that, as  already  mentioned  in the introduction, this transition has nothing  to do with
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      the transition from the classical surface  Hamiltonian to the quantum thgory, although  the 1!

      i formally comes  from  the extra  i in [St, Sj] =  iEwinSks)ompared to lxi, xjl.  
--

 EijEXh  (com-
      pare page 4415)

       In order  to obtain  a sensible  N  -  oo  limit one  rescales  X  and  Y  by Ni/6, absorbs  the

      overall  factor CNii3 in the surface  tension T, and  defines the SU(N) invariant Hamiltonian

           H.  =-  S-T.(pi+p;-Si-[x, y]2) (cl)

      From  what  is known about  large N-matrix models  in general28), H.  will  have a ground  state

     with  energy  of  O(N2) (which one  subtracts)  and  the level spacing  of  the excited  states  will

      be of  O(1).

       From  now  on  the matrices  X, Y･･-are most  conveniently  expanded  in hermitian orthonor-

     mal  generators Ta

           (i, e, X  =  x,iTa,'",  Tr(TtiI'b) ==  0ab)

     with  real  coefficients.  With  [T., Tb] =  if.,.T. one  then  has, e. g., for the potential

           V=  21NLfltbcLfltaexbycxdye, (C2)

     for SU(N=2)  this is V=t(ZxY)2

       The  generators of- SU(N)  symmetry  transformations  are

           Ka i  ;TrlTa([xPx] +[Y, Py])l

     and  one  is interested in K.=O  (classica!ly), K.l ip> =  O

      (for the quantum  theory).  [These constraints,  unfortunately,  exclude  the class of  solutions

     X+iY  ==  eiW'to(S.+iS.)･VT<i'  which  solve  the  classical  equations  of  motion  derived from

     (Cl):

           k'="y[x, y]],\=k[x,  [y, x]] (c3)
     The  S,(i =  1, 2, 3) denote 3 NXN  matrices  satisfying  [Si, Sj] ==  iEwitSic

           K. =  
-2toSNTr(TaS2)

 t  O

     One  can  further see  that, at  least for SU(N =  2) that these  solutions  ar'e unstable  against

     small  perturbations. Note that one  can  rewrite  (C3) in the slightly more  compact  form:

          
'Q

 ==  2iN[Q, [Q, Q']] where  Q  =-  x+iy

     w"h'tehtZ"ef"heVp2otgnt::iScS:SlfiingsLgiolF"ft81,)Is=v':::iiafi9:F`i>1"atL':r9Lr8e"ZubM,lgSc'eencgfiI

     figuration space  (for fixed x,  all matricesY  that commute  with  X). The  simplest  case,  SU(N

     =  2)

           V, ==  t(Ixg)2,
     which  is O for xlly  (the classical  partition function diverges as  a  result)

       The simplest  quartic potential of  type (C2) one  ceuld  possibly think of is V  
--

 x2y2  (in
     fact, one  is lead to something  very  similar  for O(2)×O(3) singlet  states  of  V,) which  will  be

     looked at  in the  next  section.  As  the answer  there is that V  confines,  one  is led to believe

     that the spectrum  of  H. is discrete.
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II. 7-7ze x2y27problem  and  

'the
 

`B.

 O' approximatibn

  We  censider  the spectrum  of

      H==  pi+p;+x2y2  

'
 (C4)

Although there is a short  mathematical  proof30) that tha spectrum  of H  is discrete3i)

    [H >  H' =-  5(PkPe+ lxl +  1 y1); spectrum  of  H' discrete=>spectrum of  H  discrete]

it might  be worth  looking at  the problem  in the following way.  As  the question of  binding

should  not  have much  to do  with  the shape  of  the potential in a  finite region,  assume  V  =

oo  for x  g  A,  A>1  and  try to solve  the-problem

      (-(aS+O;)+x2y2)¢ (x, g) =Eip  if x)A,  (CS)
      ip =O  ifx=A
Changing variables  to e >  O and  o by writing  x  ==  A+e,  y ==  n/V7iC
one  gets

      Hip(8, n) ==  Edi, ip 
--

 O or  g =  o

      H  -  A{-  Jk a?+(-o;+V(6,  o))}

      V(e, n) ==  (1+elA)2v2 -  .2(g).  rp2
Now  one  first solves  the o-depenent part (as A  >  1):

      (- a2.+ evZ(e)n2) ¢ (n2) =  Edi

gives

     E  ==  E.(e) =  2(m-1/2)a,(e), m  ==  1,2,･･･

In the same  sense as  Born  and  Oppenheimer  treated the electron  energy  (calculated as  a

function of  the nuclei  distance) as  a  potential for the two  nuclei,  E.(e) will  now  be treated

as  a  potential for the e-coordinate, i. e.,  for given m  solve  for the eigenvalues  and  eigen-

states  of

      H(m)  s  (2m-1)A +(2m-1)2!3(-  ab+u)

                         u  -  (2m-1)i136
Calling the eigenvaiues  of  (-a2.+u), as before, Ei

     H  =  
-(ak+az)+x2y!,

 with  ip(x s  A) =  o
will  therefore (within the Born  Oppenheimer  approximation)  have the eigenyalues

     EiM =:  (2m-1)A+(2m-1)2iSE,
  One  can  show  quite generally that the Born-Oppenheimer  approximation  gives a  lower

bound  for the true ground state energy  [so that E,.,. g  true E,  g  Ee..]. [proqfl Consider a

general Hamiltonian H  =  H(p, q; p', q') -- p2+H(q;  q', p) where  p' and  q' are  abbreviating

all degrees of  freedom different from  q and  p. Define H,,,. to be the Hamiltonian obtained

from H  by replacing  H(q; q', p') fbr fixed q by its eigenvalues  E.(q), i. e., Hao. =  p2+E.(q).
Using (q,,,da,)) as  an  abbreviation  for integrating ¢ (q, q') only  over  q'-coordinates, one  has

Eo(q) S  (ip(q), H(q)¢ (q))/(¢ (q), ¢ (q)) by the variational  principle and,  therefore,  for all di:

      <  ip lHl ip> ==  fdq(ip(q), Hip(q))

                =fdq((Ooip,,aa
¢

,)+w w(¢(ip)<,)",(iplip,f)))(
¢ (q),¢(q))]

                2  fdq(ip<q), (p2+Eo(q))qq)) ==  < ip 1Hao, ¢ >ge.di]

For our  case  one  can  do  an  Explicit calculation  and  comparison  of  EB.o. and  Eva.:
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  a) taking' e'if!ab<X2'Y')  as  trial wave  function and  minimizing  with  respect  to to gives 
'

     Evar =  2(3x/[i{l

-+3xEIEI-)

 :: i･2

  b) EB.o. ii! lowest eigenvalue  of  (-a2.+ [rl).  One  therefore has to  find the smallest  E

ilgnYPtCrh,if>
'`Z8Mo.ZE[l'.k=,8'f(:)i-!-`l･i/iGElif･1'ttt52,'i,fifli'

 
fi2'

 
OO'

 
==

 
O'
 
f'`-E'

 
=

 
Oi
 
has

 
a

 
soi"-

and  by analytical  continuation  (H(i' and  J defined as  in Jahnke Emde.)

     t/･ 2--.  
=

 3sin
223z

 
EIJ-2f3(gE3/2)-J.,/,(gE312)]

 
..,

 
o

     =>EB.o.  :: 1,

       So 1 gE,  S  1.2

III. CLilculating zN(g2)=fdxdye-t'nge+pt-fi[x,n!)

  Although it does not  provide any  information about  the spectrum  of  H., the integral Z<g2)
i  fdXdYe'ua
will be calculated  below, where

      Hg i  STr(X2+Y2-g2/2N[X, Y]2)

     X  and  Y  hermitian N × N  Matricies
              N

      and  dx ii! lldxiilT(dRexij)(dTxii)
              i=1  i<j

  This integrai is interesting in its own  right  as,  at  least to the best of  my  knowledge, integ-

rals  of  this type  (i. e  a  two-matrix-model  with  coupled  quartic interaction) have not  been

calculated  so  far in the literature, while  the one-matrix-model  with  quartic selt-interaction,
and  the multi-matrix-problem  with  quartic selt-but  onlY  quadratic nearest  neighbour  interac-

tions have been solved32).

  In the case  at  hand, one  first integrates over  al} but pl of  the originai  2N2 (real) variables

explicitely(arriving  at  (C7)). The  resultant  integral is J'ffdA,e-WB"ii]
                                            t=1

where  w  is of  O(NZ). Therfore, as N  
-+

 oo,  the integral will  be

      =  e-wtAi: where  11,i minimizes  w.  By  defining the density u(A)  i!  llil=,fi(A-Ai)
the problem of  minimizing  w  becomes  that of  solving  a singular  integral equation  for u(A)

(see CIO) One can  do  so, but instead of  calculating  (e. g.) the first moment  of  u  (i. e.

fA2u(A)dA) as a function of  g, we  are  only  able  to explicitely  calculate  it as  a  function of  a

parameter b, where  b is given as  a  function of  g via  an  implicit equation  involving complete

elliptic integrals(see C  18iii). The  formula for <g2[X, Y]2>, (the expectation  value  of  the

potential) is given in terms of  fA2a(A)dA (see Cll).
     ZN "= dXdYe-me

       =  fdXdYe-TreX2+tp-ge14Magn2}
       ==  CflldxidYe-ti,YYiJ`2i2Ci+g212Mxi-xJ]2)-tExi

where  x,  are  the eigenvalues  of X  and  then, using  X  diagonal and  y' ==  y: Tr[x, y] =
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       2Tr(xsAty-x2y2)

            =  2(ZxiJcjl yijl2-Jc2il ytJ12) =  -2](a:i-  ci)2l  yij12
                L,J  IJ

       and  writing  the exponent  as

            -S £ xr- -aill]y;,-  i. !l.,((Re(y.))2 +  (Im y,,)2)<1+g2/2N<.,-  .,)2),

       the integral f dY is simply  a product of gaussian integrals so  that (with A, i!i c,/Vl}jgi')

            zN--c')hco,t:,dAie-"i-E"iAi2,ll..,1+(Ag:- (A,N-)2A,.)2 .
                  -oo

       One can  also  calculate  the integral in a more  symmetrical  way  by introducing an  auxiliary

       matrix  ¢
--to

 get rid of  the quadratic interaction, then integrating over  x and  the A, appear-

       ing in the above  formula are  then  the eigenvalues  of  ¢/zaN

                                                                              (C6)

            Z ='  n(g  
1=
 o)'fdxdye-}"L{ge'pe)mfiTrrx･xpr

       (Q =  X+iY)

              =  
n.lo)fdQe-t"Q'Q-tg21Brvtr[Q+,Qp

       (¢ +
 =  ip)

              =  
nio)fdQdg6e-e`'Q'QmSg2/SNtrfctf,QF-tht"ip-in.

 
[af,Qp2

       (¢  ==  uAu')

   ' =  JIi':1(16Yf{.dq'rsdq"rstV.,dAt.g.(A.- M)2･eTtXiqrsi2'me.,.'qrsi2var-As)+til( sp9
       (qrs =  q'rs+iq"rs)
                     +oo

              ==  
n"lv),,,flldAr.I.I.(1+g2/2N2(Ar-As)2)-ie-th*A4

                     -co

       (Afv'iiNAr)
                    +ao

                               (Ar-As)2
              =  

n`l',,,fttdPL'.ll..1+g2<A,.-A.)!e-"PLe
                    

-co

              
=

 
ncl){e]flldA.re-N2FIJWL'!+?kT;Iql]stiMti+g2[A'-As]2)-"T21.ll-stiMA'-ASil

              ii .,l,,,,fdAe-""'-f f
d

d

A

A

e

.

-

-:

"

i,
"

i, (c7)

       With

            Wi-.Z..'l"1+(gAEit.Ai)2
A.)2+N.Z"=,A; (C8)

       w  is of  O(N2), so  that Z  can  be computed,  in the large N-limit, by minimizing  w  with  re-

       spect  to the Ai:

            O=-  ZW,, =-  2NAt-2.Z.],A,,ll,k.+2.Z.,,i
'

Stat,-,-XSt.J,
 (.C9)

       Introducing the eigenvalue  density u(A)  i! lli 2I"..i,a(A-Ar)
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         =  2 lim fd#u(")( kpt+,,+  A-"-i,)  !  f Uiptr)1#  =  A
               -a -a

while  l,iL/v Im  F(A± iE) =  21i lim fdLtu(tt)( A-I,1+- i, 
-
 A-xl,-+i,)

     =  ilt/fdxtte<pt)(T2ino(A-xt)) ==  :F  nu(A)

The  (unique) function･having these properties is

     F(Z) -  Z-be
as  is easy  to see  even  simpler  to check:

     F(Z) =  2/a2(Z-M )

satisfies the first 3 criteria,  vvhile  lim Re(x± iE) =  'llCt'  l A
                          E-O                                       a

gives a  ==  n. Then  one  calculates  u(A)  as

           
-1

 .                              
-1

     U<A)=  7r 
lt,tZl, IM  F(A+iE) 

==

 2.itim(-2  (A+ie)2-2)

                           -+vS=p

                                 n

As  a  check  one  can  caiculate
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the above  equation  can  be written  as

         +a  +a

     A==f.A"-("ld"-f.i/"g(#1?A--"L)2d'` (CiO)

which  i.s.a singular  integral equation  for u(A),  which  has to be solved  subject  to the con-

straint  fu(A)dA =  1. Before outlining  how to solve  equation  (ClO) note  how  one  can,  e.  g.,
determfn"e<V> once  u(A)  is known:

     <V> =

 <'ZNGI 
'
 tr[X, Y]2> 

-=

 
-g2

 oagZ, 
=

 <g2 g:,>
               2

 (ALrrmAs)2
        

=

 
+rE<sg

 1+g2(A.mA.)2 
(Ar Satisfying  C9)

                +a

        =N2(e-fu(A)A2dA-  21N 
discard] (Cll)

                -a

                             OwThe last step  could  be made  becau9e oA, 
:=:

 O =>

            aw
     O F  ZA,
            aA,

                           g2(AtL i{s)Z

      
=2NXA;-(NZ-N)+2il.l.1+g2(At-As)2

[-S.O,i"+"8]?bO.fhSg,Olik/j':'/EO}.ffi=z?LkeAP,i:g..7"ki'.

'!tgiil. d

lii,Y.:iCzh-5
'

i.:2aS.tO.r,tr?a.:Z.,i
along  [-a, +a], and--approaching  the  cut  from above--,:  below

     lim Re  F(A±  ie)
     E-a

               +a  +a

                                                       (CIO)

(C12)

NII-Electronic  



Soryushiron Kenkyu

NII-Electronic Library Service

SoryushironKenkyu

-178-  
'
 Jens Hoppe Xer80-3  (1989-12)

     +a  +Vf

    f.(A)dA ==  tfV2=IIidA =  gX"12 ,.,2ode  =  1
     

-a
 -Vi

as  it must  be. Also, according  to the generai formula (Cll)
for <V>, fA2u(A)dA has to be +112 for g = O, so that <V> =  O; indeed:

    i)
nvEFxiA2dA

 ,.  (lt 
22

 2f  ,.2e,.,2ede  =  ; gg =  6
      -va o

 For  g g= O, define G(Z) iii 
-i(F(Z+

 i/2g)-F(Z-  i/2g))
         +a

     
==:

 
-gl.(z-u,(;,)tt

l},, 
･

                                  (3fA2u(A)dA-T17)
which  assuming  tt(A)  

=:

 u(-A)  behaves like ".-- 
gM-=4!g-+O(

 zl,)
and  has, because of  (CIO), the property:

    Im  G(A± i/2g> .== ± A for AE[-a,  +a]

(irrespective of  approach  from above  or  below). Defining G' =  
-gZ2+G

 this translates to:

ImG'  =  O for Z  =  A=  A± i/2g, AE[-a,  +a]

                       (from aboue  or  belon)
        ei) [iit)

also:  G'(Z)=G'(-Z), G"(Z')=G'(Z)(asareal) (C13)
and  at  oo:  G'(Z) : -gz2+  ?7t'z2+blfz4+...

(where r necessarily  ==  
-1/g

 and  fA2u(A)dA =  g(di, 
-g.s)

so  that the knowledge of  a will yield <V>  via (CIO'). )
 In order  to find such  a function G', analytic  everywhere  except  at the two  cuts  [-a,
+a] ± i/2g, think of  G' as  being first only  defined in the domain  D, shown  in the fiqure

below: '

Dl /Z Z/Zllz/i
::=z:X-ltf,'.',t9,::.:::-=:V/Y/E

U.
'G..-.".

D:

-:-=":t)

%

                              Eig.  !

                         IV

P' =  i± /2g  and  then  define G' in U  D, by analytic  continuation  which,  using  (C13ii) and

(iii) gives 
i-i

    for ZED,.: G'(Z) =-  G'*(Z*)

    fOr ZEDrir: G'(Z) !i G'(rZ)

    for ZED.  : G'(Z) =- G'"(-Z*)
This shows  that, in fact, Im(G') vanishes  on  the entire  ･boundary  ef  Di, Therefore -G'(Z) can'
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in fact be taken  to be, up  to real  constants,  the conformal  transformation  <Z :-  g) mapping
D, onto  the upper  half plane. This transformation  (g(Z)), mapping  P-.-1,  a+i/2g-+  

-c,

PT--b<-c<O,  real  Z into real g, is given implicitly by the equation(s)33)

             g .
                (t+c)dt
     Z

l2g

A･f

   10ci)Af

t(t+1)(t+b)

(c-p)dp
   (b-p)(1-p)p 

'

 e

   b`:']'f

 
(P-c)dp

      c

a 
[ltiiii)

 Af
      i(c-p>dp

(b-p)(p-1)p (C14)

          a
                 (b-p)(p-1)p
               c

  Although it wouid  be nice  (and simplify)  to know  g (Z) in ciosed  form, e.  g., expressed  in

terms  of  the Weierstra S function P(Z) of  the same  periods (and, possibly, P'(Z)), one  can

calculate  cr, the coeencient  of  1/Z  in g(as Z-  oo)  also  directly and  therfore give a  formula

for <V> (which, however, will  be very  complicated  and  not  much  less implicit than (C14), as

the g-dependence of  c  and  b can  only  be given implicitly). From  C14:
             g

     Z/A  -  f( ,(,i:):,.,)
 
-X)dt+2Vl'

             o

                  D e]

          
-2V8+f(

 
,(,t\)f,.,)-eii)dt-f(7':i-X)

 (cis)
                  o s

The  third term  will  be expanded,  the second  term  (= S) can  be shown  to be ==  O, using

(C14) (i)-(iii):
            co too

     S,.:.fi) 2tdx(  
.,+=il/i,+6)

 
mi)

 
i
 fcodxS

As the integrand $ behaves like 1/,kr2 at oo,  one  can  close  the cQntour  (at oo)  without  alter-

ing B, and,  as  3 is analytic  in the upper  half-plane except  for a cut  betweeniand iVE', alter
the contour  to the  closed  path  r  shown  beiow:.

its

r's

'

     rf  dx  =  O, and  therefore, with  p i  -x2

                b

           
B
 

=

 2Jf p(p Ei)Pb -p)  d6P

which  is O because of  (C14ii)+(iii) (added together).

Z/2A  for large g is therefOre O, and

     Z/2A  =  V8'+D/V8'+E/g312+F/esf2+-･-
(higher order  terms  wi11 not  be needed  !o calculate
and  F  can  be calculated:

Ftg.  2

Theconstant  term  in the expansion  of

O). From(C15)  thecoefficients  D,  E
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     D=(b;1m,>zo,E=-(b2s+1-C(b6+1)+lb2)so  (C16)

     F =  +gl-Ri(b3+1)-!lt' 
-gb2(,-1/2)-3/s(,-b/2)

from which

     z2/4A2 =  g'+cz/g+org'+-･･
     (a i!  D2+2E<O,B='  2F+6DE+2D3,  g' ii! g+2D)  (C16')
and  therefore , 

'

       m  Z2 4aA2  16(a2+fi)A`

     g'-4A2-  z2-  z4 
+-  . 

(C16")
so.that

     Gt(g(Z)) ii  
-4gA2(g(Z)+2D)

           =-gz2+.!tS £};gg6A, +r pt4A(,+S)+...
 (c17)

will have the required  behavior at oo.  Also it must  be that

     7=-= 16A`a.g  ==  -!  (C17')
                   g
and,  extracting  fi as  the coefficient  of  1/Z`  in (C17), one  has, using  (Cll):
         V l

     kt-'rz3 <i<i7,> 
==

 limeg(4}2-64g2A6(a!+B)) (c17-)

 The  problem with  the above  fbrmuia(e) is that they  are  rather  useless  unless  one  can  de-

termine  b, c  and  A  (a is not  needed)  as  functions of  g via  (C14i)-(ii)--which seems  to be

very  difficult. What  one  can  do without  ,much  work,  however, is to derive equations  for,C,

A  and  g as  function of  b: (14ii)-(iii) gives
                n/2

                f 1-k2sin2ada

     
C=C(b)=

 
bZ

O

i llllliili;
-

1-dfea,si.,.
 

EE

 
b'ftlkkl

 
(k'2

 
='

 
1-k2i

 
1/b)

(i) giyes

     A  -  A(b) =  (4gvz;'[ l2[fekl K(k')+E(fe')-K(k,)))Ni

             i(4gyC(b))  (C18)
and  from <CD'):

     g2 =-  (i(if`(b))-i( b2( Z R[k,l 
-
 Rl[,f), )+ b(Z ftlk,l 

-g))

One  can  look at the limits g .  O (g.oo), corresponding  to b>c.oo  (c<b.1), using  the
expansions  of  the  cemplete  elliptic  integrals E(x) and  K(x) for x-O  and  x-1

K(x) =

E(x)- I

n/2(1+x2/4+6Ttx`+'")

        t2

ln 4/:v'+ 
"4
 (lim 4/Cr'-1)+"'

rr/2(1-x2/4-  634 
x`+"')

i+  
xi2(i.

 4/i.t-S-)+･･･

         if x"m-O

 if xi2  ==  1-x2-O

         if x--.O

if x  !  Vi=i]i.1

NII-Electronic  
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SUMMARY

  The  Lorentz-invariant action  and  the transition to a Hamiltonian formalism are  given for
a closed  M-dimensional surface  moving  in D-dimensional Minkowski space.  The  definition
of the system,  the use  of  light cone  coordinates  and  much  more  is in close  analogy  to the
theory  of a massless  relativistic string, although  the important role  which  the group of

volume  preserving  reparametrizations  plays is new.  For the case  M  =  2, D  =::  4 this group
and  in particular its Lie algbra  are  studied,  and  the latter can  be shown  to' correspond  in
some  sense  to the limit of  SU(N)  as  N  -  oo.  This fact is used  to transform the surface

Hamiltonian into a large N  two-matrix  hamiltonian with  the quartic interaction [X, Y]2, a

problem formulated in a  much  more  familiar language. However,  we  have been  so  far unL
able  to find out  much  about  the spectrum  of  this Hamiltonian, apart  from being almost  cer-

tainly purely discrete, and  some  hints that its levels are  highly degenerate which  is needed
for the theory  to be Lorentz invariant. We  hope  that  the  states  of  each  energy  ievel of  H.
could  be a'rranged  into multiplets'of  total spin  S. As  the "energy"

 is really  the square  of  the

restmass,  the states  would  then  be characterized  by spin  and  mass,  as  they should  in a  re-

lativistic theory.
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Footnotesand  References

 1) Goddard, Goldstone, Rebbi, Thorn, NP  B56 (1973) 
"Quantum

 dynamics of  a  massless  relativis-

    tic string".

 2) by picking a particular gauge, called  orthonomal  gauge.

 3) identifying any  two differing just by a  constant

 4) Please note  the misleading  notation:  thiS transition has nothing  to do  with  the transition from a

    classical  theory  with  poisson bracket i }. te a  quantum  theory  with  [x, p] =  iE.

 5) 
"Elements

 of  quantum chromodynamics",  SLAC  PUB  2372, Dec. '79,

 6) See e.g.i  
"Planar

 Diagrams"  CMP 59 p.35-51  (1978), by Brezin et. al., and  the  review  article

    about  the 1/N expansion  by Sidney Coleman: SLAC  PUB  2484, 198,

 7) For a  general discussion of  
"constrained

 Hamiltonian systems"  one  could  refer  to the long article

    (with same  title) of  Hanson, Regge and  Teitelboim. Academia  Nazionale Dei  Lincei, 1976,

    (Contributi del Centro Linceo Interdisciplinare Di Scienze Matematiche e  Loro Applicazioni, N.

    22)

 8) i.e. on  
=
 a.lf'll), 8P  

=::
 a.if'li5); while  ur  transforms  like a  contraraiant  vector:  6tz' =  (a.u'lfS

    
-

 (a.f r).s  +  fT)

 
9)
 r-  r'  =  l: }l Ti  e"T,  g.  g' =  v[l il lf g =  em"g,  ai .z.

10) See summary  of  formulae in othonormal  gauge.
11) Please note  that e is not  any  geometrical angle,  in particular not  the angle  u  of  the spherical

    coordinates.

12) A  whole  class of solutions is: x  +  ig =  xve`CW-ep`'  sin e; these solutions are, however,.not consis-

    tent with  the  light cone  description, as constraint  (A13) is not  satisfied.

13) This and  all other  conVentions  concerning  angular  momentum  coupling-coefficients  are  these  of

    A, Messiah  Quantum  Mechanics books, referred  to as MI  and  MII (see especially Appendix C
    of  M).

14) I would  like to thank  Augustin Banyaga  for telling rne  this and  other  things about  G; as a  refer-

    ence  see:  A.B.  
"Sur

 la structure  de groupe des diffeomorphismes qui pr6servent une  forrne sym-

    plectique". Comment. Math. Helv. 53, 174-227  (1978).
15) "Diffeomorphisms

 of  the  2-sphere", Proc. Arn. Math. Soc, 10, 1959.

16) AMS  Transactions 120, 1965. p,287.
17) Funct. Anal. Preloz. 8, 84-85  (1974) (in Russian).
18) Inventions Math. 26, 187-200  (1974),
19) See "Transformation

 Groups"  by Kobayashi-Nomizu.

20) The underlining  always  denotes the Lie algebra  of  the corresponding  group. 
'

21) See e. g., MII. p. 1056.

22) See e, g., MII,p.  1060.

23) Note: G  will  not  correspond  to the group of  area  preserving reparametrizatiens  of  S2 (which was

    called  G  in BI), but rather  to SO(3),

24) See e. g. 
"Lie

 Algebras" by Jacobson (Interscience, 1962).

25) Poincare-Birkhoff-Witt theorem,  see,  24),

26) in the basis x,･--x.

27) "Lie
 group representations  on  polynomial rings7',  Am.  J, M. 85, 1963, p. 327-404,Iwould  like

    to thank  Prof. Kostant, Alex Vribe and  Robin  Ticciati very  much  for severai  discussions and
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much  patience. This Section (BIII) would  not  cxist without  their ideas and  help,

Following the work  of  Brezin, Itzykson, Parisii Zuber; Communications in mathematical  physics
59, p. 35-51 (1978), . 

'

                                                               t.
t. e. has a  purely discrete spectrum

pointed out  by Barry  Simon. iin private communication  with  R.  Jackiw.

                      edx

as Z=fe-X2Y2dxdy  -  f                            still diverges (logarithmically) ohe  could  say  that the
                        x

discreteness is due to the uncertainty  principle.

[Brezin et  all and  Mehta et  al, J. Phys. A. Math. Gen. 14(1981) p. 579 - S86.

See, e. g., Fuchs and  Shabat 
"Functiens

 of  a  complex  variable",  Vol. 1, Problem  9 in Ch. 8, but
                                                                '
note  the mistakes  in the last two  lines be£ore  Problem lO, 

'

4
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                        PART  TWO

A  TWO  DIMENSIONAL  BOUND  STATE  PROBLEM

INTRODUCTION

  Attempts  tO relate  field theories of  the strong  interactions, in particular QCD,  to string

models  of hadrons lead one34)  to study  the nonrelativistic  system  of N  distinguishable parti-
cles  of  equal  mass  (labelled 1 to N)  moving  in two  dimensions with  an  attractive  a-function

potential･ between particles r and  rl:

     H:' i  St/i.;,lii;-(2nA)4at2'(g.-];..,)
where  the second  sum  runs  from  either  1 to  N-1 ("open case")  or  1 to  N  ("closed case",

(N+1) i  (1)). Solving the two-body  problem one  encounters  divergences which  are  regula-

rized  by introducing a  cut-off  A  to the divergent integral(s) and  choosing  the eoupling  con-

stant  Ain  a  cut-off  dependent way  so  to  make  the two-body  binding energy  A, of  the bound

state  independent of  A:

     A2em2fA(A) =  A2

(which one  then  sets  =  1). The question then  is what  happens to the N(>2)-bady problem,
with  A given by  the  above  equation?

While in 3 dimensions the spectrum  of  the 3-body problem  will  not  be bounded from below

(when regularizing  the 2-body problem  in an  analogous  way),  the answer  for D  =  2 seems

to be that the open  (closed) 3-body system  has only  one  (two) bound  state(s)  at  energy

-2.s35)  <-16 and  -1.5), and  is free of any  irregularities. One can  conclude  this by deriving
an  eigenvalue-integral  equation  that  is equivalent  to the Schrbdinger equation  for bound
states  (but no  longer contains  A nor  A)
  How  delicate a border case  D  =  2 is (note that for D<2  no  regularization  is necessary  at

all) can  be illustrated by looking at  the 0function as  a limit of  a short-range  potential

     v  =  gf(rla), f(p) ==  of･p21,  a.o
          a

One  finds out  how  the choice  ef  S  =  S(a), that will  give one  bound  state  at  finite energy

(-1, say)  depends crucially  on  the dimension:

     S=  O(a2-D) if D<  2( =- a  if D=  1)

     gl.i,Vil2ii liB:l;.,
     S ;;; E2/4  if D  ==  3

D  =  2, looked at  it this way,  is more  like D  <  2, as  lim S(a) =  O if･D S  2, while  lim S(a)
                                            a-O  a-O
==

 const  
=I=

 O if D>2

For  D  2  2 both kinetic and  potential energy  diverge (logarithmically for D  ==  2 but with  the

kinetic energy  contained  1'n the classically  allowed  region  r <  a  finite, as a negative  power
for D  >  2) and  the total energy  (-1) arises  from  a  delicate cancellation  between them,

  For the general N-body  problem one  can,  using  the consistency  relation  for A, again  de-

rive an  integralequation that does not  contain  A nor  A  and  is equivalent  to the Schr6dinger
equaion  for bound  states.
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  In an  earlier  work36)  the  foilowing results  were  derived for the  open  case  (they will  only

be stated  here in the introduction)

  The N-body system  binds

      A...)  Z!.+A.+1

and  in a  random  phase  approximation  is found to have phonon  like excitations  that come

arbitrarily  close  to the ground state  energy  as  N-oo:

     Ei(N) =  Eo(N)+Vii'ftl ; (l =  1, 2,･･････)

When  this result  is used  in the hadron models,  one  obtains37)  a  relation  between  the slope

of  the Regge  trajectories and  the QCD  pertururbation theory  scale  parameter A. E,(N) will
                                                               N-1  "- "-
be the same  for any  short-range  petential, while  for an  arbitrary  interaction ZV(e.-e..i),
                                                               r±1

ts has to be replaced  by -g..(O)=if2  where  g..(w) is a  response  function fer the corres-

ponding two-body  problem. A  (diagrammatic) random  phase approximation  is used  to

obtain

     E,(N) : -i.4N+(2.o6)-  
niVtCilili+o(kT,)

as  an  approximation  to the  ground  state energy,  which  should  be compared  with  a second

order  perturbation theory  result: Eo(N) =  
-(1.3)N+1.6･

A. The two-body problem  <exact solution)

In two  dimensions the Hamiltoni n  is

     Hyr-S([iii+[ii:)-(2rrA)aC2)(?,-?,) ,

As  the potential depends only  on  the relative  coordinate,  the problem  separates  in the cen-

ter of  mass  system:  , .

     H,Ur =  tP2+ (il2- (2 rrA) bl(2)(l))

where  l  =-  gi-i2, l ==  S(ii-i2) 

'

and  P is the total momentum  Iiii,+Iii, The problem is therefore reduced  to finding the spec-

trum  of

      b ii  7;2-(27rA)S`2)(lll)
The  equation  for a bound  state  is hlB>  =  

-A1B>..

Multiply by <P1 to get

     i52<7SIB>-(2TA)G;1ai2)(1?)lB>--zl<P1B> ,

insert a complete  set of  states, use  <P1 6[2}(X) l'> =  1 and  rearrange  terms  to get

     (?l2+ A)<7; 1 B> =  (2 rrA)f%ta),  <7S' 1 B> =  const

TherefOre there is only  one  bound  state ]B >  of  the two-body  system  (with binding energy

Ai  A,)

     di,(p) ==  <7;IBS -  <;c,O+"S,tts),) ==  ;II,{IllE+A,
                   (demanding <B IB> =  1)
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putting <1; i B> back into the original  equation  gives the consistency  relation  for A:

     (2zA)fEt;g;.)2 
p2tA,

 =  1

The integral (= zl}iJCutEd+EA,) diverges; introducing a cutoff  Ae it becomes equal  to 41flln
(A2/ZS,)
and  therefore

     A2 =  A2e"21A
In order  to have A, finite, A has to go to O as  A-+  oo  The  pa;ameter of  this model  problem
is therefore not  A but the two-body  bincling energy  A,38). From  now  on  all energies  will  be

measured  in units  of  A2, i. e., A2 ==  1･

and  the  self  consistency  relation  for A is

     (2rrA)JC
'co-(itljlrF.),

 
p,l

 1 
=  1 (Al)

  Because  v(x)  ==  a`2'(x) is a (special case  of  a) separable  potential, the scattering  problem
hl7>  ==  E7I7>  can  be solved  exactly  by using  the Lippman  Schwinger equation.  One

finds

     <p1 7
± > =  2rr2a(Z'(l-J7)- (J2,-7 ± ie3(fn p2.) T in)

from  which

                   P7
     <B lli 7>-Viili- p,,+1 (A2)
     <aIP17>  will  not  be used,  <Bi･11B>  is O.

     i =  1B> <B1 +f  f2
2

.P)I
 1 7'><7 ±

 1
  The normalisations  of'position  and  momentum  eigenstates  and  the definition of Fourier
transformation  are  are  listed below:
             -"

     <x1S> =:  eip･x

     <jcix'> : 0`Z'(x- v'), <plpi> =  (2z)20`2'(7;-i')

     fli) ==  Glf> -  fd2x e-`S･tr(z)

     f(Z) =  <xlf> ==  fset.)2e'`;S(S)
7)Pte 0 fbenction as  the limit of a  short-range  potential

  Instead of  Iooking at a  
"D-function"

 with  cutoff  A  in the limit A.co,  one  can  look at a

short-range  radially  symmetric  potential (V(r) =  O for r e  ili} l >a, a <  1) in the limit a-O.

On  dimensional grounds

     v  =-  gf(.la) =- vla2
         a

with  S and  f dimensionless, and  f normalized  to AOO(p)clp ==  
-1;

 i. e.,  f determines the shape

of  V, S its strength.  By  defining a rescaled  variable  p !  r/a  one  writes  the two-body

hamiltonian -

     hz =  -V2+V=  -V2+  
S,f(rfa)

 as
                         a
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      h,=t,(-vs+sf(p))!2 ÷1 (A3)

For h, to have exactly  one  bound  state  at given finite energy  (-0 say)  as  a-O,  S has to be
chosen  appropriately  as  a function of  a (and fi) so  that V  just binds (h, with  bound state  at

energy  
-6ti2-.O,

 as  a-O).

  As  the dimensionality of  the problem  turns out  to be an  interesting point, one  derines the

problem  in 2+E  dimensions (-1 S  E  g  +e)  by writing  down  the  Schr6dinger equation  for

radially  symmetric  bound  state  wavefunctions  ¢ (p) in 2+e  dimensions:

     
-St,(er+iliE

 ¢
'-sif'(p)

¢ (p))-+6ip(p) (A4)
from now  on  f(p) will be taken  to be simply  

-e(1-p).
 (A4)

,is, of  course,  solved  by solving  for the regions  p <  1 and  p >  1 (from now  on  referred  to

just as  <and>) and  then  matching  function and  logarithmic derivatives at p =  1

(giving a condition  on  o)

  For r<a  (A4) becomes
          1+E
              di'+(s-blz2)¢ (p)-o (A51)      ¢

ff+

           to

with  solution39)

      p"E12J,12(fiP)
assumlng

      tiS-6a2>o

for r>a  (A4) becomes

      ¢ "(r)+1+e
 ip'(r>-6ip(r)=o (A52)

             r

with solution39)

      r"E12  KE!2(rslSJ)

matching

     
-IS

'

 atr==  a: g 
Jii:f;[f,l'

 -,(llK.:f.iC`g)g'  (A6)

Requiring that (A6) has only  a=1  as  a  solution  independent of  a (-O), which  is equivalent

to h baving exactly  one  bound state energy  
-a2,

 one  finds:

  for

     DS2:S=  O(a2'D) (:;;aif D=  1)(A7)

                   2

     
D=2:S

 
;l

 ma
     D=  2+E(O  <  e<  1):S ;; 2E

     D  ==  3;S=  n2/4+2a  ;  n2/4

(where x  ;  y for two  functions of  a means  that x  =  y (1+h(a)) with  lim b(a) =  O) (A8)
                                                         a-o

  (A7) shows  that for D  K  2, lim S(a) =  O while  lim S(a) >  O for D  >  2; this is of  interest
as it suggests  that-despite the e/ld that a'O

     flJf/kr+ A 
divergs for D  2  2

  while  for D  <  2 everything  is finite--the binding in 2 dimensions is more  like D  <  2
rather  than  D>2,  and,  therefOre, a  more  regular  phenomenon  than  for D  >  2, in particular
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for D  =  3 where  the spectrum  of  the correspQnding  3-body problem  is not  bounded  from

below, both "Thomas"-and  Efimov-effect are  known to occur.4e)

  It is interesting to calculate  the expectation  values  of  the potential, the kinetic energy

contained  in the inside region  r <  a and  the outside  region  r >  a, and  where  the wavefunc-

tionisc

i(e)
ce

.

"

,

t'

;;l
ed

l
W

ni

t

,

h

ill,

.

(1
,!li(

e

.

fi

)ll.l
e

)
.

d

.,

b

;i
d

,

.(

,),

8):forD=2take(S:;;irffa-):

 (.g)

     then  .L

 1 ¢  1 2rdrd  ep ;;; 7ti'4, (i ¢  l 2rdrdq  ;; Sa21n2a

     i[ll
>

,l,=

fVX
l

,l

r

l.
'

r-
ep

k,E.
!j'i/<)t/ig
ill,)i

2

I
d

l
d

.r,,:,

-hi"al'const

and  so

     T.  !!! Xi(Vip)2drrdq ;; 
S
 ge2a.J:'"(Svs;TL:)2rd,

        =Sil.n,2"  la` =t  (A9)

     T.  E  y;(Vip)2rdrdep ;  JgcoKi(r)rdr ;  y[19'L
        ;  +llna1+const

(using Jo'(x) =  
-Ji(x)

 =  
-S

 Jo'1

     K'o(x) =:  -Ki(x)=JL,  (AIO)
                     x

     Ko.1lnx1 +ln2-(Eules  constant  7), as  x.O)

  On  the other  hand  for D  ==  3 one  has

           l t e-rfr  outside

     
di
 
[;;
 V21i-i1fr sin(li'  7r/2)  inside 

(All)

Thus  (the approximation  lies in taking i[/2  instead of  ts in the expression  for gee; <g4.> and

<T.> are  exact  however):

          
2.2dr

 l  
Sin..elfoedq

 ==  1, yCI ip12r2drds2 =- a     yClipi

     fV 1 ¢ I2r2drd9 ; i.rr,Zl1 ¢ fi 2r2drd9  =  -  rr2/4a

            1 I 
-e-'/r(1+1/r)

 outside

SinCe
 
di'(r)

 
cr'
 v2}l- iliil.i"(const-Si:") inside

                         (ec ii  xxfa'it/2)

are  finds

     f(-i7ip)2rzdrctg =  2-3+O(a)
     ll(-Ve)2r2drds2 =- 24rri, .a.-llJ.(

'-i2(cos2u-2Eti]inuuCosu

 +  
si:iu)du
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     =lil;+f[-2si.nu]:f2=  4rri-g  .

One sees  that in 3 dimensions not  only  V  and  T. but also  T.  diverge, all like 11a and  one

can  check  that, again,  the divergent terms  cancel  in the expereesiion  for the total energy

     T.+T.+<V>

B. The3-bodyproblem

  As in the two-body case,  one  can  separate  the center  of  mass  motion  also  in the open  3-
body  problem  by going to relative  coordinates

     -  --  --- --

     X, i  g,7g, and  X, !  e,-e3
rl]ie

 Hamiltonian bec6mes

     H, =  P,2+P,2-P,･7;,-(2rrAXO(2}(Z,)+O[Z](Ef,))
Multiplying the eguation  for a bound  state

     H,1 ¢ >  -  -Alip>  by <i,P,1

gives

    
'
 (Ji2+T22-St･l2+A)gfi<Jb i2)

         -  (2 rrA)f?gtts;.), (iphO', i,)+ di-(J,, P'))

         =  gr(P2)+gt(Pi)
Because H,  is invariant under  interchange of  1 and  2, one  can  use

     dii, i) -  ± ua, p)
i. e., g, =  ±gr i  g  so  that

     gs<p,lj)=Iff,5i31\[}IF2I
+22ll7･(-q'IA 

'

and  from above

     .(p,) =- 2nif  (d,

2

.P);
 ¢
k(p,,

 p,) -  2nif  (diP); ' pr +gilt)7
±

,
 1}

2

,)+A

         =(2rrA)g(7;2)f(2.)2(pi+pd2,

21Il27;,･i;,+A)

           ± (2 .Aif  (d2 
2

.P):
 pf +p; g(;il s, +  A

Dividing by 2rrA, using  the consistency  relation  (Al) for A, and  subtracting  the first term on

the right hand  side  gives:

     g(li)lfeet.)2 p21Pl-f(d22.P); pl+p;-}i']2+A
         =  ±f(d,

2

.P);
 p?+p:g-(;S2+A

Changing variables  from P, to i i  P,-(1/2)P, on  the left hand  side  and  then  from  p2 to E,
the curly  brcket becomes

     ts-m, ( 4i.f"2Ed+Ei -  4in XA2E+  (2
d

p

E2,

 +A)  l
     ==  2 11n(ipi+A) =  iLi(ln A) =  'ili(ln A+ln(i+ip;/z!))
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Defining rescaled  variables  l E  i,/VIZI", i !  P2/VA- and

f(P) i  gO･M),  the resulting  equation  is:

      
-in

 ilf(p) =-  in(i+2p2lfo);tflff, fl5illS {I Fi.,gld7;i+i

               !  (Hf)V)
which  can  be rewritten  as

     fO) 
==

 
±tfll.r211IIPe(A(i+2p2)

(

)(}2+g2-p･a+i)
         ii fK(l, iif(ies(g ), 

=  (Kf)(l)

  These equations  are  equivalent  to the Schr6dinger equation  for bound states

     H,l ¢ >  =  
-.Al

 ip>
in the sense  that

if f(J) satisfies Bl')

then ¢ (P, i)m p2+qz-p.g+A
       satisfies(B2)

l ip >  .ith

(P/di)±f(g/V2r)

(Bl)

(Bl')

(B2)

(B3)

Although A and  appear  in the equation(s)  (Bl'), which  on  anaive

level might  suggest  system  also  the 3-body (and hopefully N-body)
problem  has been one  really  still has to show  that (Bl'),is free of
irregularities, onlya  finite number  of  bound states,

     g'.e,u6dthafo`:,."th.ei.a,IU.ea,g.f,e,.fo,r.,)?f,hich(Bl')canbe } (.,)
           '

Neither the question per se  nor  the task of  actually  proving (B4) are  of  academic  nature,  as

the following diseussion-which is an  uncompleted  attempt  to rigoreusly  answer  (B4) posi-
tively for D  =  2 and  the fact that (B4) is in fact wrong  for D  -- 3 (although the correspond-

ing equation  is also  free of  the naive  divergencies) show.

  For  D  =  3 the equation  corresponding  to  (Bl) is

      (VilFli}7-da)fo)=+2i.2fim,gel91m+q2+;.}+i  (B5)
which  at Ieast for S-waves`i) if =  f(IPI)) has been studied  extensively  in the literature.42)

Even  after  a continum  of  solutions  is removed  by orthogonality  conditions,43)  (B5) still

admits  solutions  for an  infinite set of  values  for A, that extends  to +  oo,  so  that there is no

ground state.44) These results sharpen  the difticulty pointed out  as early  as  1935 by L.H.

Thomas45), who--in  the formulation of  the problem as the limit of  particles interacting by
short-range  potentials-- copstructed  a complicated  trial wayefuriction  (whose derivatives are

not  everywhere  continuous  e. g.) for

      h, =  --(-  Vi-Vi･V2-  V:+Slf(A)+Slf(P2))
            a

which  has infinite Binding energy  as a O.(The attempt  to find the analogous  trial wavefunc-
tion for D  =  2 leads to one  containing  Bessel functions and  complete  elliptic integrals;

however, Evar, turns out  to  go to  +  oo  (rather than  -  co)  as  a.O)

This article  is often  quoted but never  cursed  at  for its misprints  at  crucial  places.46)
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  After this brief discussion of  the 3-body problem in 3-dimensions, (Bl'),will be discussed

(trying to prove (B4): It is not  too  difficult to prove that Eg. (Bl') has no  solution  f E  L2

     (fcL2 0  Hfll,,,, .  (flf1 
2est.),)if2<.)

if A  >  e`!3,  One does this by noting  that,

with  k2(a:) =-  fK2( c, y) dy, fK( c, ylf(y)dy :; k( rMlf[I
                (because of  Schwatz's inequality)
Therfore:
                        s
     f -  Kf=>11fll -  IIKfll g  IKI Hfll,

where  IKI i  iik" (and de
X

.

"

lltlif l.), )
A. 11fllSiKl  11fll (B6)
  f =  Kf  cannot  have a solution  f a= O (e L2) if 1K1 <  1.

  As  K  is clearly  a  monotonically  decreasing function of  A  for the kernel of  (Bl'), one  in
fact needs  only  to show  that IK1 is finite (then for some  big enough  A=  AN, 1Kl <  1, and

there cannot  be a  bound  state  with  binding energy  A  >  A) However,  accidentally  lK1 can

be computed  exactly  (as a function of  A) for
             ± 1 1

     
K(i6'i)=

 rr 1.(A(1+2p2))(p2+q2-P'i+1)

     iKi2-;IT,(2n)(t)2JCcoIl.Ii2if:fiCi!;;,AIfflf-2.yf2"(.+,+id-epff,d.)2

         .1  du  fr u<++1)d

         
-

 
JL
 In2A(1+illx) 

`L

 ((x+ y+  
1)2Lxy)312

usingf/(iyEiFziLr}}i7i
2+bdy+,)3/2=t ht,-b2,i2Xyi;llmrib)y

and

     fmyiiJICX'bi7i2+byd+,)3i2=-2itiE=zSl:iEIIiii=7
,-b?)CflyiirX=i

by

(with b 
=

 (r+2), c =:.(r+1)2,
 (4c- b2) =

 4Jv(1+3  c/4)  2  Q) one  gets

     
lKI!==)(

'nO

,.,.(Iii.Ii{}.)(,.t6.) gin'A
                                                                   (B7)

   So IKi<1 for A>e`i3  =  3,7g

Uofortunately one  htzs to allow  for a larger class

   lt di112 !Ei f1 ¢N(J, m12 -4tiflfi:g2 
.d),

    (usi.,
-'B2,'

Sfe w1+(-,3)2(2rr)2'2Ref

offanctions of.functions than L2

-pm/twL )()
(p2+q2-P･i+1)(2rr)`

--because
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is finite for a larger class of  functions L. L  includes,

functions f with

     llf11i+p2 i  (f'l{t}Sip, lgtilirr),)i12 <  oo

For this space  one  would  write  (Bl') as

     f(7)=ftz,JIJ::Zi?Jrr)l(i+q2)K(]'on(i)

         
-

±tfu e/)()

e. g., Li+P2,

ptor80- 3(1989-12)

defined as  thespace  of

                (ln A(1+{lp2))<p2+q2-i.i+1) (2z)2(1+q2)

         i  (Kf)(l)
and

     ii<Eft..2,iilKI2et}bi(gZfSiLEiri,,
 s)4(pd2+do(g2+i)

no  longer converges,  so  that the proof based on  (B6) ceases  to hold.(However, the fact that

1Kii.., is infinite, does not  necessarily  mean  that (B4) is wrong.)
Looking  at  (Bl') for rotationally  syinmetric fbenctions                                                        '

 f(7) =-  h(p)2 simplifies'the  formulae a  little bit, but does not  help much:
                          '

     
h(x)= ± JI

'OO

il.iEzi31I;<l[illliiiiiEiilrA(i+{}.)

h((;d+y+i),-.y!E(Koh)(x)

The  bound  A<e`!3 (B7) for L2-functions is not  much  improved: instead of  getting

     1Kl2 ==  gJ('ooa. Adt+,)2 
==  giniA

     (compare B7, 1+ix  =  et)

one  gets

     lKei2 =  gJ(
'co

a.Ad+' ,), i 
C0

4

S

/

Mi

ii-
+',e'i'l))

 l
With i+-:li i  cose  the curly  bracket becomes

     ( 2tanebl2 ]
whiqh,  instead of  being =  1 (in the-caiculation for lK12, varies  slightly,

minimal  value  in the range  of  integration is 2 li5 
=
 O･907･

Rewriting (B9) as  
-

     
-lnAh(x)  ==  ln(i+2x)h(x)  

'

                  
ocm.tt!ssuggmmr ()d

               
-x

                     (x+y+1)2-xy
(now restricting  oneself  also  to symmetric  wave  functions for every  

'

there is always  a  symmetric  1 ip >  with  lower energy)

al principle by. thiking of  the right  hand side  as  a Hamiltonian H  acting  on  h: (Hh) (
eigenvalue  -lnA. It is not  difficult to find normalize

(B9)

(BIO)

but not  much:  Its

                         (Bg')

              antlsymmetric  f ¢  >

 one  could  naively  apply  the variation-

                       x)  with

d  
･trial

 wavqfitnctions  hEL"X  with  arbit-
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rarily  large binding ener;gy: take

     h(x)=V2E  (1+x)-E (Bll)
then  h E'L"X,  and  in fact

     l1 hll,.. .  (JCco 
h(2iX+)

 IY )'12= (2, J(
'eO

 (1 +ffli),.,, )ifZ =:  l 
-

independent of  e. then

     <H>,-2,xco1" Si++#)X,2,de-2,xoog(ftrew!zf:\tl}
1+1+)i)de(1d+.(1++y)3-E

.,

           <2,xcoil[l+.

X

)2P,'2cXmoa,nFTEaF:..)i+E(i+.de+d,)E(i+x+y)2

            
=2efcote-2E'dtm2EfOD

(1+4)i+EA:,"ygY-4+E

           =  S}'-2JC
'ca(i+Ifli)i+2E'=

 i--l' =:  
-St'

 -  
-co(as

 t-o)

However,  H  acting  on  Li'X is not  a  self-adjoint  operator,  so  that the 
"variational

 Principle"
(i. e., the statement  that the true ground state energy  E, <  <A>h VheLi'X

  One  final argument  will be given, strongly  suggesting  that the 3-body spectrum  is bound-
ed  from below: leaving the cotoff  parameter A  in the integral equation,  instead of  taking A
-  oo-  once  A has disappeared and  the appearing  expressions  are  finite as A  .  oo-  one'

has, for S-waves:

     g(x)=:f"2 ii(lIR7ilYiscifiiilr.,A)(.(+)yd+A),-.gE(KAg)(x)
 (Bn)

where

     F(x, A) EE  F(p2, A)

           
=

 ifd2q( 
q2i

 1-p2+q2  -lp  .g+A]

           =  fA2du... =  ln(2x+A)+ln(1+  12)
             

-in(SVTIIIIEIIII
 +5+X,'iA)

and  g(x) is assumed  to be Lebesgue-integrable on  [O, A2].
with

     llgllX -  XA2du 1g12
and

     1 KA i 
2
 !  X"2f 1 KA(x, y) I 2ducig

one  has, as  before (compare Eq. (B6)):
     g=KAg  >llgilASIKA1llgllA

as A .  oo,  F(x, A) is is dominated by ln({lx+A)

(for all x!)47), so  that as  A  -  oo

     l KA  1 2 <  4/31nA

(see (B7) and  (BIO)), which  is independent of  A  for large A, so  that (B12) cannot  have  a
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solution  g =#  O for any  largc A, if A  )  e`13.  
-

 From now  on  (B4)
trUe with  A... S  e`13.

  Strengthened by  the above  argument,  one  performs a variational  calculation

fined in Bl), with

     f(p) ==  i,{llil+ 
.
 (i:f it ̀e ==  i)

as  trial wavefunctions  (a as  parameter). One  finds:

     T ,.  fie;;gt;), 
in(i

(p

+,ili')

.

2

)l4""
 ==  ibn-bi(b =- 4/3.)

     w=-1fp atd(4)

       
-

 4rr3t(p2+a)(q2+a)(p2+q2-J'i+1)

       =  4(B-i)Zl'.2 .lllBf rm,in(  <(.Si ,'j((,Xi21 )(fl i  i/i-a)

In order  to arrive  at  the above  form  of  W,

used  first. The  results  of  a numerical  calculation48)  for different values  of  a, w

below, gave a  =  3/4  to be the  value  which

=  2.4.

kbl80-3 (1989-12)

will  be assumed  to be

for H  (de-

(B13)

Feynman's  trick of  combining  denominators was

                          hich are  listed

 leads to a  maximal  lower bound, on  A,, giving

   a

  1/2

  3/4,1

  4/3

  5/3

   2

  5/2

  11/4

   3
   4

W1.443L6111.7261.8361.918L9812.0542.0842.1112.193 TO.588O.740O.863

 11.1161.2161.3471.405i.4601.648

W-TO.855O.871O.863A, )2.3502.3892,3702W-T

 2.298

 2.482

 2,589

 2,672

 2.720

 2.746

 2.762

 2.763

 2.762

 2.738

Ai

15.848

(2w-T has been  listed, as  it turns out  to be the lower bound  for lnA',)

Finally it will  be shown  that the closed  3-bocly problem  (i. e., all 3 particles mutually  in-
teracting) is exactly  the same  as  the open  case,  apart  from a factor of  2 in front of  the in-
tegral in the integral equation(s)  (Bl'):

     H,..=S(iii+ii:+ji;)-(2rrA)(a(2)(;,-g,)+o2(g,-?,)+o2(?,-?,))
Multiplying

     H3u.l ip> -- neA'1 ip>by<[iiilii2Iiis1
gives

     (S'(lli+n;+ll:)+A')di(liiiilii2Iii3) =  gt(Iii3)+giz(Iii'2)+gt(Ili,) (B14)
where

             --- --  -- -

     glr- !  (2nA)<ITill21I3 6'2(6r+i-er+2)l gb>
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                         -  3-  J}
can  be shown  to be a function of  ll. only(for  E  IT. =  O):
                                   r±1

     gt =  (2irA)fd2ed2&d2gee-i(-ffi?i+"4"e2tlk'g3)･a2(g,-g,)gb(?,g,g,);

with
                         --  --  --t.

     i,i,+fi,g, =  (i,+fi,)( 
g2;

 
g3
 )+( n2ill3)(i,-g,)  =  (i,+i,)( e2ge3 ),

and

     a2(g,-?,) =  fk/SjSiz),eL-etAe2-?s)
one  gets:
                        --  --

     gt =  (27TA)fest.),gS([iii, 
ll2li

 
ll3+li,

 
ll2;ll3-zi)

       ==  (2 nA)fl:/ge.),  ¢
N(lli,

 i-ii/2, -i-fii/2)

       ==  gt(ii)

g2 and  g, are  given by the same  expression  with  the arguments  of  ¢  being cyclicly  per-
muted.  Restricting oneself  to totally symmetric  solutions  1 ip>, g, =  g, =  g3 !  g therefore,

and--using  (B14)-one thus  has:
                              -  - -

     g(ii,) -  (2 nA)fd2q/(2  rr)z 
g(-i-

 
iTi;i?)(;/g4(itthii

 gi l2)+ 
g(lli)

     g(iii)==2rrig([iii)fi/Sit?;((57tiiil;21'Yn)2q2+((3/41)M+A')

            +(2nA)'2'fzg/igi.)2,2.g(C("',Ji')X2)A･)
and  -
           - -  --

         g(lli)+g(n2)+g(fflli-fl2)

     iprv= nt+ll:+Iii:,･Iii:,+A'
Changing ti to -i,  assuming  g to be an  even  function49) and  with the identification

     A e  V', fii e  Pi, a e  P2-ii/2 =  J!-iji
this is, apart  from a factor of  2 in front of  the second  term,

the  same  as  the equation  considered  in the open  open  case  and  the lower bounds  on  the

ground  state  binding energy  for the closed  system  (A,'), corresponding  to trial wave  func-

tions of  the form  s/4}l21'ip2+a  are  now  given as  e2""'  instead of  e"m'.  a  
Nny

 11/4 led to a

maximal  bound  on  A,': A,' >  15.8. That the binding energy  of  the closed  three-body  system

comes  out  so  large might  be explained  by noting  that A,' =  oo  in a  sense,  because the cou-

pling strength  had  been  adjusted  to make  A, come  out  finite.

  Because of  the  additional  factor of  2 multiplying  the  kernel of  the  integral equation,  one

has

     IK I2= 4( 
43
 1. 

IA')

for the L2-case, so  that one  knows  that for A' >  ei6i3  there is no  square  integrable solution

of
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     f(T)=='-l}fl;.IZIIEIP3S[(.(,.ii,,)g(:2.,2-l.i.,) (Bis)

Bruch and  Tjon50) have in fact calculated  numerically  the eigenvalues  of (B15) as A3' =

16.1 (± O.2) (so that the above  variational  calculation  gave in fact an  astonishingly  good
bound)  and  a second  eigenvalue  at A' =  1.25(± O.Os), For the open  case  it follows from  their

numerical  calculation  that A  =2.5,  which  is in very  goed agreement  with  the above

variational  calculation.

C. TheN-bodyproblem

                                -- -  -"
changing  variables  to relative  coordinates  Xr  -  er-6r+i
in

     HN"r!t. £
"=,Iii2.-27rAIil.l,iO`2'(?.-g..i)

 (Cl)

and  setting  the total momentum  P =#[ii.  (conjugate to X i  k#g.) equal  to 6 gives
          N-1  N-2

     H"=X(7;r2-(2irA)0`2'(liir))-Z7;r'7;r+i (C2)
           1 r=1

For the closed  case  (i. e., particles 1 and  N  also  interacting) one  can  show  that
           N N

     H'N !!  E(7;;-(2 rrA)a[2'(Zr))-X7;r'7  r+i

           1 1

        =  "liS(1;r-l;r+i)2-(2,rA)jll  a`2'(li}.)

        E  T(i,･･-PN)+V (PN.i -  P,)
                                  =--
is equivalent  to "H.U'

 (closed case)  vvith ZII.=  O" provided that one  restricts oneself  to

         rv -  N-  N

states  with Zl!l;. = O (Note: [H:', Zll.] =  O, [H'N, l[]Za ==  O)
         1 O 1

  As  was  done  for the 3-body system,  one  can  eiiminate  A and  derive an  integral equation

from  the Schr6dinger equation  for bound  states:  H'. 1¢ >  ==:  
-Al

¢ >.  Multiply by a

momentum  Eigen-bra <p,･-･pNl to get

     (T(pi･･･pN)+A)ge-(p,･･･p.)-2rrA ]f(d2
2

.q):gb'-(p,･･･g.･･･p,)
 (c3)

W.h.71.e,.T,(eAu',',g,)tt,ii･ii;li(g;i.'('6s]j,aSd,ghS.VEIft`,O,I.",,Ola.li;)V,V'SSr?Il･l.,",2r,.gR,b.e,:O,,Pe.eS,:

able  does not  occur,  one  has

     gv !  (2 rrA)fi/:ig}.); ¢
N(pi

 ' "  qr" 'pN)

       ==2.A4f-i:,i3;.),g.ls(eS

'.'

,q.'t,.S)'iP."'
 (C4)

     gv ==  (2nA)fdZx,"'d2eelr"'d2xNe-iskE.SSSS¢ <xi'"xr =  Oi"'xN)

is (2nA) times the Fourier thansform  of  the wave  function in position space,  with  the r-th

coordinate  x.  fixed at  the  origin.  Separating out  the diagonal term  in above  equation  for g"
one  has:

NII-Electronic  
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     gr(pi"'pr"'pN)(2;;A-f(dt2.q)E
 T(,b,..･g.l･･p.)+A)

         =  
.z.]ifaf.q):

 
gle(p&igfp.si･pN)

which,  using  the consistency  relation  for A (Eq. Al), leads to an  integral equation  for the

glr, not  containmg  A:

     2}A-fma/rr)2TtA  

'

     -mlrmf  dE  -fd2qr  1

     
-4rrvLE+1

 
･L(2n)2

 Trm2+{i(p.-,'q.)+S(qr-Pr+i)+T"+i+A

where

     Tl -.. 1 tl.,5(Ps-7s+i)2 
=

 T(pi'･･pj.,)for N  )  i' > i -> i

          t O otherise;.

in the second  term  change  integration variable  from U. to i E  U.-1/2(7}r-i+7Sr+i) (nOte
that the integral is only  logarythmically diverging) and  then te E -  i2, so  that the denomi-
nator  becomes

     Tr-2'+Tge.i+Ii'(p.+i-pr"i)2+E 
''
 

'
 

''

                                                     '
and,  by combining  the two  integrals, one  gets

     ill ln(Tr-2+Tr.i+  }(p.+i-p.-i)2+A) .

so  that

     gle'ln(A+Tr-2+Tpt+i--1}(Pr+i-Pr-i)2  
'

         =  ;.z.i;J'd2qrTgle(geiq.:2･i'iiP2'
Scaling all momenta  by V2I- and  with  A(･･･p.--･) i  g.(-･･p.di-･･) one  finally arrives  at.

     
-lnA'0(jbi":Pr"'PN)

     =ln(1+TT-2+t(Pr+i-Pr-i)2+T:+i)'f>

       -ti  lfd2qr 4(eiii,qf.4 ;.'lie.")' (cs)
                -

     ='  Hrql[k '!  (Hf)r(Pi"t.2r'"PN); r  ==  1, 2, "' N

AIso, by definition of  gh.:

     fd2g,Jk(pi"'gcb."'pN)=fd2qsu(pi''?.q."'pN) (C6)
Although the above  derivation is written  out  for the closed  case,  all cerresponding  equa-'

tions foT the open  case  can  be  obtained  by simply  setting  p.=-O  everywhere  (p. non-
existing).  ,

 For the closed  case  one  can  simplify  (C5) considerably  by making  use  of  the fact that H'.
is invariant under  cyclic  permutations (r .  r+1)  and  also  refiections  (N e  1, N-1  e  2,･･･).
Restricting oneself  to states  that are  singlets  under  these transformation  i. e.,

     gbN(p,･･･p.) =  di(PNPi"'jbN-i) =  gbA'(lf)N16N-i"'Pi)
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one  has

     gr(pi'':pr･･･pN) =  2nif ¢
N(p,･･-q.･･･p.)fe:lggt

 
q),

         -  2.Afdi-(p,pi･･･qr･･･pN>ie;II3t 
q)2

         u)

         =  gb･+i(PNPi":Pr'"PN-i) .

(analogously)
         =::  g?-i(Pi"?r"'PMt)
         {iti)

         ==
 g)v+i-r<PN"?r"'it'i)

Using (C7) (in fact only  (i)), (C5) becomes
     

-lnA･f(P,P,･･･P.)

         ==  in(i+:E.)e(p..,-p.)2+i(pN-p22)･f

           
1
 d2q,f(P3P4"'PNqi)+f(P4P5"'PNqiP2)+"'+f(9iP2"'PNmi)

(1989-12)

(C7)

<C8) ･

           
'r
 1+S(pN-q,)2+S(qiTp2)2+IE.l5(pr+imjbr)2

if i  fi, all other  fi are  obtained  from f via  (C7). (C8) is a single  Schrddinger-like equation

for a function f of  N-1 variables  7.. It is important,  hgwever"o  rember  that (C8) (and also
(C5), for the closed  case)  is subject  to the constraint  Fl. =

 O which  
translates

 
to

     f(P2･･･P.) ==  f(P,+k,,･･･, P.+  k) (C9)
(in general A  (p.･･･) =  

.L
 (-･-p.'"･･･) V.). Also one  must  not  forget the condition  (C6), which

e. g., for N  =  4 says  that fd2flf(p, q, q') is invariant under  all permutations of  the argu-

ments  of  f. For the case  N  =  3 can  (C9) be used  to further reduce  the number  of  variables

explicitly: for N  =  3:

      
-lnA'f(p2p3)  =  ln(1+2(p3-p2)2)f

                   
mtfdiqi,.s(,,-f

,

(:i'.gL,ii)(,

'

,

f-(q

,

'

,i,l

2;,(,,-,,)2'
(C9) =>  f(p,, p,) =  f(p,-p,); by shifting  the integration' variable  in the first term  to q,-p,,
in the  second  to q,-p,  (and using  f(x) =  f(-x), from parity invariance of H'.Si)) one  sees

that both terms  are,  in fact, equal  to

      
Nifd2qii+o,-l,)2+f-:'tiili,･o,-l,)2

which  agrees  with  Eq. (B15) (P !ii i3rl2)･
  N  =  3 is a  special  case:  As  for a  function of  two  variables,  reflection  invariance is equiva-

lent to inyariance under  cyclic  permutations, (C8) is the correct  equation  also  for the open

case  (which has only  refiection  symmetry)  putting P..., =  O (which up  to Eq. (C5) was  the

simple  and  correct  procedure of  getting the corresponding  equation  for the open  case).  (C8)
then  is

     -ln4f(l2)  =  ln(1+iP;)'f

                 -ifd2qi  
p;
 +  ,l-(

 
qil-a

 +  i
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which  is exactly  Bl. The  important new  feature of'(C8)  for N  >3  is that it cannot  be
brought into the form f=  kf with  k nonsingular.  As  thefin  the different terms  in the in-

tegral ef  (C8) contains  all the variables  p,･･･p. and  the integration variable  q, (in cyclic  per-
mUtations),  K  necessarily  involves many  cr-functions.
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SUMMARY

  Two  particles attracting  each  other  by 

'a
 0-function will  have infinite binding energy  in 2

(or more)  dimensions, unless  one  chooses  the coupling  constant  to be infinitesimal and  reg-

ularizes  the a-function by introducing a  cutoff  to the divergent integrals. Equivalently, one

can  define the a-function as  a  limit of  a  short-range  potential. It turns out  that then 2

dimensions are  more  similar  to lower dimensions (D <  2), where  there is no  regularization

needed  in the first place.
  For the  N-body  problem, one  can  derive an  integral equation  for the Schr6dinger equa-

tion for bound  states,  which  is free of  any  naive  divergencies. However,  one  has to make
sure  that this equation  cannot  be solved  for arbitrarily  large binding energy.

  For the 3-body case  this is argued  not  to happen  (in contrast  to the analogous  equation  in

3 dimensions, where  there are  eigenfunctions  explicitly  known  for any  large binding ener-

gy). The  major  problem is that one  has to allow  for a rather  large class of  functions f in the

integral equatien,  as  the physical wavefunction  will  be square  integrable even  if f falls off
much  slower  at oo  (in momentum  space).
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        50) Phys. Rev. 19, No. 2; Only  after  having done  the work  presented in this thesis did I find this

            article.  I believe the numerical  calculation,  although  in the theoretical treatment they take  the

            calculation  corresponding  to (B7) for the closed  case  (and for S-waves) as  proof of  (B4) without
            worrying  about  functions not  in L2 (which dose not  convince  me)  Maybe  they  assume  even  in

            the numerical  calculation, that the  eigenfunctions  are  square  integrable.

        51) Or  use  <C7 iii) for N  =  3, r  =  2 gle(P) =  gla(-P>-gi(P> =  gt(-P)･


