Quantum theory of preparation and measurement

DAVID T. PEGG
School of Science, Griffith University, Nathan, Brisbane, Q 4111, Australia
STEPHEN M. BARNETT and JOHN JEFFERS
Department of Physics and Applied Physics, University of Strathclyde, Glasgow G4 0NG, Scotland

PACS numbers: 03.65.Ta, 03.67.Hk

Abstract

The conventional postulate for the probabilistic interpretation of quantum mechanics is asymmetric in preparation and measurement, making retrodictidiant on inference by use of Bayes' theorem. Here we present a more fundamentattsicm postulate from which both predictive and retrodictive probabilities emerge imandig even where measurement devices more general than those usually considered a involved. We show that the new postulate is perfectly consistent with the conventional postulate.

1. Introduction

The conventional formalism of quantum mechanics based on the Copenhagen interpretation is essentially predictive. We assign a state to a syastoed on our knowledge of a preparation event and use this state to predict the probabilities of outcomes of future measurements that might be made on the system. If we have sufficient knowledge to assign a pure state, then this state contains thmumaxamount of information that nature allows us for prediction. With less knowledge, we can only assign a mixed state. This formalism works successfully. Sometimes, howeemay have knowledge of the result of a measurement and wish to retrodict the statedprepa A particular example of this is in quantum communication where the recipienteseae quantum system that the sender has prepared and sent. If the prepared state has not evolved at the time of measurement to an eigenstate of the operator represtenti recipient's measurement, then the best retrodiction that the recipient cane nisa to calculate probabilities that various states were prepared. While it isblposoi do this by using the usual predictive formalism and inference based on Bayes’ theoremi $\$ 1$ js t often quite complicated. Aharonct al. [2], in investigating the origin of the arrow of time, formulated a retrodictive formalism that involves assigning a sasted bon knowledge of the measurement outcome. This state is assigned to the system just prior the measurement and evolves backward in time to the preparation event. While this formalism seems to offer a more direct means of retrodiction, Belinfantes $[3$ lighasd that the formalism is only valid in very particular circumstances deattially involve the prepared states, which in his case are eigenstates of a preparationtonpduraving a
flat a priori probability distribution. While the lack of preparation knowledge associated with such an unbiased distribution is sometimes applicable, in general it is not.

In our recent work [4-6] we have found quantum retrodiction useful for a variety of applications in quantum optics. Furthermore the formalism can be generadisexd to be applicable when there is not a dlatiori probability distribution for the prepared states by using Bayes' theorem [6]. The price of this generalisatioarsappebe a loss in symmetry between preparation and measurement. In this paper we adopt \& forma approach to investigate this question more closely. We find that we can replaaealthe us measurement postulate of the probability interpretation of quantum mechanics by a fundamental postulate that is symmetric in measurement and preparation. Thiss alls to formulate a more general theory of preparation and measurement than that of the conventional formalism and makes clear the relationship between the prediatide retrodictive approaches. The new postulate also allows us to see clearhyaliels argument in an appropriate perspective. We show that our new postulate is antirely i accord with the conventional postulate. The retrodictive formalism results santae calculated experimental outcomes of quantum mechanics as does the conventional approach despite the fact that we ascribe a different state to the slyetermen preparation and measurement.

2. Preparation and measurement devices

We consider a situation where Alice operates a device that prepares a quantum system and Bob does subsequent measurements on the system and records the results. The preparation device has a readout mechanism that indicates the state thm siss
prepared in. We associate a preparation readout eventhere $i=1,2, \cdots$, of the preparation device with an operator $\hat{\boldsymbol{r}}_{i}$ acting on the state space of the system, which we call a preparation device operator (PDO). Thisrape not only represents the prepared state but also contains information about any binasts preparation. A bias might arise, for example, because the device may not be abprotduce certain states or Alice may choose rarely to prepare other states. We desctllee operation of the preparation device mathematically by a set of PDOs. The measurementiode also has a readout mechanism that shows the result of the measurement. We assecia measurement readout event, where $j=1,2, \cdots$, of the measurement device with a measurement ade viperator (MDO) $\hat{\Gamma}_{j}$ acting on the state space of the system. Thistoperepresents the state of the system associated with the measurement and contains infation about any bias on the part of Bob or the device in having the measurement reabrdFor example for a von Neumann measurement the MDO would be proportional to a prate projector. We describe the operation of the measurement device mathematicaly a set of MDOs. In general the operators $\hat{\Lambda}_{i}$ need not be orthogonal to each other, and nolmedoperators $\hat{\Gamma}_{j}$.

In order to eliminate the complication of time ution we assume for now that the system does not change between preparation medsurement. For example, there may not be a sufficiently long time between preparaand measurement for evolution to occur. In an experiment Alice chooses a staprepare and, when the readout mechanism indicates that this state has been susfaldy prepared, the preparation readout event i is automatically sent to a computer for recordigb then measures the system. If he chooses, he may then send the neasnt readout evenj obtained to the computer for recording. If the computer receiverecord from both Alice and Bob it
registers combined event (i, j). The measurement device may not produce a readout event corresponding to every possible preparationert and different preparation events may lead to the same measurement readout eventereTts not necessarily a uniform probability that Bob will record all readout eventhe preparation device may be capable of preparing only a limited number of sstatahere is not necessarily a uniform probability that Alice will choose to prepare ladket states. The experiment is repeated many times with Alice choosing states to prepareshes wishes and Bob recording the measurement readout events he chooses. The compunoduces a list of combined events (i, j) from to each experiment, from which various aeare frequencies can be found.

We may wish tpredict the measurement result that will be recorded in a particular experiment on the basis of our knowledgethe actual preparation eveintnd our knowledge of the operation of the measuringiadevthat is, of the set of MDOs. Because of the nature of quantum mechanics, we lussuaannot do this with certainty, the best we can do is to calculate the probabilithiat various possible states will be detected and recorded by Bob. Similarly the bestcan do inetrodicting the preparation event recorded by Alice in a particudxperiment on the basis of our knowledge of the recorded measurement evginand our knowledge of the set of PDOs for the preparation device, is to calculate probitiles for possible preparation events. Our aim in this paper is to postulate a fundamentationship that allows us to calculate such predictive and retrodictive probabilities, whi could then be compared with the occurrence frequencies obtained from the collectiof combined event $(i, j$) recorded
by the computer. In this way a theory of quartundiction is verifiable experimentally.

Difficulties have arisen in studying retrodictio ${ }^{\text {B }}$ [because the usual formulation of quantum mechanics is predictive. That is, meament theory is formulated in terms of predicting measurement outcomes. In order top koreparation and measurement as well as prediction and retrodiction on a symmefiniting, it is convenient to reformulate the probability interpretation of quantum mechanibsy means of postulate (1) below. We show that this leads to the conventional asymimetredictive postulate and, as an assurance that our approach is perfectly equivalant predictive theory, in the Appendix we derive postulate (1) from conventional measuremeheory.

3. Fundamental postulate

A sample space of mutually exclusive outcomes canconstructed from the collection of recorded combined events by identingyithese events with points of the space so that identical events are identified whith same point. A probability measure assigns probabilities between zero and one to thintp such that these probabilities sum to unity for the whole space. The probability asegto a poin(ti, j) is proportional to the number of combined eventis j) identified with that point, that is, to the cercerer frequency of the even(ti,j). Our fundamentqostulate in this paper for the probabilistic interpretation of quantum mechanics is that thebpbolity associated with a particular point (i, j) in this sample space is

$$
\begin{equation*}
P^{\Lambda \Gamma}(i, j)=\frac{\operatorname{Tr}\left(\hat{\Lambda}_{i} \hat{\Gamma}_{j}\right)}{\operatorname{Tr}(\hat{\Lambda} \hat{\Gamma})} \tag{1}
\end{equation*}
$$

where the trace is over the state space of thensystad

$$
\begin{align*}
& \hat{\Lambda}=\sum_{i} \hat{\Lambda}_{i} \tag{2}\\
& \hat{\Gamma}=\sum_{j} \hat{\Gamma}_{j} \tag{3}
\end{align*}
$$

In order to ensure that no probabilities are negative assume tha $\hat{\mathbf{A}}_{i}$ and $\hat{\Gamma}_{j}$ are nonnegative definite. If a combined event from arerixpent chosen at random is recorded then expression (1) is the probability for thatnete be $i,(j)$. That is, expression (1) is the probability that the state prepared by Alicresponds to $\hat{\Lambda}_{i}$ and the state detected by Bob corresponds $t \hat{\boldsymbol{\omega}}_{j}$, given that Bob has recorded the associated meansent event. The essence of the postulate lies in therator of (1); the denominator simply ensures that the total probability for all the reead mutually exclusive outcomes is unity. We note that the fundamental expression o(nll)y requires $\hat{\Lambda}_{i}$ and $\hat{\Gamma}_{j}$ to be specified up to an arbitrary constant. That is,cane multiply all the $\hat{\mathbf{e}}_{j}$ by the same constant without affecting $P^{\Lambda \Gamma}(i, j)$ and similarly fo $\hat{\mathbf{A}}_{i}$. We use this flexibility later to choose $\hat{\Gamma}_{j}$ for convenience such th $\hat{\mathrm{l} t}-\hat{\Gamma}$ is non-negative definite, whefe is the unit operator. We shall also use this flexibility doscing $\hat{\Lambda}_{i}$.

From (1) we can deduce the following probabilities:

$$
\begin{align*}
& P^{\Lambda \Gamma}(i)=\sum_{j} P^{\Lambda \Gamma}(i, j)=\frac{\operatorname{Tr}(\hat{\Lambda} \hat{\Gamma})}{\operatorname{Tr}(\hat{\Lambda} \hat{\Gamma})} \tag{4}\\
& P^{\Lambda \Gamma}(j)=\frac{\operatorname{Tr}\left(\hat{\Lambda} \hat{\Gamma}_{j}\right)}{\operatorname{Tr}(\hat{\Lambda} \hat{\Gamma})} \tag{5}\\
& P^{\Lambda \Gamma}(j \mid i)=\frac{P^{\Lambda \Gamma}(i, j)}{P^{\Lambda \Gamma}(i)}=\frac{\operatorname{Tr}\left(\hat{\Lambda}_{i} \hat{\Gamma}_{j}\right)}{\operatorname{Tr}\left(\hat{\Lambda}_{i} \hat{\Gamma}\right)} \tag{6}\\
& P^{\Lambda \Gamma}(i \mid j)=\frac{\operatorname{Tr}\left(\hat{\Lambda}_{i} \hat{\Gamma}_{j}\right)}{\operatorname{Tr}\left(\hat{\Lambda} \hat{\Gamma}_{j}\right)} \tag{7}
\end{align*}
$$

Expression (4) is the probability that, if an expeatt chosen at random has a recorded combined event, this event includes preparation 1 Likewise (5) is the probability that the recorded combined event includes the measuent eventj. Expression (6) is the probability that, if the recorded combined eventludes eventi, it also includes evgint That is, it is the probability that the event dedoby Bob is the detection of the state corresponding to Γ_{j} if the state prepared by Alice in the experinoentsponds to $\hat{\Lambda}_{i}$. Expression (6) can be obtained by limiting thepkarspace to those events containing and is essentially Bayes’ formula [7]. Likewise i§7the probability that the state prepared by Alice corresponds $\hat{\mathrm{t}}_{i}$ if the event recorded by Bob is the detectidme of t state corresponding to Γ_{j}.

Expression (6) can be used for prediction. Inrotelecalculate the required probability from our knowledge of the PDOQ associated with the preparation event
we must also know every possible Mị̂ description of the operation of the measuring devi8imilarly we can use (7) for retrodiction if we know $\hat{\boldsymbol{x}}_{j}$ and all th $\hat{\mathbf{A}}_{i}$ of the preparation device.

3. Unbiased devices

3.1. A priori probability

Of all the states that Alice might prepare, theren $\dot{\alpha}$ priori probability, which is independent of the subsequent measurement, that sbleooses a particular one. For $P^{\Lambda \Gamma}(i)$ in (4) to represent thaspriori probability the expression $f b r^{\wedge \Gamma}(i)$ must be independent of the operation of measurement deviceA specific condition must be imposed on the measuring device and its operationd this. This condition is that the set of MDOs describing the operation of the meament device must be such that their sum $\hat{\Gamma}$ is proportional to the identity operator on the space of the system, that is

$$
\begin{equation*}
\hat{\Gamma}=\gamma \hat{1} \tag{8}
\end{equation*}
$$

say where γ is a positive number. Then we can replaue the numerator and denominator in (4) by the unit operator and theeimfe of $\hat{\Gamma}$ is removed from the expression, making $P^{\Lambda \Gamma}(i)$ equal to $P^{\Lambda}(i)$ where the latter is defined as

$$
\begin{equation*}
P^{\Lambda}(i)=\frac{\operatorname{Tr} \hat{\Lambda}_{i}}{\operatorname{Tr} \hat{\Lambda}} \tag{9}
\end{equation*}
$$

Expression (9) is th \boldsymbol{E}_{j}-independent, a priori probability that the state prepared by Alice corresponds to $\hat{\Lambda}_{i}$.

It is useful also to define an operator

$$
\begin{equation*}
\hat{\rho}_{i}=\frac{\hat{\Lambda}_{i}}{\operatorname{Tr} \hat{\Lambda}_{i}} \tag{10}
\end{equation*}
$$

The trace of $\hat{\rho}_{i}$ is unity so these non-negative operators danesity operators describing the states Alice may prepare. From the definiti(o)s and (10) we can write as proportional to $P^{\wedge}(i) \hat{\rho}_{i}$. The constant of proportionality always cancelshe expressions for the various probabilities so thereno loss of generality in taking this constant to be unity. Then we have

$$
\begin{equation*}
\hat{\Lambda}_{i}=P^{\wedge}(i) \hat{\rho}_{i} \tag{11}
\end{equation*}
$$

We see explicitly from (11) how the $\mathrm{P} \hat{\mathbb{Q}} \mathrm{O}$ as well as representing the prepared state, also contains information about the bias in itpapation. The biasing factor is simply the a prioripreparation probability.

From (9), (11) and (2) we see that has unit trace so it also is a density operator given by

$$
\begin{equation*}
\hat{\Lambda}=\hat{\rho}=\sum_{i} P^{\Lambda}(i) \hat{\rho}_{i} \tag{12}
\end{equation*}
$$

This is the best description we can give of the stapared by Alice if we do not know which particular preparation or measurement evenolt place but we do know the possible states she can prepare and th甲rioriprobabilities associated with each.

3.2. Unbiased measurements

We call the operation of a measurement device frichw(8) is true, and thus $P^{\Lambda \Gamma}(i)=P^{\Lambda}(i)$, unbiased. Not all measurements are unbiased, as we shedhsd later, but for now we shall focus on measuring devicek mibiased operations. For these it is convenient to define

$$
\begin{equation*}
\hat{\Pi}_{j}=\frac{\hat{\Gamma}_{j}}{\gamma} \tag{13}
\end{equation*}
$$

From (6), (8) and (10) we then obtain

$$
\begin{equation*}
P^{\Lambda \Gamma}(j \mid i)=\operatorname{Tr}\left(\hat{\rho}_{i} \hat{\Pi}_{j}\right) \tag{14}
\end{equation*}
$$

From (13) and (8) the sum $\hat{\varpi} f$ is the unit operator, so these non-negative operators form the elements of aobability operator measure(POM) [8]. Our result (14) is th£undamental postulate of quantum detection theor 8]. Thus our postulate (1) reduces to the conventional postulate for unbiamadasurements. Expressions (14) and
(10) allow us to identify the $\mathrm{PD} \hat{\mathrm{Q}}$ for the preparation of a pure state as being proportional to the corresponding pure state proger

It is worth remarking on the asymmetry of (14hatntlte PDO has become a density operator and the MDO has become a POM eleman the simple case where both the PDO and the MDO are pure state projectasrsfor a von Neumann measurement of a pure state, symmetry is restored. In genbrad,ever, density operators and POM elements have quite different normalisation propiest The asymmetry in preparation and measurement, and hence a time asymmetry, doets arise here through some basic asymmetry in quantum mechanics. Rather it arisomfour request that the probability for Alice's choice of preparation event be inderendof subsequent measurement. This is usually an implicit assumption in the conventlorthat is predictive, probability interpretation of quantum mechanics. The apparanymmetry is reinforced by adopting (14) as a fundamental postulate of measurement theas done for example by Helstrom [8].

A simple, but important, example of unbiased meannent is the case where no measurement is made. For example the measuringiademight not interact with the system at all and thus gives a meter reading of foer all prepared states. As there is only one measurement readout event, there is ond $\mathrm{MDO}_{j}=\hat{\Gamma}$. The only probability that we can assign to a preparationntevie we do not know the preparation readout event and if we have made no measurementhensystem is the priori probability $P^{\wedge}(i)$. Thus if we calculate the retrodictive probæbiPiti$(i \mid j)$ on the basis of the no-measurement state, then we must obtriin (i). From (7) and ($\hat{\boldsymbol{q}}$, must therefore be proportional to the unit operator sondthe measurement must be unbiased.

The single POM element for the measuring device tnmest to ensure that the sum of the elements is the unit operator.

The operation of most ideal measuring devices isalliss unbiased, but this is not always the case. In [6] we discussed two-photorfénence for photons from a parametric down-converter where results from highemmber states are discarded. Another example is in the operational phase meanumts of Nohet al. [9]. Here certain photo-detector readings are not recorded becauseythdo not lead to meaningful values of the operators being measured. The probabilitised for the experimental statistics are then suitably renormalised.

3.3. Unbiased preparation

We say in general that the operation of a preparadevice is unbiased if the PDOs $\hat{\Lambda}_{i}$ are proportional $\hat{\overline{\mathbf{a}}}_{i}$ where

$$
\begin{equation*}
\sum_{i} \hat{\Xi}_{i}=\hat{1} \tag{15}
\end{equation*}
$$

that is, if the operato $\hat{\bar{⿶}}_{i}$ form the elements of a preparation device POMen, Thbr a preparation device with an unbiased operatiof $\boldsymbol{R}^{\Lambda \Gamma}(j)$ is independent o $\hat{\boldsymbol{A}}_{i}$ and

$$
\begin{equation*}
P^{\Lambda \Gamma}(i \mid j)=\operatorname{Tr}\left(\hat{\Xi}_{i} \hat{\rho}_{j}^{\text {retr }}\right) \tag{16}
\end{equation*}
$$

where

$$
\begin{equation*}
\hat{\rho}_{j}^{\text {retr }}=\hat{\Gamma}_{j} / \operatorname{Tr} \hat{\Gamma}_{j} . \tag{17}
\end{equation*}
$$

A specific example of a preparation device withumiased operation is where Alice prepares a spin-half particle in the up orndstate, each with a probability of onehalf. The two preparation device operatôrsp and $\hat{\Lambda}_{\text {down }}$ can then be taken as proportional to density operators given by the eespe projectors $|u p\rangle\langle u p|$ and $|d o w n\rangle$ down \mid. Then $\hat{\Lambda}$ is proportional to the unit operator on the spatee of the particle and we find from (7) that

$$
\begin{equation*}
P^{\Lambda \Gamma}(u p \mid j)=\operatorname{Tr}\left(|u p\rangle\langle u p| \hat{\rho}_{j}^{\text {retr }}\right) \tag{18}
\end{equation*}
$$

which gives the retrodictive probability that thates in which Alice prepared the particle was the up state if Bob detected the spagte retr $=\hat{\Gamma}_{j} / \operatorname{Tr} \hat{\Gamma}_{j}$. This is consistent with (16) with $\hat{\Xi}_{u p}=\left|u p X_{u p}\right|$.

Many preparation devices have biased operations, (sb6) is not applicable to them. For example the preparation of a fieldphoton number state may be constrained through limited available energy. His tcase the set of PDOs would not include projectors for higher photon number statas thus could not sum to be proportional to the unit operator in the wholee ssplace of the field. Alternatively, Alice might prepare the spin-half particle in the upe stat in an equal superposition of the up
and down states only. For such situation we musttlus more general form of the retrodictive probability (7).

4. Time evolution

In the conventional approach, when the state ofenyschanges unitarily between preparation and measurement, we replac $\hat{\boldsymbol{\rho}}_{i}$ by $\hat{\rho}_{i}\left(t_{m}\right)=\hat{U} \hat{\rho}_{i} \hat{U}^{\dagger}$ in the appropriate probability formulae where \hat{U} is the time evolution operator between the prepionat time t_{p} and the measurement timere. Thus in this paper we replâceby $\hat{\Lambda}_{i}\left(t_{m}\right)=\hat{U} \hat{\Lambda}_{i} \hat{U}^{\dagger}$ while noting that $\left.\operatorname{T} \hat{\boldsymbol{U}} \hat{\Lambda}_{i} \hat{U}^{\dagger}\right)=\operatorname{Tr} \hat{\Lambda}_{i} . \quad$ This is clearly consistent with (10) and yields the usual predictive formula (14) withreplaced by $\hat{\rho}_{i}\left(t_{m}\right)$. For the retrodictive probability replacing (7) we obtaising the definition (17),

$$
\begin{equation*}
P^{\Lambda \Gamma}(i \mid j)=\frac{\operatorname{Tr}\left(\hat{U} \hat{\Lambda}_{i} \hat{U}^{\dagger} \hat{\rho}_{j}^{\text {rett }}\right)}{\operatorname{Tr}\left(\hat{U} \hat{\Lambda} \hat{U}^{\dagger} \hat{\rho}_{j}^{\text {retr }}\right)} \tag{19}
\end{equation*}
$$

From the cyclic property of the trace we can revtmit as

$$
\begin{equation*}
P^{\Lambda \Gamma}(i \mid j)=\frac{\operatorname{Tr}\left[\hat{\Lambda}_{i} \hat{\rho}_{j}^{\text {retr }}\left(t_{p}\right)\right]}{\operatorname{Tr}\left[\hat{\Lambda} \hat{\rho}_{j}^{\text {retr }}\left(t_{p}\right)\right]} \tag{20}
\end{equation*}
$$

where $\hat{\rho}_{j}^{\text {retr }}\left(t_{p}\right)=\hat{U}^{\dagger} \hat{\rho}_{j}^{\text {retr }} \hat{U}$ is the retrodictive density operator evolved backolsa in time to the preparation timeThis is the retrodictive formula we obtained prasiy [6] using the conventional approach and Bayes' theorem [W.e note that (20) can be interpreted
as the state collapse taking place at the preparatime t_{p}. This arbitrariness in when we choose to say the collapse occurs is not confinedetrodiction. Even the conventional
 rewritten as $\operatorname{Tr}\left(\hat{\rho}_{i} \hat{U}^{\dagger} \hat{\Pi}{ }_{j} \hat{U}\right)$ where $\hat{U}^{\dagger} \hat{\Pi}_{j} \hat{U}$ can be interpreted as an element of a POM describing the operation of a different measuriregide for which the measurement event takes place immediately after the preparation time

5. Example

As an important example of our approach, we apply this section to the experimental situation envisaged by Belinfante [3]After studying the work of Aharonov et al[2], Belinfante came to the conclusion that retrodiction only valid in very special circumstances. He examined the situation where easmrement device B makes von Neumann measurements with outcomes corresponding to complete set of pure states $\left|b_{j}\right\rangle$. His preparation device, which prepares pureesstlatit \rangle, comprises a measuring device A making von Neumann measurements on a systa a state given by a density operator $\hat{\rho}_{g}$. The predictive probability that the state meaksis $\left|b_{j}\right\rangle$ if the state prepared is $\left|a_{i}\right\rangle$ is $\left\langle\left.\left\langle a_{i} \mid b_{j}\right\rangle\right|^{2}\right.$. Belinfante argued that quantum theory wouldirhe- t symmetric in its probability rules if the retrodiectprobability that the state prepared is $\left|a_{i}\right\rangle$, if the state measured $\left|b_{y}\right\rangle$, is taken $a\left\langle\left.\left\langle b_{j} \mid a_{i}\right\rangle\right|^{2}\right.$, which is the retrodictive inverse of $\left.\left\langle a_{i} \mid b_{j}\right\rangle\right|^{2}$. These two expressions are equal. Belinfanteladed that retrodiction is
valid only if the mixed state of the system befiensurement by A is uniformly "garbled", that is if the density operaforis proportional to the unit operator.

Let us examine this situation in terms of our fiosma The operation of the von Neumann measuring device B is unbiased so we carribe it by a set of PDOs which form a POM with elements

$$
\begin{equation*}
\hat{\Gamma}_{j}=\hat{\Pi}_{j}^{b}=\left|b_{j}\right\rangle\left\langle b_{j}\right| . \tag{21}
\end{equation*}
$$

Similarly the operation of the measuring devices Adescribed by the POM with elements $\hat{\Pi}_{i}^{a}=\left|a_{i}\right\rangle\left\langle a_{i}\right| . \quad$ Thea priori probability for state $\hat{\rho}_{i}=\left|a_{i}\right\rangle\left\langle a_{i}\right|$ to be prepared $\operatorname{irr}\left(\hat{\rho}_{g} \hat{\Pi}_{i}^{a}\right)$.

Thus from (11) we have

$$
\begin{equation*}
\hat{\Lambda}_{i}=\operatorname{Tr}\left(\hat{\rho}_{g}\left|a_{i} X a_{i}\right|\right) a_{i} X\left\langle a_{i}\right| \tag{22}
\end{equation*}
$$

From (14), the predictive probability for an undameasuring device, we find that the probability that the state measured \mid Irg $\left._{j}\right\rangle$ if the state prepared \mid isis \rangle is $\left.\left\langle a_{i} \mid b_{j}\right\rangle\right|^{2}$. This agrees with Belinfante's result. However, the orditative probability (7) becomes, from (21) and (22)

$$
\begin{equation*}
P^{\Lambda \Gamma}(i \mid j)=\frac{\left.\operatorname{Tr}\left(\hat{\rho}_{g}\left|a_{i}\right\rangle\left\langle a_{i}\right|\right)\left\langle a_{i} \mid b_{j}\right\rangle\right\rangle^{2}}{\left.\sum_{i}\left[\operatorname{Tr}\left(\hat{\rho}_{g}\left|a_{i}\right\rangle\left\langle a_{i}\right|\right)\left\langle a_{i} \mid b_{j}\right\rangle\right\rangle^{2}\right]} \tag{23}
\end{equation*}
$$

for the probability that the state preparedai.j if the state measured \mid is $\rangle.$ This agrees with the result of Belinfante if, and only $\hat{\rho}_{g}{ }_{\mathrm{if}}$ 的 proportional to the unit operator.

From the above, we see that the difficulty witlodietion raised by Belinfante is due to use of the retrodictive inverse of an inppiate predictive formula. Belinfante effectively found $P^{\wedge \Gamma}(i \mid j)$ by taking the retrodictive inverse $B f^{\Gamma}(j \mid i)$ in (14).

However (14) is valid only for unbiased measuriagiads and its retrodictive inverse, which is given by (16), is only valid for unb;жжequation devices. It is not surprising then that Belinfante found his retrodictive formudaly worked $\mathrm{i} \hat{p}_{g}$ is proportional to the unit operator as this is precisely the conditieeded to ensure that the PDOs (22) describe the operation of an unbiased preparatiøvide. For biased preparation we must use the retrodictive inverse of thmore general predictive formula (6) which is just (7) as used above. We conclude that retrodiction is vfidid a general preparation device provided the correct formula is used.

6. Conclusion

Overall, the approach adopted in this paper toptbbability interpretation of quantum mechanics puts preparation and measuremeat a more equal footing than in the conventional approach where preparation is ulsyaignored and the measuring device is assumed to be unbiased. We have formulated pproach in terms of more general sets of non-negative definite operators than POMWe have found that for an unbiased measuring device, for which the measuring devicerapors reduce to the elements of a POM, the preparation device operators can be writas density operators, absorbing the normalisation denominator in the general expressiه6). This reduces (6) to (14), the
conventional asymmetric postulate of quantum detient theory. Just as (14) is only applicable for unbiased measuring devices, its adictive inverse (16) is only applicable for unbiased preparation devices. These latter ides are unusual in practice, which leads to Belinfante's objection to retrodiction. ustful theory of retrodiction requires that allowance be made for bias in the preparadeaice. A fully symmetric probability interpretation of quantum mechanics would then alsequire allowance to be made for a biased measurement device as we have done in thiperp

As mentioned in the introduction, the retrodictfoemalism results in the same calculated experimental outcomes of quantum mechasias does the conventional approach based on the Copenhagen interpretation, solite the fact that we ascribe a different state to the system between preparationd measurement. In the conventional approach, the state assigned to the system contailhs information needed to predict the outcomes of possible measurements on the system. this sense, the conventional approach is essentially predictive in nature andthiss a legitimate part of the broader picture that also includes retrodiction. Indeed donventional approach is sufficient in the sense that one can perform retrodictive prohabicalculations by using it together with Bayes' theorem. On the other hand, this appros not necessary in that one could perform predictive probability calculations, albeitomplicated, using the retrodictive formalism plus Bayes' theorem. Thus both the conimeal and retrodictive formalisms should be viewed merely as means for calculatingbapilities with one being more convenient than the other depending on the situatioWe should also mention, however, that retrodiction also raises interesting philosophal questions if one wishes to ascribe a physical existence or reality to the state in theløgical sense. These issues go beyond
trying to decide if the state of the system illy"rethe predictive or the retrodictive state. In [5] it is shown that it is possibllee fortrodictive state to be entangled for some situations where there is no entanglementhin predictive picture. In the predictive formalism, the Many-Worlds interpretation [10] depsi an increasing number of branching universes that include the different pib\$s results of measurements as we go forward in time. In the retrodictive formalismayyWorlds interpretation should look very different. Presumably the branching will acas we go backwards in time from the measurement to the preparation. We do not intendutsue such questions here. As long as the retrodictive formalism yields the actrequantum mechanical probabilities, we view it as an acceptable and sometimes more eaberst approach to quantum mechanics and shall leave the philosophical isstesmetaphysics.

Acknowledgments

This work was supported by the Australian Researccuncil and the U.K. Engineering and Physical sciences Research Council. SMB thatlks Royal Society of Edinburgh and the Scottish Office Education and Lifelong hiagg Department for the award of a Support Research Fellowship.

Appendix

In this appendix we derive our general postulate f(bm the standard predictive postulate (14). As we have already shown how f(14))ws from (1), this establishes
that (1) is both necessary and sufficient for claepa probability interpretation of quantum mechanics.

The operation of the measuring devi风Eused by Bob is described by the set of MDOs $\hat{\Gamma}_{j}$ with $j=1,2, \cdots$. As discussed earlier, we choose for convenietheearbitrary constant in $\hat{\Gamma}_{j}$ such that $-\hat{\Gamma}$ is non-negative definite. This allows us to elefiset of non-negative definite operators $\hat{\Pi}_{k}$ by

$$
\begin{align*}
& \hat{\Pi}_{j}=\hat{\Gamma}_{j} \quad \text { for } j=1,2, \cdots \tag{A1}\\
& \hat{\Pi}_{0}=\hat{1}-\hat{\Gamma} \tag{A2}
\end{align*}
$$

It is clear from (3) that the operatidris sum to the unit operator and thus form the elements of a POM. We can use this POM to defiopertation of another measuring device \bar{M} which has precisely the same operation as th \mathbb{I}, ofxcept that it allows an extra measurement eventk $=0$ to be recorded. The readout for this event can be interpreted as "none of the evenits We can use the usual postulate corresponding t (14) to obtain the probability that measurement neke will be recorded b \bar{M} if the system is prepared in stat $\hat{\boldsymbol{\rho}}_{i}$ as

$$
\begin{equation*}
P^{\Lambda \Pi}(k \mid i)=\operatorname{Tr}\left(\hat{\rho}_{i} \hat{\Pi}_{k}\right) . \tag{A3}
\end{equation*}
$$

Thus

$$
\begin{equation*}
P^{\Lambda \Pi}(i, k)=\operatorname{Tr}\left(\hat{\rho}_{i} \hat{\Pi}_{k}\right) P^{\Lambda}(i) \tag{A4}
\end{equation*}
$$

If Bob had use \bar{M} in place $d \mathscr{A}$, a sample space of combined events \boldsymbol{A} (would have been obtained that is larger than that of tevend obtained with M in that it includes some extra pointsi, (0). If these extra events are ignored, then fheredice between the operations $\bar{\Pi} \bar{G}$ and M vanishes, so the restricted sample space of events (i, k) with $k \neq 0$ will be the same as the sample space of evenitsførM. The probability $P^{\Lambda \Gamma}(i, j)$ will thus be equal to the probability of findiagetlent $i(A)$, with k not zero, in this restricted sample space. Thibapility will be equal $\mathrm{t} \boldsymbol{B}^{\Lambda \Pi}(i, j)$ with a normalisation factor to ensure that the total pboiky for the restricted sample space is unity. From (A4), (A1) and from the definitionw(e)then have

$$
\begin{align*}
P^{\Lambda \Gamma}(i, j)= & \frac{\operatorname{Tr}\left(\hat{\rho}_{i} \hat{\Gamma}_{j}\right) P^{\Lambda}(i)}{\sum_{i, j} \operatorname{Tr}\left(\hat{\rho}_{i} \hat{\Gamma}_{j}\right) P^{\Lambda}(i)} \\
& =\frac{\operatorname{Tr}\left(\hat{\rho}_{i} \hat{\Gamma}_{j}\right) P^{\Lambda}(i)}{\operatorname{Tr}(\hat{\rho} \hat{\Gamma})} \tag{A5}
\end{align*}
$$

where $\hat{\rho}$ is defined by (12). If we now intrôducley defining it as being proportional to $P^{\Lambda}(i) \hat{\rho}_{i}$, which is consistent with (10), and defîneby (2), we find that (A 5) reduces to

$$
\begin{equation*}
P^{\Lambda \Gamma}(i, j)=\frac{\operatorname{Tr}\left(\hat{\Lambda}_{i} \hat{\Gamma}_{j}\right)}{\operatorname{Tr}(\hat{\Lambda} \hat{\Gamma})} \tag{A6}
\end{equation*}
$$

in agreement with (1).

References

[1] Box, G. E. P. and Tiao, G. C., 1BZZZe,sian inference in statistical analysis (Sydney: Addison-Wesley), p. 10
[2] Aharonov, Y., Bergman, P. G. and Lebowitz,.,J.1964,Phys. Rev.134, B1410;
Penfield, R. H., 1966Am. J. Phys34, 422; Aharonov, Y. and Albert, D. Z., 1984 Phys. Rev. D29, 223; Aharonov Y. and Albert, D. Z., 1甲94ys. Rev. D29, 228; Aharonov, Y. and Vaidman, L., 199.1,Phys. A: Math. Gę4, 2315.
[3] Belinfante, F. J. 1975Measurements and Time Reversal in Objective Quantum Theory (Oxford: Pergamon Press).
[4] Barnett, S. M. and Pegg, D. T., 199)/fys. Rev. Lett 76, 4148; Pegg, D. T., Barnett, S. M. and Phillips, L. S., 199.7,mod. Optic,444, 2135; Pegg, D. T., Phillips, L. S. and Barnett, S.M. 1998P,hys. Rev. Lett $\mathbf{1} 1,1604$; Phillips, L, Barnett, S. M. and. Pegg, D. T., 1998hys. Rev. A 58, 3259; Pegg D. T. and Barnett, S. M., 1999, Quantum and Semiclass. Op1, 442; Barnett, S. M. and Pegg, D. T., 1999, Phys. Rev.A, 60, 4965; Barnett, S. M., Pegg, D. T., Jeffers, dJ.Jedrkiewicz, O., 2000,J. Phys. B: At. Mol. Opt. P.h33, 3047; Barnett, S. M., Pegg, D. T., Jeffers, J., Jedrkiewicz, O. and Loudon, R., 20POys. Rev. A62, 022313;

Barnett, S. M., Pegg, D. T., Jeffers, J. and Jeadikẋ, O., 2001Phys. Rev. Lett., 86, 2455.
[5] Pregnell, K. L. and Pegg, D. T., 2001mod. Optic48, 1293.
[6] Barnett, S. M., Pegg D. T. and Jeffers, JQ, L.00nod. Optic,44, 1779.
[7] Boas, M. L. 198Mathematical Methods in the Physical Sciend(Aew York: Wiley), p. 695.
[8] Helstrom, C. W., 197Quantum Detection and Estimation Theor(New York: Academic Press)
[9] Noh, J. W., Fougerés and Mandel, L., 199bys, Rev. Lett.16, 2579.
[10] Everett, H., 1957R̨ev. Mod. Phys 29, 454.

