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in de Sitter space-time
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Vol. IX, n° 2, 1968,

Section A :

Physique théorique.

ABSTRACT. - The quantum theory of scalar field is constructed in the
de Sitter spherical world. The field equation in a Riemannian space-

time is chosen in the = 0 owing to its confor- 
.

mal invariance for m = 0. In the de Sitter world the conserved quantities
are obtained which correspond to isometric and conformal transformations.
The Fock representations with the cyclic vector which is invariant under
isometries are shown to form an one-parametric family. They are inequi-
valent for different values of the parameter. However, its single value
is picked out by the requirement for motion to be quasiclassis for large
values of square of space momentum. Then the basis vectors of the Fock

representation can be interpreted as the states with definite number of
particles. For m = 0 this result can also be obtained from the condition
of conformal invariance. It is proved that the above requirement for
motion to be quasiclassic cannot be satisfied at all in the theory with

equation + (me) 2 = 0.
RESUME. - La theorie quantique d’un champ scalaire libre est construite

dans le monde spherique de de Sitter. L’équation de champ dans l’espace-

temps riemannien est choisie comme []03C6 + 1 6R03C6+ (me) 2 == 0 tenant
compte de son invariance conforme pour m = 0.
Dans le cas de de Sitter, on a obtenu des quantités conservees qui cor-
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respondent aux transformations isometriques et conformes. On montre
que les representations de Fock avec un vecteur cyclique qui est invariant
par rapport au groupe d’isométries forment une famille a un seul parametre
et sont non équivalentes pour des valeurs differentes de ce parametre.
Cependant, en exigeant que Ie mouvement soit quasi classique pour de
grandes valeurs du carre de l’impulsion spatial, on choisit une seule valeur
du parametre pour laquelle les vecteurs de base de l’espace de Fock sont
interpretes comme des états avec un nombre défini de particules. Pour m = 0,
on obtient ce résultat aussi de la condition de l’invariance conforme. On

a établi que dans la théorie avec n’est pas

possible de satisfaire l’exigence que le mouvement soit quasi class ique.

1. INTRODUCTION

In an earlier paper [1] we constructed the quantum field theory in the
two-dimensional de Sitter space-time. As we have known, Thirring

. carried out an analogous work [2]. The results obtained in [1] will be
extended here to the four-dimensional de Sitter space-time.

Interest to the de Sitter space-time increased considerably during the
last years in connection with investigations of elementary particles sym-
metries [3, 4]. From our point of view the following circumstance is also
not of small importance. In the quantum field theory space-time relations
are set usually by the Minkowsky geometry and, consequently, there is
no possibility for a satisfactory account of gravitation. It seems therefore

desirable to adapt the quantum field theory machinery to the general case
of a pseudo-Riemannian space-time. As the latter appears in the problem
globally it is not possible to confine oneself to consideration of its local

metric properties. The de Sitter space-time is a remarkable example in
this respect for it differs from the Minkowsky one not only by curvature
but also by topology.

First of all the question arises as to how the Fock-Klein-Gordon equation
is to be written in the general case of space-time with a nonvanishing curva-
ture. Replacement alone of partial derivatives by covariant ones 

gives
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where

Most authors consider this equation. However, the equation of scalar
field with zero mass must be conformal invariant while equation = 0
does not satisfy this requirement by any means. The conformal invariant

equation is

where R is the scalar curvature of the space-time and n is its dimensionality.
Penrose [5] considered just such an equation for n = 4. One may speak
about conformal invariance of eq. ( 1. 2) in view of the identity

the quantities marked by ~ being defined through the metric tensor

So we come to the equation

We disagree in the choice of the scalar field equation with Nachtmann [6]
who developed Thirring’s results considering eq. ( 1.1 ) in the four dimen-
sional de Sitter space-time.
We note, that eq. (1.3) corresponds to the classical one = m2c2

so that the operator of the square of momentum is

In the Heisenberg picture the field operator obeys eq. (1 . 3) chosen by us.
To fix a certain Heisenberg picture one must choose a space-like hyper-
surface E such that the Cauchy data on E define uniquely a solution of
eq. (1.3) in the whole space-time. We shall consider a real field and
so the field operator must obey the following commutation relations on ~
(see for example [7]) :
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where M, Mi, M2 ~ 03A3, 03C603B1 = #, is the vector element of area of E

and f (M) is an arbitrary function.
The following step in the canonical quantization method is to be a choice

of representation of commutation relations (1.5). It would seem quite
easy to do this by considering a state vector as a wave functional 
the argument lp(M) being a function on E, by dealing with the field ope-
rator lp(M) as with an operator of multiplication of ’I’ by its argument and

by equating the operator However,

one encounters here the difficulties of functional integration because the
probability of a field configuration is given by the functional integral

) Besides, on this way one does not obtain a corpuscular inter-

pretation of the quantum field theory even in the case of the flat space-
time. It is known that in the latter case the Fock representation and the
second quantization method enable one to avoid these difficulties. Using
the method suggested in [8, 9] one can construct different Fock represen-
tations in the case of curved spacetime, too. In essence every Fock represen-
tation is characterized completely by the quasivacuum state vector, otherwise
by the cyclic vector of representation of the algebra generated by operators
~p(M), M E L. In the general case we do not known a
principle which would enable to prefer one of the quasivacua and so to
single out the true vacuum. If the space-time admits however an isometric
group, then there is a class of quasivacua which are invariant with respect
to the group. For the Minkowsky space-time this class consists of the
single element which is just the vacuum state. One can assert the same
about any static space-time. The corresponding Fock representation then
gives the corpuscular interpretation of quantized field.
The principle purpose of this paper consists in defining the vacuum state

and in attaining the corpuscular interpretation of the quantum field theory
in the de Sitter space-time. Although the de Sitter space-time is a space
of constant curvature and consequently admits the isometry group with
maximal number of parameters it turns out that the requirement of inva-
riance with respect to the group alone is not sufficient: it picks over an one-
parametric family of invariant quasivacuum states. In paper [1] the cor-

respondence principle was used in order to choose the vacuum among
them: under some conditions particle motion must be quasiclassic and
defined by the geodesic equations. It has turned out that this principle
is inapplicable to eq. (1.1) if n &#x3E; 2, but gives a good result for eq. (1.3).
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For us this fact is another argument in favour of eq. (1.3). As in the two-

dimensional case the correspondence principle together with the principle of
invariance has enabled us to define the vacuum and the creation and annihi-

lation operators in the de Sitter space-time of the real dimensionality n = 4.
As a consequence of compactness of the hypersurface E in the de Sitter

space-time the set of linear independent particle creation operators is

denumerable. This circumstance facilitates essentially the consideration
of the problems related to the functional integration because the correct
definition of integral over a denumerable set of variables is well known.
Fortunately the de Sitter space-time in this respect differs from the Min-
kowsky space-time, where one is to deal with continual integration. In

the latter case one uses the trick of enclosing the system into a box and enlarg-
ing the dimensions of the box to infinity after calculations having been
performed. In view of compactness of the box the set of degrees of freedom
becomes denumerable but the price for this is the lost of the isometric
invariance. The latter arises only in the limit of infinite dimensions.
From this point of view the de Sitter space-time may be considered as an
invariant box. The de Sitter space-time turns into the Minkowsky space-
time and the de Sitter group turns into the Poincare group in the limit
of infinite radius. So one may consider the field theory in the de Sitter
space-time as a calculation method for the Minkowsky space-time where
the continuum of degrees of freedom is replaced by a denumerable set.
In contrast to the usual box-method the invariance of the theory is main-
tained till passing to the limit of infinite dimensions.

2. VARIATIONAL PRINCIPLE

One obtains eq. (1.3) by variation with respect to ~p of the action integral

The scalar curvature is R = where
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Following Gilbert [10] the variation

gives the (metric) energy-momentum tensor Obviously

where is the canonical energy momentum tensor:

To find 5R we notice that

Therefore

The identity

being valid for any scalar A and any tensor Bllv allows to prove the equality

provided that = 0, = 0 on the boundary of the integration
region. From where we find the energy-momentum tensor

This tensor has the following properties :
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Therefore the integral

does not depend on the choice of E (is conserved) if this hypersurface
is analogous to the one on which commutation relations (1.5) are defined
and çx is a Killing’s vector field i. e. + =0. If m = 0, this

integral is also conserved when ~" is a conformal Killing’s vector i. e.

f being a scalar function.

Integral (2 . 5) can be considerably simplified. It can be shown [11]
that owing to the generalized Killing’s equation (2.6)

whence

Consequently

where

Since + = 0,

by the Stockes’ theorem. For Killing’s vector f = 0 and only the integral
of the canonical energy-momentum tensor remains.
We note finally that the integral

does not depend on E provided qJ and # satisfy eq. (1.3) and lp + is Her-
mitean conjugate to rp.
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3. SOLUTION OF FIELD EQUATION

We will dwell on the de Sitter space-time of the 1 St type which can be
represented as a sphere (a hyperboloid of one sheet) in the (n + I)-dimen-
sional Minkowsky space

Therefore the isometry group of the de Sitter space-time is isomorphic
to the homogeneous Lorentz group of the embedding Minkowsky space.

In the de Sitter space-time

and so eq. ( 1. 3) can be written as

It is convenient to introduce the coordinates 0, ~ ..., ~n -1 (*) :

~ 1, ... , ~n -1 being coordinates on the sphere kî + ... + kn = 1. If one

denotes

where = ~-ka ~-03BEi ~-ka ~-03BEj, the interval of the de Sitter space-time is written

in the form

(*) We agree the capital Latin indices A, B, ... to take values from 0 to n, the small
ones from the beginning of the alphabet a, b, ..., h to take values from 1 to n, the rest
small Latin indices i, j, ... to take values from 1 to n - 1. As beforenow the Greek

indices take values from 0 to n - 1.
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and eq. (3.1) as

where

is the Laplace operator on the sphere kaka = 1 and m = is a dimen-

sionless parameter.
Eq. (3.3) can be solved by separation of variables. Putting

one obtains

It is well-known that the functions E which are regular on the sphere
kaka = 1 can be expressed through the harmonic polynomials of ka

s being the degree of the polynomial.
In the embedding euclidean space the coeflicients form a sym-

metric tensor with zero trace for any pair of indices : caaa3...as = o.

They are subjected to no limitation when s  2. The eigenvalues x2 are
equal to

The substitution

results in the equation

, H-2
where ~ = ~ + 2014-2014 .
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The physical meaning of quantum number p can be explained as follows.

The square of space momentum is equal to p 2 on the sphere
cos 8

0 = const and in conformity with (1.4) the operator

corresponds to it.

The eigenvalues of the latter are

We pass now to eq. (3.4). A pair of its linear independent solution is

or otherwise

where = ~ (1 - F is the hypergeometric function.

We will list the following properties of these functions:
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9. can be expanded into a Fourier series of positive frequency
exponentials.

10. For rn2 - 0

The simplicity of the last expression is an additional argument in credit
of eq. ( 1. 3).

Finally we give the following approximate expression

the dots denoting terms of the order p - 3 and still higher. Further consi-
deration of the n-dimensional case is not of special interest and we shall
satisfy ourselves with the case of n = 4.
With the above considerations we can solve the Cauchy problem for

eq. (3.3). Let be given

where q and p are symmetric tensors with zero trace for any pair of indices.
Then

where
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4. FIELD COMMUTATOR

We will deduce commutation relations between q and p from (1.5).
As a bypersurfacc E it is possible to choose the sphere 0 = const. Generally

so that on the sphere e = const

Assuming 8 = 0 and denoting

one obtains the commutation relations from (1.5)

Further, for any pair of harmonic polynomials

one has

Consider a tensor 
as ; bi , , , b~ which results from the product

after symmetrization in indices al, ... , aS and subtraction

of trace. Apparently

for any symmetric tensor with zero trace for any pair of indices.
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On the basis of (4.4) and (4. 5) one concludes that in expansion (3.12)

Assuming in (4.2) that

one finds

Now from (4.3) it is not difficult to get the commutation relations which
were sought for

Using (4.6) one can get the commutator

Explicit commutation gives

where

It can be proved that for any vectors xa and yo

where

C: is the Gegenbauer polynomial, namely

ANN. INST. POINCARf, A-lX-2 9’
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Assuming

one gets

Further, it can be shown [1] that

P _,~ being the Legendre function :

and its argument being equal to

For this it is sufficient to prove that the integral (4.10) as a function of 81
satisfies the same differential equation and the same initial conditions as
the determinant (4.7), namely

In differentiating the integral (4.10) with respect to 0i one is to use the

equalities _

It follows from (4.10) that the trigonometric series
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is the Fourier series of the function

where e(x) is the sign of x. Since

the sum of series (4.9) is

This is the relation between the commutator in the four-dimensional
space-time D and that in the two dimensional space-time which is just

~ Q as it has been shown in [1].
Geometric meaning of invariant G is the following: if the geodetic

distance between ç) and (°2’ yy) is rr then G = Chr. The conditions
G = 1 and G  1 define respectively the light cone and its exterior. The
conditions G &#x3E; 1 and 0 1 &#x3E; 62 mean that the point (81, ç) is « in the future »
with respect to the point (e2, ~).

5. CONSERVED QUANTITIES

If the space-time admits a continuous group of conformal transforma-
tions (i. e. the vector field (0153 existe such that + = 2 f and

lp is a solution of eq. (1. 2) then’" is also a solution of the same

equation, Z being the operator

If f = 0 (and the conformal transformation turns into the isometric one)
this last assertion is equally true for eq. (1.3).
For the de Sitter space-time the general form of Z can be obtained from

the corresponding operator in the embedding Minkowsky space-time.
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In the latter the general form of the conformal Killing’s vector is [11]

where CBA, DA, CA, D, are constants and (C, X) = CBXB. There-

fore, the general form of the conformal Killing’s vector in the de Sitter
space-time is

In fact, the vector’ is to be tangent to sphere (3.1). This means that

CAXA = 0 whence D = 0, DA = 1 r2CA and consequently equality (5.2).
Further since for a vector defined by (5 .1 ) we have

then the dilatation coeflicient f of conformal transformation (5.2) is

So we have found the general form of Z in the de Sitter space-time. Its

decomposition into linear independent parts is

The operator Z = - Z corresponds to embedding space-time rotation
(AB) (BA)

in the plane (AB)

The operatorz Z define nonisometric conformal transformations. Passing
(A)

to the coordinates r, 0, ~ one obtains
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The components of the vector in the coordinates 8, ç can be easily deter-
mined from (5.4). We substitute this vector into (2.6) and choose the
sphere 0 = const as E. By analogy with (5.3) we have

Further we will consider again n = 4.
The calculation of M and M reduces to taking integrals of the form (4.4)

(A) (AB)
and

Using the combinations

which are more convenient for calculation of M and M. One obtains
(a) (aO)

as result of integration

The dot over u signifies the differentiation with respect to B.



126 N. A. CHERNIKOV AND E. A. TAGIROV

The integrals M do not depend on 0 and are

If m = 0 the integrals M do not depend on 9 as well and are

The operators Z define the structure of the isometric group and together
(AB)

with Z define the structure of the conformal transformation group
(A)

The conserved quantities satisfy the same commutation relations, namely :
for any m

and for m = 0

6. INVARIANT QUASIVACUM STATES

According to [8, 9] the general form of the quasivacuum state is defined
by eq. 0 ) = 0 where
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The linear transformation S = R + iQ has the following properties

and at last

if not all q’s vanish. It is natural to call the operators and the

hermitean conjugate operators z 1, , , a$ quasiparticle annihilation and

creation operators respectively. The operator of the quasiparticle number
is

where

the linear transformation Q being the inverse of Q.
An arbitrary state can be represented by a Fock 

b+ being a power series in the operators z i . , , pa. The state vector norm

~ ~ ) _ ~ 0 M~ ~ 0 ~ is defined from the condition  0 [ 0 ) = 1.
Among all quasivacua there are such which are invariant with respect

to the de Sitter space-time isometric group. One can simply show that
t he invariance under time reflection 02014~20140 takes place if

However, we confine ourselves to weaker condition of invariance under
continuous isometries, what means

c are constants, they will turn out to be zero.
( AB)
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To use this condition one should express q and p through z and z~:

Substituting this expressions into (5.5) we first obtain

where

So the condition of invariance under space rotations gives

These equations can be written more simply if one introduces the poly-
linear forms

They are harmonic polynomials in x of degree s and in y of degree t. Besides,

Ssr(x, y) = x). Instead of (6.6) one has the equivalent equations

We will prove at first that Ssr(x, y) = 0 if s ~ t. In fact, the operator

~~2014 2014 as applied to (6.7) gives
Xa Xb
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Consequently Ssr(x, y) = 0 if s # t.

Further, from eq. (6.7) it follows that Sst depends only on invariant
combinations xaxa, xaya. Therefore the form Sst(x, y) is proportional
to (4.8) for s = t.

Thus, we have proved that

where RS and Q$ are real numbers. Owing to (6.2) Qs &#x3E; 0 for any s.

Substitution of (6.8) into (6 .1 ) gives

whence one finds

Now M expressed through z and z+ takes on a far simpler form. Indeed,
(ab)

according to (5.5) and (6.10)

We pass to the quantities M and have
(a0)
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The numbers ~ which enter (6 . 3) are equal to zero as is seen from (6.11)
(AB)

and (6.12). Owing to the invariance condition

Then

To solve the reccurrent relations (6.13) we notice that the numbers y~+1,
through which M~.i(0) are expressed (see § 3, prop. 8) satisfy the relation

~’Y~+ 2 = (s + i )(s + 2) + m2. Substitution into (6.13)

gives 03BBs + 03BBs+1 = 0, whence

Since

then ~, ‘ ~ 1. This is the single limitation on £ given by the isometry
group. If the invariance under time reflection 0 - - 0 is taken into account

then as was already pointed out, RS is to be zero, i. e. ~, = ~* and the space
reflections give no additional limitations. We shall not require for the
present to be real.
The numbers involved in (6.14) are equal to

Going over from the operators Zal...as to
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one obtains finally

The operators c obey the commutation relations

as it follows from the expression

The quasiparticle number operator is

We will show that two Fock spaces constructed on invariant cyclic
vectors with different values of A have no common state vectors. Really,
from expressions (6.18) and their inverse expressions

it follows that

for different values of /L This transformation is similar to those which
were introduced by N. N. Bogolubov in his microscopic theory of super-
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fluidity [12]. It follows from (6.21) that the vector I 0 ) ÅZ is proportional
to ~ 0 where

Our assertion is proved if it turns out that

To evaluate this norm we choose an orthonormal basis

in the space of symmetric tensors with zero trace for any pair of
indices. By definition

Expanding Cat...as in this basis

we find

Consequently

where

It is easy to see that
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the summation performed here may be justified owing to

but for the same reason one obtains (6.22)

7. TRANSITION TO SECOND QUANTIZATION

When m = 0 the unique state vector is picked out among the invariant
quasivacua which is also invariant under conformal transformations.

Indeed, from (5.6) and (6.20) one obtains

So the requirement of conformal invariance gives A = 0 and the state 0 ~
for ~, = 0 and m = 0 is the true vacuum. The conserved quantities for
this case are

The relation between the operators q, p, c is also essentially simplified
in this case:
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Using these formulae, one can write the field operator p as

where

and is the hermitean conjugate of 03C6-. Through the operator 03C6-
the particle number operator N and conserved quantities (7.1) are repre-
sented as (2.8) namely

The colons signify as usual the normal product. So proceeding from the
canonical method we come to the method of second quantization.

However, the operators N and M (in contrast to M) can be written in
(AB) (A)

the form (7 . 3) not only for m = 0, ~ = 0 but for 0 I À  1. Indeed,
using (6.20) one can represent the field operator as (7.2) in the general
case. Of course, now ~p- is another operator, namely

Then it is not difficult to verify the correctness of our assertion.
The connection between the canonical method and the method of second

quantization can be shown by considering the Casimir operators constructed
from M, Really, since

(AB)
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then one can write eq. (3.2) as

Similarly one has the identity

This correspondence shows that the operator

is to be called operator of the square of field mass in units of 2014 . It is

easy to show, that

Further,

Therefore the operator of the square of space momentum (3.5) can be
written as

Similarly as (7.5)

and in correspondence with (7.6) the operator

should be called operator of the square of field space momentum at the
moment of time 0. It is easy to see that
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where as in (3.7) p = s + 2014_2014. Of course, ’ we have a right to write

these formulae only for n = 4, but their validity can be proved for arbi-
trary n  2.
We do not consider in detail the remaining Casimir operators but we

note that for n = 4 the second Casimir operator ~ ’1ABLALB is constructed
out of the operators

having the following properties

Equally we do not dwell on the Casimir operators of conformal group.
Now our main purpose is to prove that if ~, = 0 the state 0 ) is the true

vacuum for m2 &#x3E; 0 too. We have known that on the one hand this is the
case for m = 0 and arbitrary r and, on the other hand, for 0 and r = co
when the de Sitter space-time is converted into the Minkowsky space-time.
However, we may not do the same assertion for m2 &#x3E; 0 and 0  r  co

since in our preceding considerations the constant A was limited by the
only condition I À I  1 (and by stronger condition - 1  ~,  1 if time
reflection 0 - - 8 was taken into account). In other respects À might be
an arbitrary function of m2 and r. For that reason we will consider the
method of second quantization in detail and try to obtain conclusive argu-
ments in favour of our assertion that, if A = 0 the state 0 ) is the true
vacuum for m2 &#x3E; 0 too.

8. THE VACUUM

A classic free particle moves in space-time along geodesics, i. e. its equa-
tions of motion are

The corresponding quantum motion is described by the wave function 03C6-
satisfying eq. (1.3). As in the flat space-time not any solution of eq. (1.3)



137QUANTUM THEORY OF SCALAR FIELD IN DE SITTER SPACE-TIME

is a wave function. In the space of all solutions wave functions form a

subspace of maximal dimension on which integral (2.8) is positive definite
for 03C8 = 03C6-, cp+ = (?")*. Deliberately this subspace does not contain
real solutions for their scalar squares (2 . 8) are zero. Any complex solution
of (3.3) can be represented as (3.12) where

and P, Q are some symmetric tensors with zero trace for any pair of indices.
Scalar square (2.8) is equal to

The desired subspace of solutions is defined first of all by the condition
that

and after substitution of (8.4) into (8.3) the quadratic form of P is to be
positive definite.

Certainly the condition of positive definitness alone is not sufficient to

pick out uniquely the subspace. We demand the subspace (8.4) to be
invariant with respect to the isometry group of the de Sitter space-time.
This means that if qJ - belongs to subspace (8 . 4) then does as well. It

(AB)
is not difficult to show, that the space rotations leads to eq. (6.6) for A,
whence

~ being some complex numbers. (8 . 3) is positive definite if I  1. Consi-
deration of rotations in the planes (a0) gives 03BBs = (- 1)s03BB. Putting

One obtains the subspace of solutions (7.4). Naturally one has the same
arbitrariness in the choice of À. and again for m = 0 the condition of confor-
mal invariance gives A = 0.

ANN. INST. POlNcARÉ, A-IX-2 10
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Having used all invariance conditions we turn to the connection
between (1.3) and (8.1). If one represents ~p as

then from eq. (1.3) the two classic equations follow in the limit ~ --~ 0:
the Hamilton-Jacobi equation

and the equation of continuity

Geodesics are characteristics of eq. (8.5). The condition ~-03C3 ~x0  0 cor-

responds to motion of a particle « into the future ». For the Sitter space-
time one has

These equations can be solved by separation of variables:

Assuming

where A and x2 are constants, we obtain



139QUANTUM THEORY OF SCALAR FIELD IN DE SITTER SPACE-TIME

From (8.7) (8.9) we find

Particularly for m = 0

Now let us consider a separate summand in (7.4):

It is an eigenfunction of the operator of the square of space momentum (3 . 5).
We shall be interested in its time dependence

because the remaining factor does not depend on m but for m = 0 the defi-
nition of vacuum state does not give rise to doubt. For the same reason
we do not need to consider eq. (8.8) (8.10). If m = 0 the function

is evidently of quasiclassic form exactly and describes the motion of a
particle « into the future » only when À = 0 and in this case K = + 1).
So this condition for m = 0 gives the same result as the conformal invariance
condition. We try to proceed in the same way when m2 &#x3E; 0.
We demand the function (8.12) to be of quasiclassic form and to describe

the motion of a particle « into the future » at least for large values of s..
We rewrite (8.12) as
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where, obviously

From this the identity follows

Comparing it with (8 . 7) we find A = 3i. Further

where

Now we use approximate expression (3. 9) and up to higher orders in 1 we
s

obtain

i. e.

since depends essentially on 0 this expression may coincide with (8.9)
,only if ~, = 0 and then" = 3i(s + 1 ) irrespectively of m. Thus, we obtain
Bthat the wave function of a particle is (7.4) for £ = 0 i. e.

Subjecting to commutation relations (6.17) we return to the second

quantized theory, but now we know that ~, = 0 irrespectively of mass.

We would like to make two remarks in conclusion. It is not difficult

to obtain the results analogous to (8.15) for any n &#x3E; 2 too. Since in the

de Sitter space-time eq. ( 1.1 ) is obtained from ( 1. 3) by replacing m2 by
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m2 - n(n - 2) 4 2r2 c2 
then (1.3) describes in quasidassic approximation the

motion of a particle with effective mass m2 - n(n-2)  2r2 2 rather than m.~ 4 c
It may be assumed therefore that (1.1) describes the field with selfaction
rather than the free field.

Substituting = 0, (j 0 and po from (8.11) and A = n, K = np we obtain
one more approximate expression for the function u; (0) valid for large
values of p :

It is convenient to use this expression in the vicinity of r = oo when one

passes in the limit to the flat space-time. Assuming tg 8 = tc r, p = kr
one finds
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