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Quantum Theory of Spin Dynamics of Exciton-Polaritons in Microcavities
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We present the quantum theory of momentum and spin relaxation of exciton-polaritons in micro-
cavities. We show that giant longitudinal-transverse splitting of the polaritons mixes their spin states,
which results in beats between right- and left-circularly polarized photoluminescence of microcavities,
as was recently experimentally observed [M. D. Martin et al., Phys. Rev. Lett. 89, 077402 (2002)]. This
effect is strongly sensitive to the bosonic stimulation of polariton scattering.
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to collisions of excitons with structure imperfections,
impurities, or other excitons.

n
~��n� ~kk�, which splits �1 and �1 exciton states, is the real
Semiconductor microcavities now attract enhanced
attention due to their potential applications in opto-
electronic devices of the new generation [1]. Bosonic
stimulation of scattering of exciton-polaritons in micro-
cavities paves the way to the realization of polariton
lasers [2]. Exciton-polaritons are known to keep their
coherence while relaxing in energy and momentum,
which shows a high potentiality of microcavities for
applications as optical and quantum memory elements
[3]. Recent experiments have revealed a very peculiar
spin dynamics of polaritons in microcavities [4–6] while
no adequate theory accounting for both bosonic proper-
ties of polaritons and their spin has been reported until
now, to the best of our knowledge. In this Letter, we
present a model describing energy and spin relaxation
of exciton-polaritons in realistic microcavities. It allows
one to understand the unusual polarization beats recently
observed in the emission of microcavities [6].

Among the principal mechanisms of spin relaxation of
charge carriers in semiconductors, the most important are
the Elliott-Yafet [7], Bir-Pikus [8], and Dyakonov-Perel
[9] mechanisms connected with the intrinsic symmetry
properties of crystals, spin-orbit and exchange interac-
tions. The exciton spin in quantum wells (QWs) has �1
and �2 projections on the structure axis allowed for the
ground state. ��and �� circularly polarized light excites
�1 and �1 excitons, respectively. Linearly polarized
light excites a linear combination of �1 and �1 exciton
states, so that the total exciton-spin projection on the
structure axis is zero in this case. Because of the splitting
between �1 and �2 doublets, the spin-relaxation mecha-
nisms listed above are less effective for excitons and,
more importantly, new strong mechanisms arise. The
most universal of them, referred to as the Maialle mecha-
nism (Ref. [10]), is due to the longitudinal-transverse
splitting of the radiative exciton doublet. We discuss this
mechanism below for the case of exciton-polaritons, in
which it is expected to be especially strong. Also, the
exciton spin relaxation may be realized via spin flips due
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Exciton-polaritons have the same spin structure as
excitons. The difference between their spin-relaxation
dynamics and spin relaxation of bare excitons was ex-
pected to come from the different shape of dispersion
curves and, consequently, different energy relaxation
dynamics.

Exciton spin dynamics in semiconductors can be ex-
perimentally studied by measurement of time-resolved
polarization of light emitted by excitons. The polariza-
tion degree of light } is given by the difference between
the concentrations of spin �1 and �1 excitons (N�

and N�, respectively) normalized to the total exciton
concentration:

} �
N� � N�

N� � N�
: (1)

The goal of this work is to calculate the polarization
degree of the photoluminescence from polariton states in
a microcavity in the strong coupling regime.

It is convenient to treat polariton relaxation in micro-
cavities using the pseudospin formalism [11]. The pseu-
dospin vector ~SS is defined on the two quantum states
belonging to the radiative exciton (polariton) doublet. It
describes both the exciton-spin state and its dipole mo-
ment orientation. The density matrix of the system can be
expressed as [11]

�~kk �
N~kk
2
I � ~SS ~kk � ~��; (2)

where I is the identity matrix, ~�� is the Pauli-matrix
vector, and ~SS ~kk is the mean pseudospin of the polaritons
with the wave vector ~kk. It corresponds to the Poincaré
vector of partially polarized light (see Fig. 1). The general
form of the polariton Hamiltonian in terms of pseudo-
spin reads

H~kk � En� ~kk� � ~��n� ~kk� � ~SS ~kk; (3)

where En� ~kk� is the energy of the nth polariton branch, and
~�� � ~kk� is an effective magnetic field. The z component of
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FIG. 2. Longitudinal-transverse (TM-TE) polariton splitting
calculated for a microcavity sample from Ref. [6] for the lower
polariton branch (LPB) and the upper polariton branch (UPB)
for different detunings.

FIG. 1. A Poincaré sphere with a pseudospin. The equator of
the sphere corresponds to different linear polarizations, while
the poles correspond to two circular polarizations.
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magnetic field normal to the structure plane. X and Y
components of ~��n� ~kk� are nonzero if the exciton states
having dipole moments in, say, x and y directions
have different energies. This is typically the case for ex-
citons having nonzero in-plane wave vectors. The split-
ting of exciton states with dipole moments parallel and
perpendicular to the wave vector is called longitudinal-
transverse splitting. It results from the long-range ex-
change interaction. The splitting is zero for ~kk � 0 and
increases as a function of k, following a square root law at
large k [12].

In microcavities, the splitting of longitudinal and
transverse polariton states is amplified due to the exciton
coupling with a cavity mode. Note that the cavity mode
frequency is also split in TE- and TM-light polariza-
tions [13]. The resulting polariton splitting strongly de-
pends on the detuning between the cavity mode and the
exciton resonance and, in general, increases with k.
Figure 2 shows the longitudinal-transverse polariton
splitting �k calculated for a microcavity sample from
Ref. [6] at different detunings. Polariton eigenfrequen-
cies in the two polarizations have been found numerically
by a transfer matrix method. One can see that the splitting
is very sensitive to the detuning and has different signs
for the upper and lower polariton branches. The differ-
ence in signs comes from different exciton oscillator
strengths causing different Rabi splittings in TE and
TM polarizations.

We now proceed with deriving the kinetic equation for
polarized polariton ensembles. The populations of po-
laritons having pseudospin projections �1=2 onto the
axis of the structure N�

~kk
are given by the diagonal ele-

ments of the density matrix (2). Consider scattering of
polaritons from a quantum state 1 to the quantum state 2.
As the spin is conserved during the scattering act, the
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variation of population of polaritons in state 2 can be
written as

�
dN�

2

dt

�
1!2

� W12N�
1 �N

�
2 � 1�; (4)

where W12 describes the scattering probability from
quantum state 1 to quantum state 2.

Equation (4) describes the variation of the diagonal
elements of the density matrix (2) if all pseudospins are
parallel to the z axis. The dynamics of the off-diagonal
elements of the density matrix is less trivial. To obtain it
within the same approximations as above, let us consider
the evolution of the density matrix �2, describing state 2,
due to the scattering from state 1 as a result of the linear
transformation of �1:�

@�2
@t

�
1!2

� T̂T�1T̂T
�: (5)

Because of the stimulated scattering, the coefficients of
the matrix of transformation T̂T can depend on state 2, i.e.,
are functions of N2 and ~SS2. This relationship can be found
explicitly by using the following expansion for T̂T:

T̂T � AI � ~BB � ~��: (6)

After simple algebraic calculations, one gets
�
@�2
@t

�
1!2

�

�
1

2
�A2 � B2�N1 � 2A� ~SS1 � ~BB�

�
I

� 	AN1
~BB� �A2 � B2� ~SS1
 � ~��: (7)

It is obvious from the symmetry of the problem that ~BB is
parallel to ~SS2. Comparison of Eqs. (4) and (5) allows one
to obtain
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A2 � B2 � W12

�
N2

2
� 1

�
; (8)

2A ~BB � W12
~SS2: (9)

Using Eqs. (7)–(9) one can express the variation of the
density matrix:�

@�2
@t

�
1!2

�
1

2
W12

�
N1

�
N2

2
� 1

�
�2 ~SS1 � ~SS2

�

�W12

�
1

2
N1
~SS2 �

�
N2

2
� 1

�
~SS1

�
~��: (10)

Taking into account both incoming and outgoing transi-
tions, one finally obtains the equations for the occupation
numbers and the pseudospins:

dN2

dt
� �W12 �W21�

�
1

2
N1N2 � 2� ~SS1 � ~SS2�

�

� �W12N1 �W21N2�; (11)

d ~SS2
dt

�
1

2
�W12 �W21��N1

~SS2 � N2
~SS1�

� �W12
~SS1 �W21

~SS2�: (12)

Once we have obtained a set of equations describing the
dynamics of the population and pseudospin for two
states, it is easy to generalize it for the case of n states
and to take into account both the finite polariton lifetime
and the pseudospin rotation induced by the polariton
longitudinal-transverse splitting:

dN~kk
dt

��
1

� ~kk
N ~kk�

X
~kk0

�
�W~kk0 ~kk�W~kk ~kk0 �

�
1

2
N~kkN ~kk0 � 2� ~SS ~kk �

~SS ~kk0 �
�

��W~kk0 ~kkN ~kk0 �W~kk ~kk0N~kk�
�
; (13)

d ~SS ~kk
dt

��
1

�s ~kk
~SS ~kk�

X
~kk0

1

2
	 �W~kk0 ~kk�W~kk ~kk0 ��N~kk

~SS ~kk0 �N~kk0
~SS ~kk�

� �W~kk0 ~kk
~SS ~kk0 �W~kk ~kk0

~SS ~kk�
� 	 ~�� ~kk�
~SS
:

(14)

The pseudospin lifetime ��1
s ~kk

� ��1
~kk

� ��1
sl was intro-

duced to take into account all the other processes of
pseudospin relaxation (characterized by the time �sl)
and the radiative decay of polaritons described by the
recombination time. The last term in (14) describes the
pseudospin precession around an effective in-plane mag-
netic field [10,12] determined by exciton longitudinal-
transverse splitting. This term is responsible for oscilla-
tions of the circular polarization degree of the emitted
light. ~�� ~kk is parallel to the in-plane wave vector for ~kk k ~xx;
for other directions of ~kk it makes with the x axis twice the
same angle as ~kk [10]. Important specifics of spin relaxa-
tion in microcavities comes from the stimulated scatter-
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ing of polaritons. While in the case of spontaneous
scattering the Maialle mechanism manifests itself in
oscillations between �1 and �1 exciton-spin states
[14], if stimulated scattering dominates, one of two al-
lowed exciton-spin states can be populating much more
efficiently than the other one, which may result in the
increase of the circular polarization degree of photo-
luminescence with time.

The general set of kinetic equations (13) and (14)
simplifies significantly if the problem has a cylindrical
symmetry. In this case the in-plane pseudospin projection
S�~kk is orthogonal to ~�� ~kk for each given quantum state.
Therefore, we can use instead of Eqs. (13) and (14) a
reduced set of equations depending only on magnitudes of
polariton wave vectors:

dNk
dt

� �
1

�k
Nk �

X
k0

�
� ~WWk0k � ~WWkk0 �

�
1

2
NkNk0 � 2SzkS

z
k0

�

� � ~WWk0kNk0 � ~WWkk0Nk�

� 2� �WWk0k � �WWkk0 �S
�
kS
�
k0

�
; (15)

dSzk
dt

� �
1

�sk
Szk �

X
k0

�
1

2
� ~WWk0k � ~WWkk0 ��NkS

z
k0 � Nk0S

z
k�

� � ~WWk0kS
z
k0 �

~WWkk0S
z
k�

�
��kS

�
k;

(16)

dS�k
dt

� �
1

�sk
S�k �

X
k0

�
1

2
� �WWk0k � �WWkk0 �NkS�k0

�
1

2
� ~WWk0k � ~WWkk0 �Nk0S�k

� � �WWk0kS
�
k0 �

~WWkk0S
�
k�

�
��kS

z
k;

(17)

where �WWkk0 �
1
2�

R
2�
0 W~kk0 ~kk cos2’d’, ~WWkk0 �

1
2�

R
2�
0 �

W~kk0 ~kkd’, ’ is the angle between ~kk and ~kk0, and
Nk � 2�kN~kk.

While numerically solving the Boltzmann equations
(15)–(17), we have considered polaritons scattering with
acoustic phonons or electrons, the polariton-polariton
interaction being neglected. This scattering, although
essential for energy relaxation of exciton-polaritons,
does not seem to affect strongly the circular polarization
degree of emission of microcavities since it conserves the
total spin. The parameters of the structure are taken from
Ref. [6], and the analytical expressions for matrix ele-
ments describing polariton scattering are taken from
Ref. [15]. We have assumed the QWs contain a free elec-
tron gas of density 1011 cm�2 at the lattice tempera-
ture (10 K).

Figure 3 shows the polarization degree of light emitted
by the cavity at zero detuning for three different emission
017401-3
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FIG. 3. Polarization degree of the photoluminescence at dif-
ferent angles (0�, 14� , and 20�) from the model CdTe micro-
cavity at zero detuning, calculated using Eqs. (15)–(17) for
a pulsed nonresonant excitation with the excitation power
of 7 J per pulse (a)–(c) and excitation power of 700  J per
pulse (d)–(f). The maximum value polariton occupation num-
bers achieved at the given angles are indicated on the figures.
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FIG. 4. The same as Fig. 3, but for the negative detuning of
�10 meV.
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angles. Two different pumping powers, below and above
stimulation threshold, are considered. Below threshold,
the spin system is in the collision-dominated regime [14]
and the polarization degree displays a monotonic decay.
The decay is faster for the angle of 20� due to the larger
value of the TE-TM splitting at this angle. The situation
changes dramatically above the stimulation threshold.
The polarization degree oscillates with a period propor-
tional to the inverse of the TE-TM splitting. It is also
sensitive to the pumping power due to the interplay be-
tween stimulated scattering and spin rotation. For zero
detuning between cavity and exciton modes, the polar-
ization degree of the ground state does not oscillate
because of the vanishing value of the TE-TM splitting
at this point. Figure 4 shows the same as Fig. 3 but for
�10 meV detuning, where a strong bottleneck effect
arises (i.e., the maximum of polariton population corre-
sponds to a nonzero in-plane wave vector of light). In our
case the bottleneck region lies at about 20�.

The polarization degree at the bottleneck is found to
influence the polarization degree of all lower states.
Indeed, in contrast to the zero detuning case, the polar-
izations at the ground state and at 14� look similar, both
experiencing damped oscillation.

In conclusion, we have developed a formalism describ-
ing polariton relaxation in semiconductor microcavities
taking into account self-consistently stimulated scatter-
ing and spin-relaxation processes induced by the splitting
between TE- and TM-polarized exciton-polaritons. The
interplay between these two effects leads, in the high
excitation regime, to pronounced oscillations in circular
polarization of light emitted by the cavity. This demon-
017401-4
strates, in agreement with recent experimental observa-
tions, that the conservation of the spin coherence is
compatible with fast relaxation processes. This result
opens a way to realization of spin-optronics devices based
on microcavities.
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