
QUANTUM THEORY of TUNNELING

Mohsen Razavy

University of Alberta, Canada

Contents

Pr	eface		v
1	A B	rief History of Quantum Tunneling	1
2	Some Basic Questions Concerning Quantum Tunneling		
	2.1	Tunneling and the Uncertainty Principle	9
	2.2	Decay of a Quasistationary State	11
3	Sem	i-Classical Approximations	23
	3.1	The WKB Approximation	23
	3.2	Method of Miller and Good	31
	3.3	Calculation of the Splitting of Levels in a Symmetric Double-Well Potential Using WKB Approximation	35
4		eralization of the Bohr-Sommerfeld Quantization e and its Application to Quantum Tunneling	41
	4.1	The Bohr-Sommerfeld Method for Tunneling in Symmetric and Asymmetric Wells	45
	4.2	Numerical Examples	48

53

53

57

73

105

.

.

5		now's Theory, Complex Eigenvalues, and the Wave ction of a Decaying State
	5.1	Solution of the Schrödinger Equation with Radiating Boundary Condition
	5.2	The Time Development of a Wave PacketTrapped Behind a Barrier

5.3	A More Accurate Determination of the Wave Function of a Decaying State	61
5.4	Some Instances Where WKB Approximation and the Gamow Formula Do Not Work	66

6 Simple Solvable Problems

6.1	Confining Double-Well Potentials	73
6.2	Time-dependent Tunneling for a δ -Function Barrier	79
6.3	Tunneling Through Barriers of Finite Extent	82
6.4	Tunneling Through a Series of Identical Rectangular Barriers	90
6.5	Eckart's Potential	96
6.6	Double-Well Morse Potential	99

7 Tunneling in Confining Symmetric and Asymmetric Double-Wells

7.1	Tunneling When the Barrier is Nonlocal
7.2	Tunneling in Separable Potentials
7.3	A Solvable Asymmetric Double-Well Potential
7.4	Quasi-Solvable Examples of Symmetric and Asymmetric Double-Wells

	7.5	Gel'fand-Levitan Method	24
	7.6	Darboux's Method	27
	7.7	Optical Potential Barrier Separating Two Symmetric or Asymmetric Wells	28
8	A C	lassical Description of Tunneling 13	39
9	Tun	neling in Time-Dependent Barriers 14	49
	9.1	Multi-Channel Schrödinger Equation for Periodic Potentials . 1	50
	9.2	Tunneling Through an Oscillating Potential Barrier	52
	9.3	Separable Tunneling Problems with Time- Dependent Barriers	57
	9.4	Penetration of a Particle Inside a Time- Dependent Potential Barrier	62
10	Dec	ay Width and the Scattering Theory 10	67
	10.1	Scattering Theory and the Time-Dependent Schrödinger Equation	68
	10.2	An Approximate Method of Calculating the Decay Widths . 1	73
	10.3	Time-Dependent Perturbation Theory Applied to the Calculation of Decay Widths of Unstable States	76
	10.4	Early Stages of Decay via Tunneling	81
	10.5	An Alternative Way of Calculating the Decay Width Using the Second Order Perturbation Theory	84
	10.6	Tunneling Through Two Barriers	86

	10.7	Escape from a Potential Well by Tunneling Through both Sides
	10.8	Decay of the Initial State and the Jost Function
11		Method of Variable Reflection Amplitude Applied olve Multichannel Tunneling Problems 205
	11.1	Mathematical Formulation
	11.2	Matrix Equations and Semi-classical Approximation for Many-Channel Problems
12		n Integral and Its Semi-Classical Approximation in ntum Tunneling 219
	12.1	Application to the S-Wave Tunneling of a Particle Through a Central Barrier
	12.2	Method of Euclidean Path Integral
	12.3	An Example of Application of the Path Integral Method in Tunneling
	12.4	Complex Time, Path Integrals and Quantum Tunneling 237
	12.5	Path Integral and the Hamilton-Jacobi Coordinates
	12.6	Remarks About the Semi-Classical Propagator and Tunneling Problem
13	Heis	senberg's Equations of Motion for Tunneling 251
	13.1	The Heisenberg Equations of Motion for Tunneling in Symmetric and Asymmetric Double-Wells
	13.2	Tunneling in a Symmetric Double-Well
	13.3	Tunneling in an Asymmetric Double-Well

	13.4	Tunneling in a Potential Which Is the Sum of Inverse Powers of the Radial Distance	261
	13.5	Klein's Method for the Calculation of the Eigenvalues of a Confining Double-Well Potential	267
14	Wig	mer Distribution Function in Quantum Tunneling	277
	14.1	Wigner Distribution Function and Quantum Tunneling	281
	14.2	Wigner Trajectory for Tunneling in Phase Space	284
	14.3	Wigner Distribution Function for an Asymmetric Double-Well	290
	14.4	Wigner Trajectory for an Oscillating Wave Packet	290
	14.5	Margenau-Hill Distribution Function for a Double-Well Potential	292
15		nplex Scaling and Dilatation Transformation Applied he Calculation of the Decay Width	297
	to t	he Calculation of the Decay Width	297 307
	to ti Mul	he Calculation of the Decay Width	307
	to t Mul 16.1	he Calculation of the Decay Width	307 307
	to t] Mul 16.1 16.2	he Calculation of the Decay Width	307 307 311
	to t ¹ Mul 16.1 16.2 16.3	he Calculation of the Decay Width tidimensional Quantum Tunneling The Semi-classical Approach of Kapur and Peierls Wave Function for the Lowest Energy State Calculation of the Low-Lying Wave Functions by Quadrature Method of Quasilinearization Applied to the Problem of	307 307 311
	to t Mul 16.1 16.2 16.3 16.4	he Calculation of the Decay Width tidimensional Quantum Tunneling The Semi-classical Approach of Kapur and Peierls Wave Function for the Lowest Energy State Calculation of the Low-Lying Wave Functions by Quadrature Method of Quasilinearization Applied to the Problem of	307 307 311 313 318
	to t ¹ Mul 16.1 16.2 16.3 16.4 16.5	he Calculation of the Decay Width	 307 307 311 313 318 323

17 Group and Signal Velocities

18		e-Delay, Reflection Time Operator and Minimum neling Time 351
	18 1	Time-Delay in Tunneling
	10.1	
	18.2	Time-Delay for Tunneling of a Wave Packet
	18.3	Landauer and Martin Criticism of theDefinition of the Time-Delay in Quantum Tunneling
	18.4	Time-Delay in Multi-Channel Tunneling
	18.5	Reflection Time in Quantum Tunneling
	18.6	Minimum Tunneling Time
19	Mor	e about Tunneling Time 381
	19.1	Dwell and Phase Tunneling Times
	19.2	Büttiker and Landauer Time
	19.3	Larmor Precession
	19.4	Tunneling Time and its Determination Using the Internal Energy of a Simple Molecule
	19.5	Intrinsic Time
	19.6	A Critical Study of the Tunneling Time Determination by a Quantum Clock
	19.7	Tunneling Time According to Low and Mende 402
20	Tun	neling of a System with Internal Degrees of Freedom 411
	20.1	Lifetime of Coupled-Channel Resonances
	20.2	Two-Coupled Channel Problem with Spherically Symmetric Barriers

İ

ы.

د

	20.3	A Numerical Example	.5
	20.4	Tunneling of a Simple Molecule	.8
	20.5	Tunneling of a Molecule in Asymmetric Double-Wells 42	24
	20.6	Tunneling of a Molecule Through a Potential Barrier 42	29
	20.7	Antibound State of a Molecule	14
21		ion of a Particle in a Space Bounded by a face of Revolution 43	9
	21.1	Testing the Accuracy of the Present Method	14
	21.2	Calculation of the Eigenvalues	15
22	Rela	ativistic Formulation of Quantum Tunneling 45	53
	22.1	One-Dimensional Tunneling of the Electrons	53
	22.2	Tunneling of Spinless Particles in One Dimension 45	58
	22.3	Tunneling Time in Special Relativity	31
23	The	Inverse Problem of Quantum Tunneling 47	'1
	23.1	A Method for Finding the Potential from the Reflection Amplitude	72
	23.2	Determination of the Shape of the Potential Barrier in One-Dimensional Tunneling	73
	23.3	Prony's Method of Determination of Complex Energy Eigenvalues	76
	23.4	A Numerical Example	78
	23.5	The Inverse Problem of Tunneling for Gamow States 4'	79

24		e Examples of Quantum Tunneling in Atomic and ecular Physics 4	85
	24.1	Torsional Vibration of a Molecule	185
	24.2	Electron Emission from the Surface of Cold Metals	1 88
	24.3	Ionization of Atoms in Very Strong Electric Field	491
	24.4	A Time-Dependent Formulation of Ionization in an Electric Field	493
	24.5	Ammonia Maser	497
	24.6	Optical Isomers	500
	24.7	Three-Dimensional Tunneling in the Presence of a Constant Field of Force	501
25	Exa	mples from Condensed Matter Physics	511
	25.1	The Band Theory of Solids and the Kronig-Penney Model	511
	25.2	Tunneling in Metal-Insulator-Metal Structures	515
	25.3	Many Electron Formulation of the Current	516
	25.4	Electron Tunneling Through Hetero-structures	525
26	Alp	ha Decay	531
In	dex	5	541