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The concept of entropy is fundamental to thermalization, yet appears at odds with basic principles
in quantum mechanics. Statistical mechanics relies on the maximization of entropy for a system at
thermal equilibrium. However, an isolated many-body system initialized in a pure state will remain
pure during Schrödinger evolution, and in this sense has static, zero entropy. The underlying
role of quantum mechanics in many-body physics is then seemingly antithetical to the success of
statistical mechanics in a large variety of systems. Here we experimentally study the emergence of
statistical mechanics in a quantum state, and observe the fundamental role of quantum entanglement
in facilitating this emergence. We perform microscopy on an evolving quantum system, and we see
thermalization occur on a local scale, while we measure that the full quantum state remains pure.
We directly measure entanglement entropy and observe how it assumes the role of the thermal
entropy in thermalization. Although the full state remains measurably pure, entanglement creates
local entropy that validates the use of statistical physics for local observables. In combination with
number-resolved, single-site imaging, we demonstrate how our measurements of a pure quantum
state agree with the Eigenstate Thermalization Hypothesis and thermal ensembles in the presence
of a near-volume law in the entanglement entropy.

When an isolated quantum system is significantly per-
turbed, for instance due to a sudden change in the Hamil-
tonian, we can predict the ensuing dynamics with the
resulting eigenstate distribution induced by the pertur-
bation or so-called “quench” [1]. At any given time, the
evolving quantum state will have amplitudes that de-
pend on the eigenstates populated by the quench, and
the energy eigenvalues of the Hamiltonian. In many
cases, however, such a system can be extremely diffi-
cult to simulate, often because the resulting dynamics
entail a large amount of entanglement [2–5]. Yet, sur-
prisingly, this same isolated quantum system can ther-
malize under its own dynamics unaided by a reservoir
(Figure 1) [6–8], so that the tools of statistical mechan-
ics apply and challenging simulations are no longer re-
quired. In this case, a quantum state coherently evolving
according to the Schrödinger equation is such that most
observables can be predicted from a thermal ensemble
and thermodynamic quantities. Strikingly, even with in-
finitely many copies of this quantum state, these same
observables are fundamentally unable to reveal whether
this is a single quantum state or a thermal ensemble. In
other words, a globally-pure quantum state is apparently
indistinguishable from a mixed, globally-entropic ther-
mal ensemble [6, 7, 9, 10]. Ostensibly the coherent quan-
tum amplitudes that define the quantum state in Hilbert
space are no longer relevant, even though they evolve in
time and determine the expectation values of observables.
The dynamic convergence of the measurements of a pure
quantum state to the predictions of a thermal ensemble,
and the physical process by which this convergence oc-
curs, is the experimental focus of this work.
On-going theoretical studies over the past three

decades [6, 7, 9–13] have, in many regards, clarified the
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FIG. 1. Schematic of thermalization dynamics in
closed systems. An isolated quantum system at zero tem-
perature can be described by a single pure wavefunction |Ψ〉.
Subsystems of the full quantum state appear pure, as long
as the entanglement (indicated by grey lines) between sub-
systems is negligible. If suddenly perturbed, the full system
evolves unitarily, developing significant entanglement between
all parts of the system. While the full system remains in a
pure, and in this sense zero-entropy state, the entropy of en-
tanglement causes the subsystems to equilibrate, and local,
thermal mixed states appear to emerge within a globally pure
quantum state.

role of quantum mechanics in statistical physics. The
conundrum surrounding the agreement of pure states
with extensively entropic thermal states is resolved by
the counter-intuitive effects of quantum entanglement.
A canonical example of this point is the Bell state of two
spatially separated spins: while the full quantum state
is pure, local measurements of just one of the spins re-
veals a statistical mixture of reduced purity. This local
statistical mixture is distinct from a superposition, be-
cause no operation on the single spin can remove these
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fluctuations or restore its quantum purity. In such a way,
the spin’s entanglement with another spin creates local
entropy, called entanglement entropy. Entanglement en-
tropy is not a phenomenon restricted to spins, but exists
in all quantum systems that exhibit entanglement. And
while probing entanglement is a notoriously difficult ex-
perimental problem, this loss of local purity, or, equiva-
lently, the development of local entropy, establishes the
presence of entanglement when it can be shown that the
full quantum state is pure.
In this work, we directly observe a globally pure quan-

tum state dynamically lose local purity to entanglement,
and in parallel become locally thermal. Recent exper-
iments have demonstrated analogies between classical
chaotic dynamics and the role of entanglement in few-
qubit spin systems [14], as well as the dynamics of ther-
malization within an ion system [15]. Furthermore, stud-
ies of bulk gases have shown the emergence of thermal
ensembles and the effects of conserved quantities in iso-
lated quantum systems through macroscopic observables
and correlation functions [16–19]. We are able to di-
rectly measure the global purity as thermalization occurs
through single-particle resolved quantum many-body in-
terference. In turn, we can observe microscopically the
role of entanglement in producing local entropy in a ther-
malizing system of itinerant particles, which is paradig-
matic of the systems studied in statistical mechanics.
In such studies, we will explore the equivalence be-

tween the entanglement entropy we measure and the ex-
pected thermal entropy of an ensemble [11, 12]. We fur-
ther address how this equivalence is linked to the Eigen-
state Thermalization Hypothesis (ETH), which provides
an explanation for thermalization in closed quantum sys-
tems [6, 7, 9, 10]. ETH is typically framed in terms
of the small variation of observables (expectation val-
ues) associated with eigenstates close in energy [6, 7, 10],
but the role of entanglement in these eigenstates is
paramount [12]. Indeed, fundamentally, ETH implies an
equivalence of the local reduced density matrix of a single
excited energy eigenstate and the local reduced density
matrix of a globally thermal state [20], an equivalence
which is made possible only by entanglement and the
impurity it produces locally within a global pure state.
The equivalence between these two seemingly distinct
systems, the subsystems of a quantum pure state and
a thermal ensemble, ensures thermalization of most ob-
servable quantities after a quantum quench. Through
parallel measurements of the entanglement entropy and
local observables within a many-body Bose-Hubbard sys-
tem, we are able to experimentally study this equivalence
at the heart of quantum thermalization.

EXPERIMENTAL PROTOCOL

For our experiments, we utilize a Bose-Einstein con-
densate of 87Rb atoms loaded into a two-dimensional op-
tical lattice that lies at the focus of a high resolution
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FIG. 2. Experimental sequence (A) Using tailored optical
potentials superimposed on an optical lattice, we determin-
istically prepare two copies of a six-site Bose-Hubbard sys-
tem, where each lattice site is initialized with a single atom.
We enable tunneling in the x-direction and obtain either the
ground state (adiabatic melt) or a highly excited state (sud-
den quench) in each six-site copy. After a variable evolution
time, we freeze the evolution and characterize the final quan-
tum state by either acquiring number statistics or the local
and global purity. (B) We show site-resolved number statis-
tics of the initial distribution (first panel, strongly peaked
about one atom with vanishing fluctuations), or at later times
(second panel) to which we compare the predictions of a
canonical thermal ensemble of the same average energy as the
quenched quantum state (J/(2π) = 66 Hz, U/(2π) = 103 Hz).
Alternatively, we can measure the global many-body purity,
and observe a static, high purity. This is in stark contrast to
the vanishing global purity of the canonical thermal ensemble,
yet this same ensemble accurately describes the local number
distribution we observe. (C) To measure the atom number
locally, we allow the atoms to expand in half-tubes along the
y-direction, while pinning the atoms along x. In separate ex-
periments, we apply a many-body beam splitter by allowing
the atoms in each column to tunnel in a projected double-well
potential. The resulting atom number parity, even or odd, on
each site encodes the global and local purity.

imaging system [21, 22]. The system is described by the
Bose-Hubbard Hamiltonian,

H = −(Jx
∑

x,y

a†x,yax+1,y + Jy
∑

x,y

a†x,yax,y+1 + h.c.)

+
U

2

∑

x,y

nx,y(nx,y − 1), (1)

where a†x,y, ax,y, and nx,y = a†x,yax,y are the bosonic cre-
ation, annihilation, and number operators at the site lo-
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cated at {x, y}, respectively. Atoms can tunnel between
neighboring lattice sites at a rate Ji and experience a
pairwise interaction energy U when multiple atoms oc-
cupy a site. We have independent control over the tun-
neling amplitudes Jx and Jy through the lattice depth,
which can be tuned to yield J/U ≪ 1 to J/U ≫ 1.
In addition to the optical lattice, we are able to super-
impose arbitrary potentials using a digital micromirror
device (DMD) placed in the Fourier plane of our imaging
system [23].
To initiate the experiment, we isolate a 2 × 6 plaque-

tte from a larger low-entropy Mott insulator with unity
filling as shown in Figure 2A [24]. At this point, each sys-
tem is in a product state of single-atom Fock states on
each of the constituent sites. We then suddenly switch on
tunneling in the x-direction while the y-direction tunnel-
ing is suppressed. Each chain is restricted to the original
six sites by introducing a barrier at the ends of the chains
to prevent tunneling out of the system. These combined
steps quench the six-site chains into a Hamiltonian for
which the initial state represents a highly excited state
that has significant overlap with an appreciable number
of energy eigenstates. Each chain represents an identical
but independent copy of a quenched system of six parti-
cles on six sites, which evolves in the quenched Hamilto-
nian for a controllable duration.
In the data that follow, we realize measurements of

the quantum purity and on-site number statistics (Fig-
ure 2C). For measurements of the former, we append
to the quench evolution a beam splitter operation that
interferes the two identical copies by freezing dynam-
ics along the chain and allowing for tunneling in a pro-
jected double-well potential for a prescribed time [25]. In
the last step for both measurements, a potential barrier
is raised between the two copies and a one-dimensional
time-of-flight in the direction transverse to the chain is
performed to measure the resulting occupation on each
site of each copy.
The ability to measure quantum purity is crucial to

assessing the role of entanglement in our system. To-
mography of the full quantum state would typically be
required to extract the global purity, which is particu-
larly challenging in the full 462-dimensional Hilbert space
defined by the itinerant particles in our system. Fur-
thermore, while in spin systems global rotations can be
employed for tomography [26], there is no known anal-
ogous scheme for extracting the full density matrix of a
many-body state of itinerant particles. The many-body
interference described here, however, allows us to extract
quantities that are quadratic in the density matrix, such
as the purity [25]. After performing the beam splitter
operation, we can obtain the quantum purity of the full
system and any subsystem simply by counting the num-
ber of atoms on each site of one of the six-site chains
(Figure 2C). Each run of the experiment yields the par-

ity P (k) = Πip
(k)
i , where i is iterated over a set of sites of

interest in copy-k. The single-site parity operator p
(k)
i re-

turns 1 (-1) when the atom number on site-i is even (odd).

It has been shown that the beam splitter operation yields
〈P (1)〉 = 〈P (2)〉 = Tr (ρ1ρ2), where ρi is the density ma-
trix on the set of sites considered for each copy [4, 25, 27].
Because the preparation and quench dynamics for each
copy are identical, yielding ρ1 = ρ2 ≡ ρ, the average par-
ity reduces to the purity: 〈P (k)〉 = Tr(ρ2). When the
set of sites considered comprises the full six-site chain,
the expectation value of this quantity returns the global
many-body purity, while for smaller sets it provides the
local purity of the respective subsystem.
By studying measurements with and without the beam

splitter, our data immediately illustrates the contrast be-
tween the global and local behavior and how thermaliza-
tion is manifest (Figure 2B). We observe that the global
many-body state retains its quantum purity in time, af-
firming the unitarity of its evolution following the quench.
This global measurement also clearly distinguishes the
quantum state we produce from a canonical thermal en-
semble with orders of magnitude smaller purity. Yet, we
observe that the number statistics locally converge to a
distribution of thermal character, which can be faithfully
modeled by that same thermal ensemble. In what follows,
we experimentally explore the question suggested by this
observation: how does a pure state that appears globally
distinct from a thermal ensemble possess local properties
that mirror this thermal state?
The growth of entanglement following a quench is key

to understanding how entropy forms within the subsys-
tems of a pure quantum state, thereby facilitating ther-
malization [2, 4, 5, 28]. When two parts of a system
are entangled, the full quantum state ρ cannot be writ-
ten in a separable fashion with respect to the Hilbert
spaces of the subsystems [29, 30]. As has been shown
theoretically [4, 27] and recently observed experimen-
tally [25], this causes the subsystems ρA and ρB to be
in an entropic mixed state even though the full many-
body quantum state is pure [30]. The mixedness of the
subsystem can be quantified by the second-order Rényi
entropy SA = −Log(Tr[ρ2A]), which is the logarithm of
the purity of the subsystem density matrix. While the
von Neumann entropy is typically used in the context
of statistical mechanics, both quantities grow as a sub-
system density matrix becomes mixed and increasingly
entropic. In the Rényi case, the purity in the logarithm
quantifies the number of states contributing to the sta-
tistical mixture described by the density matrix.

ENTANGLEMENT ENTROPY DYNAMICS AND
SATURATION

We first study the dynamics of the entanglement en-
tropy immediately following the quench, for varying sub-
system sizes (Figure 3). Initially, we observe an ap-
proximately linear rise in the entropy, with similar slope
among the subsystems considered (Figure 3 inset) [2].
After an amount of time that depends on the subsys-
tem size, the entanglement entropy saturates to a steady-
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FIG. 3. Dynamics of entanglement entropy. Starting from a low-entanglement ground state, a global quantum quench
leads to the development of large-scale entanglement between all subsystems. We quench a six-site system from the Mott
insulating product state (J/U ≪ 1) with one atom per site to the weakly interacting regime of J/U = 0.64 (J/(2π) = 66 Hz)
and measure the dynamics of the entanglement entropy. As it equilibrates, the system acquires local entropy while the
full system entropy remains constant and at a value given by measurement imperfections. The dynamics agree with exact
numerical simulations with no free parameters (solid lines). Error bars are the standard error of the mean (S.E.M.). For
the largest entropies encountered in the three-site system, the large number of populated microstates leads to a significant
statistical uncertainty in the entropy, which is reflected in the upper error bar extending to large entropies or being unbounded.
Further information about statistics is discussed in the Supplementary Materials [24]. Inset: slope of the early time dynamics,
extracted with a piecewise linear fit [24]. The dashed line is the mean of these measurements.

state value, about which there are small residual tempo-
ral fluctuations. The presence of residual fluctuations
are, in part, attributable to the finite-size of our system.
An exact numerical calculation of the dynamics with no
free parameters shows excellent agreement with our ex-
perimental measurements. Crucially, the data indicate
that while the subsystems acquire entropy in time (Fig-
ure 3,A-C), the full system entropy remains constant and
is small throughout the dynamics (Figure 3D). The high
purity of the full system allows us to conclude that the
dynamical increase in entropy in the subsystems origi-
nates in the propagation of entanglement between the
system’s constituents. The approximately linear rise at
early times (Figure 3 inset) is related to the spreading
of entanglement in the system within an effective light
cone [2, 31, 32]. Furthermore, in analogy to the growth of
thermodynamic entropy in an equilibrating classical me-
chanical system, such as a gas in a closed container, we
observe the growth of local entropy in a closed quantum
mechanical system. In the quantum mechanical case,
however, the mechanism responsible for entropy is en-
tanglement, which is absent from a system modeled by
classical mechanics.

When a system thermalizes, we expect that the sat-
urated values of local observables should correspond to

the predictions of a statistical ensemble. By analogy, if
the entanglement entropy plays the role of thermal en-
tropy, then in a thermalized pure state we expect exten-
sive growth in the entanglement entropy with subsystem
volume. When the entanglement entropy in a quantum
state grows linearly with the size of the subsystem con-
sidered, it is known as a volume law. Ground-breaking
theoretical work using conformal field theory has shown
that indeed, at long times, a volume law is expected for
a quenched, infinite, continuous system, while only an
area law with a log correction is expected for the ground
state [2, 33, 34]. Characterizing the large amount of en-
tanglement associated with a volume law is particularly
challenging because it results in nearly every entry of the
density matrix having small, but importantly non-zero
magnitude.

Using the techniques outlined in this work, we show
measurements displaying a near volume law in the en-
tanglement entropy (Figure 4A). A linear growth with
volume in the entanglement entropy occurs when each
subsystem incoherently populates a number of states that
scales with the size of the subsystem Hilbert space. This
is because, for the Bose-Hubbard model, the Hilbert
space is approximately exponential in the lattice size,
which results in a linear growth in SA = −Log(Tr[ρ2A]).
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Furthermore, the exact slope of the entanglement en-
tropy versus subsystem volume depends on the average
energy of the thermalized pure state [35]. By contrast,
we can prepare the ground state of the quenched Hamil-
tonian by adiabatically reducing the lattice depth. Here,
the superfluid ground state of the Bose-Hubbard model
has suppressed entanglement, which is predicted to in-
cur slow logarithmic growth in the entanglement entropy
with subsystem volume [33] . Our measurements clearly
distinguish the two cases. The back-bending of the en-
tanglement entropy as the subsystem surpasses half the
system size indicates that the state is globally pure. In
the quenched state, the high global purity is striking in a
state that locally appears completely dephased, which is
behavior often associated with environmentally-induced
decoherence or other noise sources.

We further observe near quantitative agreement be-
tween the exact dependence of the entanglement entropy
with subsystem volume and the prediction of a thermal
ensemble. We make this comparison by computing a
canonical thermal ensemble ρT with an average energy
that is the same as the quenched quantum state pro-
duced experimentally [35]. The gray line in Figure 4A is
the Rényi (thermal) entropy as a function of subsystem
size for this calculated thermal state. Although our lim-
ited system size prevents comparison over a large range
of subsystem sizes, the initial rise of the entanglement en-
tropy with subsystem volume mimics that of the thermal
entropy. Despite their similarity, it is worth emphasizing
the disparate character of the thermal and entanglement
entropy. The entanglement entropy (either the Rényi
or von Neumann) is instantaneously present in the pure
quantum state after coherent unitary evolution, arising
from the non-separability of the quantum state between
the subsystem and traced out degrees of freedom. On the
other hand, the von Neumann thermal entropy within
a subsystem of a mixed thermal state is the thermody-
namic entropy in statistical mechanics, which could be
extracted from irreversible heat flow experiments on the
subsystem [12]. Therefore, the similarity of the Rényi
entropies we observe points to an experimental equiva-
lence between the entanglement and thermodynamic en-
tropy [35, 36].

The behavior of the entanglement entropy provides a
clean framework for understanding the entropy within
thermalizing, closed quantum systems. However, one of
the most famous features of entanglement, the presence
of non-local correlations, appears inconsistent with what
one expects of thermalized systems. In particular, the
massive amount of entanglement implied by a volume law
suggests a large amount of correlation between disparate
parts of the system, while a key feature of a thermal
state is the very absence of these long-range correlations.
A useful metric for correlations, both classical (statis-
tical) and quantum, between two subsystems A and B
is the mutual information SA + SB − SAB [25, 37]. The
mutual information demonstrates that the amount of cor-
relation in the presence of a volume law is vanishing for

subsystem volumes that sample less than half the full sys-
tem, which is where the entropy growth is nearly linear
(Figure 4B,C). Furthermore, even though the thermal-
ized quantum state carries more entanglement entropy
than the ground state, small subsystems display smaller
correlations than in the superfluid ground state. Once
the subsystem volume is comparable to the system size,
which is where the entanglement entropy deviates from
the volume law, the quantum correlations entailed by the
purity of the full system become apparent (Figure 4C).
The mutual information therefore illustrates how the vol-
ume law in the entanglement entropy yields an absence of
correlations between sufficiently local observables, even
though the quantum state retains a large amount of en-
tanglement.

LOCAL OBSERVABLES IN THE THERMALIZED
PURE STATE

Our comparisons between the entanglement entropy
and thermal entropy suggest that the pure quantum state
we study possesses thermalized properties. We can fur-
ther examine the presence of thermalization by perform-
ing a series of measurements of local observables against
which we compare the predictions of various thermal en-
sembles. As with the entanglement entropy, we also con-
trast our observations of the quenched thermalized state
with the adiabatically prepared ground state. In Fig-
ure 5A, we display the in-situ number density distribu-
tion on the six sites for the saturated quenched state and
the (superfluid) ground state. While the ground state ex-
hibits significant curvature, the quenched state exhibits a
flat density distribution. This flat density distribution is
consistent with a picture in which the constituents of the
many-body system collectively thermalize, so that each
site is in equilibrium with its neighbors and physically
similar.

We can perform a more rigorous test of single-site
thermalization by comparing the measured density ma-
trix of each site with the reduced density matrix of a
canonical thermal ensemble ρTA (Figure 5B). Our mea-
surements of probabilities to observe a given particle
number on a site completely characterize that single-
site density matrix, because there are no coherences
between different number states due to super-selection
rules. With this measured density matrix, we can per-
form a quantitative comparison to a thermal ensemble
using the trace distance ( 12Tr(|ρ

T
A − ρA|)) and quantum

fidelity (Tr

(

√

√

ρTAρA

√

ρTA

)

), both of which quantify

the similarity of two mixed quantum states. After a
short time, we see a quantum fidelity exceeding 99% and
a trace-distance that fluctuates between 0 and 0.1, indi-
cating the similarity between the local density matrix of
a verified pure state with the local density matrix of a
thermal state. The correspondence between the observ-
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FIG. 4. Thermalized many-body systems. After the quench, the many-body state reaches a thermalized regime with
saturated entanglement entropy. (A) In contrast to the ground state, for which the Rényi entropy only weakly depends on
subsystem size, the entanglement entropy of the saturated, quenched state grows almost linearly with size. As the subsystem
size becomes comparable to the full system size, the subsystem entropy bends back to near zero, reflecting the globally pure
zero-entropy state. For small subsystems, the Rényi entropy in the quenched state is nearly equal to the corresponding thermal
entropy from the canonical thermal ensemble density matrix. (B) The mutual information IAB = SA+SB−SAB quantifies the
amount of classical (statistical) and quantum correlations between subsystems A and B. For small subsystems, the thermalized
quantum state has SA + SB ≈ SAB due to the near volume law scaling (red arrow), leading to vanishing mutual information.
When the volume of AB approaches the system size, the mutual information will grow because SA +SB exceeds SAB . (C) We
study IAB vs the volume of AB for the ground state and the thermalized quenched state. For small system sizes, the quenched
state exhibits smaller correlations than the adiabatically prepared ground state, and is nearly vanishing. When probed on
a scale near the system size, the highly entangled quenched state exhibits much stronger correlations than the ground state.
Throughout this figure, the entanglement entropies from the last time point in Fig. 3 are averaged over all relevant partitionings
with the same subsystem volume; we also correct for the extensive entropy unrelated to entanglement [24]. All solid lines are
theory with no free parameters.

ables of a pure state and thermal state depends on the
equivalence of their reduced density matrices within the
Hilbert space sampled by the observable. The measure-
ment of Figure 5B therefore shows that observables for
the single-site Hilbert space should agree with the pre-
dictions of thermal ensembles.

We now focus on direct comparisons of observables
with various thermal ensembles, and the theoretical jus-
tification for doing so. While we have focused on the
role of entanglement entropy in producing thermal char-
acteristics, the eigenstate distribution resulting from a
quench (Figure 6A) determines the dynamics of observ-
ables, as well as their subsequent saturated values. It fol-
lows then that these populated eigenstates should clarify
the origin of thermalization, which is the goal of ETH.
The underlying explanation for ETH is that thermaliz-
ing, non-integrable systems possess excited eigenstates
that look like nearly random vectors, or, equivalently,
are described by a Hamiltonian that approximately con-
forms to random matrix theory [6, 13]. That is, for most
bases, each eigenvector projects onto each basis vector
with random quantum amplitude. The diffuse probabil-
ity distribution of the eigenstates in most bases, such as
the Fock state basis, is analogous to the chaotic dynamics
of a closed classical mechanical system passing through
every allowed point of phase space, and in the quan-
tum case this has several consequences. Surprisingly,
this chaotic assumption can be adapted to explain the
saturation of measurement observables, the agreement of
these saturated observables with thermal ensembles, and

the presence of a volume law in the entanglement en-
tropy [6, 13, 38, 39]. And so, while in classical mechan-
ical systems it is the chaos in the temporal dynamics
that leads to entropy maximization and thermalization
within thermodynamic constraints, in quantum thermal-
izing systems it is chaos in the energy eigenstates that
generates the analogous behavior in the entanglement en-
tropy, and, in turn, thermalization.

In Figure 6C,D, we compare our measurements to the
predictions of thermal ensembles that are illustrated in
Figure 6B. We also compare our results to a grand-
canonical ensemble truncated to our total atom num-
ber [24]: this ensemble perhaps most closely models how
well the many-body state can act as a reservoir for its
constituent subsystems. For each single-site and three-
site observable, we show the atom number distributions
for two different effective temperatures of 3.8J and 11J ,
which are achieved by quenching to J/U = 0.64 and
J/U = 2.6, respectively. The data is averaged in the
saturated regime over times between 10 and 20 ms, and
the error bars are the standard deviation in the measured
probabilities. The consistency within the the error bars
indicates that in this temporal range our observations re-
main near the thermal predictions despite the presence of
temporal fluctuations. For the single site subsystem, the
data is in good agreement with all the ensembles consid-
ered. Despite the fact that the quenched state is in a large
distribution of eigenstates, surprisingly, we find favorable
agreement for the case of a single eigenstate ensemble:
this illustrates a key principle of ETH, which holds that
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FIG. 5. Observation of local thermalization. (A) After
quenching to J/U = 2.6, the saturated average particle num-
ber on each site (density) is nearly equal among the sites of
the system, which resembles a system at thermal equilibrium.
By comparison, the ground state for the same Bose-Hubbard
parameters has significant curvature. (B) In measuring the
probabilities to observe a given particle number on a single
site, we can obtain the local, single-site density matrix and
observe the approach to thermalization. Using two different
metrics, we compare the mixed state observed to the mixed
state derived from the subsystem of a canonical thermal en-
semble, after a quench to J/U = 0.64. The trace distance pro-
vides an effective distance between the mixed states in Hilbert
space, while the fidelity is an overlap measure for mixed states.
The two metrics illustrate how the pure state subsystem ap-
proaches the thermal ensemble subsystem shortly after the
quench. The starting value of these quantities is given by the
overlap of the initial pure state with the thermal mixed state.
Solid lines connect the data points.

the reduced density matrix, and associated observables,
vary slowly from eigenstate to eigenstate and are there-
fore relatively insensitive to breadth of the distribution of
populated states from the quench. We perform the same
comparisons to the three-site case in the bottom two pan-
els. Here we also observe agreement with most ensembles,
though, interestingly, there is relatively less agreement
with the single eigenstate and grand-canonical ensem-
bles, particularly for the lower temperature quench. This
variation in agreement may suggest that these ensembles
are more sensitive to the relative size of the traced out
reservoir compared to the subsystem, which indicates di-

rections of further experiments [11, 40].
The above measurements were on specific subsystems,

but our measurements also allow extraction of the aver-
age global interaction energy (Figure 6D). Since the in-
teraction term in Eq. 1 is diagonal in the Fock-state basis,
we can use our measurements of the final particle config-
urations to compute the expectation value 〈Ĥint〉. For
the T = 3.8J data, we show a time scan indicating the
initial growth in this quantity, which starts at zero since
the initial state is a single particle per site. These ob-
servations, at long times, are in near agreement with the
canonical prediction. Interestingly, this measurement is
sensitive to the entire six-site system as opposed to some
subset of sites, which might suggest that it is global and
unlikely to thermalize. Yet, 〈Ĥint〉 undergoes thermal-
ization because it is a sum of local operators, each of
which thermalizes and is insensitive to the global purity
of the full system. The observed agreement is consistent
with the idea that only a small set of operators, such as
the global purity we measure or other specific fine-tuned
state projectors, can truly distinguish the pure state we
produce from a thermal state.

DISCUSSION

Our observations speak to a natural translation be-
tween thermalizing quantum mechanical and classical
mechanical systems composed of itinerant particles.
Classical statistical mechanics relies on a fundamental as-
sumption: a system in thermal equilibrium can be found
in any microstate compatible with the thermodynamic
constraints imposed on the system, and, as such, is de-
scribed by an ensemble of maximal entropy [41, 42]. Al-
though it is vastly successful, classical statistical mechan-
ics does not itself justify this entropy maximization for
closed systems [13, 41], and an open systems approach
only defers the question of thermalization to the union
of the bath and system [6]. While ergodicity and time-
averaging can provide a justification for entropy maxi-
mization in closed classical mechanical systems, ergod-
icity is not applicable on the same scale that statistical
mechanics is successful, and time-averaging can require
exponentially long times [13, 41, 42]. The latter also ob-
scures the fact that there is in reality only one system,
which, nevertheless, is well-modeled by an entropic en-
semble [41]. Our studies, and beautiful recent theoretical
work [11, 12, 35], hint towards a microscopic origin for
entropy maximization in a single quantum state, namely
that induced by the entanglement we measure. Quantum
mechanics does not require time-averaging or thorny is-
sues therein: a single quantum state obtains thermalized
local observables, and these observables cannot distin-
guish this thermalized pure state from a mixed thermal
ensemble of the same thermodynamic character.
Our measurements open up several avenues for fur-

ther investigation. Instead of operating with fixed to-
tal system size, we can study how thermalization and
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FIG. 6. Local observables in a globally pure quenched state. (A) In a quench, the ground state of the initial
Hamiltonian (represented in its eigenbasis in the first panel) is projected onto many eigenstates of the new Hamiltonian and
undergoes unitary evolution. According to the ETH, the expectation value of observables at long times can be obtained from a
diagonal ensemble (illustrated by the probability weights in the eigenstates of the quenched Hamiltonian) and microcanonical
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subsystem is small compared to the full system. The error bars are the standard deviation of our observation over times
between 10 and 20 ms. (D) Thermalization occurs even for global quantities such as the full system interaction energy. The
thermalization dynamics as calculated from our number-resolved images are in near agreement with exact numerical simulation
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fluctuations depend on the size of the system consid-
ered [40]. Conversely, studying integrable Hamiltonians
where thermalization fails [43], and the structure of the
associated eigenstate spectrum of such systems, could
allow direct tests of the relationship between conserved
quantities and thermalization of a quantum state. Lastly,
applying these tools for characterizing the presence of
thermalization and entanglement entropy could be pow-
erful in studying many-body localization, where one of
the key experimental signatures is the logarithmic growth
of entanglement entropy at long times and suppression of

precisely the thermalization we measure here [20, 44–48].
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1 Eigenstate Thermalization Hypothesis

Here we provide a brief summary of the Eigenstate Thermalization Hypothesis (ETH) and its relationship
to our experiment. Generically, a quenched quantum state consists of a superposition of many-body energy
eigenstates, each of which evolves according to the frequency of the associated eigenenergy En. For the state
|ψ(t)〉 =

∑

n cne
−iEnt |n〉, the observable 〈O(t)〉 evolves according to,

〈O(t)〉 =
∑

α,β

c∗αcβe
i(Eα−Eβ)t/~Oαβ

〈O(t)〉 =
∑

α

|cα|
2Oαα

︸ ︷︷ ︸

Sdiag

+
∑

α,β 6=α

c∗αcβe
i(Eα−Eβ)t/~Oαβ

︸ ︷︷ ︸

Soff

where Oαβ = 〈α|O|β〉 for the energy eigenstates |α〉 and |β〉. We consider the system to thermalize if

1. the first term, Sdiag, takes a value O that matches the microcanonical prediction

2. the second term, Soff, has only small fluctuations around zero for long times

Regarding condition 1, the microcanonical ensemble predicts a value for macroscopic observables that
depends only on the average energy of the system. However, Sdiag explicitly contains terms related to the
initial population distribution, which suggests the saturated value of the observable depends on initial details
of the system, rather than just the average energy. ETH resolves this puzzle by stating that a quantum
quench populates mostly the eigenstates far from the edge of the spectrum, and that these eigenstates
approximate those of random matrix theory. ETH proposes that these eigenstates look locally thermal and
the expectation value of local observables varies smoothly between eigenstates close in energy. This implies
that the exact probabilities from condition Sdiag are not quantitatively relevant in the sum, since the Oα,α

can be approximately factored out. Regarding condition 2, while for times short compared to the spread in
populated eigenfrequencies the relative phases of each component in Soff are fine-tuned to match the initial
state, at long times the relative phases are randomized. Ostensibly, this dephasing ensures that Soff → 0, but
the time scale for this process is given by the “typical” value of the smallest gap in the spectrum. In a general
many-body system, this value can be exponentially small which would lead to an infinite thermalization time,
but for the systems where ETH applies level repulsion ensures that this “typical” gap value stays finite (13).
As important, ETH states that the off-diagonals of O in the eigenbasis are negligible compared to the on-
diagonals, so that this second term damps to a value which does not influence the steady-state of 〈O〉. For
a more detailed summary of ETH, we point the reader to Refs. (7, 13).

2 Computing expectation values in thermalized systems

ETH implies an equivalence between the local expectation values of a quenched many-body state and those
of the thermal density matrix with the same average total energy as the many-body state. For the reported
experiments, our system is initialized into the ground state, |ψ0〉, of an initial Hamiltonian, H0, in the
atomic limit. At t = 0, we quench the system into a Hamiltonian, Hq, after which the system is allowed to
evolve for a variable amount of time. Comparing to the data at longs times (10− 20 ms, where we observe
saturation), we can compute predictions for the expectation values of various local observables based upon
different thermodynamic ensembles. These predictions are computed using the following procedures.

Microcanonical Ensemble

The microcanonical ensemble is an equal probability statistical mixture of all the eigenstates that lie within
an energy interval given by the initial state |ψ0〉. In the quenched Hamiltonian, the initial state has an
energy

E(0) ≡ 〈ψ0|Hq |ψ0〉
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while the eigenstates of Hq,
∣
∣
∣φ

(q)
i

〉

, have energies E
(q)
i . The microcanonical ensemble is then composed

of the NMC number of eigenstates for which |E
(q)
i − E(0)| < δE. For our numerical data, we have chosen

δE = 0.2J , but the ensemble predictions are insensitive to the precise value of δE. The microcanonical
ensemble can be represented by the thermal density matrix

ρMC
ij =

{
1

NMC
, if i = j and |E

(q)
i − E(0)| < δE

0, else
.

Canonical Ensemble

The canonical ensemble is a statistical mixture of all the eigenstates in the system weighted by each state’s

Boltzmann factor, exp(−E
(q)
i /kBT ). The temperature in the Boltzmann factor is fixed through the stipula-

tion that the average energy of this thermal ensemble matches the energy of the initial state, i.e. we choose
T such that

Tr(Hqρ
CE) = 〈ψ0|Hq |ψ0〉 ,

where the thermal density matrix ρCE has the following construction,

ρCE
ij =







e
−

E
(q)
i

kBT , if i = j

0, else
.

Single Eigenstate Ensemble

Energy eigenstates of systems conforming to ETH are surmised to appear thermal in local observables. We
numerically calculate the eigenstates of the quenched Hamiltonian and compare the experimentally observed

local counting statistics to the prediction from the single full system eigenstate
∣
∣
∣φ

(q)
i

〉

that is closest in energy

to the expectation value E(0). The expectation value in this case is given by,

〈A〉SE =
〈

φ
(q)
i

∣
∣
∣A

∣
∣
∣φ

(q)
i

〉

.

Diagonal Ensemble

The diagonal ensemble is a statistical mixture of all eigenstates of the full Hamiltonian Hq, with the weights
given by their amplitudes after quench.

ρDij =

{

|
〈

ψ0

∣
∣
∣φ

(q)
i

〉

|2, if i = j.

0, else

It carries all information about the amplitudes of the eigenstates but ignores all their relative phases.

Grand Canonical Ensemble

The grand-canonical ensemble requires calculating the temperature and chemical potential for the subsystem
associated to the observable of interest. For example, the top (bottom) row of FIG. 6C pertains to the
subsystem consisting of the third site (the first three sites) of the chain. We calculate the temperature
and chemical potential for the subsystem as follows. Because the energy and particle number within the
subsystem are not conserved during the quench dynamics, we must compute the average energy 〈EA〉 and
average number 〈NA〉 within the subsystem numerically. We time-evolve the full many-body state to the
thermalized regime, then compute the reduced density matrix for the subsystem, with which we can calculate
〈NA〉 and 〈EA〉. We note that the average energy of nearly all the subsystems is very close to that of the
full system (zero), while the average number is nearly consistent with unity particle density. For the single
site subsystems, however, there is no tunneling term to offset the interaction energy, and therefore these
subsystems have non-zero energy. We perform this full calculation to account for finite-size effects that cause
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small temporal energy and number fluctuations. If we neglect the energy fluctuations, the grand-canonical
predictions (described below) are negligibly different.

After the above calculations, we can compute the chemical potential and temperature. Using each HN
A ,

the subsystem Bose-Hubbard Hamiltonian with N particles, we compute the eigenstates (|EN,i
A 〉, where i

indexes the eigenstate) and energies (EN,i
A ) for each particle sector. We seek T and µ such that,

〈NA〉 = 〈NGCE〉 =
1

Z

∑

i,N

Ne−(EN,i

A
−µN)/kBT

and,

〈EA〉 = 〈EGCE〉 =
1

Z

∑

i,N

EN,i
A e−(EN,i

A
−µN)/kBT ,

where for each particle number N , the index i is summed over all eigenstates within that number sector.
The partition function, Z, is the overall normalization. These equations are numerically solved to find µ and
T . With these in hand, we arrive at the grand-canonical ensemble,

ρGCE =
1

Z

∑

i,N

|EN,i
A 〉〈EN,i

A |e−(EN,i

A
−µN)/kBT .

Observables

For all statistical ensembles above, expectation values of an observable A are calculated from the density
matrix as

〈A〉 = Tr(Aρ),

where ρ is the full system density matrix corresponding to the appropriate ensemble.

3 Entropies

3.1 Rényi Entropy

All entanglement entropy values discussed in the main text are defined as a function of the reduced density
matrix of the subsystem. This applies also for the thermal entropies quoted in the main text, where we
use the reduced density matrix of the canonical ensemble described above. The entropy metric used for
comparison between the quantum system we measure and the canonical thermal ensemble is the Rényi
entropy. In general, the n-th order Rényi entropy is defined for a reduced density matrix of subsystem A as

Sn(ρA) =
1

1− n
log (Tr[ρnA]),

where the reduced density matrix ρA is defined by tracing out all degrees of freedom of the system that do
not include subsystem A

ρA = TrB(ρAB).

Experimentally, we interfere two identical quantum states to obtain simultaneously the global and local
purity (Tr(ρ2A)). Therefore the relevant order Rényi entropy is the second-order (n = 2) Rényi entropy
which is defined for a density matrix of subsystem as

S2(ρA) = − log (Tr[ρ2A]),

and is also important qualitatively as a lower bound of the von Neumann entropy. When discussing the
global purity as an entropy, we use the Rényi formulation in terms of the global density matrix ρ as opposed
to a reduced density matrix ρA. Lastly, note that we use logarithms to base e throughout.

It is important to stress that the thermodynamic relations defined from statistical mechanics with the
von Neumann definition do not directly apply for the Rényi definition. However, both quantities measure
the incoherent diffusion in Hilbert space associated with entropy, and the Rényi entropy is directly accessible
by our measurements.
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3.2 Simulations

All simulations use measured experimental parameters from Table S1 to construct the Hamiltonian. The
shown theory curves are computed through direct diagonalization of the Hamiltonian given the relevant
Bose-Hubbard parameters. The inital state is the exact Mott insulating ground state of both lattices at
45Er. The 1-D quench dynamics are then simulated by projecting this initial state onto the eigenstates of
the quenched Bose-Hubbard Hamiltonian and evolved in time by their corresponding eigenvalues. The full
density matrix can then be constructed at any time t and traced for either the on-site number statistics or
entanglement entropy to be compared with the data. The plotted theory have zero-fit parameters, and are
only corrected for overall offsets due to the measured residual extensive entropy in the data (see Section 4).
We also include a temporal offset of 0.5 ms that is the same for all theory calculations, which is based on an
independent numerical model of the (nearly perfectly diabatic) ramp that realizes the quench. Besides this
offset, we have confirmed numerically that the degree to which this ramp is not perfectly diabatic does not
influence the results.

4 Experimental Sequence

State Preparation

Our experiments start with a unity filling, two-dimensional Mott insulator of 87Rb atoms in a deep lattice
(Vx = Vy = 45Er) with 680 nm spacing. We utilize a DMD in the Fourier plane to initialize a plaquette of 2×6
atoms using a procedure outlined in previous work (24). We achieve a single site plaquette loading fidelity
of ∼ 93%, which is limited by the fidelity of the initial Mott insulator and losses during the preparation
sequence.

To study the dynamics in the quenched system, we project an optical potential consisting of two narrow
Gaussian peaks separated by 6 lattice sites in the x-direction and a flat-top profile in the y-direction. This
confinement provides the atoms with a “box”-like potential superimposed upon and registered to the lattice
position. By changing Vx from 45Er to 6Er in 0.75ms (70ms) while retaining Vy = 45Er we realize identical
diabatic (adiabatic) evolution in 1-D 6-site chains. After some evolution time we rapidly freeze the dynamics
by ramping the lattice along x-direction to 20Er. We can then conduct two types of experiments on the
final state of the system: perform a single site resolved atom number counting or measuring the entropy of
the state by means of a beam splitter operation.

Single-site resolved atom number counting

In this section, we outline our procedure for counting the total atom number on each site of the 2x6 plaquette.
After freezing the atom dynamics, we project a narrow (along the y-direction) Gaussian potential. We then
drop Vy = 0Er while keeping Vx = 45Er, separating the atoms away from the partition while preserving their
position in the x-direction. After 2 ms of free evolution in the half tubes we pin the atom positions with the
imaging lattice (3000Er) and perform fluorescence imaging of the atoms. The total population of each half
tube corresponds to the original population of a particular lattice site in each of the two copies. During the
expansion process atoms delocalize uniformly over ∼50 lattice sites. The majority of our outcomes (∼ 96%)
contain 3 or fewer particles per site which results in probability of particle loss due to parity projection
< 6%. We do not apply a correction for this effect because it is smaller than the statistical error for the
majority of data points.

Entanglement entropy

We measure global purity and entanglement entropy by applying an atomic beam splitter and interfering
the two copies of the 6-site system. We perform the beam splitter operation by projecting a double-well
potential along y that is superimposed on the lattice. The tunnel-coupling of the double-well is set by a
combination of both the y lattice and this projected potential, which is nearly uniform along the x direction.
After diabatically reducing Vy = 2Er, the atoms tunnel in the double-wells for 0.33 ms, which corresponds
to the single particle balanced beam splitter time (24). This operation results in a two-particle oscillation
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contrast of ∼ 96%. We infer the purity of any given subsystem by computing the average parity given by
Tr(ρ2A) = 〈P i〉 = 〈

∏

k∈A p
i
k〉, where i = 1, 2 denotes one of the output modes of the double-well and pik = ±1

denotes the parity of a given mode (4).

Extensive background entropy

The imperfect fidelity of the beam splitter operation reduces the interference contrast between the two many-
body systems. The measured purities hence underestimate the purity of the many-body states produced in
the experiment.

We verify experimentally that this entropy background contributed by imperfections is extensive. For a
separable many-body state, such as a Mott insulator in the atomic limit, we observe an entropy of 0.34 for
the full system, or 0.06 per site.

For the relevant case of superfluid ground states and highly excited quenched states, the measured full
system entropy is increased to 0.63. We attribute this increase in measured entropy to the sensitivity of such
states to differences in the Hamiltonian between the two copies: During the short 3 ms hold time between
the state preparation and the beam splitter operation, potential differences on the 5 Hz level can lead to a
differential dephasing between the two copies and a reduced interference contrast. We therefore minimize
the hold time and use an intermediate lattice depth (20Er).

We confirm the additive, extensive nature of this background entropy by subtracting the theoretical
predicted value of entropy from the measured one as a function of the system size, which shows linear
growth of this quantity within our statistics (see Fig. S2). By fitting the data we extract the slope of the
curve and apply the correction given by the subsystem size to different plots (see Table S2). With the
exception of very short times, these data affirm that the extensive corrections are substantially smaller than
the entanglement entropy we measure.

Bose-Hubbard parameters

Experimental parameters for the state preparation and quenches to different temperatures are shown in
Table S1. The temperatures tabulated correspond to the canonical ensemble, as described in Section 2. We
calibrate lattice depths through modulation spectroscopy in a deep 45Er lattice with a typical uncertainty of
±2% and obtain J from a band structure calculation. U is measured through photon-assisted tunneling at a
lattice depth of Vx = 16Er and numerically extrapolated to lower depths, taking into account corrections due
to higher bands. Throughout the manuscript, the measured entanglement entropy and counting statistics are
compared to numerical solutions of the Schrödinger equation with the appropriate Bose-Hubbard parameters.

5 Data analysis

Post-selection

Before analyzing the data, we post-select on the outcomes containing 6 particles in each copy for the site-
resolved number detection (FIG. 5,6). We post-select on total of 12 atoms for in both copies for experiments
in which we perform the beam splitter operation. Outcomes containing lower particle number are attributed
to the instances of imperfect plaquette loading or atom loss during the experimental sequence. We thus
retain approximately 30% of the original data.

Data averaging

For all entanglement entropy data we average over both copies after the beam splitter operation. Additionally,
we take the mean of equivalent symmetric subsystems in each copy for entanglement entropy dynamics
(FIG. 3), for the volume law data (FIG. 4A) we average over all contiguous subsystems of the given size.
Finally, for the data in FIG. 4B,C, we average over all contiguous and non-contiguous subsystems of the
given volume, because the mutual information can sample correlations between non-contiguous subsystems.
For all of the entanglement entropy data, the error bars are S.E.M. For all of the number counting, the error
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bars are S.E.M. except when stated otherwise. For the entanglement entropy and number counting data,
typically 100-200 post-selected runs of the experiment are used to create each data point in the plots.

Quantifying the early time time dynamics of the entanglement entropy

In an inset of FIG. 3, we quantify the growth of entanglement entropy in the early time dynamics. We
approximate this growth as linear, while the long time dynamics as flat. We fit the data with a piecewise
function,

S2(t) =

{

Sg · t, if t ≤ tsat.

Sg · tsat., else
,

where the slope Sg and saturation time tsat. are left as free parameters (Fig. S3). The fitted value of Sg is
quoted in the text for the slope.
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Figure S1: Schematic showing the ramps of the lattices and DMD potentials in the x- and y-directions
during the experimental sequence. The projected DMD potentials are drawn in the labeled direction where
the orthogonal direction of the potential is a smooth, flat-top profile. The break for the beam splitter
operation is shown as an optional step taken during the sequence. Performing this operation results in the
sequence measuring the local and global system purity while not performing this step results in the sequence
measuring the on-site number statistics. All ramps are exponential in depth as a function of time.
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Vx [Er] Vy [Er] Jx/(2π) [Hz] U/(2π)[Hz] T/(2π) [Hz]

initial state 45 45 0.07 172 0
quench I 6 45 66 103 249
quench II 2 45 178 68 1965

Table S1: Experimental parameters for the Hubbard chains. The initial Mott insulating state deep in the
atomic limit Jx ≪ U is projected onto Bose-Hubbard chains with larger values of Jx/U , corresponding to
different effective canonical temperatures T . All numerical simulations in the main text use the parameter
values listed here.

Theory Data

Figure 2B N/A No Corrections
Figure 3 Offset Added No Corrections
Figure 4 No Corrections Extensive Entropy Subtracted

Table S2: Listing of all figures that contain data and the numerical corrections applied based upon residual
extensive entropy in the system due to beam splitter infidelity.

10


	Quantum thermalization through entanglement in an isolated many-body system
	Abstract
	 Experimental protocol
	 Entanglement entropy dynamics and saturation
	 Local observables in the thermalized pure state
	 Discussion
	 References


