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A generalized Onsager reciprocity theorem emerges as an exact consequence of  

the structure of  the nonlinear equation of  motion of  quantum thermo@namies and 

is valid for all the dissipative nonequilibrium states, close and far from stable ther- 

modynamic equilibrium, o f  an isolated system composed Of a single constituent o f  

matter with a finite-dimensional Hilbert space. In addition, a dispersion- 

dissipation theorem results in a precise relation between the generalized dissipative 

conductivity that describes the mutual interrelation between diss!pative rates of  a 

pair of  observables and the codispersians of  the same observables and the 

generators of  the motion. These results are presented together with a review of  

quantum thetvnodynamic postulates and general results. 

1. I N T R O D U C T I O N  

The purpose of this paper is to present a rigorous proof and generalization 

of Onsager's theory of irreversible processes, based uniquely and without 

additional assumptions or approximations on the nonlinear equation of 

motion recently proposed by the present author as the dynamical principle 

of quantum thermodynamicsJ 11 

The paper wilt be restricted to the quantum thermodynamics of an 

isolated system composed of a single constituent of matter with finite- 

dimensional Hilbert space. However, we conjecture that with suitable 

technical refinements it can be extended to the general infinite-dimensional 

case, as well as to a general composite system. ~2) 
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In 1931, Onsager published two papers (3) in which he unified a large 

body of existing empirical observations on the nature of irreversible 

processes by formulating a general phenomenological theory based on his 

famous relations expressing the reciprocity of the mutual interrelations 

between different irreversible rate processes simultaneously occurring in a 

single system. 

Onsager's reciprocal relations "appear to be universally valid although 

they cannot be proved by thermodynamics or by considerations on 

macroscopic symmetry. ''(4) These relations cannot be derived in any 

rigorous way from the traditional Hamiltonian dynamical principles, i.e., 

from the Hamilton and the Liouville equations of classical dynamics or 

from the Schr6dinger and the von Neumann equations of quantum 

dynamics. Indeed, as is well known, these equations can describe reversible 

processes only and, therefore, it is impossible to infer from them even the 

very existence of irreversible processes. This fundamental difficulty is often 

referred to as the irreversibility paradox. 151 

The irreversibility paradox notwithstanding, important theoretical 

arguments in support of the fundamental validity of Onsager's reciprocal 

relations have been given by Onsager, ~3~ Casimir, ~4) Callen, (6) Kubo, (71 and 

othersJ 8-12) In different ways, they have shown that the reciprocal relations 

can only be derived by complementing the known dynamical principles 

with some reasonable additional principle (e.g., the so-called "principle of 

microscopic reversibility"), assumption (e.g., that of sufficiently small per- 

turbations, to ensure a linear behavior of the system), or approximation 

(e.g., that of sufficiently small deviations from thermodynamic equilibrium). 

Levine (13) has also shown that the reciprocal relations can be derived and 

extended to a higher nonequilibrium domain by adopting the assumption 

(or approximation) that systems proceed along a path continuously 

maximizing the entropy functional subject to some (possibly unknown) set 

of linear time-dependent constraints. 

Recently, Hatsopoulos and Gyftopoulos ~14) have argued that the 

irreversibility paradox would be resolved if we realized that traditional 

Hamiltonian mechanics, from which the unitary dynamical postulate of 

orthodox quantum theory evolved, is incomplete, in the sense that it 

describes successfully only a limited aspect of microscopic physical reality. 

They proposed a broader quantum kinematics which contains orthodox 

quantum kinematics as a special case, and thermodynamics of stable 

equilibrium as another special case. 

Thus, mechanics and thermodynamics can be unified into one uncon- 

tradictory science. The gap between mechanics and thermodynamics can be 

bridged without resorting to any of the usual statistical, phenomenological, 

or information-theoretic reasoning. The hardly definable notion of 
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macroscopic versus microscopic reality plays no fundamental role. In the 

hierarchy of physical laws, the second law of thermodynamics is raised to 

the same level as the fundamental laws of mechanics, such as the great con- 

servation principles. Entropy emerges as an intrinsic property of each of the 

microscopic constituents of material systems, much in the same way as 

energy is universally understood to be an intrinsic property of matter. 

Hatsopoulos and Gyftopoulos concluded that traditional Hamiltonian 

dynamics is valid when restricted to the domain of orthodox quantum 

kinematics, but in the broader domain of their unified theory must be 

replaced with a new dynamical principle, encompassing only as a special 

case the familiar unitary evolutions of traditional Hamiltonian mechanics. 

The present author (1'2'15'16~ has proposed a novel nonlinear equation of 

motion which, in the domain of orthodox kinematics, satisfies all the very 

restrictive requirements imposed by mechanics and, in the broader domain 

of the Hatsopoulos--Gyftopoulos kinematics, satisfies all of the very restric- 

tive requirements imposed by general thermodynamics. The new quantum 

theory that emerges by adopting the Hatsopoulos-Gyftopoulos kinematics 

and the new equation of motion as the dynamical principle is called quan- 

turn thermodynamics. 

We adopted the new principle of motion because it has the following 

general features. It is satisfied by all the unitary evolutions of mechanical 

states generated by the Schr6dinger equation of motion and, therefore, 

when restricted to the orthodox mechanical states, quantum ther- 

modynamics reduces to quantum mechanics. It causes, in general, non- 

unitary irreversible evolutions of the nonequilibrium states that are con- 

templated within quantum thermodynamics but not within quantum 

mechanics. It preserves the mean values of the energy and the other 

invariants of an isolated system, but it causes the value of the entropy to 

increase until the state reaches stable equilibrium. For each set of mean 

values of the energy and the other invariants, the equation of motion of 

quantum thermodynamics admits many equilibrium states, but among 

them one and only one is stable. Hence, the second law of 

thermodynamics (14) emerges as a theorem of the new microscopic 

dynamical principle. 

The irreversibility paradox is resolved within quantum ther- 

modynamics because the new equation of motion, depending on the initial 

state of the system, can describe both reversible and irreversible processes. 

In this paper, we show that it is the structure of the non-Hamiltonian part 

of the equation of motion which entails a general theorem on the 

reciprocity of mutual interrelations between simultaneous dissipative rates 
of different observables. 

Our Onsager reciprocity theorem offers a new perspective on the 
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microscopic nature of irreversible processes, and follows from our 

dynamical principle with no need for additiona! principles, assumptions, or 

approximations. Consistently with the fact that they describe an important 

feature of irreversibility, the Onsager relations emerge in our theory from 

the terms in the equation of motion that are responsible for irreversibility 

and not, as in all the known derivations, from the irreducibly reversible 

Hamiltonian terms that can only describe unitary reversible evolution. 

Another important feature of irreversibility was recognized by 

Callen ~6'9A71 in his generalization of Nyquist's relation ~8~ between voltage 

"fluctuations" or "noise" in a resistor at thermodynamic equilibrium and 

the electric conductivity of the resistor. Callen's theory, often referred to as 

the fluctuation-dissipation "theorem," expresses a direct relation between 

the generalized conductivity expressing the mutual interrelation between 

simultaneous dissipative rates of any pair of observables, and the 

covariance of measurement results, that we will call codispersion, of the 

same pair of observables. 

As pointed out explicitly by Onsager and Machlup, ~1°) also the disper- 

sion-dissipation "theorem" cannot be derived in any rigorous way from the 

traditional Hamiltonian dynamical principles, unless these are complemen- 

ted by an additional postulate closely related to the additional principles, 

assumptions, or approximations needed to "derive" Onsager's reciprocity 

"theorem." Again, this is just another aspect of the irreversibility paradox, 

namely, of the impossibility to infer any feature of irreversibility (including 

its very existence) from the irreducibly reversible dynamical principle of 

orthodox unitary Hamiltonian mechanics. Again, our derivation based on 

quantum thermodynamics and its nonlinear, generally non-Hamiltonian 

equation of motion, not only extends such relations to all nonequilibrium 

states, not necessarily close to thermodynamic equilibrium, but also 

resolves the main conceptual difficulty of the traditional derivations, ~3'6'7~ 

namely, the traditional paradoxical conclusion that the essential features of 

irreversibility follow from the fundamentally reversible Hamiltonian 

dynamics and the additional principle of "microscopic reversibility." 

The postulates of quantum thermodynamics are reviewed briefly in 

Sec. 2. Our results on irreversibility are proved in Sec. 3. 

2. POSTULATES OF QUANTUM THERMODYNAMICS 

Four postulates of quantum thermodynamics that define the Hat- 

sopoulos-Gyftopoulos kinematics are as follows. ~1'14) 
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Postulate 1: Systems 

To every physical system there corresponds a complex, separable, 

complete inner produce space, a Hilbert space 5f. 

The Hilbert space ~ is the same space that orthodox quantum theory 

associates with the system. For simplicity, throughout this paper H is 

assumed to be finite dimensional. We denote by ~ (~o)  the set of all linear 

operators on J(P. If equipped with the real scalar product defined by 

(A, B)=  ½Tr(AtB + BtA), where Tr denotes the trace functional on J¢~ and 

A* the adjoint of operator A, then ~ ( ~ )  becomes a Hilbert space on the 

real scalars. We denote by ~(x/t ~) the subspace of 5°(9f) of all self-adjoint 

linear operators on .~. Also 2f,(H), with the real scalar product just 

defined, is a Hilbert space. Finally, we denote by ~(Y{) the subset of 

5°~(~) of all the unit-trace, nonnegative-definite, self-adjoint linear 

operators on ~,ug. 

Postulate 2: Correspondence Principle 

Some continuous linear real functionals a(- ), b(. ) .... on ~,(J{.  ) corres- 

pond to physical observables of the system. 

By the Riesz representation theorem, any continuous linear functional 

a(-) on the Hilbert space ~ . ( ~ )  is generated by a unique element A in 

~ ( g f ) ,  such that 

a(X) = (A, X) = Tr AX (t) 

for every X in ~s (~ ) .  Quantum thermodynamics does not exclude the 

existence of physical observables that are not represented by continuous 

linear functionals on L~(~).  For example, entropy is represented by a non- 

linear functional defined on the subset ~ ( ~ )  of 5e~(~f~). 

Postulate 3: States 

To every state of a physical system, there corresponds a unit-trace, 

nonnegative-definite, self-adjoint linear operator p on ~ ,  i.e., an element of 

~(J4¢). Operator p is called the state operator. 

The state operators that are idempotent, i.e., such that p2=p, 
represent the states of orthodox quantum kinematics. They are all con- 

tained within the broader kinematics implied by Postulate 3. 
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Postulate 4: Value of a Physical Observable 

The value of a physical observable represented by a (linear or non- 

linear) real functional a(-), defined on Ys(~)  or at least on ¢~(~)~ for a 

system in a state represented by state operator p is given by the value a(p). 

For a linear a(-), generated by the self-adjoint linear operator A on 

~ ,  Eq. (1) yields a (p )=Tr  Ap. For the nonlinear functional representing 

the entropy, u'14) the value corresponding to state p is given by 

s(p) = --kB Tr p In p, where kB is the Boltzmann constant. 

The dynamical postulate of quantum thermodynamics depends on the 

internal structure of the system. I2) In this paper, we consider only systems 

composed of a single constituent such as a single material particle or a 

field. Each constituent is characterized by a set of generators of the 

motion (1) always including the identity operator I and the Hamiltonian 

operator H, where H is the same Hamiltonian operator that orthodox 

quantum theory associates with the constituent. However, constituents 

such as Bose-Einstein and Fermi-Dirac fields, for which ~ is a Fock 

space, have other generators of the motion in addition to I and H, i.e., the 

number operators N~ ..... Nn for each of the n types of material particles in 

the field. 

Postulate 5: Equation of Motion for a Single Constituent 

For a system consisting of a single constituent, i.e., a single particle or 

a Bose-Einstein or Fermi-Dirac field, the state operator p evolves 

according to the equation 

dp i [ H , p ] _  1 e (p )_  
(2) - - =  - - - -  

dt h 

where [H, p] = Hp - pH, and F(p) is a linear, self-adjoint operator on 

defined as a nonlinear function of the state operator p by 

F(p) = ½[~/-pp D(p) + D*(p) \ / p ]  (3) 

D(p) = ~ In p -- (w~pp In P)L(.~..~H,.,~ N, ...... ,~ N.) (4) 

where z is an internal-dissipation characteristic time of the constituent, 

L(x/P, x/P H, x//-p N, ..... w~pp N.) denotes the linear manifold in ~ ( ~ f )  

spanned by all linear combinations with real coefficients of operators x/P, 

H, N//p N 1,..., X//p Nn, and (x/~ In P)L denotes the orthogonal projec- 

tion within 5e(att a) of w/7 onto the linear manifold L. Operator I is the 

identity on Jg and H the Hamiltonian of the constituent. Operators 

N1,..., N, all commute with H and are called the non-Hamiltonian 
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generators of the motion of the constituent. The number n of non- 

Hamiltonian generators depends on the constituent and may be zero for 

some constituents. 

The internal-dissipation characteristic time z in Eq. (2) cannot be 

inferred other than from experiments on the relaxation of nonequilibrium 

states. Mathematically, all the general results that we summarize and derive 

below unfold identically whether • is a universal constant, a constant that 

depends on the type of constituent, or any positive functional of p. At 

present, the problem of estimating z on the basis of available experimental 

data remains unresolved. However, we have discussed specific nontrivial 

implications of Eq. (2) which should in principle lead to experimental 
verification./ls~ 

Geometrically, the operator F(p) can be visualized as the projection of 

the gradient of the entropy functional - k s  Tr p in p onto the hyperplane 

generated by the normalization functional Tr p, the energy functional 

TrHp, and (for a field) each of the number-of-particle functionals 

TrN~p ..... TrN, p. The two terms in Eq. (2) compete with each other in 

the sense that --i[H, p]/h tends to "pull" p in a unitary motion tangent to 

the local constant entropy hypersurface whereas -F(p) /z  tends to "pull" p 

in the local direction of steepest entropy ascent while maintaining it on a 

constant energy and constant number of particles hyperplane. 

The unitary Hamiltonian term -i[H, p]/h maintains invariant the 

entropy functional by maintaining invariant each of the eigenvalues of the 

state operator p. If H is time dependent, then the equation of motion 

describes an adiabatic exchange of energy between the system and other 

external systems during which the system remains uncorrelated. The 

adiabatic rate of energy exchange, Tr(dH/dt)p, depends on the rate of 

change of the Hamiltonian operator H. The nonunitary internal-dissipation 

term -F(p)/z does not contribute to changing the values of the energy 

functional and the number-of-particle functionals even if H is time depen- 

dent. However, it causes an irreversible increase in the value of the entropy 

for all nonequilibrium states not belonging to a limit cycle. Interestingly, 

for processes described by a time-dependent H, the rate of entropy produc- 

tion does not depend on the rate of change dH/dt of the Hamittonian and, 

thus, we conclude that in the limit of very fast changes in H we can achieve 

adiabatic exchanges of energy with negligible internal production of 

entropy, because the faster is the energy exchange the shorter is the time 

available for the internal-dissipation term to generate entropy. 

The magnitude of the rate of entropy production [see Eq. (24) below] 

is a nonlinear function of p which goes to zero smoothly at many states, 

including the idempotent states of quantum mechanics, the equilibrium 

states, and the limit cycles, It is therefore interesting to note that if a state is 
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very close to, say, an idempotemt state, then the term -F(p)/z may be so 

small as compared to the term - i [ H ,  p]/h that its effect may be relatively 

negligible for a long time, during which the evolution may seem dominated 

by the unitary term - i [H,  p]/h. According to Eq. (2), however, all the 

idempotent states, the limit cycles, and the less-than-maximum-entropy 

equilibrium states are unstable in the sense of Lyapunov, i.e., arbitrarily 

close to each one of them there is a trajectory that after some finite time 

(perhaps very long) carries the state to a finite distance• The only 

equilibrium states that are stable in the sense of Lyapunov are the 

maximum entropy states, (19~ i.e., the equilibrium states of classical ther- 

modynamics. 

Given an operator V and a linear manifold L in ~ ( ~ ) ,  the projection 

VL of V onto L is the unique element in L such that (VL, X)=  (V, X) for 

every X in L. The theory of Gram determinants offers a useful explicit way 

to write C161 VL and, in particular, the orthogonal projection of x/~ln p 

onto L(x/~, ~ H, ~ N1 ..... ~ N~) which is part of the definition of the 

"internal dissipation" term -F(p)/z in the equation of motion• For each 

given state operator p, we denote by RI ..... R: a set of self-adjoint operators 

such that the operators x/-P, ~ R,,..., ~ R= span the linear manifold 

L(x/p, ~ H, ~ Ul ..... x/P N~) and are linearly independent, i.e., such 

that the Gram determinant 

(N~ Ro, ~ Ro)(N~ Ro, N~ R1),.. ( ~ R o ,  N ~ R z )  

(N~ gl, N/-p Ro)(N/-p R1, ~ R1)... ( ~ R I , N ~ - p R z )  
(5) 

where R 0 denotes the identity operator /, is different from zero and, 

therefore, is strictly positive. 

As a useful shorthand notation, given any two self-adjoint operators A 

and B, we will denote (x/-P A, x/P B) by (AB),  i.e., 

(AB)  = (x/-P A, ~ B) = ½ Tr p{A, B} (6) 

where the anticommutator {A, B} = AB + BA. We will denote the strictly 

positive Gram determinant in Eq. (5) by G(p; Ro, R1 ..... Rz), i.e., 

G(p; Ro, R 1 ,..., Rz) = 

(RoRo) (Ro.Rl) "'" (RoR~) 

(R~.Ro) (R~R,)  ... (R1R~) 
• , . . " 

I(R~Ro) (R~R1) "" (R~R~)] 

(7) 
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In terms of this notation, the orthogonal projection of an operator 

.~pp V, where V is self-adjoint, onto the linear manifold 

L(,~/pp I, ,~pp H, ,~pp NI ..... ~ N,,) may be written as 

0 x/P Ro 

(RoV)  (RoRo) 

(R~V 5 (RIRo)  
• , 

%//pR 1 . , .  

(RoR~) "'" 

(R1RI) "'" 

(R~V5 (R~,Ro) (R~R~) 

G(p; Ro, Rl ..... R:) 

Using Eq. (8) with ~ V= x/~ In p and substituting in Eq. (5), the 

operator F(p) in the equation of motion may also be written as 

plnp ~.tp, Ro} -2{p, R1} ' "  

(Rolnp> (RoR0) (RoRa> "'" 

(R l l n p )  (RtRo)  (R1.Ra> "'" 

( R ~ l n p )  (R~Ro) (R~R)) " 

x/-fiRz 

(RoR~) 

(RtR~) 

(RzR~) 

(8) 

<RoR~> 

<R,Rz) 

(R~R~) 
V(p) = ( 9 )  

G(p; Ro, R1 ,..,, R~) 

where (R, In p )  = {~/p R,, \ f p  In p )=  Tr R,p In p. 

The operator F(p) has many interesting featuresJ L)6) It reduces to the 

null operator whenever p2 = p, namely, for each quantum mechanical state• 

Equation (2) maintains idempotent any initially idempotent state operator 

and, therefore, all the unitary evolutions of mechanical states generated by 

the Schr6dinger equation are also solutions of Eq. (2), and we conclude 

that quantum thermodynamics contains the whole of quantum mechanics 

as a special case. But quantum thermodynamics is more general, because 

for the nonmechanical states, i.e., for p2:~ p, f.(p) does indeed contribute 

nontrivially to the time evolution. In the next section we study the features 

of such contribution that are due to the structure of operator F(p). 

3. QUANTUM THERMODYNAMICS OF NONEQUILIBRIUM 

In this section, we study the implications of the postulates of quantum 

thermodynamics on the behavior of a single constituent in a general non- 
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equilibrium state. Other general theorems that are proved in Ref. I wilt not 

be repeated here. 

First we develop a useful way to represent a general quantum ther- 

modynamic state, namely, an expression valid for all states, mechanical and 

nonmechanical, equilibrium and nonequilibrium (close and far from stable 

equilibrium ). 

We denote by {Xo, X1, X2,...,Xj,... } a set of self-adjoint linear 

operators spanning the real space S s ( ~  ~) of all the self-adjoint linear 

operators on o~. If the operators in {Xs} are also linearly independent, 

then we call {Xs} a quorumJ 2°) In what follows, we assume to have chosen 

a set { ~ } once and for all in such a way that Xo is the identity, i.e., Xo = L 

The X)'s need not be linearly independent. 

In terms of the operators in set {Xo -- I, Xi}, any state operator p can 

be written as 

B exp(.- Z j  f/Xj) (10) 
/3 ~ 

Tr Bexpt- Zj fj:Cj) 

where ~ j  denotes the summation over j from 1 to dim(-Yf), f j  are real 

scalars, and B is an idempotent operator obtained from p by substituting 

the nonzero eigenvalues of p with unity. Indeed, given any state p, we can 

construct operator B as indicated and an operator P by substituting the 

zero eigenvalues of p with unity. Then, p = BP = PB by construction and P 

is strictly positive. Therefore, operator In P is a well-defined element of 

5~(~¢t ~) and, as such, can be written as a linear combination of the 

operators in the set {Xj}, i.e., we can find real scalars f o, f~ ..... f~,.., such 

that 

In P = - f o l -  ~,f~Xj (11) 
J 

Thus, we find 

p = BP = B exp ( f o I -  ~ J)X)) (12) 
J 

and, because p is unit-trace, we may solve for f0 and obtain Eq. (10). 

For example, if p is a mechanical state, i.e., it is idempotent (p2 = p), 

then B is a one-dimensional projection operator, i.e., B 2 = B and Tr B = t, 

P=L each f j = 0 ,  and p=B. Again, if p is a nondissipative state] ~ i.e., a 

state for which F(p)= 0, then it can be written as 

B exp( - / ~ H -  ~7=1 v;N~) 

P = Tr B exp( --/~H-- •7= ~ v~Ni) (t 3) 

Thus, if the first n + 1 elements in the set {Xj } are chosen so that Xo = L 

X~ = H, X2 = N1 ..... X,+ t = Nn, then Eq. (10) yields a nondissipative state 
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whenever J ) = 0  for e v e r y j > n +  l (as long as {Xj} spans Z~,(:~)). If, in 

addition, operator B=I, then Eq. (13) represents a stable equilibrium 
state.¢l,19) 

We emphasize that Eq. (10) involves no additional assumptions or 

approximations• This way of writing an arbitrary state operator would not 

hold in general if, for example, we assume that B = I and the operators 

{Xi} do not form a complete set in the sense we specified. For example, the 

mathematical work of Levine ~3) holds only for a nonequilibrium state for 

which (in our notation) B =  I and the operators {Jfj} form a restricted set 

that does not span 5q~(~) and, therefore, Levine's assumption that a 

system initially in such a special nonequilibrium state proceeds at all times 

only through such states should be checked for consistency with the inter- 

nal dynamics of the system, i.e. (in our theory), with Eq. (2). 

Using Eq. (t0), and the fact that ~/pp In B is the null operator, we find 

x/ f i lnp= - -~£xSf i  Xj-x/-fi ITr Bexp ( - - ~ £ X / )  (14, 
J j 

Using the linearity of determinants with respect to each row and column, 

the linearity of the trace functional, and the fact that Ro = I, Eq. (9) may be 

½{P'J(i} ~{p, Ro} 5{P, Rt~ "'" ½{P,R: i 

(Roe,,) (RoRo)  (RoRI)  ... (RoR=) 

(R:X,)  (R:Ro) (R:R~) "'" (R:R=) 

rewritten as 

F(p)=  - ~ f j  (15) 
j G(p; Ro, Rl ,..., R;) 

We may now define the dissipative rate of change of the value 

a(p)=TrAp of an observable represented by a time-independent con- 

tinuous linear functional on 5f~(~',?) by 

Da 
Dt - T r  AF(p)/~ = (A, -F(p)/Q (16) 

Clearly, the actual rate of change is given by the sum of the Hamiltonian 

rate and the dissipative rate according to the equation 

da(p ) i Da(p ) 
dt = ~ T r  pEH, A] + D----~ (17) 

where we used Eq. (2) for dp/dt. 
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If we denote by xj(p) the value at state p of the linear observable 

represented by the self-adjoint operator Xj in the complete set {Xj}, i.e., 

xj(p) = (Xs, p)=Tr Zip = (XjRo), then the values of the dissipative rates 

of these observables are sufficient to determine the operator F(p). In other 

words, the system of equations 

(Xj, - F(p )/z ) = Dxj(p ) (18) 
Dt 

can be solved for --F(p)/T. Hence, giving the values of all the dissipative 

rates Dxs(p)/Dt is equivalent to giving the internal-dissipation term 

-F(p)/z, i.e., the non-Hamiltonian contribution to the rate of change of 

the state operator p. 

Using Eq. (15) and (18), we find 

Dx](p ) = ~ LL~j (19) 
Dt 

where 

<X;Xi) <X~Ro) (X,R~) "" (X~R=) 

<RoXj> (RoRo> <RoR,) "'" (RoR~) 

(R,Xi> (R1Ro> (R,R,> "'" (R,R:> 

(R :X s) (R:Ro> <R~R~) "'° <R:R~) 
L~j = - -  (20) 

G(p; Ro, Ra,..., R=) 

Because determinants are invariant upon transposition and (AB)  = (BA)  
by definition, the state functionats L 0 satisfy the reciprocity relations 

L~= Lsi (21) 

To interpret the relations just proved, let us write the entropy 

functional using Eq. (14). We find 

s(p) = - k  B Tr p In p = -kB(,,/p, ~-fi In p) 

= kB ~ fjxs(p ) + kB Tr B exp ( - ~ f jXj) (,22) 
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We can readily show that 

as(p) = kB L (23) 
#x,(p) ~..,~p) 

and, therefore, kBfi may be interpreted as the affinity or generalized 

"force" representing the entropy change that corresponds to an indepen- 

dent change in the value of the linear observable xi('). Equation (19) 

implies the general existence of linear interrelations between the dissipative 

rates or generalized "dissipative fluxes," Dxi(p)/Dt, and the affinities or 

generalized "forces," kB.[;,. The Onsager reciprocity relation (21) implies 

that the effect of the jth affinity onto the ith dissipative rate is identical to 

the effect of the ith affinity onto the jth dissipative rate. This reciprocity 

theorem is valid in general, namely, for all the nonequilibrium dissipative 

states p, regardless of whether they are close or far from thermodynamic 

equilibrium. The coefficients Lii may be called generalized "dissipative con- 

ductivities." As seen by inspection of Eq. (201, they are nonlinear 

functionals of the state p. 

We have shown in Ref. 1 that the rate of change of the entropy is 

given by 

ds(p) =--ks (D(p), D(p)) (24) 
dt r 

where D(p) is the operator defined in Eq. (4). Clearly, ds(p)/dt is non- 

negative. It is equal to zero only for nondissipative states, i.e., states 

represented by Eq. (13). With the help of Eq. (14), we can also show that 

ds( =kB • Ef~fiL~ (25) 
dt i j 

or, using Eq. (19), 

ds(p) Dxi(p) (26) 
dt-kBY.fj  /)t 

J 

With the help of Eq. (8), we can readily verify that an alternative way 
to write Eq. (20) is 

1 
(27) 

825/17/4-4 
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where (~,fpXi)L and 

projections of ~ X i  

L :  L(x/-fi, x/-fi H, x//-p N, 

[L,,] = 

(xffiXj)L denote, respectively, the orthogonal 

and x/PXJ onto the linear manifold 

..... ~ Nn). By virtue of Eq. (27), the matrix 

LII  LI2 .- L 0 . . .  

L21 L22 L 2 j  " . .  

: : : (28) 

L i l  L i2  L o 
~ " . .  

is a Gram matrix and, as such, it is nonnegative and its determinant is non- 

negative, i.e., 

IL,jl 9 0  (29) 

The determinant [L~] is strictly positive only if the operators 

{x /pXj - (x /pXj )L)  are linearly independent. Only in that case may 

Eq. (19) be solved to yield 

Dx;(p) 
f , = 2 ~ ( L - 1 ) , ,  (30) 

J 

and the rate of entropy generation may be written as 

ds(p) = kB ~, ~ Dx,(p) Dxj(p) (L_I)/, (31) 
dt ~ j Dt Dt 

Clearly, the structure of relations (19), (25), (26), (30), and (31) is identical 

to the well-known relations that form the basis of the Onsager 

phenomenological theory of irreversible processes. 

Equation (27) also shows an important direct relation between the dis- 

sipative conductivity Lr and the scalar product of the two operators 

x ~  X i -  (x/-P Xi)L and ~ X j -  (xfp Xj)L, each of which is orthogonal to 

the linear manifold L. 

We now define the codispersion of measurement results of a pair of 

linear observables a( ')  and b(') with associated self-adjoint operators A 

and B, respectively, by the relation 

(AB) (AI) (32) 
(AA AB) = ( IB )  ( H )  

where I is the identity operator and ( A B )  is defined by Eq. (6). The 
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following are alternative relations for the codispersion of observables A 

and B, 

(AA AB> = ½Tr p{A, B} - (Tr Ap)(Tr Bp) (33a) 

=(x//-fi A-(x/-fi A),fi, x/p B-w/-fi B)./b ) (33b) 

where (x/~A)./~ denotes the orthogonal projection of xfpA onto 

the linear span of x//p, i.e., by virtue of Eq. (8), 

(~fp A),~=x/-p(AI>=~/-p Tr Ap. 
Using well-known properties of determinants, we can readily show 

that Eq. (20) may be rewritten as 

(Jxi xi> JRI> 
(ARIAXj> (ARaARI> ... (AR1AR=> 

1 (AR;AX:> (AR~ARI> ... (JR_JR.>] 
L,7 = (34) 

z (AR~ AR~> ... (dR1 AR:>[ 

I 
• , , . " 

(AR:ARI> ... (AR.AR:)I 

Equation (34) shows explicitly the general interrelations between each 

generalized dissipative conductivity Lij and the codispersion (dXi AXj) of 
observables Xi and Xj. 

In general, the dispersion-dissipation relations (34) involve the 

codispersions of all pair of observables in the set Xi, Xj, R1 ..... R.. For 

example, for a constituent with no non-Hamiltonian generators of the 

motion, if the state is such that ~ and x~PP H are linearly independent, 
then the dispersion-dissipation relations become 

1 ( <Jxi Jtt><JHJXj>  
Lo= T (AXiAXj> ~ ] (35) 

where <AH2> = (AH AH> is the dispersion in energy• 

The dispersion-dissipation relations may be greatly simplified by 

choosing judiciously the set of observables {J{i} spanning Y,(~(F). For 

example, for a given state p, we may consider a set {Xj} such that 

(a) Xo=I,  XI=H,  X2=N~ ..... X . + t = N . ;  

(b) <AXjAH>=O, <AXjAN~>=O ..... <AXjANn>=O for each 
j > n + l ;  

(c) {Xi} is a quorum, i.e., the Xfs are linearly independent. 

825/I 7/4-4* 
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For such a set of observables {Xj}, we find L i j=0  for i (o r j )~<n+ 1, and 

( A X j  A R k )  = 0 for every j > n + 1 and i>~ 1. Hence, for the special set {X~} 

just defined and the given state p, the dispersion-dissipation relations (34) 

become 

1 
L ~ = -  ( A X i A X j )  (36) 

4. CONCLUSIONS 

Quantum thermodynamics is a nonstatistical generalization of quan- 

tum theory encompassing within a single conceptual structure mechanics, 

equilibrium thermodynamics, and general nonequilibrium, including a fun- 

damental deterministic description of irreversible processes. 

In Ref. 1, we concluded that the nonlinear equation of motion adopted 

as the dynamical principle in quantum themodynamics is consistent with 

both the laws of mechanics and the laws of thermodynamics. 

Here, we proved that the equation of motion is also consistent with 

the phenomenological theory of irreversible processes based on Onsager's 

reciprocity relations and the dispersion-dissipation relations, Within quan- 

tum thermodynamics, such relations emerge rigorously as exact theorems 

of the microscopic internal dynamics of each individual constituent of mat- 

ter. The generalization of the present results to the general composite 

systems treated in Ref. 2 will be presented elsewhere. 
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