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Abstract In this work, the particular and combined influ-
ence of nonparabolicity and phonon scattering on the device
characteristics of a triple-gate silicon nanowire is investi-
gated. In addition, different approximations of the retarded
self-energy for electron-phonon scattering are analyzed in
terms of the electrostatics, current and computational cost.

Keywords Nonparabolicity · NEGF · Scattering ·
Nanowire

1 Introduction

In order to give an accurate description of electronic trans-
port in nanoscale devices, the charge carriers should be
treated on the level of quantum mechanics. Simulation ap-
proaches aiming to predict the behavior of CMOS devices,
usually consist of an iterative solution scheme, where the
Schrödinger and the Poisson equation are solved in a self-
consistent way. In their simplest form [16, 19, 22], the
Schrödinger problem is formulated in the effective mass ap-
proximation (EMA) [14], which is intended for problems
whose external perturbations are smooth compared to the
lattice constant of the considered material. Thus, for devices
involving confinements down to the nanometer length scale,
the EMA becomes questionable. A remedy is provided by
advanced band structure models [15, 17, 18], as for exam-
ple the sp3d5s∗ tight binding (TB) method, but their higher
precision goes at the expense of the simulation time. In this
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work a nonparabolicity model (NP) is discussed, which has
the same computational advantages as the EMA, but incor-
porates a large part of the band structure effects as far as the
currents are concerned. The parameters for NP are obtained
from a comparison with data from a TB band structure [2].
Details are given in Sect. 2.4.

The second part of this work covers the influence of
phonon scattering (SC) on the device characteristics. Af-
ter a brief outline of the non-equilibrium Green’s functions
formalism (NEGF) [20, 21] in Sect. 2.5, which allows the
introduction of scattering mechanisms on a perturbative ap-
proach, the results of different approximations for the re-
tarded self-energy compared to the full problem are dis-
cussed in Sect. 3.3.

Finally both NP and SC are combined (NPSC) in a simu-
lation of triple-gate silicon nanowires to study the joint im-
pact of band structure and scattering effects on the current.
The detailed discussion of NPSC, which is the main focus
of this work, can be found in Sect. 3.4.

2 Theory

2.1 Decoupling of the Schrödinger equation

The kind of devices which can be treated within the trans-
port model used in this work mainly consist of a given trans-
verse shape which is uniformly continued along the trans-
port direction as shown in Fig. 1(a). In the case of one-
dimensional electron gases, i.e. quantum wires, the lateral
confinement is accounted for by Dirichlet boundary con-
ditions while open boundary conditions are applied at the
front and the end of the device in order to enable transport.
The resulting Schrödinger problem needs not to be treated as
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Fig. 1 (a) Schematic representation of a typical device geometry
which can be treated within the transport model used in this work.
The prismatic shape represents a key ingredient. (b) Tensorial grid dis-
cretization used in this work for quantum wires having a square cross
section

an eigenvalue problem as the Hamiltonian of an open quan-
tum system possesses a continuous spectrum. The equation
can be solved as a boundary value problem for an appropri-
ate energy which is known to reside in the spectrum of the
Hamiltonian. Assuming that the channel region consists of
silicon grown along the 〈100〉 direction the EMA envelope
equation [14] reads

[
− �

2

2me

∇TM ∇ + U(r)
]

︸ ︷︷ ︸
�(r) = E�(r), (1)

H(r)

where U(r) contains both the electrostatic potential and the
conduction band edge, and {1/mx , 1/my , 1/mz} denote the
diagonal entries of the inverse effective mass tensor M. In
the case of silicon the effective masses {mx , my , mz} can
take the values 0.19 or 0.91 depending on the considered
conduction band valley. The boundary conditions with the
transport direction along the x-axis are given by

�|x=0 = f1(y, z), (2)

∂

∂x
�|x=0 = f2(y, z), (3)

�|r∈� = 0, (4)

where � denotes the surface along the x-axis and f1 and
f2 are complex valued functions defined on the yz-plane.
The solution of the problem stated in (1), (2), (3), and (4)
requires a subdivision of the transport direction into slices
according to

I(x,n,N)

≡

⎧⎪⎨
⎪⎩

[
x0, (x0 + x1)/2

]
, n = 0,[

(xN−1 + xN)/2, xN

]
, n = N,[

(xn−1 + xn)/2, (xn + xn+1)/2
]
, otherwise

(5)

for a given set of points {xn | 0 = x0 < x1 < · · · < xN−1 <

xN = Lx}. The potential U(r) from (1) is approximated by
a set of piecewise constant functions Un(y, z) ≡ U(xn, y, z)

defined on the corresponding slice I(x,n,N) yielding a sim-
plified Schrödinger problem of the form

(
− �

2

2memx

∂2

∂x2
+ Ĥn

)
�(r) = E�(r), (6)

where

Ĥn ≡
[
−�

2

2

(
∂

∂y

1

my

∂

∂y
+ ∂

∂z

1

mz

∂

∂z

)
+ Un(y, z)

]
. (7)

After using the ansatz

�(r)|x∈I(x,n,N) =
∑

i

(
an
i eikn

i (x−xn)

+ bn
i e−ikn

i (x−xn)
)
�n

i (y, z) (8)

the problem given in (6) reduces to

Ĥn�
n
i (y, z) =

(
E − (�kn

i )2

2mx

)

︸ ︷︷ ︸
�n

i (y, z) (9)

εn
i

and

kn
i =

⎧⎪⎨
⎪⎩

√
2mx(E−εn

i )

�
, E − εn

i ≥ 0,

i

√
2mx(εn

i −E)

�
, otherwise.

After solving the transverse problems given in (9) the total
wave function �(r) to a given energy E can be written as

�(r) =
N∑

n=0

χn(x)

(∑
i

(
an
i eikn

i (x−xn)

+ bn
i e−ikn

i (x−xn)
)
�n

i (y, z)

)
, (10)

where χn(x) is the characteristic function on I(x,n,N).
The remaining task consists of determining the coefficients
{an

i , bn
i } from (10) as well as finding a suitable implemen-

tation for the solution of the transverse problems described
in (9).

2.2 Solution of the transverse problem

Several approaches are available in order to solve the
Schrödinger problem given in (9). Especially in the case
of arbitrarily curved transverse shapes as shown in Fig. 1(a)
the finite element method (FEM) [13] turned out to be a
useful tool. However, as in this work the attention is fo-
cused to devices with a square cross section a finite differ-
ence (FD) scheme is preferable as it is a cheaper alterna-
tive to the FEM from an implementation and performance
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point of view. For this purpose the transverse domain can be
meshed with a tensorial grid as illustrated in Fig. 1(b). It is
parameterized by two sets of points {yp | p = 0, . . . ,P } and
{zk | k = 0, . . . ,K} with corresponding intervals I(y,p,P )

and I(z, k,K) according to (5). A further solution scheme
[5] uses a suitable basis set for the expansion of the solution
�n from (9). The transverse potential Un(y, z) is then ap-
proximated by a set of samples Upk ≡ U(yp, zk) evaluated
at the tensorial grid points as in the FD approach. An an-
alytic representation of the approximated Un(y, z) is given
by a stepwise constant function

Un(y, z) 

P∑

p=0

K∑
k=0

Upkχpk(y, z), (11)

where χpk(y, z) is the characteristic function on the inter-
val I(y,p,P ) × I(z, k,K). The position dependence of the
transverse effective masses my → my(xn, y, z) and mz →
mz(xn, y, z) from (9) is treated in the same way as for
Un(y, z) in (11). In order to account for Dirichlet bound-
ary conditions, a suitable basis set is given by sine waves
having nodes at the boundary of the transverse domain
[0,Ly] × [0,Lz]. The series expansion (SE) of the solution
�n(y, z) from (9) in terms of sine waves is

�n(y, z)

=
R∑

r=1

S∑
s=1

cn
rs〈y, z|r, s〉

≡ 2√
LyLz

R∑
r=1

S∑
s=1

cn
rs sin

(
y

rπ

Ly

)
sin

(
z
sπ

Lz

)
, (12)

where R,S ∈ N denote cutoffs. These sine waves are ortho-
normal with respect to the simulation domain Ly × Lz, i.e.

〈r ′, s′|r, s〉 ≡ 4

LyLz

∫ Ly

0

∫ Lz

0
sin

(
y

r ′π
Ly

)
sin

(
z
s′π
Lz

)

× sin

(
y

rπ

Ly

)
sin

(
z
sπ

Lz

)
dydz

= δr,r ′δs,s′ . (13)

The algebraic eigenvalue problem that results when using
the ansatz from (12) for the problem stated in (9) is given by

Hncn = εncn, (14)

where cn and Hn are defined by

Hn(r
′s′, rs) ≡ 〈r ′, s′|Ĥn|r, s〉

= 4

LyLz

∫ Ly

0

∫ Lz

0
sin

(
y

r ′π
Ly

)
sin

(
z
s′π
Lz

)

× Ĥn sin

(
y

rπ

Ly

)
sin

(
z
sπ

Lz

)
dydz (15)

Fig. 2 Square(SQ), circular(CI), and triangular(TR) model poten-
tials used for the comparison of the FD and SE approach described
in Sect. 2.2. The dark region denotes a step of 3 eV with re-
spect to the white area which is set to zero. The dimensions are
Ly = Lz = L = 5 nm and D = 3 nm and the effective masses are given
by my = 0.19 and mz = 0.91

Table 1 Ground state (GS) energies belonging to the three potentials
described in Fig. 2. Shown are the results obtained by the FD and SE
approach described in Sect. 2.2. The quantity C denotes the cutoff of
the (SE) method whereas for the approximation given in (11) an uni-
formly distributed grid is chosen with K = P = Q. The combinations
SQ-FD, SQ-SE, CI-FD, CI-SE, TR-FD, TR-SE are abbreviated by the
symbols I to VI respectively. All GS energies are given in eV

C Q I II III IV V VI

10 50 0.187 0.190 0.231 0.234 0.569 0.602

10 75 0.191 0.193 0.230 0.233 0.574 0.601

10 100 0.193 0.195 0.230 0.232 0.591 0.617

20 100 0.193 0.194 0.230 0.231 0.591 0.597

30 100 0.193 0.194 0.230 0.230 0.591 0.595

and cn(rs) = crs , respectively. Note, that as the attention is
restricted to square quantum wires, the cutoffs from (12) are
both set to a common value C, i.e. R = S = C. In order
to compare the SE and FD methods, three different geome-
tries are considered as described in Fig. 2. The correspond-
ing ground state energies are summarized in Table 1. For
the finest grid discretization and largest sine wave expansion
both methods agree up to 
4 meV for all potential shapes.

2.3 The longitudinal part

2.3.1 Steady-state quantum transport equations

For the description of transport along the well-defined lon-
gitudinal direction, the non-equilibrium Green’s function
(NEGF) formalism is used, since it allows to include scatter-
ing mechanisms on a perturbative approach. Starting from
the continuous formulation of the steady-state quantum
transport equations, the corresponding expression in the
coupled mode expansion will be derived. A detailed de-
scription of the electron-phonon interaction will be given in
Sect. 2.5.

The solution variables of the steady-state Dyson and
Keldysh equation are the retarded (GR) and lesser (G<)
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Green’s function [20, 21]:
∫

dr1[(E − H(r))δ(r − r1) − 
R(r, r1,E)]

× GR(r1, r′,E) = δ(r − r′), (16)

G<(r, r′,E) =
∫

dr1

∫
dr2G

R(r, r1,E)

× 
<(r1, r2,E)GA(r1, r′,E), (17)

where H(r) is the Hamiltonian of the system given in (1)
and 
(r, r′,E) the self-energy, containing the electron-
phonon interaction 
int(r, r′,E) (whereas the Hartree po-
tential is already included in the Hamiltonian) as well as the
boundary conditions 
bc(r, r′,E):


(r, r′,E) = 
int(r, r′,E) + 
bc(r, r′,E). (18)

2.3.2 Coupled mode expansion

For devices with a well-defined longitudinal direction, it has
been shown that the coupled mode approach yields the same
results as a real-space approach, yet decreasing the compu-
tational burden significantly [22, 23].

All quantities of interest, i.e. the various Green’s func-
tions and self-energies can now be expressed in the basis
functions as defined in (8):

GR(r, r′,E) =
∑
i,j

GR
ij (xn, xm,E)�∗n

i (y, z)�m
j (y′, z′),

(19)

where GR
ij (xn, xm,E) is the solution of the Dyson equation

formulated in mode-space

∑
i,n′

(
Eδjiδnn′ −

∫
dydz�∗n

j (y, z)H(r)�n′
i (y, z)

−
∫

dydz

∫
dy′dz′�∗n

j (y, z)
R(r, r′)�n′
i (y′, z′)

)

× GR
ik(xn′ , xm,E)

=
∑
i,n′

[Eδjiδnn′ − Hji(xn, xn′) − 
R
ji(xn, xn′ ,E)]

× GR
ik(xn′ , xm,E) = δjkδ(xn − xm). (20)

Equation (20) is obtained by inserting (19) into (16), multi-
plying with �∗n

j (y, z) from the left and �n′
i (y′, z′) from the

right and finally integrating over r and r′.
Using the same procedure, the expressions for the self-

energy in real-space and mode space can be obtained. As-
suming that the real-space expression can be written as


R(r, r′,E)

= C(r, r′)GR(r, r′,E)

=
∑
i,j

C(r, r′)GR
ij (xn, xm,E)�∗n

i (y, z)�m
i (y′, z′), (21)

the self-energy in mode-space is defined by


R
ij (xn, xm,E)

=
∑
k,l

(∫
dydz

∫
dy′dz′

× �∗n
i (y, z)�∗n

k (y, z)C(r, r′)�m
l (y′, z′)�m

j (y′, z′)

× GR
kl(xn, xm,E)

)
=
∑
k,l

CijklG
R
kl(xn, xm,E). (22)

Note that the exact form of the self-energy depends on the
respective scattering mechanism. The form written in (21),
which applies to the intravalley acoustic electron-phonon in-
teraction, was chosen as an example in order to illustrate the
transformation behavior.

The boundary self-energies are not transformed but di-
rectly computed in mode-space [24–26].

The advantage of the coupled mode approach lies in the
reduction of the matrix size for the transport problem, since
the square of the number of modes N2

M needed in the sim-
ulations is much smaller than the number of grid points
(Ny,Nz) in the transverse direction: N2

M 
 Ny · Nz.
On the other hand, one of the major shortcomings of this

approach is that only transport along crystal direction 〈100〉
is possible for nanowires.

2.4 Nonparabolicity

In order to improve the EMA, some of the underlying pre-
requisites have to be reconsidered in a more general way.
An important point is that the wave function belonging to
the Hamiltonian including the crystal potential and the ex-
ternal perturbation can be well described within a single en-
ergy band of the crystal band structure, i.e. the lowest silicon
conduction band

� =
∑
μ,k

cμ(k)φμ(k, r) 

∑

k

cCB(k)φCB(k, r). (23)

The latter simplification is related to the assumption that the
external perturbation is too weak to induce a transition from
one band to another. The corresponding Schrödinger equa-
tion when using the approximate series expansion from (23)
reads

∑
k

cCB(k)

[
− �

2

2me

+ V (r) + U(r)
]

φCB(k, r) = E�(r)

(24)
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and can be rewritten as

[εCB(−i∇) + U(r)]�(r) = E�(r) (25)

where V (r) denotes the crystal potential, U(r) the external
perturbation, and εCB(k) is the conduction band. The EMA
dispersion relies on a second order expansion of εCB(k)

in (25) around the minimum. Sticking to the single band
picture, several efforts have been made [1, 3–12] in order
to bridge the gap between the simple parabolic dispersion
contained in the EMA and the shape of the corresponding
conduction band. In this work a modification is provided by
a nonparabolic [6, 7] dispersion of the form

(E − εc)[1 + α(E − εc)] ≡ �
2

2
kT M k (26)

and consequently

E(k) = 1

2α

⎡
⎣
√

1 + 4α
�2

2
kT M k − 1

⎤
⎦+ εc, (27)

where α is referred to as the nonparabolicity coefficient hav-
ing the dimension of an inverse energy and εc = 1.12 eV.
The replacement of k by −i∇ yields a Schrödinger equa-
tion of the form⎡
⎣ 1

2α

⎛
⎝
√

1 − 4α
�2

2
∇T M ∇ − 1

⎞
⎠+ εc

+ U(r)]�(r) = ε�(r). (28)

In order to decouple the expression given in (28) as de-
scribed in Sect. 2.1 and consequently recover the starting
point for the transport framework used in this work, some
assumptions have to made which are related to the presence
of a one-dimensional transverse confinement as it is the case
in quantum wires. In the following, the derivation of such a
simplified expression is closely related to Ref. [2]. The im-
pact of hard wall conditions at the boundaries of a domain
[0,D] × [0,D] on the Schrödinger problem given in (28)
for U ≡ 0 can be investigated by means of the resulting en-
ergy spectrum which in the case of a diagonal effective mass
tensor M is given by

ε(n,m,kx,α) ≡ 1

2α

[√
1 + 4α

(
ε‖ + ε⊥

)− 1

]
+ εc (29)

with n,m = 1,2, . . . , ε‖(kx) ≡ �
2k2

x/(2mx), and ε⊥(n,m) ≡
�

2π2(n2/my + m2/mz)/(2D2). The assumption that the
transverse confinement prevails against the longitudinal one,
i.e. ε‖ 
 ε⊥, yields

ε(n,m,kx,α) = 1

2α

[√
1 + 4αε⊥ − 1

]
+ εc

+ ε‖√
1 + 4αε⊥

+ O

[(
ε‖
ε⊥

)2
]

. (30)

With the abbreviations β(α, ε⊥) ≡ √
1 + 4αε⊥ and

εNP(n,m,α) ≡ [√1 + 4αε⊥ − 1]/(2α) + εc the spectrum
given in (30) can be approximated by

ε(n,m,kx,α) 
 εNP(n,m,α) + ε‖
β(α, ε⊥)

. (31)

For simplicity, the abbreviations βc ≡ β[α, ε⊥(1,1)] and
εNP
c ≡ εNP(1,1, α) will be used. Note that the mass mx on

the right hand side of (31) is effectively renormalized (in-
creased) due to the lateral confinement according to

mx → mxβ(α, ε⊥). (32)

In the case of the conduction band edge the quantity m̃x ≡
mxβc is referred to as the conduction mass. Based on (31),
the Schrödinger problem given in (6) is modified to

(
− �

2

2m̃x

∂2

∂x2
+ ĤNP

n

)
�(r) = E�(r), (33)

where

ĤNP
n ≡ 1

2α

[√
1 − 4α

�2

2

(
1

my

∂2

∂y2
+ 1

mz

∂2

∂z2

)
− 1

]

+ Un(y, z). (34)

The change of the operator ordering in (34) compared to (7)
is justified by the requirement that {mx,my,mz} are posi-
tion independent as it is assumed for the rest of the work.
The spectrum of the Hamiltonian (34) can be computed
by means of the SE method introduced in Sect. 2.2. For
the determination of the NP coefficients α and correspond-
ing renormalized conduction masses m̃x the TB formal-
ism will be used. The band structures of square silicon
quantum wires having a channel grown along the 〈100〉
direction are computed by a TB [15] simulator for a dis-
tinct set of wire widths D[nm] ∈ {2.04, 2.44, 2.85, 3.26,
3.53, 3.94, 4.34}. The TB band structure for the case D =
3.26 nm is shown in Fig. 3 together with the correspond-
ing dispersions εNP

c + ε‖/βc from (31) for one of the four
unprimed valleys �4, i.e. (mx,my,mz)/me = (0.19, 0.91,
0.19). In addition, the EMA case εEMA

c +ε‖ is plotted, where
εEMA
c ≡ εNP(1,1,0). The condition εNP

c − εTB
c = 0 is fi-

nally used in order to determine the NP coefficient α, where
εTB
c is the TB conduction band ETB(kx) evaluated at the

� point, i.e. at kx = 0. Table 2 summarizes the quantities
εEMA
c , εTB

c , α, m̃x , as well as mTB
x ≡ �

2/(∂2ETB/∂2kx) eval-
uated at the � point. The conduction masses extracted from
the TB and NP band structure are found to be close for the
case of the unprimed valleys �4. Note that in the following
the NP model is adopted exclusively for the �4 valleys as
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Fig. 3 TB dispersion of a square silicon nanowire grown along the
〈100〉 direction having a width of D = 3.26 nm. The length of the wire
unit cell is a0 = 0.543 nm. In addition, the dispersion εNP

c + ε‖/βc

from (31) is plotted together with the EMA case εEMA
c + ε‖. The inset

highlights the agreement between εNP
c + ε‖/βc and the TB conduction

band

Table 2 Conduction band edges, conduction masses, and NP coeffi-
cients as introduced in Sect. 2.4 belonging to a series of square silicon
quantum wires of width D. Lengths are given in nm, energies in eV,
NP coefficients in eV−1, and masses in units of me

D εEMA
c εTB

c α m̃x mTB
x

2.04 1.694 1.512 1.19 0.367 0.370

2.44 1.522 1.412 1.30 0.334 0.308

2.85 1.414 1.346 1.37 0.306 0.294

3.26 1.345 1.301 1.36 0.283 0.267

3.53 1.312 1.279 1.33 0.270 0.260

3.94 1.274 1.252 1.26 0.253 0.254

4.34 1.247 1.233 1.14 0.239 0.242

the influence of the primed valleys is found to be negligible
especially for strong lateral confinements.

2.5 Electron-phonon scattering

2.5.1 The lesser scattering self-energy

Since both electron and phonons are described by their re-
spective wave functions, scattering in quantum mechanics
is generally a spatially correlated phenomenon. However, in
order to decrease the computational burden, it will be ap-
proximated as local in space. In this section, all equations
are written in their most general continuous form. In order
to calculate the expression in the coupled mode expansion,
the transformation described in (22) is used.

It is assumed that the phonon system remains in equi-
librium and that the phonon wave functions can be approxi-
mated by their bulk counterparts. Since silicon is a non-polar

semiconductor, deformation potential theory can be applied
in the formulation of the perturbative Hamiltonian [28],
which is used to calculate the electron-phonon matrix ele-
ments |Mq |2.

Then, within the self-consistent Born approximation, the
self-energy for the electron-phonon interaction is


< = D<G<, (35)

with the free phonon lesser Green’s function D< [27]. For
the steady-state case, (35) can be written as


<(r, r′,E) =
∫

dq
(2π)3

eiq(r−r′)|Mq |2

× (NqG<(r, r′,E − �ωq)

+ (Nq + 1)G<(r, r′,E + �ωq)
)
. (36)

2.5.2 The retarded scattering self-energy

The retarded self-energy is generally written as


R(r, r′,E)

= 1

2
(
>(r, r′,E) − 
<(r, r′,E))

+ iP

∫
dE′

2π


>(r, r′,E′) − 
<(r, r′,E′)
E − E′ , (37)

where P
∫

dE′ is the principal part of the integration. It con-
sists of two parts:

1. The term on the first line of (37) is anti-Hermitian and
responsible for the dephasing.

2. The term with the principal part on the second line of (37)
is Hermitian and yields a renormalization of the energy.

The solution variables of the Dyson and Keldysh equation
are the retarded and the lesser Green’s functions (GR,G<).
In order to calculate 
> in (37), which depends on G>, the
following relation can be applied:

G>(E) = GR(E) − GA(E) + G<(E). (38)

However, the retarded self-energy can be calculated directly
from the solution variables (GR,G<), without an explicit
calculation of G>:


R(r, r′,E) =
∫

dq
(2π)3

eiq(r−r′)|Mq |2

×
(

(Nq + 1)GR(r, r′,E − �ωq)

+ NqGR(r, r′,E + �ωq)

+ 1

2

(
G<(r, r′,E − �ωq)



342 J Comput Electron (2009) 8: 336–348

− G<(r, r′,E + �ωq)
)

+ iP

∫
dE′

2π

G<(r, r′,E − E′)
E′ − �ωq

− G<(r, r′,E − E′)
E′ + �ωq

)
. (39)

A derivation of (39) is given in [29]. Note that in (39) above,
the term with the principal part integral contains only a frac-
tion of the original Hermitian term in (37). It is therefore
expected, that neglecting the principal part integral in (39)
instead of (37) results in a much smaller error on both the
density and the current. A detailed discussion of both ap-
proximations compared to the full expression is given in
Sect. 3.3.

2.5.3 Intravalley acoustic phonon scattering

Assuming that �ωq 
 kBT ⇒ E ± �ωq ≈ E, intravalley
acoustic phonon scattering becomes an elastic interaction
and the phonon distribution function can be approximated
by

Nq + 1 ≈ Nq ≈ kBT

�ωq

. (40)

Taking a linear dispersion relation �ωq = csq , the corre-
sponding electron-phonon matrix element can be approxi-
mated by

|Mq |2 ≈ ��2q

2ρcs

. (41)

Then the term |Mq |2 · Nq in (36) becomes independent of
the phonon wave vector q , and therefore the self-energy is
approximated as local in space:


<
v (r, r′,E) = �2kBT

ρc2
s

G<
v (r, r′,E)δ(r − r′). (42)

The mass density of silicon is ρ = 2.329 g/cm3, the speed
of sound in silicon is cs = 9.04 · 105 cm/s and for the defor-
mation potential � = 14.6 eV is used as proposed in [30].

2.5.4 Intervalley phonon scattering

Assuming that both the phonon energy and the matrix ele-
ment can be regarded as being independent of the phonon
wave vector, the lesser self-energy for intervalley phonon
scattering is approximated as diagonal in space too.

The electron-phonon matrix elements can be written as

|Mj |2 = �
2(DtKj )

2

2ρ�ωj

, (43)

Fig. 4 A triple gate square silicon nanowire having a channel grown
along the 〈100〉 direction which is surrounded by a 1 nm thick oxide
layer. The source and drain regions are n-doped with a concentration
of 1020 cm−3 while the channel is undoped. The lengths of the source,
channel, and drain regions are given by Ls = 9.7 nm, Lc = 15 nm, and
Ld = 9.7 nm respectively and the wire width is denoted by D

where DtKj is the coupling constant and �ωj the phonon
energy of the respective intervalley scattering mechanism.
The parameters are taken from [28].

The lesser self energies for valley v are given by a sum
over all valleys, using the appropriate selection rule (sv,v′ =
δv,v′ for g-type, and sv,v′ = 2(1−δv,v′) for f-type intervalley
scattering):


<
j,v(r, r′,E) = �

2(DtKj )
2

2ρ�ωj

3∑
v′=1

(
NjG

<
v′(r, r′,E − �ωj )

+ (Nj + 1)G<
v′(r, r′,E

+ �ωj )
)
sv,v′δ(r − r′). (44)

2.6 Density and current calculation

For both the carrier density and the current, we basi-
cally have three contributions: coherent terms from the
source/drain contacts (boundary terms) and an incoherent
term from the electron-phonon interaction.

G< = GR(
<
S + 
<

D + 
<
int)G

A, (45)

n(xn, y, z) = −i
∑
v,σ

∑
ij

∫
dE

2π

× G
<,v
ij (xn, xn,E)�∗n

i (y, z)�∗n
j (y, z) (46)

I (xn) = − e

�

∑
v,σ

∑
ij

∫
dE

2π

×
(

2 Re (Hv
ij (xn, xn+1)G

<,v
ji (xn+1, xn))

)
. (47)

In (46) and (47) v and σ are the valley and spin indices.
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3 Simulation results

3.1 Test framework

The impact of scattering and nonparabolicity is investigated
by means of a square silicon quantum wire transistor as de-
scribed in Fig. 4 which serves as basis for all current com-
putations in the rest of the work. The threshold voltage VT

and the ON-current ION are defined similar to Ref. [9] by

IDS(VGS = VT,VDS) = 100 nA (48)

and

ION = IDS(VT + 0.3 V,VDS), (49)

where IDS, VGS, and VDS denote the drain current, gate volt-
age, and source-to-drain bias respectively.

3.2 Nonparabolicity

The framework presented in Sect. 2.4 aims at reducing the
discrepancy between the currents obtained by the EMA
and a fully atomistic TB approach [15]. In order to quan-
titatively investigate the improvement delivered by the NP
model a set of transfer characteristics related to the diame-
ters D[nm] ∈ {2.04, 2.44, 2.85, 3.26, 3.53, 3.94, 4.34} are
computed with the TB, EMA, and NP formalism. The re-
sulting VT and ION are extracted by means of (48) and (49)
at a source-to-drain bias of 0.6 V and plotted in Fig. 5. It
can be seen that the VT obtained by the NP model is no-
tably closer to TB data than the results obtained with the
EMA. Similar observations have been reported for the case
of cylindrical [12] and square [9] silicon nanowire transis-
tors. An improvement for the ION is evident as well but not
as apparent as in the VT case. Noticeable are the similarities
between the ION obtained by the EMA and the NP model for
m̃x = 0.19me showing that the modified conduction mass is
mainly responsible for the ON-current shift resulting from
the NP simulation. On the other hand, the conduction mass
has a minor influence on the threshold voltage, where the
shift of VT can be attributed to the shift of the conduction
band edge between the EMA, NP, and TB cases. The latter
observations are of course restricted to the device considered
in this section.

3.3 Approximations of the retarded electron-phonon
self-energy

When calculating the full retarded self-energy of an inelas-
tic interaction, a principal part integration over the complete
energy range must be carried out for each energy sampling
point, as shown in (37). In order to decrease the computa-
tional burden, different approximations for the retarded self-
energy can be made [30–32]. In this section, the validity of

these approximations under different bias conditions is ana-
lyzed by comparing them to results calculated with the full
retarded self-energy.

The different definitions of 
R
int(r, r′,E) used here are

given by:

– Approximation I: Equation (37) without the last line (i.e.
neglecting the princ. part integral)

– Approximation II: Equation (39) without the last line (i.e.
neglecting the princ. part integral)

– Full: the full expression in (39).

Both approximations of the retarded self-energy respect cur-
rent conservation, which is shown in the Appendix for the
sake of completeness. As already mentioned in Sect. 2.5.2,
Approximation I only includes the anti-Hermitian term while
the Hermitian term is neglected completely. In contrast to
this, Approximation II not only contains the anti-Hermitian
term, but also a fraction of the Hermitian term.

In Fig. 7 the IDSVG curves are shown for all 3 versions
of 
R

int(r, r′,E). Approximation I yields an underestimation
of the subtreshold current up to 80% when compared to Full
version. However the discrepancy between the two current
curves is decreasing for VG > VT and is within an range of
5% for ION. This behavior can be explained by the impact
of the neglected energy renormalization on the effective bar-
rier height. In the subtreshold voltage regime, the current in-
creases exponentially as the barrier height decreases. There-
fore even a small change in the effective barrier height has
a strong impact on the current. Once the barrier height be-
comes comparable to kBT , as it is the case for ION, a small
renormalization of the barrier has almost no effect on the
current.

The resulting current of Approximation II is in excellent
agreement with the current of the Full version throughout
the whole voltage regime. The deviation is less than 1%, i.e.
it lies within the range of the numerical tolerance for the
current calculation.

In Fig. 6 the lowest subbands and the spectral electron
densities taken at x = 17.2 nm are shown. Both the sub-
bands and the spectral density of Approximation I deviate
from the other versions, whereas the data of Approximation
II is almost identical to the Full version in the gate region.
However there is still a difference in the electrostatic solu-
tion in the source-drain extensions.

3.4 Combination of nonparabolicity and scattering

In this section, the results of simulations incorporating both
nonparabolicity and scattering (NPSC) are compared to data
from simulation containing only NP, SC or EMA. For all the
SC data in this section, Approximation II is used for the re-
tarded self-energy, since it yields the accurate electrostatic
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Fig. 5 Dependence of the errors (V NP
T − V TB

T ) (a) and (INP
ON −

ITB
ON)/ITB

ON (b) on the wire width D. Plotted are the results obtained
with the set of NP parameters summarized in Table 2. In particular, the
squares and diamonds are for the same set of coefficients α whereas for
the latter curve m̃x = 0.19me has been used instead of m̃x = 0.19meβc .

The arrows indicate points for which the transfer characteristics do not
converge up to the desired gate voltage. For these points a parabolic fit
to the data above VT is used to extrapolate the ION according to (49).
The remaining VT and ION are computed by means of a spline interpo-
lation

Fig. 6 (a) The lowest subband at VG = 0.3 V is shown for the dif-
ferent approximations of the retarded self-energy compared to the full
solution. The spectral electron density in the middle of the device (cut

at x = 17.2 nm) is shown in (b). Approximation I leads to significant
underestimation of the charge, while Approximation II is able to repro-
duce the charge of the full solution

solution and current, but decreases the computational bur-
den, as demonstrated in Sect. 3.3. The results of Figs. 8 and 9
are summarized in Table 3.

The threshold voltage VT is mainly affected by the mod-
ification of the band structure, i.e. the inclusion of NP, for
both source-to-drain biases. The effect of SC on VT is on the
order of 1% and therefore negligible.

On the other hand, the change in ION is mainly due to
scattering while the modification of the conduction mass re-
sulting from the NP model has a minor impact only. It is
interesting to note that for the ON-current, the single meth-
ods SC and NP do not add up to the result of the combination
NPSC. This can be explained in the following way: Band-
structure effects beyond the EMA approach become impor-

tant once there are many electrons in the device with high
energies, i.e. their location in the Brillouin zone deviates
from the conduction band edge, where the EMA approach
is valid. However, in a non-equilibrium system, scattering
results in a redistribution of the electrons in energy and mo-
mentum. From (44) it can be seen, that phonon emission is
the favored process for electrons compared to phonon ab-
sorption, provided that the final states at E ± �ωq exist and
are unoccupied. This means that electrons tend to dissipate
energy in the drain extension by relaxing to the conduction
band edge, which alleviates the importance of nonparabolic
band structure effects. If the initial energy of the electron is
very high (compared to the conduction band edge and the
respective chemical potential), as it is the case for an elec-



J Comput Electron (2009) 8: 336–348 345

Fig. 7 IDSVG curves for the different approximations of the retarded
self-energy compared to the full solution. The error of the current using
Approximation II is less than 1% over the whole voltage range, while

the subtreshold current of Approximation I yields an underestimation
up to 80%

Fig. 8 Comparison of IDSVG curves resulting from nonparabolicity (NP) and nonparabolicity with scattering (NPSC), using Approximation II.
As a reference, the ballistic EMA curve is shown. Results are summarized in Table 3

Fig. 9 Comparison of IDSVG curves resulting from scattering (SC) and nonparabolicity with scattering (NPSC), using Approximation II. As a
reference, the ballistic EMA curve is shown. Results are summarized in Table 3
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Table 3 Threshold voltages and ON-currents related to the trans-
fer characteristics plotted in Figs. 8 and 9. Shown are the re-
sults of the two ballistic simulations, EMA and nonparabolicity
NP, as well as two simulations with scattering using Approxima-
tion II, SC and in combination with nonparabolicity NPSC. Two
source-to-drain biases have been considered: VDS = 0.1 V(I) and
VDS = 0.5 V(II). A spline interpolation is used to compute the
data according to the definitions given in (48) and (49). The rela-
tive(REL) deviations |I ballistic

ON − I
NP,SC,NPSC
ON |/I ballistic

ON and |V ballistic
T −

V
NP,SC,NPSC
T |/V ballistic

T are shown as well

mode VT(I) ION(I) VT(II) ION(II)

EMA 0.312 V 7.53e–06 A 0.308 V 1.06e–05 A

NP 0.266 V 6.86e–06 A 0.262 V 9.25e–06 A

NP REL 14.74% 8.994% 14.94% 12.87%

SC 0.311 V 4.15e–06 A 0.304 V 6.81e–06 A

SC REL 0.32% 45.28% 1.30% 35.86%

NPSC 0.265 V 4.04e–06 A 0.258 V 6.16e–06 A

NPSC REL 15.06% 46.39% 16.23% 41.94%

tron surmounting the source-to-drain barrier in the subtresh-
old regime, it cannot be completely thermalized by inelastic
scattering in the short drain extension of about 10 nm. This
results in a significant difference in the subtreshold regime
between the two IDSVG curves labeled SC and NPSC in
Fig. 9. With decreasing barrier height, the current is carried
by electrons with lower energy and the difference between
the curves is reduced, i.e. the importance of NP decreases.
This observation is consistent with the conclusions, that can
be drawn from comparing the results of the two different
source-to-drain biases VDS = 0.1 V and VDS = 0.5 V in Ta-
ble 3. In the case of VDS = 0.5 V, electrons from the source
arriving at the drain extension have a higher kinetic energy
compared to those with VDS = 0.1 V, and therefore the band
structure effects in NPSC still have an impact, whereas for
VDS = 0.1 V, the value of ION seems to be completely deter-
mined by scattering.

4 Conclusion

The separate and combined effects of nonparabolicity and
phonon scattering have been studied for triple-gate silicon
nanowires. As far as approximations for the retarded self-
energy are concerned, only Approximation II is found to re-
produce the results of the full problem, whereas Approxima-
tion I leads to a significant error in the current. The observed
shift in the threshold voltage VT was identified as a band
structure effect. The ON-current ION, on the other hand, is
mainly determined by scattering. The remaining influence
of nonparabolicity on ION strongly depends on the kinetic
energy of the carriers in the drain extension, which is a func-
tion of the source-to-drain voltage VDS. The higher VDS, the
stronger is the impact of nonparabolicity on ION.
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Appendix

In a non-equilibrium system, the introduction of scattering
results in a redistribution of carriers in their energy and mo-
mentum. An important constraint is that the current must be
conserved, which will be demonstrated in this appendix. To
keep the equations as short as possible, subband and space
indices will be dropped. The expression for current conser-
vation can be written as:

∇ · I =
∫

dE

2π
Tr

(
HG<(E) − G<(E)H

)
(50)

=
∫

dE

2π
Tr

(

R(E)G<(E) + 
<(E)GA(E)

− GR(E)
<(E) − G<(E)
A(E)

)
(51)

=
∫

dE

2π
Tr

(
G<(E)

(

R(E) − 
A(E)

)

+ (GA(E) − GR(E)
)

<(E)

)
. (52)

For the last equality, the invariance of the trace of a matrix
product has been used:

Tr (AB) = Tr (BA), A,B arbitrary matrices. (53)

The decisive question now is, whether or not

(

R(E) − 
A(E)

) ?= (
>(E) − 
<(E)
)

(54)

is fulfilled for the approximations of the retarded self-
energy.

For Approximation I, the proof is trivial:

(

R(E) − 
A(E)

) =
(

1

2
(
>(E) − 
<(E))

− 1

2
(
>(E) − 
<(E))†

)

= (
>(E) − 
<(E)
)
. (55)

For Approximation II of an inelastic interaction, the proof is
slightly more involved:

(

R(E) − 
A(E)

)
(56)

=
∫

dq
(2π)3

eiq(r−r′)|Mq |2
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×
(

(Nq + 1)GR(E − �ωq) + NqGR(E + �ωq)

+ 1

2

(
G<(E − �ωq) − G<(E + �ωq)

)

− (Nq + 1)GA(E − �ωq) − NqGA(E + �ωq)

+ 1

2

(
G<(E − �ωq) − G<(E + �ωq)

))
(57)

=
∫

dq
(2π)3

eiq(r−r′)|Mq |2

×
(

(Nq + 1)(GR(E − �ωq) − GA(E − �ωq))

+ Nq(GR(E + �ωq) − GA(E + �ωq))

+ (G<(E − �ωq) − G<(E + �ωq)
))

(58)

=
∫

dq
(2π)3

eiq(r−r′)|Mq |2

×
(

(Nq + 1)(G>(E − �ωq) − G<(E − �ωq))

+ Nq(G>(E + �ωq) − G<(E + �ωq))

+ (G<(E − �ωq) − G<(E + �ωq)
))

(59)

= (
>(E) − 
<(E)
)
. (60)

Restating (52), the proof can be finished in the following
way:

∇ · I =
∫

dE

2π
Tr

(
G<(E)

(

R(E) − 
A(E)

)

+ (GR(E) − GA(E)
)

<(E)

)

=
∫

dE

2π
Tr

(
G<(E)

(

>(E) − 
<(E)

)

+ (G<(E) − G>(E)
)

<(E)

)
(61)

=
∫

dE

2π
Tr

(
G<(E)
>(E) − G>(E)
<(E)

)
(62)

=
∫

dE

2π

∫
dq

(2π)3
eiq(r−r′)|Mq |2

× Tr

(
G<(E)

(
NqG>(E + �ωq)

+ (Nq + 1)G>(E − �ωq)
)

− G>(E)
(
NqG<(E − �ωq)

+ (Nq + 1)G<(E + �ωq)
))

= 0. (63)

For the last equality a change of variables must be per-
formed: E → E + �ωq for the first term in the third line
of (63) and E → E − �ωq for the second term in the third
line of (63). Then the total integrand vanishes.
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