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We describe a simulation of the self-consistent fields and mobility in (100) Si-inversion layers
for arbitrary inversion charge densities and temperatures. A nonequilibrium Green’s functions
formalism is employed for the state broadening and conductivity. The subband structure of
the inversion layer electrons is calculated self-consistently by simultaneously solving the
Schr6dinger, Poisson and Dyson equations. The self-energy contributions from the various
scattering mechanisms are calculated within the self-consistent Born approximation. Screen-
ing is treated within RPA. Simulation results suggest that the proposed theoretical model
gives mobilities which are in excellent agreement with the experimental data.
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The inversion layer mobility in Si MOSFET is a very
important physical quantity that describes the drain
current and also serves as a probe to study the elec-
tronic transport properties of the quasi-two-dimen-
sional (Q2D) electron gas. Semi-empirical models
have been developed to explain the overall mobility
behavior at various temperatures and different gate
voltages [1,2]. Monte Carlo studies of the two-dimen-
sional electron transport in Si MOS devices have also
been performed [3]. However, scaling of the MOS
device downwards leads to high surface fields. Then,
the degenerate nature of the electrons dominates the
transport properties of the structure. The Fermi-Dirac

statistics influence the mobility in two ways: through
the screening properties of the electron gas and
through the distribution function itself. In addition,
broadening of the states near the subband thresholds
impacts the redistribution of the carriers among vari-

ous subbands. To overcome some of the limitations of
previous theories, we use a new theoretical model in
which the two-dimensional aspects of carrier motion,
intersubband transitions, the anisotropy of the acous-

tic phonon interaction, as well as the broadening of
the electronic states and the degenerate nature of the
Q2D electron gas are simultaneously taken into

account.

The theoretical model is summarized in Fig. 1. The

initial potential energy profile is calculated analyti-
cally using a variational approach for the electronic

quantum limit. The Schr6dinger, Poisson and Dyson
equations are then iterated for the corresponding
unknowns [4], and self-consistency is achieved
through the outer iteration. For each iteration, the
one-dimensional Schr6dinger equation is integrated
leftward (<) and rightward (t>) using a 1D ver-

sion of the Numerov algorithm [5]. The effective
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Solve the Poisson
equation for the Hanree

potential.

Calculate the initial potential energy
profile using variational approach.

Evaluate the subband structure
(solve the Schrodinger equation).

Calculate wavevector-dependcut matrix
elements for all scattering processes.

Calculate screened matrix elements for
surface-roughness and Coulomb scattering.

Compare subband separation
results with FIR optical
absorption experiments.

Evaluate one-electron properties of the system
(excitation spectrum, broadening of the state.s,
spectral density function, and DOS function).

Calculate zero-temperature and finite-

tempeture co,nductivity (,mobilit,y).
J Compare With experimental

measurements of effective

l or Hail ,mobility. 1

FIGURE Flow-chart of the model

potential energy consists of the sum of the Hartree,
image and exchange-correlation terms [6]. The two solu-
tions are matched at the turning point and an eigenvalue
is indicated by the continuity of the logarithmic deriva-
tive at the matching point, i.e. when the matching toler-
ance f [<(Zm- h) t>(Zm + h)]/<(Z), where
h is the mesh size in the confining direction, is less
than 5 10-5. A simple eigenvalue search is used
until f is a monotonically decreasing or increasing
function and a bisection method is employed within
the energy interval that contains an eigenvalue.
The wavevector-dependent matrix elements are

next found for Coulomb scattering from depletion
layer and/or oxide/interface charges, surface-rough-
ness scattering and scattering from the various modes
of lattice vibrations (acoustic and zero- and first-order

nonpolar optical phonons) [4,7]. Screened matrix ele-
ments for Coulomb and surface-roughness scattering
are calculated using the Random Phase Approxima-
tion (RPA). Due to the loss of translational invariance
in the confining direction, the dielectric function for a

Q2D system becomes a fourth rank tensor which

requires inversion of a N N matrix. For (100) sili-

con, the size of this matrix is precisely N nl
2 + n22

where n (n2) is the number of subbands from the first

(second) set of equivalent valleys with heavy (light)
mass perpendicular to the interface. We first evaluate
the diagonal (intrasubband) terms of the screened
scattering potentials from the bare ones by inverting
the linear problem

W/ff (q, co) Vitiate (q)

---_Fii,nn(q)qn(q, co)Weff -t, co), (1 a)
q

where Fij,nm(q) are the form-factors due to the finite
extent of the electron gas in the confining direction
and qZn (q, co) are the screening wavevectors [4]. The
off-diagonal (intersubband) terms are then obtained
from

Wiff (q, co) ijvbare(q) +

Fij,nn(q)qSnn(q, co)w,eff(N co). (lb)
q nn ,1

Since the matrix elements for Coulomb scattering
decrease rapidly with the wavevector, a nonuniform
mesh in momentum space is generated with the coordi-
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2 a), wherenate transformation qnew qod/(qot +
qold is a wavevector on the uniform mesh, qnew is the
corresponding one on the nonuniform mesh and a 2 x
109 m-1 is an adjustable parameter. In the second step,
we evaluate frequency and kinetic energy dependent
scattering-induced broadening of the states [4]

Fn(k, O))
42B2 d:q

m o
2g

Fm(Eq, m) / dTnm(ek-q) (2)
gq gm]2"-- 2+rm(eq’m) b

where Tnm(gk.q) is the sum of the squared matrix ele-
ments of all scattering processes. The first Born
approximation results are used as an initial guess in
this iterative procedure. Once the system of integral
equations (2) is solved, we proceed with the calcula-
tion of the density of states (DOS) functions. If self-
consistency is not achieved, we proceed with the solu-
tion of the Poisson equation for which we use the
approach given in [6] to find the improved Hartree
potential. The potential energy profile for the next

iteration is obtained by using a fixed-convergence
factor scheme for the first two iterations and an

extrapolated convergence-factor scheme thereafter.
The error criterion for the convergence of the self-
consistent field iterations is that the absolute value of
the difference between the input and output potentials
at each grid point is less than 0.01 meV.

After achieving self-consistency, we iteratively
solve the system of Fredholm integral equations (that
result from the full Bethe-Salpeter equation)

k.q
An(gk,o))- -k ZZ--’Tnm(k- q)

q

am(eq,o))
Am(q, o)) (3)

2Fm(eq, m)

for the kernel functions An(gk,o) which appear in the
expression for the dc-conductivity

-2e2f( OnF )
aek a,,(, m)
gkAn (gk m) (4)

o
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FIGURE 2 Mobility versus inversion charge density at T 77 K
and T 300 K

where nF(O) is the Fermi-Dirac distribution function.
The average or effective mobility is then calculated
from eff 2D/eNs, where Ns is the total sheet-
charge density.

The mobility is shown in Fig. 2 and compared with

experimental data from n-channel MOSFET’s fabri-
cated on (100) Si wafers. The filled circles and open
triangles represent the experimental mobilities for
devices with Na 2 1016cm-3 and Na 7.2 1016
cm-3, respectively [8]. The solid and dashed lines are
the corresponding simulation results. For both
devices, the interface-trap density is estimated to be

Nit 1.75 1011 cm-2. Coupling constants for defor-
mation potential and non-polar optical phonon scat-

tering (zero- and first-order interactions) and the
corresponding phonon energies, used in the calcula-
tions, are given in Refs. [3,9]. Very good agreement
between the experimental data and the simulation
results throughout the whole inversion charge density
region can be observed. The small discrepancy at low
values ofNs (N < 5 1011 cm-2) might be due to the
following two reasons: (1) the application of finite
drain voltage leads to a decrease in the carrier concen-
tration near the drain causing a lower value for the
experimental mobility; (2) a three subband approxi-
mation (n 2 and n2 1), used at present, overesti-
mates the mobility in the low inversion-charge
density region where a small fraction of the inversion

layer electrons actually resides in the higher-lying
subbands.
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Present simulation results suggest that, even at

room temperature, Coulomb scattering from inter-

face-trap and depletion layer charges degrades the
mobility at low surface fields. The proper treatment of
the anisotropy of the deformation potential interaction
at T 300 K leads to mobilities that are in close
agreement with the experimental data in the range of
low-to-medium densities (= 1011 1012 cm-2), where
acoustic phonon scattering limits the mobility. We
also find that the importance of surface-roughness
scattering shifts toward higher surface fields with

increasing temperature. In order to explain the experi-
mental data of Takagi et al. [8] at high surface fields,
temperature-dependent roughness parameters have
been adopted. In other words, good agreement with
the experimental data is achieved by using an expo-
nential model for the autocovariance function with
A=0.3 nm (A=0.25 rim) and =1.5 nm

( 1.4 nm) at T 300 K (T 77 K), as well as the
Ando model [6] for the surface-roughness matrix ele-
ment. These roughness dimensions are comparable to

the TEM results obtained by Goodnick et al. [10].

The shape of the cumulative DOS function for the
device with Na= 2 x 1016 cm-3 is shown in Fig. 3. For
low values of Ns (= Ns), strong Coulomb scattering
and small subband separation eliminates plateau
regions in the DOS curve. The steeper rise of the DOS
curve near subband thresholds for Ns= Ns2 is a conse-
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FIGURE 3 Cumulative DOS function for the lowest two subbands
of the two equivalent valleys with heavy mass perpendicular to the
interface versus energy at T 300 K

quence of the decreased importance of Coulomb scat-

tering. At higher values of N (= Ns3),the increased
subband separation and reduced intersubband scatter-

ing allows the plateau regions in the DOS curves to be
observed.

In conclusion, simulation results for the mobility
suggest that the theoretical model correctly predicts
both the order of magnitude and the overall mobility
behavior at various temperatures. We also find that
for energies near the subband thresholds, the broaden-
ing of the states is comparable to the kinetic energy of
the carriers. This leads to modification of the DOS
function from its ideal step-like behavior and influ-
ences the population of various subbands which, in

turn, modifies the mobility.
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