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Quantum tunneling in a Kerr medium with parametric pumping
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A quantum optical model with a classical phase space exhibiting nonlinear oscillations around
two elliptic axed points is investigated. The quantum system is found to display coherent tunneling
between near coherent states of opposite phase centered at the classical fixed points.

PACS number(s): 42.50.Lc, 42.65.Ky, 42.65.Re

I. INTRODUCTION

Quantum-mechanical tunneling through the barrier of
a double-well potential is a standard model for exhibit-
ing this typical quantum feature of a nonlinear system.
The model has a long history, appearing in the earliest
quantum-mechanical literature [1]. A realization of the
model in a Josephson junction has been extensively dis-
cussed, as a means of producing superpositions of macro-
scopically distinct states [2]. Quite recently the model
(with the addition of a periodic driving field) has been
discussed in the context of contrasting classical and quan-
tum nonlinear dynamics when the classical description
exhibits chaos [3,4].

In this paper we discuss a simple quantum optical
model which is dynamically equivalent to a double-well-
potential model. Very recently Di Filippo et al. [5]
have considered an equivalent model in the context of a
parametrically driven anharmonic oscillator with possible
application to high-precision measurements on trapped
ions. The model involves the interaction of a single
mode of the field with both an intensity-dependent refrac-
tive index and a parametric nonlinearity. The system is
driven externally entirely by the parametric pump field.
Of course it is unlikely that any single material would ex-
hibit both nonlinearities of the required strength. How-
ever, a single cavity could contain materials with the ap-
propriate nonlinearity. In that case one would arrange for
the parametric pump, however, not to see a cavity. The
classical phase-space orbits of this model are in fact ovals
of Casinni, and for this reason we will refer to the device
as a "Cassinian oscillator. " In this Brief Report the clas-
sical and quantum descriptions are given and contrasted.
In particular we show how quantum tunneling in this
model leads to the production of a quantum superposi-
tion of two nearly coherent states of the electromagnetic
Beld. We also discuss the observational consequences of
such a superposition state.
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where a is the annihilation operator for the cavity field,
y is proportional to the third-order nonlinear susceptibil-
ity, and K is proportional to the product of the amplitude
of the parametric pump Geld and the second-order sus-
ceptibility. The Heisenberg equation of motion for a is

—= —i —(aa a+ ata ) + i+at.dQ

dt 2 (2)

We deBne the corresponding classical model by replacing
the operators a and at in the equations of motion, by
the commuting c numbers o. and o.*, respectively. In
terms of canonical quadrature phase amplitudes defined
by Xi ——2(o. + n*), Xq = 2'(a —n*), the resulting
equations of motion are

Xi ——4(X, + X2)X2+ 4p X2,
X2 ———4(X, + X2 )Xi + 4p, Xi,

(3)

(4)

where the dot implies difI'erentiation with respect to the
scaled time variable 7 = ty/4, and we have defined p
—".These equations imply a Hamiltonian of the form

H = (X,'+ X,')'+ 2p'(X,' —X,').

The phase curves of constant energy for this model are
given by the ovals of Cassini, with foci on the Xi axis
at +p (see Fig. 1). There are three fixed points, two
elliptically stable points at +p and one unstable point
at the origin. The separatrix occurs at H(Xi, X2) = 0
and takes the form of a lemniscate. In order to find the
nonlinear oscillation frequency of the model we transform
to action-angle variables. This is most easily done by
writing the Hamiltonian in polar coordinates using Ai ——

r cos0, X2 ——r sin 0. Inside the separatrix the action
with respect to a closed orbit around one fixed point is
given by

II. THE CASSINIAN OSCILLATOR J(~H~) = E28., —, —p2 ( +2

2 q
"P' (6)

The Hamiltonian of the model (in the interaction pic-
ture) is

where E is the elliptic integral of the second kind [6],
P = li + H, and the critical angle 0, is defined by
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Stroboscopic Phase Portrait
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FIG. 2. The energy dependence of the nonlinear frequency
with p = 1.0.

FIG. ].. The classical phase-space trajectories with p = 3.0.

where cn is one of the Jacobi elliptic functions [6] and
the quadrature phase amplitudes are found from Xi(t) =
r cos 0, X2(t) = r sin 0.

cos 20, = 6
p 2

Outside the separatrix the action is

cu(H) =
I

(BJ l
(BHg

4~p
p'5
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rI 20., —",
Ip'r

ifE&0

ifE&0
(9)

where I" is the elliptic integral of the first kind [6]. In
the case E ( 0 the frequency is with respect to oscilla-
tions around one of the fixed points. In Fig. 2 we plot
the nonlinear frequency as a function of the energy. As
expected the frequency goes to zero quite rapidly as the
separatrix is approached.

The solutions to the equations of motion are also easily
found once action-angle variables are determined. We
simply quote the results. The polar radius is given as an
implicit function of the polar angle and energy by

r —2p r cos20 = E

p'
J(H) = E

I
~, ——

2' g
' P')

The nonlinear frequency, as a function of energy (which
is proportional to the intensity), is then given by

III. QUANTUM DYNAMICS

I+) = ~'(In&+
I

—n))
I-& = ~ (In& —

I

—n&)

(12)
(13)

where N+ and N are appropriate normalizing con-
stants. Using this the time evolution of a coherent state
becomes

The quantum dynamics of the system are investigated
by numerically diagonalizing the Hamiltonian matrix in
the number state basis, thereby finding the energy eigen-
vectors and eigenfrequencies. As is expected from the
symmetry of the Hamiltonian these are also parity eigen-
states and so a superposition of the two states with low-
est energy may be expected to be localized around one
of the classical fixed points. This is easily seen by plot-
ting the Husimi or Q function for the ground state. The
Q function is a true phase-space probability distribution
for simultaneous measurement of position and. momen-
tum [7] and is defined as the matrix elements of the den-
sity operator in the coherent-state basis Q(n) = (nIpIn&.
Examination of the Q functions of these states (see Fig.
3) shows that they appear as overlapping Gaussian func-
tions each centered at one of the classical fixed points. So
from this it might be expected that their superposition
would closely approximate a coherent state. When the
expansion of a coherent state centered on the classical
fixed point in terms of these eigenstates is calculated this
is found to be the case as over 95%%up of the state is con-
tained in the contribution of these first two eigenstates.
We can approximately write these first two states as

while the polar angle 0 is given by

m, u' l
cnI 8p t,

I

ifE)0
I (t)) = e—2Ca7+ 4

2
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cos 20(t) =
&

cnI 4P t, —v, 'l
' p') ifE(0

This will tunnel from the orignal In) state through an
intermediate superposition of the In) and

I

—n& state to
the

I

—n) state and back again. Both direct calcula-
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