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A simple model of a quantum clock is applied to the old and controversial problem of how long a
particle takes to tunnel through a quantum barrier. The model has the advantage of yielding sensible
results for energy eigenstates and does not require the use of time-dependent wave packets.
Although the treatment does not forbid superluminal tunneling velocities, there is no implication of
faster-than-light signaling because only the transit duration is measurable, not the absolute time of
transit. A comparison is given with the weak-measurement post-selection calculations of Steinberg.
© 2005 American Association of Physics Teachers.
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[. INTRODUCTION clock variable, which is a quantum observable. Several sug-
gestions for quantum clocks have appearéul this paper |
Recent experiments on quantum tunneling have re-ignitegestrict my attention to an early proposal for a quantum clock
the long-standing debate over how long a particle takes t®y Salecker and Wignérand later elaborated by Perekdo
tunnel through a barriér.Naive calculations suggest that not claim that this model enjoys any elevated status over
faster-than-light tunneling is possible, while some experi-other definitions and models for the tunneling time, although
ments have superficially suggested that such a phenomendfe results obtained are consistently plausible.
might have been observ8dHowever, it has been argued that  The clock consists of a rotgor “hand”) that begins in an
information does not exceed the speed of light in these exinitial state with a well-defined pointer angle, and ruftse
periments, so that relativistic causality remains infact. hand ticks around the clock facgbnly when the particle
The analysis of tunneling time is complicated becausdraverses the space between two points of interestxgay
time plays an unusual and subtle role in quantum mechanicg,. The clock’s Hamiltonian iP(x)wJ, whereP is a pro-
Unlike position, time is not usually treated as an operatorjection operator for the position of the particle in the interval
rather it is a parameter. Consequently, the energy—time unc, <x<x,, J is the angular momentum of the clock rotor,
certainty principle does not enjoy the unassailable centradnd is the angular velocity. The time of flight for the par-
position in quantum theory as does the position—-momentuicie to pass betweer; and x, is thus interpreted as the
uncertainty principle. This uncertain status leads to ambigugynectation value of the difference in the angular position of
ity when it comes to the measurement of the duration beye clock hand, which is a normal quantum mechanical vari-
tween quantum events. o able. This quantity is calculated by determining the change in
The attempts to define the tunneling time have led t0 ayhase of the particle’s wave function in traversing the inter-
extensive and confused literaturéMlost theoretical treat- val [X4,X,], which, under the action of the Hamiltonian,

ments focus on the d|spers!ve behay|or of the wave packet Rranslates linearly into an advance in the angular variable of
it traverses a square barrier. The interference between tf}ﬂe rotor(the details are in Ref.)7

parts of the wave packet reflected from the barrier and the 1,y syrate the method for a simple case, consider a free

part still approaching further complicates our unders_tandingepartide of massn and energyE moving to the right in one
Asimple heuristic argument to estimate th_e tunnel_lng tim spatial dimension in a momentum eigenstale. We first
goes as follows. To surmount a square barrier of heigha . . .
) X p ” calculate the phase differenc¥E) in the wave function
particle with energye must “borrow” an amount of energy

V—E. According to the uncertainty principle, this energy liet\zlveenllzthe dtVXO= pcints, \j\r;at 'Sét(E):lkAd’E t;/vhlezrf k
must be “repaid” after a timeT=1/(V—E) in units with =(2mE) ™ and A=x,—x;. We next replac y &

fa=1. This time provides a crude upper bound for the tunnel-Wheree Is the coupling energy between the particle and the

ing time. If the width of the barrier is, then the effective clock, and assume that this coupling is a small perturbation

speed of the particle during the tunneling process must ex2n the particle’s mot|onte|,<E. Next we expands(E + €)
ceeda(V—E). Becausa can be made as large as we please,t0 f'.rSt order ine. In Pergs pregcnpuon, th? time for the
there is no upper bound on this effective velocity. In particu-p""rt'Cle to traverse the dlst?nAes given bys gg) (see Ref.
lar, it may exceed the speed of light, in apparent violation of’)- In the present casé= &'(E) =mA/(2mE) P From the
relativistic causality. Moreover, this expression has the feadefinition of the classical velocity =(2mE)™*, the ex-
ture that as the height of the potential hill is increased, théected time of flighfl is seen to be identical to the classical
tunneling time decreases, that is, the more repulsive the pdesult,T=A/v. Note that this physically reasonable result is
tential, the faster the particle moves in the forward direction'obtained using an energy eigenstate, that is, a stationary
A natural way to approach the problem is to introduce astate, with time dependen@¥". If the wave function were
clock that is coupled to the particle, and to define the tunnelmore complicated, for example, a wave packet, the resulting
ing time in terms of the change in the clock variable from theexpectation value for the change in the clock hand also
time that the particle reaches the barrier to the time iwould be more complicated. For the simple energy eigen-
emerges. It is then possible to define the expectation time fastate, the clock measures only time differences between two
the tunneling event in terms of the expectation value of theevents, not the absolute time of either event.
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The fact that the clock measures timiéferencess a key  powers ofe and treate as small. This procedure is clearly
point. Suppose that we try to measure the tunneling time byintrustworthy near botle=0 andE=V. | shall return to
first measuring the time at which the particle arrives at thethis problem later.
leading edge of the potential hill, then measure the time at We also may calculate the time for the particle to go from
which it emerges on the other side, and take the differenc&= —b to x=b’>0 by examining the phase of the wave
The act of observing the particle at the first position col-fynction in the regionx>0 [the B-dependent term in Eq.

lapses thg wave functio_n to a position eigenstate and intro(-l)]_ If E<V, the method suggests an imaginary phase shift
duces arbitrary uncertainty into the momentum, so that the

second measurement is changed. If, on the other hand, PP, Implying an imaginary time. If£=>V, we obtain

1ot r_ _ 125 i _
forsake knowing the absolute time of passage of the particl Zv: b év ’ v;/rf:eretv _I[EZ (5 ?I/)/m] s the tclr??smatlhve h
but require only the time for the particle to pass between twgoC'y 800Ve hé Step. Evidently we may patch together the

fixed points in space, then only a single measurentant ime of flight before the step with that at the reduced velocity
measurement of the time differende required, and there is after the step.
no large unpredictable disturbance.

IIl. POTENTIAL HILL

Il POTENTIAL STEP I now treat the case of principal interest: a particle that

As a less elementary example, consider a particle scattetennels through a square potential hill given By

ing from a potential step of height situated atx=0. The  =constant-0 in the interval 0,a] and zero elsewhere. The
stationary state wave function has space-dependent part wave function is

e+ Ae v (x<0), e+ Ae ™ (x<0),

Be P (x>0), (@) Be’*+Ce PX (0<x<a), (5)
wherep=[2m(V—E)]*2 The overall normalization factor De**  (x>a).

does not affect the result and will be omitted. Suppose w
require the expectation value for the time of flight of the
particle to travel fronx= —b to the barrier and back again.
At x=—Db the phase of the incident portion of the wave  &(E)=arctad[ p?>—k?)/2kp]tani(pa)}. (6)
function is —kb. We use the continuity of the wave function
and its first derivative at the step, solve fgrand find for the
reflected phase the vallkd+ «, where

e use continuity of the wave function and its derivative at
x=0 andx=a, and find the phase change to be

If we differentiate 5(E) with respect toE, we find the ex-
pectation value of the tunneling time:

T=2m{k(p?—k?)a+[(p2+k?)2/2kp]

a=arctarilm A/ReA), 2
and X sinh 2pa}/[ (p?+k?)2 costt pa— (p?>—k?)?]. (7)
L . r As a check, we note that when=0, p=ik and T=ma/k
A== (pHik)/(p=ik). ® =alv as expected.
Thus §(E) =2kb+ « and we find by differentiating with re- In the special caseE=V/2, the right-hand side of
spect toE that Eq. (7) reduces to tank@)/E. For smalla, it approaches
T=2b/v+2mikp=2(b+d)/v, (4  (mal2k)(3+p®k?), which goes to zero aa—0, as ex-

B ) ) . pected. If we define the effective velocity of the particle to be
where d=1/p is the expectation value for the penetratlonveﬁza/-l—, then for smalla

depth of the particle into the potential step.
Equation(4) has an intuitively simple interpretation. The vef~2v/(2+VIE), (8)

term 2b/v is the time of flight fromx= —b to the potential  \yherey, is the classical velocity of the particle outside the
step ax=0 and back again, at the classical veloaityThe  hoengial hill. Note thatw .g<v in this limit: thin potential
term 2d/v represents the expectation value of the addnmnaﬁms slow the particle down, as occurs classically. For
duration of _the particle in_the class_ically forbido!en region:w2 ver=vl2. ForVsE, the limit used in Eq(7) breaks
and can be interpreted as if the particle moves with the Clas’down.’ Oef interest is a delta—function potential hill, where

sical velocityv for a distanced equal to the average penetra- Va?=constant a3/— anda—0. If we return to Eq.(7)

tion depth and back again. Thus the effective distance from) I . . )
x=—Db to the step is increased from the classical distance and apply these limits, we find that 0. There is no prob

. . .~~~ lem here about reflected waves slowing the particle as it
to b+(_j. Note th_at 'fv._m' thend vanlshes_, so an infinite approaches the barrier. This result is consistent with the work
potential step yields instantaneous reflection. On the oth f Aharonov, Erez, and Reznfkwho find T=0 for the tun-
hand, asE—V, _p—>0 and th_e time _bEneath the step di- neling time through an array of delta function potential hills.
verges; the particle takes an infinite time to bounce back. |, contrast to the slowing effect, thick hills serve to speed

ForE>V, pis imaginaryA is real, andx=0. The round-  hq particle up, that isyo>v. If we take the limita— o in

trip time therefore reduces to the classical restiti2 The  £q (7), we see that the tunneling time approaches the con-
reflection from the step also is instantaneous in this caseant value

even wherE—V from above. There would thus appear to be B 1

an infinite discontinuity in the reflection time Bt=V. How- 2m/kp=[E(V=E)]"™% ©
ever, we must be cautious. The method of calculation deEquation(9) is similar to the result found from the naive
mands that we expand functions Bf~e andV—E—e€ in argument mentioned in Sec. |. The right-hand side of(Ep.
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is reminiscent of the energy that can be “borrowed” for a A related open question is the relation between the present
time T according to Heisenberg’s uncertainty principle, butquantum tunneling time analysis and the apparently superlu-
with the interesting difference that the borrowing require-minal propagation of wave pulses reported in classical op-
ment is not simplyV—E, but the harmonic mean of this tics, mentioned briefly in Sec.?llUnder certain exotic con-
quantity andE. The tunneling time is minimized foE  ditions, it can appear as if a pulse of light exits a medium
=V/2, and in this casd = 1/E. Note that Eq.(9) also is ahead of the light-travel time from the point of entry. A care-
equal to the second term on the right-hand side of @y. ful analysis, however, reveals that this phenomenon cannot
the sojourn time inside a potential step. We shall see that thid€ used to transmit information faster than lighkhe ap-
equality is a special limit of the general result that the expecPearance of superluminality can be traced to a change in the
tation time for a particle to reflect back from the potential Shape of the pulse. It would be interesting to apply the Peres
barrier is the same as the expectation time for it to penetratglock analysis to such a scenario.
the barrier.

The effective velocity under the barrier is
IV. MEASUREMENT UNCERTAINTY

ver=aEYAV—-E)'? (10
which increases without limit aa—o. In particular, veg The model clock used here is a quantum system, and is
exceeds the speed of lightwhen therefore subject to quantum uncertainty in its operation,
which in turn implies an uncertainty in the calculated tunnel-
pa>2mdk ing time. As shown by Perdsthe back action of the clock’s

dynamics on the particle’s motion, which persists throughout
the experiment, will limit the resolution of the model clock.
(1) In particular, it is unreliable wheE—0 or E—V.

However, for thick barriers the transmission probability is 1N€ resolution of the clock is limited by the assumption
very small. To estimate it, first note that if the approachingthat |E| and |V—E| are >e. The energy—time uncertainty
particle is to remain nonrelativisti@s assumed in the treat- relation applied to the clock variables then suggests that the
ment given herg then the right-hand side of E¢l1) must ~ clock pointer will have an uncertainty corresponding to a
be much greater than unity, which implies tiget>1. In this ~ time 7~1/e>1/E. But the tunneling time as illustrated by

=2(de Broglie wavelengtiCompton wavelength

limit the transmission probability reduces to the asymptotic value in Ed9) is itself of order 1E. Hence
) _2pa the quantum uncertainty in measuring the tunneling finie
16(E/VE)(V—E)e™ P2 (12 at least the same order as the expectation value of the tun-

neling time. This result is no surprise, because any limitation
in the measurement resolution will have this general form on
dimensional grounds.

Consider, for example, the cage=V/2=mdc?/8. If we
takepa=2mc/k (corresponding to the onset of superluminal

propagatiofy the barrier penetration probability is then The disturbance on the particle’s motion caused by the

4e *~10 3'. Although small, this probability is by no back action can be reduced by making the coupling weaker,
means ne_ghg_lb_le_, a_nd we have to confront the CONSEQUENCRRt ot the expense of introducing greater uncertainty in the
for causality if it is indeed the case that the occasional pary,easyrement of the clock reading. An alternative strategy for
ticle can tunnel faster than light. reducing the uncertainty is to use a clock that is not continu-
A V|_0Iat|on Qf causality would arise if observer A could ously coupled to the particle. One way to achieve such a
senq mfo_rmaﬂon to an .obserrvB a distanced away, such o ction would be to place the clock in a metastable state,
that it arrives before a time/c has elapsed. Could A use an 4nq then using the arrival of the particle at the leading edge
electron to encode this information, and arrange for it t0qf the parrier to merely trigger the operation of the clock via
tunnel through a barrier to B in the knowledge that, albeity momentary interaction. This sort of device has been studied
only occasionally, B will receive the electron before a time,y Oppenheim, Reznik, and UnrdiSurprisingly, it does not
d/c? To achieve physical causality violation, A must be ableresylt in a reduction in the overall uncertainty. The reason is
to determine the moment of transmission of the |nf0rmat|0n{hat the Sharp|y localized potentia| associated with the trig_
But as we have seen, the model discussed here can determ.@@ring device reflects some of the wave function, and at-
only the time difference between the moment of “transmis-tempts to mitigate this back-action effefor example, by
sion” and “reception” of the particle—not the absolute time poosting the energy of the particle just before the barrier
of transmission. Ifl/c—T=At, then to be causally relevant, serves only to introduce additional uncertainties.
the signaling process must be controlled to an accuracy less Thus there seems to be an irreducible uncertainty in the
than At; however, this control is not possible in the model measurement of the tunneling time that is comparable to the
using energy eigenstates. Any faster than light propagatiotunneling time itself. At first sight this uncertainty appears to
would therefore be fortuitous—entirely random and uncon-cast doubt on the usefulness of the foregoing results. How-
trollable. Tunneling may violate the spirit of relativity, but it ever, as shown by Aharonat al.*° by performing measure-
does not violate the letter. ments on a large ensemble of identical systems, the spread in
A more systematic treatment of this issue would be worth+esults can be drastically narrowed, even in cases where the
while, extending the analysis to more complicated statesyncertainty for a single measurement exceeds the expected
such as wave packets and other superpositions. The foregaealue. Their analysis is known as the theory of weak mea-
ing calculation is a poor guide to a more ambitious calcula-surement. If we apply weak measurement theory to the prob-
tion, because the sum of the phases of the components oflam of the Peres clock and tunneling time, the implication is
wave function is generally different from the phase of thethat, interpreted as an average over a large ensemble, the
sum. We cannot therefore superpose the transit time resultesults of the foregoing sections are physically meaningful in
of energy eigenstates to obtain the results for a wave packetpite of the intrinsic uncertainty in the operation of the clock.
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Weak measurement theory often is combined with post- Our analysis also may be used to derive results for one-
selection, whereby a final sub-ensemble is extracted correlimensional scattering, by putting>V. If we define 8
sponding to the state of interest. In the case of tunneling, thi&[zm(E_V)]l/{ Eq. (7) becomes
sub-ensemble will include only those particles that penetrate 2. o 5 on
the barrier and move to the right. Steinbérgas calculated T=2m{k(k*+ B%)a+[ (k= B%)I2kp]
the tunneling time using this approach and has evaluated an x sin 2Bal/[(K2— B2)2 cod Ba— (K2+ B2)?]. (18
expectation value for a projection operator corresponding to
the time the particle is inside the barrier in the limit that theFor small a the right-hand side of Eq(18) reduces
measuring device interacts weakly with the particle. The reto (ma/2k)(3— B?/k?) with a corresponding effective veloc-
sulting expression is complex. Its real part corresponds to thity given by Eqg. (8). Again, vs<v, although vy
expectation value of the tunneling time; the imaginary part>[2m(E—V)]*?, the classical velocity over the barrier. So
corresponds to the back action of the measuring device oglthough the repulsive potential slows the particle, it does not
the particle. These respective parts are related in a transpafo so as much as in the classical case.
ent manner to other proposed definitions of the tunneling Now consider the opposite limit of large The denomi-
time. For example, the real part is identical to the dwellnator on the right-hand side of E(.8) can never vanish, and
time'> which is defined as the probability of finding the the sine function in the numerator is bounded [byl,1].

particle inside the barrier divided by the incoming flux. Thus
isllSteinberg’s result for the tunneling time expectation value T~2mkal(k2+ B2)—Kal (2E— V). (19
T.=2mik(p?—Kk2)a+k(p2+K2)/2 Irj contrast to thg result for the tunneling case, the right-hand
s=2m{k(p Jatlk(p )/2p] side of Eq.(19) is proportional toa even for largea. The
X sinh 2pa}/[ (p2+k?)? costf pa— (p?—k?)?], effective velocity (E—V)/k therefore always remains less

(13) thanc when the particle passes over the barrier: only tunnel-
ing events lead to apparent superluminal velocities. For large

which .shlould be compare_d to E@’.)..The two durations are E, veg—v, but for particles that just clear the barrig,
very similar, but not identical. We find

~V, veg~vl2.
T/Ts=VIE+(1-V/E)/[1+(V sinh2pa)/2 Of special interest is the case of resonance transmission,
when Ba=n, andP,=1. Then Eq.(18) simplifies to
X (V—2E)pa]. (14
e T=ma(k?+ B?)/2k 32, (20)
In the free-particle limitv—0, T—Ts. In generalT < T for
E<V. In the limit of large barrier widtta, verr=v(E—V)/(E—V/2). (22)
T—(E/V)T=(E/V)[E(E-V)]*2 (15 In this casev s approaches 0 aE—V, as it would classi-

. .. cally. The effective velocity, however, has a very different
Note that bothl andT, diverge a—V, but the behaviorin - gnergy dependence from the classical expression. For the

the limit E—0 is very different, that isT—, andTs—0.  ¢ase of anti-resonance, where @80, Eq.(19) becomes
The latter result implies that, as the approach velocity of thg,yact and

particle decreases, the tunneling velocity increases; in the ' )

limit v—0, the post-selected tunneling velocity diverges. verr=(v+v")/2, (22)

which is the average of the classical velocities outside and
over the barrier.
V. OTHER RESULTS Note that because the reflection and transmission expecta-
tion times are equal, there is always a reflection delay, or
We may use the Peres clock model to calculate other trarsojourn in the regiox>0, even in the case th&>V. This
sit times of interest. Consider, for example, the time betweemehavior is in contrast to the single potential step, where
incidence and reflection from the leading face of the hill atreflection is instantaneous E>V. The difference has a
x=0. This time may be calculated by examining the phase ohatural interpretation. For the potential hill, reflection can
Ain Eq. (5). We find for the phase change take place from both the leading and remote faces of the hill.
S(E)=arccof[ p>—k?)/2kp]tantpa)}. (16) 'I_'he actual reflections may be instantaneou_s, but if the par-
o T ) ticle reflects from the far edge=a, there will be a delay
But the derivative of Eq(16) is identical to that of Eq(6),  due to the travel time across the top of the hill. The expec-
so the sojourn time inside the hill is the same, whether thation value will therefore include this delay, and the result is

particles are transmitted or reflected. o consistent with one half the flux being reflected from each
Thus the tunneling times for both transmission and reflecgqge.

tion are the same. It has been argtigt the tunneling times

for transmission and reflection should satisfy the relation CONCLUSION AND SUGGESTIONS FOR
To=PT+P Ty, (17 FURTHER WORK

whereTyp, is the dwell time,P,(P,) the probability of trans- | have shown by use of a simple model of a quantum clock
mission(reflection, andT,(T,) the corresponding tunneling that sensible and consistent expressions may be derived for
times. Equation(17) is satisfied, for example, by Steinberg’s the expectation value of the time for a nonrelativistic particle
definition, but not by the one used in this paper. Howeverjn an energy and momentum eigenstate to pass between two
Landauer and Martinhave argued strongly against E47) points, as long as the absolute time of passage is not re-
as an appropriate criterion. quired. The points may be separated by regions that include
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ACTION AT A DISTANCE

But the mechanical philosophy already has rules, and Newton was flouting one of them in
spectacular fashion. Physical causes were supposed to be direct: matter striking or pressing on
matter, not emitting invisible forces to act from afar. Action at a distance, across the void, smacked
of magic. Occult explanations were supposed to be forbidden. In eliminating Descartes’s vartices
he had pulled away a much-needed crutch. He had nothing mechanical to offer instead.

James Gleicklsaac Newton(Vintage Books, 2008 p. 139.
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