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Quantum variational algorithms are
swamped with traps

Eric R. Anschuetz 1 & Bobak T. Kiani 2

One of the most important properties of classical neural networks is how
surprisingly trainable they are, though their training algorithms typically rely
on optimizing complicated, nonconvex loss functions. Previous results have
shown that unlike the case in classical neural networks, variational quantum
models are often not trainable. The most studied phenomenon is the onset of
barren plateaus in the training landscape of these quantum models, typically
when the models are very deep. This focus on barren plateaus has made the
phenomenon almost synonymous with the trainability of quantum models.
Here, we show that barren plateaus are only a part of the story.We prove that a
wide class of variational quantum models—which are shallow, and exhibit no
barren plateaus—have only a superpolynomially small fraction of local minima
within any constant energy from the global minimum, rendering thesemodels
untrainable if no good initial guess of the optimal parameters is known. We
also study the trainability of variational quantum algorithms from a statistical
query framework, and show that noisy optimization of a wide variety of
quantum models is impossible with a sub-exponential number of queries.
Finally, we numerically confirm our results on a variety of problem instances.
Thoughwe exclude awide variety of quantum algorithms here, we give reason
for optimism for certain classes of variational algorithms and discuss potential
ways forward in showing the practical utility of such algorithms.

The trainability of classical neural networks via simple gradient-based
methods is one of the most important factors leading to their general
success on a wide variety of problems. This is particularly exciting
given the variety of no-go results via statistical learning theory, which
demonstrates that in the worst case, thesemodels are not trainable via
stochastic gradient-basedmethods1–4. There has been recent hope that
variational quantum algorithms (VQAs)—the quantum analog of tra-
ditional neural networks—may inherit these nice trainability properties
from classical neural networks. Indeed, in certain regimes5, training
algorithms exist such that the resulting quantum model provably
outperforms certain classical algorithms. This would potentially
enable the use of quantum models to efficiently represent complex
distributions which are provably inefficient to express using classical
networks6.

Unfortunately, such good training behavior is not always the case
in quantum models. There have been previous untrainability results
for deep VQAs due to vanishing gradients7–10, and for nonlocal models
due to poor local minima11; however, no such results were known for
shallow, local quantummodels with local cost functions. Indeed, there
have been promising preliminary numerical experiments on the per-
formance of VQAs in these regimes, but typically have relied on good
initialization12 or highly symmetric problem settings13–15 to show con-
vergence to a good approximation of the global optimum.

Here, we show that, generally, such models are not trainable,
particularly when a good choice of initial point is not known and when
themodel does not exhibit a high amount of symmetry. We first prove
general untrainability results in the presence of noise using techniques
from statistical query learning theory. Surprisingly, these results hold

Received: 10 June 2022

Accepted: 30 November 2022

Check for updates

1MITCenter for Theoretical Physics, 77MassachusettsAvenue,Cambridge,MA02139,USA. 2MITDepartment of Electrical Engineering andComputer Science,
77 Massachusetts Avenue, Cambridge, MA 02139, USA. e-mail: eans@mit.edu; bkiani@mit.edu

Nature Communications |         (2022) 13:7760 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0002-9825-3692
http://orcid.org/0000-0002-9825-3692
http://orcid.org/0000-0002-9825-3692
http://orcid.org/0000-0002-9825-3692
http://orcid.org/0000-0002-9825-3692
http://orcid.org/0000-0003-1477-0308
http://orcid.org/0000-0003-1477-0308
http://orcid.org/0000-0003-1477-0308
http://orcid.org/0000-0003-1477-0308
http://orcid.org/0000-0003-1477-0308
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-35364-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-35364-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-35364-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-35364-5&domain=pdf
mailto:eans@mit.edu
mailto:bkiani@mit.edu


for all learning problems in a wide range of variational learning set-
tings, and in many scenarios even when the magnitude of the noise is
exponentially small in the problem size. We then consider the train-
ability of models thatmay not have noise by studying their typical loss
landscapes. We prove that, for typical model instances, local minima
concentrate far from the global optimumeven for certain local shallow
circuits that do not suffer frombarren plateaus. This phenomenon can
be visualized in Fig. 1, where the training landscape for a shallowQCNN
learning a random instance of itself is shown to concentrate far from
the global optimum. As in ref. 11, this phenomenon is the result of a
trainability phase transition in the loss landscape of the quantum
model. In ref. 11, this transition was governed by the ratio of the
number of parameters to the Hilbert space dimension; we show in
the shallow case that instead, this transition is governed by the ratio of
the local number of parameters to the local Hilbert space dimension
in the reverse light cone of a given measured observable. As this is
typically much less than 1 for local variational ansatzes, these models
are typically untrainable. We then give numerical evidence of this fact,
and conclude by studyingwhere theremay be the reason for optimism
in the training of certain variational quantum models.

Results
Preliminaries
Quantum machine learning algorithms have been a focus of intense
research effort as potential use-cases for noisy, intermediate-scale
quantum (NISQ)16 devices. Just as in classical machine learning, algo-
rithms are tasked with minimizing some risk:

Rðf Þ=Ex ‘ðf ðxÞÞ½ �, ð1Þ

given a model f, a distribution of inputs x, and a loss function ℓ. To
perform learning, one searches for a model bf 2 F in the function class
F (e.g., the set of functions expressed by quantum neural networks).
The expected riskRðbf Þ is typically not something one can calculate, as
it requires access to the full probability distribution of the data.
Instead, one often minimizes the empirical risk bRðbf Þ (often named the
training error) over a given training data set D:

bRðbf Þ= X
xi2D

‘ðbf ðxiÞÞ: ð2Þ

Perhaps themost well-studied class of quantummachine learning
algorithm consists of VQAs17. VQAs are a class of quantum generative
models where one expresses the solution of some problem as the

smallest eigenvalue and corresponding eigenvector (typically called
the ground state) of an objective Hermitian matrix H—called the
Hamiltonian—on n qubits. Given a choice of generative model—often
called an ansatz in the quantum algorithms literature:

∣θ
�
=
Yq
i = 1

Ui θi

� �
∣ψ0

�
ð3Þ

that for some choice of θ is the ground state of H, the solution is
encoded as the minimum of the loss function

bRVQEðθÞ=
XA
i = 1

αi θ
�

∣Pi∣θ
�
, ð4Þ

where:

H=
XA
i= 1

αiPi ð5Þ

is the Pauli decomposition of H. VQAs have found numerous
applications18, and a countless number of VQA instances have been
proposed for various quantum learning tasks.

Typically,models in VQAs come in oneof twoflavors: Hamiltonian
agnostic models, and Hamiltonian informed models. Hamiltonian
agnostic models are constructed such that the Ui are independent of
H, and are generally chosen to be efficient to implement. This is most
analogous to the case in classical generative modeling, where the
model structure is usually independent from the specific choice of
dataH. One might hope then that training Hamiltonian agnostic VQAs
is completely analogous to the classical setting, then, and the loss
landscape of (4) exhibits the desirable properties that enable train-
ability found in classical networks19,20.

Unfortunately, unlike the classical setting, the performance of
VQAs is often dominated by poor performance in the training proce-
dure (see Supplementary Note 1 for a discussion). For one, VQAs tend
to exhibit barren plataeus when they are deep; namely, gradients of
deep variational quantum circuits vanish exponentially with the pro-
blem size in many settings7,8,10. Problematic training in this regime has
also been studied beyond gradient descent21,22.

Until recently, lesswas knownabout the trainability of VQAs in the
shallow model regime. Numerically, refs. 13, 23 showed that randomly
chosen variational landscapes typically have poor local minima, a
result which was later proven in ref. 11 for nonlocal models using tools
from randommatrix theory. In a similar line of research, ref. 24 showed

Fig. 1 | Typical shape of loss landscape. Loss landscapes of underparameterized
quantum variational algorithms generally appear “bumpy,” filled with various
local minima and traps. Here, we plot the loss landscape as a a surface and
b contour plot along two random normalized directions for the teacher-student

learning task of the QCNN for 14 qubits. Though a global minimum is located at
the center of the plot, finding this global minima is generally challenging due to
the shape of the loss landscape. Details of this visualization are given in Supple-
mentary Note 6.
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that for certain quantum variational ansatzes or quantum neural net-
works, there exist data sets and loss functions which induce expo-
nentially many local minima in the loss landscape. Refs. 25, 26 both
showed that, in an overparameterized regime, these models experi-
ence good local minima, though this transition to trainability typically
occurs at an intractable number of parameters. Finally, assuming the
presence of a constant rate of noise per ansatz gate, ref. 27 showed
convergence of the loss landscape to the uniformdistribution at a rate
exponential in the circuit depth. Many of these previous results on the
untrainability of VQAs are summarized in Table 1, along with a sum-
mary of our results which focus on the shallow, local regime.

Learning in the statistical query framework
Quantum machine learning algorithms are inherently noisy due to
both unavoidable sources of error—such as shot noise from sampling
outputs—or potentially correctable sources of error, such as gate
errors and state preparation noise. In such noisy settings, the statistical
query (SQ) model provides a useful framework for quantifying the
complexity of learning a class of functions by considering how many
query calls to a noisy oracle are needed to learn any function in that
class (see Supplementary Note 2 for a brief review and history of SQ
models)2,28,29. In this setting, we consider the optimization of a risk of
the form of (2). We assume there is a target observable M that we
would like to learn on some distribution over states D. We define a
correlational statistical query qCSQ(O, τ), which takes in a bounded
observable O with ∥O∥ ≤ 1 and a tolerance τ and returns a value in the
range:

Eρ∼D TrðOρÞTrðMρÞ � τ½ �≤qCSQðO,τÞ≤Eρ∼D TrðOρÞTrðMρÞ+ τ½ �:
ð6Þ

Note that there are no guarantees on the form of the additive
error other than it is within the tolerance τ, and may, for instance,
depend on the observable being queried O. Though SQ oracle calls

may at first appear unrelated to variational algorithms, we show in the
Methods that many common variational optimizers in the presence of
noise of the magnitude τ reduce to calls to an SQ oracle; for instance,
commonly used first and second order optimization algorithms fall
within the frameworkof the SQmodel we consider. In theMethods, we
also describe an analogous SQ model for learning unitaries.

To quantify the hardness of learning variational circuits, we con-
sider the task of learning certain function classes generated by shallow
variational circuits over a distribution of inputs D which forms a
2-design. Our results also generally hold for distributions that are
uniform over states in the computational basis, recovering the statis-
tical query setting for classical Boolean functions. Table 2 summarizes
the number of queries needed to learn various function classes which
are generated by variational circuits, with proofs deferred to Supple-
mentary Note 3. In all settings we consider, an exponential number of
queries (in either n or the light cone size) are needed to learn simple
classes, such as the class of functions generated by single qubit gates
followed by a fixed global measurement. This hardness intuitively
arises because each individual query can only obtain information
about a few of the exponentially many orthogonal elements in the
function class. More formally, we lower bound the SQ dimension
(defined in the “Methods”) of the function classes considered in
Table 2 to show our query lower bounds.

Our hardness results hold for any target observableM, as long as
the learning setting is one we consider in Table 2. Furthermore, they
hold for any variational ansatz—not just on average—provided it is in
one of the settings of Table 2. Finally, our results hold for any constant
error τ in the statistical queries; indeed, themajority of our results hold
even if this noisewere only exponentially small in the problem size. For
instance, training via gradient descent where the gradient is estimated
using polynomiallymany samples fits into this framework immediately
just from the induced shot noise.

In a more positive light, learning local Hamiltonians generated by
shallow depth circuits can potentially be efficiently performed as the
complexity grows exponentially only with locality or depth in this
setting. In fact, prior results have provably shown that certain classes
of Hamiltonians are efficiently learnable using properly chosen
algorithms30,31. Nevertheless, this does not correspond to efficient
learnability of the ground state of a given Hamiltonian, as learnability
of the properties of a Hamiltonian is not the same as the learnability of
its ground state. Indeed, wewill see in section ‘Loss landscapes of local
variational quantum algorithms’ that typically, even in this setting,
learning the ground state of such a local Hamiltonian is difficult.

Our hardness results do not indicate that simple classes of func-
tions like thosegeneratedby singlequbit rotations are hard to learn for
all algorithms, but only thosewhose steps reduce to statistical queries.
For example, the class of Pauli channels is not learnable in the SQ
setting, but there exist simple, carefully constructed, algorithmswhich
can learn Pauli channels32–34. This is analogous to the classical setting
where parity functions are hard to learn in the noisy SQ setting, but
efficient to learn using simple linear regression29. Similarly, the related

Table 1 | A summary of previous results on the untrainability of variational quantum algorithms

Result Dimension Locality Depth Worst case? Barren plateaus? Poor minima?

Ref. 7 d 2 Ωðn1
dÞ ✘ ✓ ?

Ref. 8 1 2 ωðlogðnÞÞ ✘ ✓ ?

Ref. 10 d 2 ωðlog ðnÞ1dÞ ✘ ✓ ?

Ref. 11 N/A n Ωð1Þ ✘ ✓/✘ ✓/✘

Ref. 24 d 2 Ωð1Þ ✓ ? ✓

Our results d 2 Ωð1Þ ✘ ✘ ✓

A label of “✓/✘” denotes that the paper studied certain regimes where the phenomenon was present, and certain regimes where it was not. A label of “?” denotes that the phenomenon was not
studied. “Dimension” indicates the locality structure of the ansatzes study. For instance, Dimension = 1 denotes ansatzeswith nearest-neighbor interactions for qubits on a line. “Worst case” denotes
analysis performed with adversarial data.

Table 2 | Relatively simple classes of functions require
exponentially many statistical queries to learn using any
naive algorithm that reduces to statistical queries

Setting (n qubits, L layers) Query complexity (β < 1/2a)

L = 1, global measurement, single qubit gates 2Ω(n) if τ ≥ 3−βn

L= dlog2ne, single qubit measurement, global 1-
and 2-local gates

2Ω(n) if τ ≥4−βn

L≪ n, single qubitmeasurement, neighboring 1-
and 2-local gates on a d-dim. lattice

2ΩðLd Þ if τ =Ω(1)b

L = 1, single qubit gates, unitary learning 2Ω(n) if τ ≥4−βn

aTechnically, we require β = 1/2 −Ω(1).
bτ = 2�ω min 2L,n1=dð Þd

� �
is sufficient.

The table above quantifies the number of queries needed to identify a target function in the
function class, over a distribution of states that forms a 2-design and with queries that have
tolerance Cmaxτ (query tolerance lower bounded by a constant times Cmax suffices in all cases).
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workof ref. 35 showed that output distributions of Clifford circuits can
behard to learnusing statistical queries, but efficient using a technique
that resorts to linear regression on a matrix formed from samples of
the overall distribution. More loosely, our results provide support to
the basic maxim that algorithms which apply too broadly will work
very rarely36; more careful construction of learning algorithms tailored
to theproblemathand is generally necessary.One straightforwardway
to avoid the hardness of the SQ setting is to construct algorithms
whose basic steps do not reduce to statistical queries, e.g., via the
construction of non-global metrics37–39. However, such a fix is by no
means guaranteed to avoid themore general issues of poor landscapes
and noise that also make learning in the SQ setting so difficult, as we
now examine.

Loss landscapes of local variational quantum algorithms
We now consider the trainability of VQAs in the noise-free regime,
beyond optimization algorithms that reduce to statistical queries.
Thoughwe are unable to prove the very strong no-go results proved in
the SQ framework, we are able to show that the loss landscapes of
typical local variational algorithmswith Hamiltonian agnostic ansatzes
are unamenable to optimization. We achieve this by showing that
typically, the loss landscapes of shallow, local VQAs are swamped with
poor local minima.

As discussed in Table 1, it is already known that deep Hamiltonian
agnostic ansatzes are typically untrainable due to the presence of
barren plateaus7,8,10; hence, here, we focus on shallow ansatzes. Pre-
vious results11 have also shown that shallow, nonlocal models are
untrainable, by showing that the scrambling of variational ansatzes
over the entire system in these instances induce poor local minima.
These techniques were not extendable to shallow, local ansatzes,
however, which do not scramble globally.

Instead, here, we show that ansatzes that approximately scramble
locally are difficult to train. Aswewill later show, this includes common
classes of variational ansatzes, such as Hamiltonian agnostic checker-
board ansatzes on a d-dimensional lattice. We show that this approx-
imate, local scrambling suffices to imply that the loss landscapes of
these VQAs are close to those of Wishart hypertoroidal random fields
(WHRFs). These are random fields parameterized by l,m of the form:

FWHRF wð Þ=m�1
X2l
i,j = 1

wiJi,jwj, ð7Þ

where J is drawn from a Wishart distribution with m degrees of free-
dom, andw are points on a certain embedding of the hypertorus ðS1Þ× l
inR2l . We demonstrate this convergence via new techniques, directly
bounding the error in the joint characteristic function of the function
value, gradient, and Hessian components of the variational loss from
those of WHRFs. As the typical loss landscapes of WHRFs are known
given these random variables (see “Methods” for a summary), by
demonstrating sufficient convergence of these random variables to
those of WHRFs, we will be able to infer the distribution of critical
points for local VQAs.

To begin, we take our (assumed traceless) problem Hamiltonian
to have Pauli decomposition:

H=
XA
i = 1

αiPi, ð8Þ

and for simplicity scale and shift the loss landscape of (4) to be of the
form:

bRVQE θð Þ= 1 + k αk�1
1

XA
i= 1

αi θ
�

∣Pi∣θ
�
, ð9Þ

whereα is the vector of all αi and the ansatz ∣θ
�
is as given in (3). As this

ansatz is assumed to be shallow and local, we assume that the reverse
light cone of each Pi under the ansatz is of size l≪ n.

As in most analytic treatments of Hamiltonian agnostic VQAs, we
consider certain randomized classes of ansatzes7,8,10,11. Roughly, we
assume that in a local regionaround eachmeasuredPauli observablePi

the ansatz is an ϵ-approximate t-design; that is, its first tmoments are ϵ-
close to those of the Haar distribution. This is a much weaker
assumption thanglobal scrambling of the ansatz. For instance, forPiof
constant weight, such approximately locally scrambling circuits
include constant depth local circuits with random local gates40. We
discuss in more detail when this assumption holds in practice when
specializing to common variational quantum learning scenarios, and
defer technical details to Supplementary Note 4.

Our main result, informally, is that the random field given by (9)
under this approximate, local scrambling assumption converges in
distribution to that of aWHRF. The formal statement and derivation of
this result are given in Supplementary Note 4, where we also lay out
our assumptions more explicitly. Informally, the result follows by
deriving a bound on the error in the joint characteristic function of the
loss function and its first two derivatives from that of aWHRF.We then
use this to bound the error in distribution that is incurred by the
induced scrambling being only approximate. Finally, we show using
properties of local Haar random gates and the locality of the problem
Hamiltonian that this suffices to prove the convergence of these ran-
dom variables to those of a WHRF.

Theorem 1. (Approximately locally scrambled variational loss func-
tions converge to WHRFs, informal). Let

m � k αk21
k αk22

2l�1 ð10Þ

be the degrees of freedomparameter. Assume q log qð Þ= o mð Þ, where q
is the number of ansatz parameters in the reverse light cone of eachPi.
Then, the distribution of (9) and its first two derivatives are equal to
those of a WHRF

FWHRF θð Þ=m�1
X2l
i,j = 1

wiJi,jwj ð11Þ

withm degrees of freedom, up to an error in distribution on the order
of ~Oðpolyð1t + ϵ + expð�lÞÞÞ. Here,w are points on the hypertorus ðS1Þ× l
parameterized by ~θ, where ~θi is the sum of all θj on qubit i.

We interpret this result as the degrees of freedomm of themodel
being given by roughly the sum of the local Hilbert space dimensions
of the reverse light cones of terms in the Pauli decomposition ofH. We
interpret this as the local underparameterization of the model, to be
contrastedwith the global underparameterization interpretationwhen
m is exponentially large in n. Using known properties of the loss
landscapes of WHRFs (see “Methods”), we are then able to prove the
following result on the loss landscapes of local VQAs:

Corollary 2. (Shallow, local VQAs have poor loss landscapes, informal).
Let bRVQE be a local VQA loss function of the form of (9). Assume all
coefficients αi of the Pauli decomposition of H are Θ 1ð Þ, and

l log nð Þ+q log qð Þ= o 2lA
� �

: ð12Þ

Then bRVQE has a fraction superpolynomially small in n of local
minima within any constant additive error of the ground state energy.

Optimizing loss landscapes where only a superpolynomially small
(in n) fraction of the local minima are near the global minimum in
energy is expected to be difficult. Indeed, algorithms such as gradient
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descent would then expect to have to be restarted a superpolynomial
number of times before finding a good approximation to the global
minimum; we also give heuristic reasons why this should continue to
be true for other local optimizers in SupplementaryNote 7. Our results
stand in stark contrast with the loss landscapes typically found in
classical machine learning, where almost all local minima closely
approximate the global minimum in function value19,20.

In the shallow ansatz regime—where q,l =O polylog nð Þð Þ—and
assuming an extensive problem Hamiltonian such that A=Ω nð Þ, the
condition given by (12) is always satisfied. Interestingly, this is a regime
where barren plateaus are known not to occur10, demonstrating that
poor local minima can give rise to poor optimization performance
even when the loss function features large gradients. We now specia-
lize to common variational quantum learning scenarios, and consider
the implications of Corollary 2.

First, let us consider d-dimensional checkerboard ansatzes of
constant depth. Fix p, t to be sufficiently large constants. We assume
that the initial state forms an O 1

poly tð Þ

� �
-approximate t-design on l

qubits around each Pauli observable of weight k; this can be done via a
depth p, d-dimensional circuit of 2-local Haar random unitaries when
l =O p+ kð Þd

poly tð Þ

� �
≥ k for some fixed polynomial in t40,41. After this state

preparation circuit, a traditional depth Θ l
1
d

� �
(i.e., independent of n),

d-dimensional, n-qubit checkerboard circuit is applied, with obser-
vable reverse light cones of size at greatest l. By Corollary 2, these
variational ansatzes are untrainable due to poor local minima, yet by
the results of ref. 10 do not suffer from barren plateaus.

One interesting consideration is extending this result to tradi-
tional checkerboard ansatzes, without the special state preparation
procedure we have considered. There, the l =O p+ kð Þd

poly tð Þ

� �
qubit local

state is mixed, and our results, therefore, do not directly apply. How-
ever, we expect no reason for the mixedness of the initial state to
improve training performance in any way. We validate this intuition
numerically in section ‘Numerical results’.

We also consider a class of models similar to quantum convolu-
tional neural networks (QCNNs)12 previously shown not to suffer from
barrenplateaus42. Though thesemodels are in full generality trainedon
arbitrary loss functions, for learning various physical models the loss
may take the formof (4). QCNNs are definedby theirmeasurement of a
subset of qubits at periodic intervals, via so-called pooling layers; for
sufficiently deep (i.e., large constant depth) convolutional layers, then,
at some point in the model, the number of remaining qubits will be
sufficiently small such that the remaining convolutional layers are
approximately scrambling. If one then assumes that the initial states
are adversarially chosen such that they remain pure by this layer, this
scenario reduces to the shallow checkerboard ansatz scenario, and
once again we expect poor local minima by Corollary 2. Even if the
initial states are not adversarially chosen and the input to the scram-
bling convolutional layers is mixed, we expect by similar intuition the
model to remain untrainable; we will see this numerically, where we
also observe that this poor training occurs when training on loss
functions beyond (4).

Numerical results
Tonumerically validate our theoreticalfindings,we performnumerical
simulations showing that learning in various settings cannot be guar-
anteed unless exponentially many parameters are included in an
ansatz. We only consider problems and ansatzes where the existence
of a zero loss global minimum is guaranteed to study whether or not
optimizers can actually find the global minimum or a similarly good
critical point. We parameterize all trainable 2-qubit gates in the Lie
algebra of the four-dimensional unitary group, and implement
the resulting unitarymatrix via the exponentialmapwhich is surjective
and capable of expressing any local 4 × 4 unitary gate. In all cases, we
perform simulations using calculations with computer precision and
analytic forms of the gradient (see Supplementary Note 6 for more

details). In practice, actual quantum implementations will be ham-
pered by various sources of inefficiency, such as the lack of an analo-
gous method of backpropogation for calculating gradients, sampling
noise, or even gate errors. Thus, our numerical analysis can be inter-
preted as a “best case” setting for quantum computation where we
disregard such inefficiencies and focus solely on learnability. In Sup-
plementary Note 5, we further study variations of the teacher-student
learning and random variational quantum eigensolver (VQE)17 settings
discussed here. We also consider the training performance of VQE in
finding the ground state of a Heisenberg XYZ Hamiltonian43. Our
supplemental results reinforce our findings here.

One may conjecture that it is plausible to learn the class of func-
tions generated by relatively shallow depth variational teacher circuits
by parameterizing a shallow-depth student circuit of the same form
and training its parameters. In this so-called teacher-student setup, we
are guaranteed the existence of a perfect global minimum since
recovering the parameters of the teacher circuit achieves zero loss. In
other words, the globalminimum is guaranteed to be achievable in the
setting we consider here. Still, we showed earlier that such circuits
typically have many poor local minima, and are always hard to learn in
the statistical query setting. Here, we provide numerical evidence of
these findings for the QCNN ansatz. Additional confirmation of these
findings with a checkerboard ansatz is included in Supplemen-
tary Note 5.

TheQCNNpresents an interesting test bed for our analysis since it
has been shown in prior work to avoid barren plateaus42. Nevertheless,
the QCNN, like other models, is riddled with poor local minima in
generic learning tasks. For our analysis, we attempt to learn randomly
generatedQCNNswith a parameterizedQCNNof the same form. In the
QCNN, both student and teacher circuits have parameterized 2-qubit
gates at each layer followed by 2-qubit pooling layers (see Supple-
mentary Note 6 for more details). Each 2-qubit gate is fully para-
meterized in the Lie algebra of the unitary group. Networks are trained
to predict the probability of the measurement of the last qubit in the
teacher circuit. In other words, the student network is trained on a
classification problem defined by the teacher network where, by con-
struction, perfect classification accuracy is known to be achievable.We
benchmark performance with the classification accuracy, where a
prediction is considered correct when it predicts the most likely
measurement of the last qubit correctly. Networks are trained via the
Adam optimizer44 to learn outputs of 512 randomly chosen computa-
tional basis states. QCNNs with 4, 8, 12, and 16 qubits have 32, 48, 64,
and 64 trainable parameters, respectively.

Figure 2 plots the final training accuracy achieved over 100 ran-
dom simulations for varying ranges of circuit sizes. For circuits with 4
qubits, the training is sometimes successful, often achieving an accu-
racy above 85 percent on the training dataset. However, as the number
of qubits grows, even past 8 qubits, the optimizer is unable to recover
parameters whichmatch the outputs of the teacher circuit. The results
here show that the QCNN circuit—which has OðlognÞ depth—still
scrambles outputs to hinder learnability.

We now consider VQE. To analyze the performance of variational
optimizers, we consider problems and ansatzes which are capable of
recovering the global minimum. We aim to find the ground states of
local Hamiltonians Ht over n qubits that take the form of single qubit
Pauli ZHamiltonians conjugated by L* layers of two alternating unitary
operators U1 and U2, which are product unitaries on neighboring
2-local qubits:

Ht = Uy
2U

y
1

� �L* Xn
i= 1

Zi

" #
U1U2

� �L* +nI: ð13Þ

The added identity matrix normalizes the Hamiltonian to have
ground state with energy 0. Since the ground state of

Pn
i = 1 Zi is the

state ∣1i�n, we are guaranteed the existence of a global minima when
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using a checkerboard ansatz of at least depth L*, since this ansatz can
“undo” the conjugation by unitary operators. In the remainder of this
section, we consider (13) with L* = 4.

We measure the performance of optimization with two metrics.
Thefirst is the loss function itself, which is the average energy ψ

�
∣Ht ∣ψ

�
of the VQE ansatz state ∣ψ

�
for the given HamiltonianHt. The second is

the trace distance to the ground state ∣ϕgi of Ht, equal to
k ∣ϕgihϕg ∣� ∣ψihψ∣k1=2. Both of these metrics converge to zero at the
global minimum.

We first aim to learn the ground state using a checkerboard ansatz
by performing vanilla gradient descent on L = L* = 4 parameterized
layers, equal in depth to the Hamiltonian conjugation circuit and thus
capable of recovering the ground state. In Fig. 3a, we plot the final
values of the loss and trace distance for 24 randomly initialized VQE
problems for a number of qubits ranging from 4 to 24. Similar results
areobservedwhenusingmoreadvancedoptimizers such asAdam(see
Supplementary Note 6)44. Consistent with our theoretical findings,
convergence clusters around local minima far from the ground state,
particularly as the number of qubits grows.

Our theoretical results also imply the difficulty of training beyond
a finite fraction of the ground state energy in a VQE setting. Figure 3b
illustrates this phenomenon when performing optimization on a 14
qubit ansatz. As more parameters are added to the ansatz via
increasing its depth L, the VQE algorithm performs better, but it is not
until the number of parameters is exponential in the problem size that
convergence to a global minimum (or even within a small additive
error of the global minimum) is guaranteed. This is true even though
the ansatz is capable of expressing the ground state at L = 4. Simula-
tions here are performed as before on random L* = 4 Hamiltonians of
the form of (13).

Discussion
Though VQAs—and quantum machine learning models in general—
have been cited as perhaps the most promising use case for quantum
devices in the near future16, theoretical guarantees of their training
performance have been sparse. Here, we have excluded a wide class of
variational algorithmsby showing that inmany settings, they are in fact
not trainable. We showed this in two different frameworks: first, in
section ‘Learning in the statistical query framework’, we studied var-
ious classes of quantummodels in the statistical query framework. We
showed that in the presence of noise, exponentially many queries in

the problem size are needed for these models to learn. As a com-
plementary approach, we also examined the typical loss landscapes of
VQAs in the noiseless setting in section ‘Loss landscapes of local var-
iational quantum algorithms’, and showed that even at constant depth
these models can have a number of poor local minima super-
polynomially large in the problem size. We also numerically confirmed
these results for a variety of problems in section ‘Numerical results’.
These results go beyond the typical studies on the presence of barren
plateaus, as many of the models we study here have gradients van-
ishing only polynomially quickly in the problem size. Our work
demonstrates that showing that barren plateaus are not present in a
model does not necessarily vindicate it as trainable.

These results, though they exclude a wide variety of VQAs, still
leave room for hope in the usefulness of these algorithms. Particularly,
our analysis in the noiseless setting of landscapes of VQAs focuses on
very general, Hamiltonian agnostic ansatzes; in various instances,
more focused ansatzes may be trainable. For instance, as previously
shown in ref. 5, for certain classes of problems the quantum approx-
imate optimization algorithm (QAOA)45 is provably able to outperform
the best unconditionally proven classical algorithms, evenwhen taking
into account the training of the model. This is due to parameter con-
centration, where the global optimum for small problem instances is
close to the global optimum for large problem instances46. These
results demonstrate the power of good model initialization in VQAs:
even if the total variational landscape is swamped with poor local
minima, good initializationmayensure that the optimizer begins in the
region of attraction of the global minimum. Though this is perhaps
most relevant for the VQE17 and QAOA45 where there exists physical
intuition for potentially performant parameter initializations, in more
traditional machine learning settings this may manifest as good per-
formance on certain inputs to the model.

Variationally studying models with many symmetries may also
avoid our poor performance guarantees. Intuitively, our results here
are the consequence of underparameterization. Namely, unless the
ansatz is parameterized such that the number of parameters grows
with the (local) Hilbert space dimension, the model is not trainable.
Typically, this Hilbert space dimension is exponentially larger than the
number of parameters the ansatz uses to explore it. However, if the
model is heavily constrained by symmetries, this dimension might be
much smaller. Such models were studied numerically in refs. 13, 47,
where it was shown that certain VQAs optimize efficiently. Though
often these models can be solved classically when the symmetries are
known, these symmetries may not be known a priori. Indeed, onemay
be able to test for the presence of symmetries in a given model by
studying whether associated VQAs are trainable. Similar to these
general symmetry considerations, known structure in the problem
may also allow one to build up hierarchical ansatzes that are able to be
trained sequentially. We leave further investigation in these directions
to future work.

Finally, though many variational models fit the framework of (4),
there exist other settings of VQAs. One class of such models includes
quantum Boltzmann machines, which attempt to model given quan-
tum states via the training of quantum Gibbs states48. When the full
quantum Gibbs state is observed, it is known that these models are
efficiently trainable30, and numerically it is known that these models
are trainable evenwhen the full state is not observed48,49. Furthermore,
though in full generality preparing quantum Gibbs states is difficult,
state preparation has been shown to be efficient in certain regimes
relevant to machine learning49–51, potentially giving an end-to-end
trainable quantummachine learningmodel.We leave further analytical
investigation on the training landscapes of quantum Boltzmann
machines to future work.

Our results contribute to the already vast library of literature on
the trainability of variational quantum models in further culling the
landscape of potentially trainable quantum models. We hope these

Fig. 2 | Teacher-student evaluation for the n-qubit QCNN. The student circuit is
unable to learn the teacher circuit as the number of qubits grows, converging to a
local minimum of the loss landscape. The existence of a global optimum is guar-
anteed as the teacher circuit is drawn from a random initialization of the same
QCNN structure of the student circuit. Here, for a ranging number of qubits,
100 student circuits are trained to learn randomized teacher circuits of the same
form and the resulting swarm plots of the final training accuracy are shown.
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results have the effect of focusing research efforts toward classes of
models that have the potential for trainability, and whittle down the
search for practical use cases of VQAs.

Methods
The statistical query learning framework
We give a brief overview of the classical SQ model here, and provide a
more detailed review in Supplementary Note 2. Given an input and
output space X and Y, let D be a joint distribution on X ×Y. In the
classical SQmodel, one queries the SQmodel by inputting a function f
and receiving an estimate ofEðx,yÞ∼D½f ðx,yÞ� within a given tolerance τ.
As an example, one can query a loss function ℓ for a model mθ with
parameters θ by querying the function ℓ(mθ(x), y). A special class of
statistical queries are inner product queries where query functions g
are defined only onX and the correlational statistical query returns an
estimate of Eðx,yÞ∼D½gðxÞ � y� within a specified tolerance τ.

In detail, the SQ models we consider take the forms below:

Definition3. (Quantumcorrelational statistical query (qCSQ)). Assume
there is a target observable M that we would like to learn on some
distribution over states D. Applying the correlational SQ model to the
quantum setting, we define the query qCSQ(O, τ) which takes in a
bounded observable O with ∥O∥ ≤ 1 and a tolerance τ and returns a
value in the range:

Eρ∼D TrðOρÞTrðMρÞ � τ½ �≤qCSQðO,τÞ≤Eρ∼D TrðOρÞTrðMρÞ+ τ½ �:
ð14Þ

Definition 4. (Quantumunitary statistical query (qUSQ)). In the unitary
compilation setting, one aims to learn a target unitary transformation
U* over a distribution D of input/output pairs of that unitary trans-
formation. Here, the oracle qUSQ(V, τ) takes in a unitarymatrixV and a
tolerance τ and returns a value in the range:

Eρ∼D Re½TrðUy
*VρÞ� � τ

h i
≤qUSQðV,τÞ≤Eρ∼D Re½TrðUy

*VρÞ�+ τ
h i

:

ð15Þ

Importantly, ifD is a 1-designovernqubit states, then theabovecan
be simplified using the formula Eρ∼D½Re½TrðUy

*VρÞ��=2�nRe½TrðUy
*VÞ�

(see proof in Supplementary Note 3). Queries to qUSQ are related to

performing a Hadamard test52, also a common subroutine in variational
algorithms53.

The queries above take the forms of inner products, with
hM1,M2iD =Eρ∼D½TrðM1ρÞTrðM2ρÞ� and

hU1,U2iD =Eρ∼D½Re½TrðUy
1U2ρÞ��. The inner products also induce cor-

responding L2 norms: k MkD =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hM,MiD

p
. As the magnitude of this

norm can change with the dimension, we introduce the quantity Cmax

to denote the maximum value a query can take for any target obser-

vable in the qCSQ model, i.e., Cmax = max
M:kMk≤ 1

k Mk2D. For fair compar-

ison, we quantify noise tolerances and hardness bounds with respect
to Cmax. Note that for the qUSQmodel Cmax = 1, but in the qCSQmodel,
Cmax can decay with the number of qubits under for example the Haar
distribution of inputs.

A statistical query algorithm learns a function class if it can output
a unitary or observable that is close to any target in that class.

Definition 5. (qCSQ/qUSQ learning of hypothesis class). A given algo-
rithm using only statistical queries to qCSQ (qUSQ) successfully learns
a hypothesis classH consisting of observablesM, ∥M∥ ≤ 1 (unitariesU)
up to ϵ error if it is able tooutput anobservableO (unitaryV)which is ϵ-
close to the unknown target observableM 2 H (U 2 H) in the L2 norm,
i.e., k M�OkD ≤ ϵ (k U� VkD ≤ ϵ).

The statistical query dimension quantifies the complexity of a
hypothesis class H and is related to the number of queries needed to
learn functions drawn from a class, as summarized in Theorem 7.

Definition 6. (Statistical query dimension1,54). For a distribution D and
concept classHwhere k Mk2D ≤Cmax for allM 2 H, the statistical query
dimension (SQ-DIMDðHÞ) is the largest positive integer d such that
there exists d observables M1,M2, . . . ,Md 2 H such that for
all i ≠ j: ∣hMi,MjiD∣≤Cmax=d.

Theorem7. (Query complexity of learning1,2). Given a distributionD on
inputs and a hypothesis class H where k Mk2D ≤Cmax for all M 2 H, let
d = SQ-DIMDðHÞ be the statistical query dimension of H. Any qCSQ or
qUSQ learner making queries with tolerance Cmaxτ must make at least
(dτ2 − 1)/2 queries to learnH up to error Cmaxτ.

Since our setting differs slightly from the standard classical
setting1,2, we include a proof of the above in Supplementary Note 3. For
example, if the hypothesis class is rich enough to be able to express

Fig. 3 | Empirical analysis of VQE. a Scatter plot of the final loss and trace distance
of the VQE state after 30,000 stepsof gradient descent optimization shows that the
algorithm converges to poorer local minima as the number of qubits grows.
24 simulations are performed for each value of n. The algorithm always succeeds at
obtaining the ground state with 4 qubits, but progressively struggles more with
added qubits. b The number of layers needed to guarantee convergence to the

ground state empirically grows exponentially with the number of qubits. Here, we
consider 4-layer Hamiltonians of the form of (13) on 14 qubits where the number of
layers L in the ansatz is varied. When the ansatz has 300 layers—enough that the
number of ansatz parameters is larger than the explored Hilbert space dimension—
the model successfully converges to the ground state, rather than remaining stuck
in a poor local minimum.
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any n-qubit Pauli observable, then the statistical query dimension of
that class is at least 4n over the Haar distribution of inputs since Pauli
observables are all orthogonal. This forms the basis for our resulting
proofs of hardness, summarized in Table 2 and proved in Supple-
mentary Note 3.

Analogous to work in classical machine learning28, one can per-
form noisy gradient descent as a series of statistical queries. As an
example, consider the task of learning a target Hamiltonian M by
constructing a variational Hamiltonian H(θ) =U(θ)†HU(θ) with para-
meterized Pauli rotations and minimizing the mean squared error
between expectations ofM versusH(θ) over a distribution of statesD.
Our loss function is

LðθÞ=Eρ∼D Tr½Mρ� � Tr½HðθÞρ�ð Þ2
h i

: ð16Þ

Theparameter shift rule55 provides ameans to calculate thepartial
derivative of a function f(μ) with respect to a parameter μ applied as a
parameterized quantum gate e−iμG by calculating the function itself at
two shifted coordinates. For example, for parameterized Pauli gates
(G 2 1

2 fZ,X,Yg), this takes the form:

∂
∂μ

f ðμÞ= 1
2

f μ+
π
2

� �
� f μ� π

2

� �h i
: ð17Þ

By applying the parameter shift rule55, we can evaluate the gra-
dient of the loss with respect to parameter entry θi as

∂
∂θi

LðθÞ =Eρ∼D Tr½HðθÞρ� � Tr½Mρ�ð Þ Tr½Hðθ+ Þρ� � Tr½Hðθ�Þρ�� �	 

,

ð18Þ

where θ+ and θ− are the values of the parameters shifted at the ith
entry according to the parameter shift rule for the gradient. The
quantity Eρ∼D Tr½HðθÞρ�ðTr½Hðθ + Þρ� � Tr½Hðθ�Þρ�Þ	 


can be directly
evaluated without statistical queries, and the quantity
Eρ∼D Tr½Mρ�ðTr½Hðθ+ Þρ� � Tr½Hðθ�Þρ�Þ	 


can be evaluated using
2 statistical queries to qCSQ where the tolerance τ accounts for the
noise in the estimate.

As a second example, this time in the unitary compiling setting
of qUSQ, we can evaluate the commonly used procedure of mea-
suring the inner product or average fidelity of n-qubit states between

a target unitary U* and a variationally chosen unitary V(θ) using sta-
tistical queries analogous to a swap test on actual quantum
hardware39,56–58. With slight abuse of notation, let ∣ϕi∼D denote a
distribution over pure states which forms a 2-design. Then via aver-
aging over 2-designs (see Supplementary Note 3 for details), the
average fidelity equals

E∣ϕi∼D F U*∣ϕ
�
,VðθÞ∣ϕ�� �	 


=E∣ϕi∼D ∣ ϕ
�

∣VðθÞyU*∣ϕ
�
∣2

h i
=
2�n∣TrðVðθÞyU*Þ∣

2
+ 1

2n + 1
:

ð19Þ

Note that the key quantity ∣TrðVðθÞyU*Þ∣
2
=Re½TrðVðθÞyU*Þ�

2
+

Re½iTrðVðθÞyU*Þ�
2
can be evaluated up to a desired tolerance using

statistical queries qUSQ(V(θ), τ) and qUSQ(iV(θ), τ).
One important caveat is that in the SQ setting, learning must

succeed for all values of the querywithin the given tolerance τ. Noise in
quantum settings, which can arise from sampling a finite data set, gate
error, state preparation error, measurement sampling noise, or other
means does not exactly coincide with the assumed tolerance of an SQ
model. Nevertheless, though noise during optimization may appear
unnatural in classical settings, such noise in quantum settings is rather
endemic and the SQ model allows one to rigorously analyze the
complexity of learning in the presence of noise.

The loss landscapes of Wishart hypertoroidal random fields
The loss landscapes of Wishart hypertoroidal random fields (WHRFs;
see Supplementary Note 4 for a brief review) are known11 to exhibit a
computational phase transition governed by the order parameter

γ =
l

2m
, ð20Þ

called the overparameterization ratio. Here, l is the number of para-
meters of theWHRF, andm its degrees of freedom (see Supplementary
Note 4). When γ≪ 1 (the underparameterized regime), WHRFs exhibit
poor local minima and thus are essentially untrainable; when γ ≥ 1 (the
overparameterized regime), however, essentially all local minima of a
WHRF are close to the global minimum in function value. More spe-
cifically, when γ = o 1

log nð Þ

� �
, a superpolynomially small (in n) fraction of

the local minima are within any constant additive energy error to the
globalminimum.When restoring units to the variational riskof (9), this
is an error extensive in the problem size. The asymptotic expression of
the distribution of local minima is also known, which is given by (up to
a normalization factor):

Crt0 Eð Þ∼ e�mEEm�l=2 1� 2Eð Þl ð21Þ

for the density of local minima at any given energy 0≤ E ≤ 1
2, in units of

the mean eigenvalue of H (shifted such that the global minimum is at
E = 0). Representative plots of this distribution in various para-
meterization regimes are shown in Fig. 4.

This distribution of local minima is calculated from the joint dis-
tribution of the WHRF function value, its gradient, and its Hessian.
Thus, by demonstrating the convergence of this joint distribution in
the variational loss functionswe consider to the analogousdistribution
in WHRFs at a sufficient rate, we are able to show the same phase
transition occurs in variational loss functions. Our full proof is given in
Supplementary Note 4.

Data availability
The processed data generated and analyzed for this study are available
at https://github.com/bkiani/Beyond-Barren-Plateaus and ref. 59.

Code availability
The code used for the current study is available at ref. 59.

Fig. 4 | Characteristic distribution of local minima. Plot of the asymptotic dis-
tribution of localminima ofWHRFswithm degrees of freedomon the l-torus in: the
extremely underparameterized regime, where l≪ 2m; the moderately under-
parameterized regime, where l is a finite fraction of 2m; and at the critical over-
parameterization regime, where l = 2m. Here, the energy is scaled and shifted as per
(9) so that globalminimahave zeroenergy. In the underparameterized regime, only
a fraction ∼ exp �mð Þ of the critical points are within any constant additive error of
the global minimum. In the overparameterized regime, local minima are expo-
nentially concentrated at the global minimum.
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