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Quantum error correction is believed to
be a necessity for large-scale fault-tolerant
quantum computation. In the past two
decades, various constructions of quantum
error-correcting codes (QECCs) have been
developed, leading to many good code fam-
ilies. However, the majority of these codes
are not suitable for near-term quantum de-
vices. Here we present VarQEC, a noise-
resilient variational quantum algorithm to
search for quantum codes with a hardware-
efficient encoding circuit. The cost func-
tions are inspired by the most general and
fundamental requirements of a QECC, the
Knill-Laflamme conditions. Given the tar-
get noise channel (or the target code pa-
rameters) and the hardware connectivity
graph, we optimize a shallow variational
quantum circuit to prepare the basis states
of an eligible code. In principle, Var-
QEC can find quantum codes for any error
model, whether additive or non-additive,
degenerate or non-degenerate, pure or im-
pure. We have verified its effectiveness by
(re)discovering some symmetric and asym-
metric codes, e.g., ((n, 2n−6, 3))2 for n from
7 to 14. We also found new ((6, 2, 3))2
and ((7, 2, 3))2 codes that are not equiv-
alent to any stabilizer code, and exten-
sive numerical evidence with VarQEC sug-
gests that a ((7, 3, 3))2 code does not ex-
ist. Furthermore, we found many new
channel-adaptive codes for error models
involving nearest-neighbor correlated er-
rors. Our work sheds new light on the
understanding of QECC in general, which
may also help to enhance near-term device
performance with channel-adaptive error-
correcting codes.

Bei Zeng: zengb@ust.hk

1 Introduction

Fault-tolerant quantum computers promise to
solve some computational problems much faster
than classical machines, such as quantum chem-
istry simulation [1], prime factorization [2], solv-
ing linear systems of equations [3]. However,
quantum information carried by current noisy
intermediate-scale quantum (NISQ) systems is
highly fragile and can be easily altered by the en-
vironment. The aforementioned tasks are so far
out of reach.

The most promising technique to maintain co-
herence and protect the quantum information
from noise is quantum error-correcting codes [4–
8]. The main idea of quantum error correction is
to encode the low-dimensional quantum state in
a larger system such that errors occurring dur-
ing the computation can be corrected due to the
physical redundancy. As long as the noise rate p
is below a specific threshold, QECCs can correct
the error and reduce the error probability from
O(p) to higher orders. In recent years, the intrin-
sic connections between QECCs and other areas
of physics, such as quantum gravity [9], have also
been noticed.

Knill and Laflamme devised sufficient and nec-
essary conditions (known as the Knill-Laflamme
conditions) for quantum error correction [10]. In
principle, we can find any QECC as long as we
find solutions to the Knill-Laflamme conditions.
However, solving these systems of equations is
extremely difficult in the general case. There-
fore many open problems in this field remain un-
solved, e.g., do all degenerate QECCs obey the
Hamming bound? Which QECC has the high-
est error threshold? In practice, researchers usu-
ally analyze QECCs under the Pauli framework
and have developed various QECC families, such
as surface codes [11, 12], Calderbank-Shor-Steane
(CSS) codes [13, 14], stabilizer codes [5], code-
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word stabilized (CWS) codes [15, 16], quantum
low-density parity-check codes [17, 18].

Up till now, no logical qubit/operation with
useful fidelity was realized in experiments since
current gate noise rates are still much larger
than the requirements. Very recently, Egan
et al. [19] prepared a Bacon–Shor logical qubit
with 13 trapped-ion qubits and demonstrated a
logical single-qubit Clifford gate. Further, Postler
et al. [20] demonstrated a logical T -gate based on
the 7-qubit color code. However, the fidelities of
these state-of-the-art logical qubits are even lower
than those of the physical qubits. From a theo-
retical perspective, the codes used in those ex-
periments are not device-tailored and may not be
optimal for the system. The noise channels on dif-
ferent physical platforms differ significantly [21–
23]. Symmetric QECC constructions under the
Pauli framework can not be directly adapted to
non-Hermitian/non-unitary noise channels. It is
highly desirable to design asymmetric or channel-
adaptive QECCs with a hardware-efficient en-
coder. Such device-tailored codes can protect log-
ical information more efficiently.

Besides analytical constructions, researchers
have been trying to find QECCs with computa-
tional methods for a long time. Refs. [16, 24–
26] designed classical algorithms for finding quan-
tum codes associated with graphs. Ref. [27]
used numerical greedy search for finding stabi-
lizer codes. These algorithms, however, can-
not find arbitrary codes and are extremely time-
consuming. With the popularity of artificial
intelligence, researchers also started to design
and optimize quantum codes with neural net-
works [28–31]. These classical black-box models
perform pretty well for certain problems. In this
work, we add a new general method to this tool-
box. We devise a hybrid quantum-classical algo-
rithm called VarQEC for finding quantum error-
correcting codes. The cost functions therein are
based on the Knill-Laflamme conditions. We it-
eratively update the parameters in a variational
quantum circuit (VQC) with stochastic gradi-
ent descent. If the final cost functions are suf-
ficiently small, we obtain an approximate quan-
tum code whose inaccuracy is bounded. Com-
pared with the classical iterative algorithm in-
troduced in Ref. [32], our method yields the en-
coding circuit, not merely the encoding isometry.
After finding a QECC and its encoder, the de-

coding operation can be found via various meth-
ods like semidefinite programming [33], convex
optimization [34], or classical/quantum machine
learning [35–37].

VarQEC allows for non-Hermitian or non-
unitary errors and is surprisingly effective.
We numerically verify its effectiveness up to
14 qubits. For symmetric Pauli errors, we
successfully rediscover many good quantum
codes, e.g., ((5, 2, 3))2, ((5, 6, 2))2, ((6, 2, 3))2,
((7, 2, 3))2, ((8, 8, 3))2, ((9, 8, 3))2, ((10, 24, 3))2,
((11, 25, 3))2, ((12, 26, 3))2, ((13, 27, 3))2,
((14, 28, 3))2, ((10, 4, 4))2. Some of the
((6, 2, 3))2, ((7, 2, 3))2 codes we find are not
locally equivalent to any CWS code. It is an
open question of whether there is a quantum
code with parameters ((7, 3, 3))2, our numerical
evidence suggests that it is non-existent. Then
we apply VarQEC to search for asymmetric
codes (which detect more Pauli-X/Y errors than
Pauli-Z errors or vice versa) and make new
discoveries. Furthermore, we search for channel-
adaptive codes for nearest-neighbor collective
amplitude damping and nearest-neighbor collec-
tive phase-flips, and find eligible new codes with
a hardware-efficient encoding circuit for various
connectivity graphs. Since VarQEC is capable
to find a QECC with the shallowest possible
encoding circuit, it is promising to design codes
with sufficient fidelity that can be tested and
implemented on near-term devices. Although
only relatively small systems were investigated
in this paper, hierarchical concatenation can
construct good quantum codes with large code
lengths and distances [5, 38, 39].

The paper is organized as follows. In Sec. 2,
we introduce some background of quantum er-
ror correction. In Sec. 3, we introduce our cost
functions and present propositions to support our
definitions. In Sec. 4, we explain the VarQEC
algorithm in detail. In Sec. 5, we show quan-
tum codes (re)discovered thereby, including sym-
metric, asymmetric, and channel-adaptive codes
for nearest-neighbor collective amplitude damp-
ing and nearest-neighbor collective phase-flips.
Sec. 6 discusses the noise resilience feature of Var-
QEC. Sec. 7 discusses the barren plateaus and
the noise-induced barren plateaus in VarQEC op-
timization. In Sec. 8, we verify our algorithm
by an experiment on an IBM quantum device.
The conclusions and future directions are sum-
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marized and discussed in Sec. 9. The appendices
give some proof details, a discussion on overpa-
rameterization, an alternative variational ansatz,
some non-CWS quantum codes, and a list of the
quantum weight enumerators of quantum codes
discovered by VarQEC.

2 Preliminaries

In classical computation and communication, re-
dundancy is added when encoding a message such
that the errors can be detected and corrected. Al-
though each bit may flip with some probability,
the encoded message can be recovered with high
probability. The philosophy behind quantum er-
ror correction is the same. We use several low-
fidelity physical qudits (e.g., qubits) to encode
the logical quantum information redundantly and
nonlocally. Then quantum errors can be detected
through syndrome measurements and corrected
through a unitary operation. A q-ary QECC C is
a K-dimensional subspace of the qn-dimensional
Hilbert space (Cq)⊗n, where n is the number of
physical qudits (referred to as the code length).
For qubit systems, q = 2, C ⊂ (C2)⊗n. When
K = 1, the code is a fixed quantum state without
computational use. Throughout this paper, we
only discuss K ≥ 2.

Knill and Laflamme developed a general the-
ory of quantum error correction. They obtained
the sufficient and necessary conditions for an ex-
act QECC [10]: a quantum code with orthonor-
mal basis states {|ψj〉} corrects the error set
E = {Eα} if and only if

PcE
†
αEβPc = λαβPc, (1)

holds for all Eα, Eβ ∈ E . Here, Pc =
∑
j |ψj〉〈ψj |

is the orthogonal projector onto the code space,
and each λαβ is a complex number. Moreover,
we say the quantum code is non-degenerate if the
matrix λαβ has full rank [40].

We can understand these conditions intuitively.
When i 6= j, 〈ψi|E†αEβ|ψj〉 = 0 for any error
product E†αEβ . This means orthogonal logical
states remain orthogonal after the noise channel,
the logical information is not corrupted. When
i = j, 〈ψj |E†αEβ|ψj〉 = λαβ with λαβ being
a constant only determined by the error prod-
uct. This indicates that the projections be-
tween subspaces induced by different errors are

information-preserving, the errors have an or-
thogonal decomposition. Therefore, we can cor-
rect the error without knowing or destroying the
quantum superposition state.

The quantum error detection conditions have
a similar form: a quantum code with code space
projector Pc can detect the error set E = {Eµ} if
and only if

PcEµPc = λµPc (2)

holds for all Eµ ∈ E .
In experiments, most quantum errors are un-

correlated single-qudit errors. A natural measure
of the capability of a QECC is the number of
single-qudit errors that it can detect. This moti-
vated the concept of “code distance”: the distance
of a QECC is the largest possible integer d such
that the code can detect any error non-trivially
acting on at most d− 1 qudits. Researchers usu-
ally denote the code parameters of a q-ary QECC
with code length n, code dimension K, and code
distance d as ((n,K, d))q.

Comparing the Knill-Laflamme conditions and
quantum error detection conditions, we know
that a distance-d QECC can correct any error
set E = {Eα} with each Eα non-trivially acting
on at most b(d− 1)/2c qudits.

For convenience, 2-ary quantum codes are usu-
ally constructed and analyzed in the Pauli frame-
work. Consider an n-fold Pauli tensor product

Oα ∈ {X,Y, Z, I}⊗n. (3)

Denote the number of X factors, Y factors and
Z factors in Oα as wtX(Oα), wtY(Oα), and
wtZ(Oα). The weight of Oα is

wt(Oα) = wtX(Oα) + wtY(Oα) + wtZ(Oα). (4)

An equivalent definition of the code distance of
a QECC with projector Pc is the largest possible
integer d such that

PcOαPc = λαPc (5)

holds for all Pauli tensor product Oα with
wt(Oα) < d.

In practical scenarios, Pauli-Z errors are usu-
ally more prevalent than Pauli-X and Pauli-
Y [41]. Accordingly, we use a parameter cZ to
characterize this noise bias and define the follow-
ing cZ-effective weight and cZ-effective distance.
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Definition 1 The cZ-effective weight of a Pauli
tensor product Oα is

wte(Oα, cZ) = wtX(Oα)+wtY(Oα)+cZ wtZ(Oα),
(6)

where cZ > 0. The cZ-effective distance of a quan-
tum code with projector Pc is the largest possible
integer de(cZ) such that

PcOαPc = λαPc (7)

holds for all Pauli tensor product Oα with
wte(Oα, cZ) < de(cZ).

This definition is a generalization of the con-
cept of “effective distance” introduced in Ref. [42].
An asymmetric code with code parameters
((n,K, de(cZ)))2 can correct arbitrary Pauli er-
ror with cZ-effective weight smaller than de(cZ)/2,
and detect arbitrary Pauli error with cZ-effective
weight smaller than de(cZ). When Pauli-Z er-
rors occur more frequently than Pauli-X/Y er-
rors, 0 < cZ < 1; when the relaxation times (T1)
are much smaller than the dephasing times (T2),
Pauli-X/Y errors occur more frequently, cZ > 1.

Quantum codes with relatively small distances
can be concatenated to construct a code with
large code length and distance, as illustrated in
Fig. 1. Suppose we have an outermost code
with parameters ((n1,K, d1))q, other outer codes
with parameters ((n2, q, d2))q, ((n3, q, d3))q, . . . ,
((nl−1, q, dl−1))q, and an inner code with param-
eters ((nl, q, dl))q. We can construct a large code
through several levels of concatenation: the logi-
cal data is first encoded using the outermost code,
each physical qudit therein is further encoded us-
ing the ((n2, q, d2))q code, and so forth. The hi-
erarchically concatenated quantum code has pa-
rameters

((
∏
j

nj ,K,
∏
j

dj))q. (8)

Likewise, we can concatenate asymmetric
codes. A distance lower bound is given as fol-
lows.

Theorem 1 Consider asymmetric outer codes
with parameters ((n1,K, de(cZ) = δ1))2,
((n2, 2, de(cZ) = δ2))2, ((n3, 2, de(cZ) = δ3))2,
. . . , ((nl−1, 2, δl−1))2, and an inner code with
parameters ((nl, 2, δl))2. Concatenating these
codes yields a new code with parameters

((
∏
j

nj ,K, de(cZ) = δ))2 (9)

U1
| j⟩{

|0⟩

U2
|0⟩
|0⟩

U3
|0⟩
|0⟩

U2
|0⟩
|0⟩

U3
|0⟩
|0⟩

U3
|0⟩
|0⟩

Figure 1: Schematic illustration of quantum code con-
catenation. After finding quantum codes with encoders
U1, U2, U3, . . . , we hierarchically concatenate these en-
coders to obtain a large-distance quantum code.

where

δ ≥ min{1, cZ}
∏
j

⌈
δj

max{1, cZ}

⌉
. (10)

Proof Assume the concatenated code cannot
detect a Pauli tensor product Oα. For the outer
code, errors occur on at least dδ1/max{1, cZ}e
qubits. Each of these qubits is connected to a
block of the first inner code ((n2, 2, de(cZ) = δ2))2
and for every such block, errors occur on at least
dδ2 max{1, cZ}e qubits. From similar arguments,
errors occur on at least dδj max{1, cZ}e qubits in
the j-th block. The weight of Oα is bounded by

wt(Oα) ≥
∏
j

dδj/max{1, cZ}e . (11)

Hence, the cZ-effective weight of Oα is at least

min{1, cZ}
∏
j

dδj/max{1, cZ}e . (12)

The concatenated code can detect any Pauli ten-
sor product with cZ-effective weight smaller than
this value, we conclude

δ ≥ min{1, cZ}
∏
j

⌈
δj

max{1, cZ}

⌉
. (13)

�

3 Theoretical Basis
A lot of methods for constructing QECCs are us-
ing the stabilizer formalism, but there are not
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that many outside the Pauli framework. This
work aims to search for quantum codes based on
the most fundamental principle, i.e., the Knill-
Laflamme conditions and the quantum error de-
tection conditions. A crucial tool in our scheme is
the variational quantum circuit which consists of
multiple layers of parameterized quantum gates.

The primary ingredient of a variational algo-
rithm is the cost function(s). We define the cost
functions of VarQEC as follows.

Definition 2 (Cost functions) Consider an error
set E = {Eµ} and a length-n quantum code with
parameterized orthogonal basis states

{|ψ1(θ)〉, |ψ2(θ)〉, . . . , |ψK(θ)〉}. (14)

We define the `1-norm cost function

C`1n,K,E(θ) ≡
∑
Eµ∈E

( ∑
1≤i<j≤K

∣∣〈ψi|Eµ|ψj〉∣∣
+

K∑
j=1

∣∣〈ψj |Eµ|ψj〉 − 〈Eµ〉∣∣/2) (15)

and the `2-norm cost function

C`2n,K,E(θ) ≡
∑
Eµ∈E

( ∑
1≤i<j≤K

∣∣〈ψi|Eµ|ψj〉∣∣2
+

K∑
j=1

∣∣〈ψj |Eµ|ψj〉 − 〈Eµ〉∣∣2/4)
(16)

where 〈Eµ〉 =
∑K
j=1〈ψj |Eµ|ψj〉/K.

Clearly, C`1n,K,E and C`2n,K,E are always non-
negative and have the same zero-points. When
C`1n,K,E ≤ 1, C`2n,K,E ≤ (C`1n,K,E)2. When C`1n,K,E =
0, the quantum code can perfectly detect the er-
ror set E .

To find symmetric codes with code parameters
((n,K, d))2, we use the Pauli error model and
choose

E = {Oα|wt(Oα) < d}, (17)

where Oαs are Pauli tensor products. Likewise,
when searching for asymmetric codes with code
parameters ((n,K, de(cZ)))2, we choose

E = {Oα|wte(Oα, cZ) < de(cZ)}. (18)

To find channel-adaptive codes for a general noise
channel N (ρ) =

∑
αEαρE

†
α, we choose

E = {E†αEβ|Eα, Eβ are Kraus operators of N}.
(19)

Note that the error set E in principle can include
non-unitary and non-Hermitian errors. For such
errors, we can either twirl them to Pauli errors or
simulate them directly by adding ancilla qubits
and performing positive-operator valued measures
(POVMs).

In practice, due to the inexact realization
of an encoding isometry, quantum error correc-
tion/detection conditions are not exactly satis-
fied, and QECCs cannot protect the information
from errors perfectly. Nevertheless, QECCs can
still detect and correct most errors. Such ap-
proximate quantum error correction schemes hold
great promise [43, 44]. A parameter ε character-
izes the inaccuracy of an approximate code. If a
QECC is ε-correctable for a noise channel N , its
worst-case entanglement fidelity is greater than
1− ε with appropriate recovery [45]. Bény et al.
proposed an approximate version of the Knill-
Laflamme conditions for such approximate codes.

Lemma 1 (Corollary 2, Ref. [46]) A code defined
by the projector Pc is ε-correctable under a noise
channel N (ρ) =

∑
αEαρE

†
α, if and only if

PcE
†
αEβPc = λαβPc + PcBαβPc, (20)

where λαβ are the components of a non-negative
Hermitian operator with trace one, Bαβ is a Her-
mitian operator, and the Bures distance [47] be-
tween two channels Λ(ρ) =

∑
αβ λαβ Tr(ρ)|α〉〈β|

and (Λ + B)(ρ) = Λ(ρ) +
∑
αβ Tr (ρBαβ) |α〉〈β|

satisfies
d(Λ + B,Λ) ≤ ε. (21)

Based on this lemma, we modify Corollary 5
of Ref. [45] and give a proposition to support our
definitions.

Proposition 2 Consider an n-qubit noise chan-
nel N (ρ) =

∑
αEαρE

†
α, and a quantum error-

correcting code

C = span{|ψ1〉, |ψ2〉, . . . , |ψK〉}. (22)

We choose the error product set
E = {E†αEβ|Eα, Eβ are Kraus operators of N}.
Denote the cost function Eq. (15) of the basis
states as C`1n,K,E . Then the code C is ε-correctable
under N with ε bounded by

ε ≤ K
√

2C`1n,K,E . (23)
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Proof Let λαβ =
∑
j〈ψj |E†αEβ|ψj〉/K.

To satisfy Eq. (20), we set

Bαβ =
∑
i 6=j
〈ψi|E†αEβ|ψj〉|ψi〉〈ψj |

+
∑
j

(
〈ψj |E†αEβ|ψj〉 − λαβ

)
|ψj〉〈ψj |.

(24)
Then

d(Λ + B,Λ) ≤ K‖B‖1/2
1

≤ K
(∑
α,β

‖Bαβ‖1
)1/2

≤ K
(∑
α,β

(∑
i 6=j
|〈ψi|E†αEβ|ψj〉|+

∑
j

|〈ψj |E†αEβ|ψj〉 − λαβ|
))1/2

= K
√

2C`1n,K,E .
(25)

According to Lemma 1, the inaccuracy ε of code
C is upper bounded by K

√
2C`1n,K,E . �

In short, given a noise channel N , as long as
we minimize the channel-adaptive cost function
to a sufficiently small value, we rigorously find an
approximate channel-adaptive code with small in-
accuracy. Similar bounds for symmetric or asym-
metric quantum codes are given as follows.

Proposition 3 Consider an n-qubit noise channel
N (ρ) =

∑
αEαρE

†
α where each Eα non-trivially

acts on no more than b(d − 1)/2c qubits, and a
quantum error-correcting code

C = span{|ψ1〉, |ψ2〉, . . . , |ψK〉}. (26)

We choose E = {Oα|wt(Oα) < d}, where Oαs are
Pauli tensor products. Denote the cost function
Eq. (15) of the basis states as C`1n,K,E , the number
of Kraus operators of N as m. Then the code C
is ε-correctable under N with ε bounded by

ε ≤ 2n/4+d/2K
√
mC`1n,K,E . (27)

Proof The proof is given in Appendix A. �

Proposition 4 Consider an n-qubit noise channel
N (ρ) =

∑
αEαρE

†
α with each Eα proportional to

a Pauli error with cZ-effective weight smaller than
de(cZ)/2, and a quantum error-correcting code

C = span{|ψ1〉, |ψ2〉, . . . , |ψK〉}. (28)

We choose E = {Oα|wte(Oα, cZ) < de(cZ)},
where Oαs are Pauli tensor products. Denote
the cost function Eq. (15) of the basis states as
C`1n,K,E , the number of Kraus operators of N as
m. Then the code C is ε-correctable under N with
ε bounded by

ε ≤ K
√

2mC`1n,K,E . (29)

Proof The proof is given in Appendix B. �
Note that Propositions 3 and 4 give pretty loose

bounds. The true code inaccuracy, which de-
pends on the particular noise channel, is usually
significantly smaller.

4 Algorithm

Variational quantum circuits (VQCs) have been
widely used in near-term quantum algorithms for
various tasks [48, 49], such as ground state prepa-
ration [50, 51], eigenenergy estimation [52, 53],
quantum data compression [54, 55], quantum cir-
cuit compiling [56, 57]. Give a pure product state
as input, one iteratively updates the circuit pa-
rameters based on measurement results, and fi-
nally outputs the desired state. In VarQEC, the
output states serve as the basis states of a quan-
tum code, and its encoder is given by the quan-
tum circuit. The structure of our algorithm is
illustrated in Fig. 2.

Suppose we have a NISQ device with a hard-
ware connectivity graph G. The vertices denote
qubits, and the edges denote adjacent qubit pairs.
One can apply single-qubit rotations to each
qubit and two-qubit gates to adjacent qubits. We
aim to find a K-dimensional QECC that can de-
tect an error set E = {Eµ}, and the encoding
circuit should be as shallow as possible.

Before running the algorithm, we design a mul-
tilayered VQC which is hardware-efficient for the
connectivity graph. Denote the number of VQC
layers as L, the maximum acceptable number of
layers as Lmax, the evolution of the VQC as U(θ)
where θ are the circuit parameters. We start from
L = 1 and sample the initial θ randomly. Also,
we delicately select k = dlog(K)e physical qubits
to prepare the logical data, where the logarithm is
with respect to base 2. These k qubits should be
scattered instead of concentrated since we hope
the remaining qubits are connected to them by
very few edges.
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E†
α

Eβ

U(θ)|0⟩
|0⟩
|0⟩

U†(θ)

U(θ)
| j⟩{
|0⟩
|0⟩
|0⟩

z

z

z

z

z

β

α

E2
E1

E4

E3

E5

Sample 

Update θ

Update θ

| j⟩{

Figure 2: Schematic illustration of VarQEC. The encoder
is trained via mini-batch learning: we iteratively sample
errors from an error set, run the variational quantum
circuit U(θ) and do measurements, then update θ.

First, we initialize the selected qubits to one
of the K binary strings |0〉, |1〉, . . . , |K− 1〉,
and initialize the remaining qubits to |0〉⊗(n−k).
These product states span the input code space

Cin = span{|0〉|0〉⊗(n−k), . . . , |K− 1〉|0〉⊗(n−k)}.
(30)

Cin is a QECC with distance d = 1.
The cost functions can be estimated by running

specific circuits and doing measurements. To es-
timate 〈ψj |Eµ|ψj〉, we prepare the initial state
|j− 1〉|0〉⊗(n−k), evolve the system with the VQC
U(θ), then measure the local observable Eµ. If
errors Eµ1, Eµ2, . . . commute, they can be mea-
sured simultaneously in a single shot. To esti-
mate

∣∣〈ψi|Eµ|ψj〉∣∣, we start from |j− 1〉|0〉⊗(n−k),
then sequentially evolve the system with U(θ),
Eµ, and U †(θ), then measure the final state
in the computational basis. The measurements
are assisted by post-selection: we first measure
the n − k auxiliary qubits, and if the result is
|0〉n−k, we measure the remaining k qubits. De-
note the probability of obtaining the binary string
|i− 1〉|0〉⊗(n−k) as pij ,

∣∣〈ψi|Eµ|ψj〉∣∣ = √pij . The-
oretically, this step will also yield 〈ψj |Eµ|ψj〉.
However, since VarQEC is a NISQ algorithm, we
prefer to use a shallower circuit to estimate cost
function terms whenever possible.

In the above description, we assume the er-
ror set E only consists of Pauli errors. It does
not matter if E includes non-unitary or non-
Hermitian terms. Adding ancilla qubits or Pauli
twirling can handle it. See Sec. 5.3.1 for a de-
tailed example.

The optimization of θ consists of two stages.
The first and the main stage is mini-batch learn-
ing. After sampling the initial θ, we minimize
C`2n,K,E with mini-batch gradient descent. The
schematic is shown in Fig. 2. Within each it-
eration, we sample a subset ES ⊂ E , estimate the
corresponding partial `2-norm cost function

C`2n,K,ES (θ) ≡
∑

Eµ∈ES

( ∑
1≤i<j≤K

∣∣〈ψi|Eµ|ψj〉∣∣2
+

K∑
j=1

∣∣〈ψj |Eµ|ψj〉 − 〈Eµ〉∣∣2/4)
(31)

and its gradient

∇θ =
∂C`2n,K,ES (θ)

∂θ
(32)

via measurements, then perform a single gradient
descent step with a learning rate η:

θ ← θ − η∇θ. (33)

The required number of measurements to esti-
mate C`2n,K,ES (θ) up to additive error ε is of order
O(K2|ES |2/ε2). The gradient can be estimated
through finite-differencing or by combining the
chain rule and the parameter shift rule [58]. Mini-
batch gradient descent allows for a more robust
convergence and avoids being trapped in a local
minimum. We repeat sampling and gradient de-
scent until convergence. The reason that we min-
imize C`2n,K,E first is because it converges much
faster than C`1n,K,E . In addition, C`2n,K,E is differ-
entiable but C`1n,K,E is not.

If the error set E consists of too many terms,
a promising alternative method is to construct
“classical shadows” [59] for each basis state |ψj〉,
then use the shadows to estimate the cost func-
tions classically. The shadow tomography tech-
nique can help us implement large-batch opti-
mization with a smaller measurement overhead.

After adequate mini-batch learning, if C`2n,K,E
is relatively small (e.g., C`2n,K,E < 0.01), we esti-
mate C`1n,K,E and fine-tune the parameters θ with
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respect to it since C`1n,K,E is directly related to the
inaccuracy of the code (see Propositions 2, 3, 4).
In this work, we use Powell’s method [60], a
gradient-free optimizer, for fine-tuning. If C`1n,K,E
is smaller than an acceptable cost tolerance C`1tol,
we stop the optimization and output the final pa-
rameters θopt. Throughout this paper, we set the
tolerance as

C`1tol ≡ 1× 10−6. (34)

In the ideal case, we obtain the optimal parame-
ters

θopt = arg min
θ
C`1n,K,E(θ). (35)

The output QECC

Cout(θopt) =span{
|ψ1〉 = U(θopt)|0〉|0〉⊗(n−k),

|ψ2〉 = U(θopt)|1〉|0〉⊗(n−k),

. . . ,

|ψK〉 = U(θopt)|K− 1〉|0〉⊗(n−k)

}.
(36)

is the target approximate quantum code with
small inaccuracy. The variational quantum cir-
cuit U(θopt) serves as the encoding circuit. Fur-
ther, we can remove redundant gates from the
VQC.

If C`1n,K,E is greater than C`1tol, we increase the
circuit depth L and repeat the optimization steps.
If C`1n,K,E is always greater than the tolerance
even when L = Lmax, we fail to find an eligi-
ble code. The detailed procedure is illustrated in
Algorithm 1.

A natural question arises: can a fixed-depth
VQC find any ((n,K))2 quantum code? Haug
et al. used the quantum Fisher information ma-
trix to assess the expressive power of a VQC with
a fixed input state |0〉⊗n [61]. We generalize this
notion to multiple inputs to assess the expressive
power of a VQC in VarQEC. If a VQC is capable
of finding any ((n,K))2 quantum code, we say it
is overparameterized with respect to code param-
eters ((n,K))2. See Appendix C for more details.

When the VQC U(θ) is underparameterized
for ((n,K))2, the set of reachable output codes
forms a low-dimensional submanifold of the com-
plex Grassmannian Gr(K, 2n),

{Cout(θ)|θ} ⊆ Gr(K, 2n). (37)

Algorithm 1: VarQEC
Input: Error set E , hardware-efficient

VQC U(θ) with L layers,
acceptable number of layers Lmax,
acceptable cost tolerance C`1tol.

Output: An approximate quantum code
with a hardware-efficient
encoder that detects E .

L← 1.
while L ≤ Lmax and C`1n,K,E(θ) > C`1tol do

while C`2n,K,E(θ) has not converged do
Sample a subset ES ⊂ E .
Prepare the K input strings.
Run U(θ), output {|ψj〉}.
Measure observables Eµ ∈ ES .
Prepare the K input strings.
Run U †(θ)EµU(θ) for Eµ ∈ ES .
Do projective measurements.
Estimate C`2n,K,ES (θ).
Vary θ, repeat the above steps to
estimate ∂C`2n,K,E(θ)/∂θ.

Perform a gradient descent step,
update θ.

end
if C`2n,K,E(θ) < 0.01 then

while C`1n,K,E(θ) has not converged
do

Prepare the K input strings.
Run U(θ), output {|ψj〉}.
Measure observables Eµ ∈ E .
Prepare the K input strings.
Run U †(θ)EµU(θ) for Eµ ∈ E .
Do projective measurements.
Estimate C`1n,K,ES (θ).
Vary θ, repeat the above steps
to estimate ∂C`1n,K,E(θ)/∂θ.
Minimize C`1n,K,E(θ), update θ.

end
end
L← L+ 1.

end
θopt ← θ.
Return: θopt, C`1n,K,E(θopt).

The VarQEC algorithm searches this submani-
fold for an eligible code. When U(θ) is overpa-
rameterized for ((n,K))2, it can explore all rel-
evant directions and the set of reachable output
codes is equivalent to Gr(K, 2n), i.e., VarQEC
is capable to find arbitrary ((n,K))2 quantum
code. The required number of periodic bounded
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real parameters to overparameterize a VQC is at
least 2K(2n−K) since the complex dimension of
Gr(K, 2n) is K(2n −K).

In Ref. [62], Johnson et al. proposed a related
algorithm named QVECTOR, which samples a
random 2-design unitary and optimizes parame-
terized encoding and decoding circuits simulta-
neously to improve the quantum average fidelity.
Compared with QVECTOR, VarQEC can find
not only channel-adaptive codes but also quan-
tum codes with specific code parameters. Var-
QEC does not need a deep random circuit, which
is a daunting challenge on NISQ devices, to sam-
ple a bunch of input states. We train the en-
coder without considering the decoder. The op-
timization is less likely to be trapped in a local
minimum. The cost functions are estimated by
measuring some local observables. We can rigor-
ously obtain an ε-correctable approximate QECC
with arbitrarily small ε. The noise models in our
methods are also flexible and can be artificially
assigned.

5 Results

5.1 Symmetric codes

We verify the validity of our algorithm by redis-
covering some symmetric codes with well-known
code parameters. The cost functions are de-
fined in Eqs. (15), (16). For code parameters
((n,K, d))2, the total number of Pauli errors Oα
to consider is

|{Oα}| =
d−1∑
j=0

(
n
j

)
3j . (38)

Without loss of generality, we use the complete
bipartite connectivity graph: denote the qubits
selected for the input as {Q0, Q1, . . . , Qk−1}
(k = dlog(K)e), the unselected qubits as
{Qk, Qk+1, . . . , Qn−1}, the graph consists of
k(n− k) edges that connect every selected qubit
and every unselected qubit, qubits in the same
set are not directly connected. For such graphs,
the initial logical data can spread to each qubit
rapidly since the graph diameter is only 2. The
variational quantum circuit has alternating lay-
ers of single-qubit rotations Rx-Rz acting on all
qubits and Ising-type interactions Rzz acting on
adjacent qubits. Denote the number of layers as

L. The VQC evolution is of the form

U(θ) = UE(θE)
L∏
l=1

Ul(θl), (39)

where θl and θE are elements in θ, Ul(θl) de-
notes the l-th layer evolution, UE(θE) denotes
the rightmost Rx-Rz rotations which are used to
search the manifold of locally equivalent quantum
codes. Since Rz and Rzz gates in the last layer
commute, and Rz-Rx-Rz rotations can realize
arbitrary single-qubit unitary, locally equivalent
QECCs can be found by the same VQC. In princi-
ple, any n-qubit unitary evolution can be realized
by this ansatz with a sufficiently large number
of layers since {Rx, Rz, Rzz} is a universal quan-
tum gate set. The connectivity graph and the
periodic-structured VQC ansatz for n = 5, k = 2
are shown in Fig. 3(a,b). In general, with the in-
crease of L, the achievable quantum codes form
a higher dimensional submanifold of Gr(K, 2n),
as shown in Fig. 3(c). When the VQC is overpa-
rameterized (L is no less than a critical number
Lcrit) for code parameters ((n,K))2, VarQEC can
explore the whole Gr(K, 2n) manifold.

An alternative variational circuit for finding
additive quantum codes is discussed in Appendix
D.

We apply our algorithm to search for
((n,K, d))2 codes where the code length n ranges
from 3 to 12, the code dimension K ranges from 2
to 8, the code distance d ranges from 2 to 4. Fig. 4
shows C`1n,K,E(θopt) as a function of code parame-
ters n, K, d. We rediscover quantum codes with
parameters

((4, 4, 2))2, ((5, 6, 2))2,

((5, 2, 3))2, ((6, 2, 3))2,

((7, 2, 3))2, ((8, 8, 3))2,

((9, 8, 3))2, ((10, 4, 4))2,

((11, 4, 4))2.

(40)

The ((5, 2, 3))2 and ((8, 8, 3))2 codes are non-
degenerate, the ((6, 2, 3))2 codes are degenerate,
and both cases are possible for ((7, 2, 3))2. There
is an obvious phase transition between achievable
and (probably) non-achievable code parameters.
Further, we fix d = 3 and rediscover larger codes
with parameters

((10, 24, 3))2, ((11, 25, 3))2,

((12, 26, 3))2, ((13, 27, 3))2,

((14, 28, 3))2.

(41)
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Figure 3: Schematic of a connectivity graph, the
periodic-structured variational ansatz, and the achiev-
able quantum codes. (a) The bipartite connectivity
graph with five physical qubits. Gray lines connect ad-
jacent qubits. {Q0, Q1} are the selected qubits to pre-
pare the logical data. (b) The corresponding variational
quantum circuit (VQC) with L layers. Within each
layer, we apply Rx-Rz rotations to each qubit and ap-
ply Rzz gates to adjacent qubits. (c) With the increase
of L, VarQEC is capable to find quantum codes in a
higher-dimensional manifold until overparameterization
(L = Lcrit).

All these codes can be found by a shallow
VQC, e.g., a 5-layer VQC can encode ((5, 2, 3))2,
((12, 26, 3))2, ((14, 28, 3))2; a 4-layer VQC can en-
code ((6, 2, 3))2, ((8, 8, 3))2; a 3-layer VQC suf-
fices to encode ((7, 2, 3))2. In our experiments, ei-
ther C`1n,K,E(θopt) < 1× 10−6 or C`1n,K,E(θopt) ≥ 1
holds. Fig. 5 shows some cost curves at the mini-
batch learning stage. Within each iteration, we
sample 20% of {Oα} as the batch and perform
a stochastic gradient descent with learning rate
η = 1× 10−2.

In the following, we verify the local equiva-
lence (LE) between two quantum codes with K-
dimensional projectors Pc and P ′c by sampling
permutations of qubits Πq and numerically min-

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

K

Figure 4: Minimum cost function C`1
n,K,E(θopt) for dif-

ferent code length n, code dimension K, and code dis-
tance d. (a) n = 3. (b)n = 4. (c)n = 5. (d)n = 6.
(e)n = 7. (f)n = 8. (g)n = 9. (h)n = 10. (i)n = 11.
(j)n = 12.
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(a) (b) (c) (d)

(e) (f) (g) (h)

（i）

Figure 5: Learning curves of VarQEC for finding symmetric codes with achievable code parame-
ters (a-h)((5, 2, 3))2, ((6, 2, 3))2, ((7, 2, 3))2, ((8, 8, 3))2, ((11, 25, 3))2, ((12, 26, 3))2, ((13, 27, 3))2,
((14, 28, 3))2, and (probably) non-achievable code parameters (i) from bottom to top: ((7, 3, 3))2,
((4, 2, 3))2,((9, 24, 3))2,((10, 25, 3))2,((11, 26, 3))2,((12, 27, 3))2,((13, 28, 3))2.

imizing the LE-cost function

CLE = |Tr(U(φ)ΠqPcΠ−1
q U †(φ)P ′c)−K|2, (42)

where

U(φ) = exp(−i
n∑
j=1

φj,1Zj) exp(−i
n∑
j=1

φj,2Xj)

· exp(−i
n∑
j=1

φj,3Zj)

(43)
is a product of single-qubit unitaries with 3n pa-
rameters φ. If there exist Πq and φ such that
CLE < 1× 10−10, we say Pc and P ′c are (locally)
equivalent.

The minimum code length that protects a log-
ical qubit against arbitrary one-qubit errors is
n = 5. The ((5, 2, 3))2 code we rediscover is
equivalent to the perfect code devised in Ref. [63].
This code is unique and translational invari-
ant. The ((5, 6, 2))2 code we rediscover is equiva-
lent to the original non-additive CWS code de-
vised in Ref. [64]. For parameters ((6, 2, 3))2,
we sample different initial VQC parameters θ
and find a mass of non-additive codes that are
not mutually equivalent. This is consistent with
our observation that an infinite family of non-
equivalent ((6, 2, 3))2 codes exist. For parameters
((7, 2, 3))2, we find non-equivalent quantum codes
and some of them are not equivalent to CWS
codes. See Appendix E for more discussions on

((6, 2, 3))2 and ((7, 2, 3))2. The ((8, 8, 3))2 code
we rediscover is equivalent to the additive code
stabilized by

g1 = X X X X X X X X
g2 = Z Z Z Z Z Z Z Z
g3 = I X Y Z Z Y X I
g4 = Z Y Z Y X I X I
g5 = X Y Y X I Z Z I

(44)

up to permutation of qubits.
It is an open question whether a ((7, 3, 3))2

QECC exists. We have not yet found such a code
with VarQEC, even if using an overparameter-
ized VQC (L = 31) that is capable of finding any
((7, 3))2 quantum code and sampling 20000 opti-
mization starting points. This strongly indicates
that a quantum code with parameters ((7, 3, 3))2
is nonexistent.

5.2 Asymmetric codes
In quantum experiments, the decoherence time
of a physical qubit is mainly influenced by two
factors: the relaxation time T1 and the dephas-
ing time T2. Relaxation leads to all Pauli er-
rors, whereas dephasing only leads to phase-
flips (Pauli-Z errors). Denote the probabilities
of X, Y , and Z errors as px, py, pz respec-
tively. Usually, px = py 6= pz. The asymme-
try between X/Y and Z errors motivates peo-
ple to construct asymmetric QECCs that han-
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dle them differently [65, 66]. Asymmetric codes
are more resource-efficient since they can de-
tect/correct more Pauli-X/Y errors than Pauli-
Z errors or vice versa in response to demand.
Researchers have extended several constructions
from symmetric codes to asymmetric codes [66–
72]. Note that the classification of symmetric and
asymmetric codes depends on the error detect-
ing/correcting capability instead of the code con-
struction method.

For a system with X/Y -error probabilities
px = py and Z-error probability pz. We set the
bias parameter cZ as

cZ = log pz
log px

. (45)

such that pz = pcZx .
In most scenarios, dephasing is dominating and

phase-flip errors are more prevalent than X/Y
errors. Accordingly, 0 < cZ < 1. First, we fix
cZ = 1/2 (i.e., pz ≈ p

1/2
x ) and apply VarQEC

to find ((n,K, de(1/2)))2 codes that encodes one
logical qubit (K = 2) or one logical qutrit (K =
3). We discover asymmetric codes

((6, 2, de(
1
2) = 2))2,

((7, 3, de(
1
2) = 2))2.

(46)

They can detect more Z errors than X/Y errors,
specifically, detect the error set

E{2}1/2 = {I} ∪ {Xj , Yj , Zj , XiZj , YiZj , ZiZjZk}
(47)

with indices i, j, k ∈ [1, n].
We now consider the opposite situation where

X/Y errors are more prevalent than Z. In the
extreme case, T2 → +∞, the only source of deco-
herence is qubit relaxation. This process at finite
temperature is modeled by the generalized ampli-
tude damping channel. Its Kraus representation
has operators

A0 =√p
(

1 0
0
√

1− γ

)

=√pI −
√
pγ

4 (I − Z) +O
(√

pγ2
)
,

A1 =√p
(

0 √
γ

0 0

)
=
√
pγ

2 (X + iY ),

A2 =
√

1− p
( √

1− γ 0
0 1

)

=
√

1− pI −
√

1− pγ
4 (I + Z)

+O
(√

1− pγ2
)
,

A3 =
√

1− p
(

0 0√
γ 0

)
=
√
γ − pγ

2 (X − iY ),

(48)

where γ is the damping rate, p is a constant de-
termined by the temperature. A0 and A2 intro-
duce Pauli-Z errors of order O(γ), A1 and A3
introduce Pauli-X and -Y errors of order O(√γ).
When γ is small, cZ = log pz/ log px ≈ 2.

Now we fix cZ = 2 and apply VarQEC to find
asymmetric codes with 2-effective distance 3. We
rediscover codes with parameters

((5, 2, de(2) = 3))2,

((6, 4, de(2) = 3))2,

((7, 8, de(2) = 3))2.

(49)

These codes were introduced in Ref. [42]. They
can detect more X/Y errors than Z errors, i.e.,
the error set

E{3}2 = {I}∪{Xj , Yj , Zj , XiXj , XiYj , YiYj} (50)

with indices i, j ∈ [1, n].
Furthermore, we find new codes with 2-

effective distance 4 with K = 2 or K = 3, i.e.,

((6, 2, de(2) = 4))2,

((8, 3, de(2) = 4))2.
(51)

Some ((6, 2, de(2) = 4))2 codes are equivalent to
the additive ((6, 2, 3))2 code stabilized by

g1 = X I X Y Z X
g2 = Z I I I I Z
g3 = I X X X X I
g4 = I Z I Y X Z
g5 = I I Z X Y Z.

(52)

They can detect the error set

E{4}2 = E{3}2 ∪ {XiZj , YiZj , XiXjXk, XiXjYk,

XiYjYk, YiYjYk}.
(53)

with indices i, j, k ∈ [1, n]. For the generalized
amplitude damping channel, ((6, 2, de(2) = 4))2
and ((8, 3, de(2) = 4))2 can detect up to three
A1/A3 errors or one A0/A2 error, and correct
one A1/A3 error. Assisted by post-selection [73],
these codes hold the promise to achieve lower log-
ical error rate than codes with de(2) = 3.
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5.3 Channel-adaptive codes
In the previous sections, we have only discussed
uncorrelated errors, symmetric or asymmetric.
This section considers quantum channels with
correlated noise. We apply VarQEC to find the
corresponding channel-adaptive codes.

Correlated errors are ubiquitous in quantum
computing experiments. When two adjacent
qubits are not sufficiently separated, the errors
occurring on them can be highly correlated [22].
These spatially correlated errors invalidate many
well-known quantum codes and dim the hope of
fault-tolerant quantum computing. Suppose we
ignore the exact connectivity graph and the noise
type. In that case, we need at least 11 physical
qubits to protect one qubit of information from
general correlated errors (i.e., the double error-
correcting ((11, 2, 5))2 code) [74]. Even so, the
encoding isometry may not be hardware-efficient.
In the following, we investigate two correlated
noise channels in detail and introduce channel-
adaptive codes discovered by VarQEC.

5.3.1 Nearest-neighbor collective amplitude
damping

The first testbed is the nearest-neighbor collective
amplitude damping channel. Suppose we have
n qubits in a ring, as shown in Fig. 6. Every
two neighboring qubits collectively interact with
a single environment and exhibit collective dy-
namics of amplitude damping [75, 76]. The cor-
responding Kraus operators are

K0 =
√
γ01
2 |00〉(〈01|+ 〈10|)

+
√
γ12
2 (|01〉+ |10〉)〈11|,

K1 =√γ02|00〉〈11|,

K2 =
√

1− γ01
4 (|01〉+ |10〉)(〈01|+ 〈10|)

+
√

1− γ02 − γ12|11〉〈11|

+ 1
2(|01〉 − |10〉)(〈01| − 〈10|)

+ |00〉〈00|,

(54)

where γ01, γ02, γ12 are damping rates. For a short
decay time τ , γ01 and γ12 are of order O(τ), γ02 is
of orderO(τ2). Each error acts on two neighbour-
ing qubits Qj-Qj+1. To find quantum codes that
approximately correct one nearest-neighbor col-
lective amplitude damping error, we expand the

|11⟩

|01⟩ + |10⟩
2

|00⟩

(a) (b)
Env2Env1

Env3

Env4Env5

Env6

Figure 6: Schematic of nearest-neighbor collective am-
plitude damping. (a) Qubits in a ring, neighboring two
qubits collectively interact with a single environment.
(b) Decay processes.

above Kraus operators with respect to τ , aban-
don trivial/high-order terms and obtain

K ′0 = 1√
2
|00〉(〈01|+ 〈10|) + 1√

2
(|01〉+ |10〉)〈11|,

K ′1 = |00〉〈11|,

K ′2 = 1
2(|01〉+ |10〉)(〈01|+ 〈10|) + |11〉〈11|.

(55)
Each K ′0 contributes one factor of

√
τ , each

K ′1/K ′2 contributes one factor of τ . Suppose Eα
and Eβ are products of the identity, K ′0, K ′1, and
K ′2. The target error set (in VarQEC)

E =
{
E†αEβ

}
(56)

consists of terms with total order less than τ3/2.
Note that here, some error products E†αEβ are
non-unitary and non-Hermitian. To compute cost
functions C`1n,K,E and C`2n,K,E (Eqs. (15), (16)), we
need to estimate

〈ψj |E†αEβ |ψj〉 (57)

and ∣∣〈ψi|E†αEβ |ψj〉∣∣ (58)
for various i, j, α, β (i 6= j).
〈ψj |E†αEβ |ψj〉 is a complex number that can

be obtained as follows: we prepare the state
|ψj〉 and measure two Hermitian observables
(E†αEβ +E†βEα)/2 and (E†αEβ −E

†
βEα)/2i. The

first expectation value gives the real part of
〈ψj |E†αEβ |ψj〉 and the second expectation value
gives its imaginary part.

We estimate
∣∣〈ψi|E†αEβ |ψj〉∣∣ with i 6= j using

POVMs. Specifically, we prepare the state |ψj〉,
add an ancilla qubit and implement the operation

Λαβ(|ψj〉) =E†αEβ|ψj〉〈ψj |E
†
βEα ⊗ |0〉〈0|anc

+ Eaux|ψj〉〈ψj |E†aux ⊗ |1〉〈1|anc,
(59)
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where Eaux is an auxiliary Kraus operator such
that E†βEαE

†
αEβ +E†auxEaux = I. Then we mea-

sure the ancilla qubit in the computational ba-
sis and post-select the cases of |0〉. Measuring
the ancilla qubit in the |0〉 state indicates that
the error E†αEβ has occurred. The corresponding
probability is

p0 = Tr(E†αEβ|ψj〉〈ψj |E
†
βEα) (60)

and the corresponding state is

E†αEβ|ψj〉〈ψj |E
†
βEα

p0
. (61)

For these postselected states, we apply the inverse
of the VQC and do projective measurements. The
conditional probability of obtaining the binary
string |i− 1〉|0〉⊗(n−k) is

pij =
∣∣〈ψi|E†αEβ|ψj〉∣∣2

p0
. (62)

Therefore, we can estimate
∣∣〈ψi|E†αEβ|ψj〉∣∣ by√

pijp0.
Suppose 0 or 1 error occurs during a short de-

cay time τ , we apply VarQEC and find quantum
codes with length and dimension

((4, 3))2, ((5, 2))2

((6, 5))2, ((7, 8))2

((8, 9))2, ((9, 16))2.

(63)

These codes can reduce the error from O(
√
τ) to

O(τ).

5.3.2 Nearest-neighbor collective phase-flips

The second noise channel we consider is a
combined channel of nearest-neighbor collective
phase-flips and single-qubit errors. The channel
consists of two stages. In the first stage, a local
depolarizing error with noise rate p

NDPj (ρ) = (1− 3p
4 )ρ+ p

4(XjρXj+YjρYj+ZjρZj)
(64)

occurs on each qubit. In other words, Pauli er-
rors X,Y, Z occur on each qubit with probability
p/4. Different local errors act independently. We
denote the corresponding global noise channel as

N1 =
n∏
j=1
NDPj (65)

In the second stage, nearest-neighbor collective
phase-flip errors ZZ with noise rate pzz

NZiZj (ρ) = (1− p)ρ+ pzzZiZjρZiZj (66)

occur on adjacent qubit pairs Qi-Qj . We denote
the corresponding global noise channel as

N2 =
∏
〈i,j〉
NZiZj . (67)

The overall process is

N = N2 ◦ N1. (68)

Directly applying VarQEC to N is not resource
efficient since the Kraus representation of N con-
sists of O(exp(n)) operators. For practical pur-
poses, we apply our algorithm to the following
channel instead,

N ′(ρ) =(1−
∑
j

3p
4 −

∑
〈i,j〉

pzz)ρ

+
∑
j

p

4(XjρXj + YjρYj + ZjρZj)

+
∑
〈i,j〉

pzzZiZjρZiZj .

(69)

The second term takes summation over all qubits.
The last term takes summation over all adjacent
qubit pairs 〈i, j〉. Its Kraus operators are

E ′ =
{√√√√(1−

∑
j

3p
4 −

∑
〈i,j〉

pzz)I,

√
p

4Xj ,

√
p

4Yj ,
√
p

4Zj ,
√
pzzZiZj

}
.

(70)

where qubit-i and qubit-j are adjacent. N ′ is the
first-order approximation of N with respect to
the error parameters p and pzz. The Kraus rep-
resentation of N ′ consists of only poly(n) opera-
tors. N and N ′ are equivalent in the zero-noise
limit,

lim
p,pzz→0

N ′ = N . (71)

Suppose for N ′, we find an ε-correctable ap-
proximate code with ε � 1. Namely, with ap-
propriate recovery R, the entanglement fidelity
is

Fe(RN ′) ≥ 1− ε. (72)
Then for the original noise channel N , the entan-
glement fidelity naturally has the form

Fe(RN ) =1−O(εp)−O(εpzz)
−O(p2)−O(p2

zz).
(73)
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Figure 7: Hardware connectivity graphs with 6 ∼ 9 vertices (physical qubits). Filled circles represent the initial k
qubits to prepare the logical data. For these graphs, there exist channel-adaptive codes to protect k qubit(s) of
information from general one-qubit errors and nearest-neighbor collective phase-flips. The code length n, the code
dimension K, and the number of VQC layers L are (a) n = 6,K = 2, L = 5; (b) n = 6,K = 2, L = 6; (c)
n = 7,K = 2, L = 2; (d) n = 7,K = 2, L = 2; (e) n = 8,K = 4, L = 4; (f) n = 8,K = 4, L = 4; (g)
n = 9,K = 4, L = 3; (h) n = 9,K = 4, L = 2.

The QECC can push the first-order errors down
to an extremely small level. To find quantum
codes that correct multiple errors, we can choose
a higher-order approximation and similarly im-
plement VarQEC.

Given a connectivity graph G with edge num-
ber |E(G)| and maximum vertex degree ∆(G). In
the following, we set

pzz = 0.99/(3n+ |E(G)|), p = 4pzz. (74)

For a generic input state ρ, the probability of re-
ceiving the same state after going through the
noise channel is about ∼ 0.01. The target error
list to detect in VarQEC is

E =
{
E†αEβ|Eα, Eβ ∈ E ′

}
. (75)

Still, we use the VQC ansatz with alternating lay-
ers of single-qubit rotations Rx-Rz acting on all
qubits and Ising-type interactions Rzz acting on
adjacent qubits. The circuit depth of a VQC with
L layers is of order O(L∆(G)).

After adequate optimization, we find approx-
imate channel-adaptive codes for N = N2 ◦
N1 with hardware connectivity graphs shown in
Fig. 7. The codes for graphs (a,b,h) are degener-
ate, and the others are non-degenerate. Six phys-
ical qubits suffice to encode one logical qubit, and
eight physical qubits suffice to encode two logical
qubits.

Note that up to a local unitary transformation,
these codes can correct an arbitrary single-qubit
error followed by an adjacent U ⊗U error for any
fixed U ∈ U(2) with eigenvalues {−1, 1}.

We investigated the codes for graphs (c,d) in
more detail. Clearly, they have code parameters
((7, 2, 3))2. We calculate their quantum weight
enumerators [77], which were defined by

A(z) =
n∑
j=0

Ajz
j , B(z) =

n∑
j=0

Bjz
j (76)

with coefficients

Aj = 1
K2

∑
wt(Oα)=j

Tr(OαPc) Tr(O†αPc), (77)

Bj = 1
K

∑
wt(Oα)=j

Tr(OαPcO†αPc). (78)

These two codes are locally equivalent and there-
fore have the same weight enumerators, i.e.,

A(z) = 1+2z3+9z4+24z5+22z6+6z7, (79)

B(z) = 1+17z3+45z4+78z5+82z6+33z7. (80)

Further, we verified that they are locally equiv-
alent to a non-degenerate additive code stabilized
by

g1 = X I Z X X I X
g2 = Z I I X X X Z
g3 = I X Z X Z Z Z
g4 = I Z Z I Z Y Z
g5 = I I Y X Z I X
g6 = I I I Z Y Y X

(81)
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up to permutation of qubits. This additive code
can correct arbitrary single-qubit errors and 2-
qubit collective phase-flips occurring on any qubit
pairs, i.e., the error set

E =
{
I,Xj , Yj , Zj , ZiZj

}
. (82)

with indices i, j ∈ [1, n].
According to the quantum Hamming bound,

for one logical qubit, no non-degenerate quantum
code with code length n < 7 can correct arbi-
trary single-qubit errors as well as 2-qubit collec-
tive phase-flips since

2n ≥ K(3n+ n(n− 1)
2 ) (83)

with K = 2 only holds when n ≥ 7.
Two ((7, 2, 3))2 stabilizer codes were inves-

tigated in detail. One is the famous Steane
code [14] based on the Calderbank-Shor-Steane
(CSS) construction. The other is a non-CSS code
found by numerical greedy search, called the bare
code [27]. Their weight enumerators are as fol-
lows,

A{Steane}(z) = 1 + 21z4 + 42z6,

B{Steane}(z) = 1 + 21z3 + 21z4

+ 126z5 + 42z6 + 45z7, (84)

and

A{bare}(z) =1 + 5z2 + 11z4 + 47z6,

B{bare}(z) =1 + 5z2 + 36z3

+ 11z4 + 96z5 + 47z6. (85)

QECCs with different weight enumerators are
not locally and translationally equivalent. Our
code is different from the Steane and the bare
((7, 2, 3))2 codes. See Appendix F more weight
enumerators.

The Steane and the bare codes cannot correct
nearest-neighbor collective phase-flips. For the
combined channel of nearest-neighbor collective
phase-flips with noise rate pzz and single-qubit
errors with noise rate p, the entanglement fidelity
of our code is of the form

Fe(RN ) =1−O(p2)−O(p2
zz) (86)

whereas the entanglement fidelity of the Steane
and the bare codes is of the form

Fe(RN ) =1−O(pzz)−O(p2)−O(p2
zz). (87)

Although our code was written in a quantum
simulator that has not been open-sourced yet,
we rewrote some example implementations with
Qiskit, an open-source software development kit.
They are available on GitHub [78].

6 Noise Resilience

Although the previously introduced results are
obtained by numerical simulation, VarQEC is a
hybrid quantum-classical algorithm meant to be
run on NISQ devices where quantum gates are
inevitably noisy. In this section, we demonstrate
that VarQEC is pretty resilient to random gate
errors. As long as the error rate pgate is below
a reasonable threshold, VarQEC can find an ef-
ficient encoding circuit that prepares the correct
code. This resilience is essentially analogous to
the noise resilience in variational quantum com-
piling [56].

We start from the simplest noise model, global
depolarizing, and introduce the following theo-
rem.

Theorem 5 Suppose the variational quantum cir-
cuit in VarQEC is accompanied by global depo-
larizing noise acting continuously throughout the
circuit. If the ideal circuit is capable of finding
an eligible quantum code, after adequate optimiza-
tion with the noisy circuit, the output parameters
θ′opt are still correct.

Proof Consider the cost functions in
Eqs. (15), (16). Due to the global depolarizing
noise, when we run the VQC U(θ) to prepare a
basis state |ψj〉, we instead obtain

ρj = (1− ε1)|ψj〉〈ψj |+ ε1
I

2n ; (88)

when we apply U †(θ)EµU(θ) to an initial bi-
nary string |j− 1〉|0〉 to prepare the output state
|ψj,µ〉, we instead obtain

ρj,µ = (1− ε2)|ψj,µ〉〈ψj,µ|+ ε2
I

2n . (89)

Noise rates ε1 and ε2 are unknown constants de-
termined by the circuit depth. After adequate
optimization with the noisy VQC, we obtain the
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Figure 8: Gate error model. Rzz is accompanied by
local depolarizing noise NDP and collective phase-flip
error NZZ both before and after.

pseudo-optimal parameters

θ′opt = arg min
θ∑

Eµ∈E

( ∑
1≤i<j≤K

√
〈i− 1|〈0|ρj,µ|i− 1〉|0〉

+
K∑
j=1

∣∣Tr(ρjEµ)−
K∑
i=1

Tr(ρiEµ)/K
∣∣/2)

= arg min
θ∑

Eµ∈E

( ∑
1≤i<j≤K

√
(1− ε2)

∣∣〈ψi|Eµ|ψj〉∣∣2 + ε2
2n

+
K∑
j=1

1− ε1
2

∣∣〈ψj |Eµ|ψj〉 − 〈Eµ〉∣∣).
(90)

Since the ideal variational quantum circuit is ca-
pable of finding an eligible quantum code, each
term in the cost function Eq. (15) can be mini-
mized to 0 (i.e.,

∣∣〈ψi|Eµ|ψj〉∣∣ = 0,
∣∣〈ψj |Eµ|ψj〉 −

〈Eµ〉
∣∣ = 0). Comparing Eq. (15) and Eq. (90),

we conclude that

θ′opt = θopt. (91)

�
To sum up, VarQEC is perfectly resilient to

global depolarizing noise, i.e., it can find the cor-
rect encoding circuit in the presence of global de-
polarizing.

In practical scenarios, circuit noise is more
complicated and single-qubit errors dominate.
Now we consider a more realistic model. Sup-
pose each 2-qubit Rzz gate in the VQC is accom-
panied by local depolarizing noise and collective
phase flips, as illustrated in Fig. 8. Before the
ideal unitary Rzz, the two qubits goes through
N⊗2

DP ◦ NZZ, after the ideal Rzz, the system goes
through NZZ ◦ N⊗2

DP. In the following, for gate
error rate pgate, we set the error rate of each NDP
as pgate/2, the error rate of each NZZ as pgate/8.

Still, we use VarQEC to find channel-adaptive
codes for noise channel N (Eq. (68)) with hard-

ware connectivity graphs (c,d) shown in Fig. 7.
The difference is that this time the VQC is noisy.
After optimization, we obtain the pseudo-optimal
parameters θ′opt. It is interesting to note that
if we transfer θ′opt to an ideal VQC, the corre-
sponding cost function C`1n,K,N (θ′opt) can be much
smaller than the one we estimated with the noisy
VQC. Namely, we find a roughly correct encoder
even if we use a noisy VQC in our algorithm. The
comparison of cost functions for different gate er-
ror rates is given in Fig. 9(a). The cost reduction
for both graphs is obvious. Two-qubit gate er-
ror rates on state-of-the-art NISQ computers are
about ∼ 10−2 [79]. One can run our algorithm
on current hardware directly.

Suppose the input state of a quantum circuit is
|ψin〉, the target unitary evolution is Uideal. The
ideal output state is

|ψideal〉 = Uideal|ψin〉. (92)

However, due to quantum gate errors, the output
state ρout is a mixed state. We express ρout as a
summation of three terms,

ρout = Ncircuit(|ψin〉)

= λ0|ψideal〉〈ψideal|+ λ1
I

2n + λ2ρ2,
(93)

where Ncircuit denotes that channel of the noisy
quantum circuit, λ1 is the smallest eigenvalue
of ρout multiplied by 2n, I/2n is the maximally
mixed state, ρ2 is a density operator orthogonal
to |ψideal〉, i.e.,

Tr(ρ1|ψideal〉〈ψideal|) = 0. (94)

The latter two terms of Eq. (93) are both induced
by gate errors, but they have different effects on
the noise resilience of our algorithm. The second
term is a global white noise, as we analyzed in
Theorem 5, it does not affect the optimal param-
eters. However, the third term λ2ρ2 non-trivially
alters the optimization landscape and introduces
some local minima. Usually, both the second
term and the third term are not negligible. Nev-
ertheless, we are certain about the trend: with
the increase of circuit depth, the second term will
dominate the third term eventually [80, 81].

For VQCs corresponding to graphs (c,d), we
fix gate error rate 0.01, and try different numbers
of layers with randomly sampled θ. The aver-
age value of λ′s are shown in Fig. 9(b,c). Each
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Figure 9: Noise resilience of VarQEC using VQCs with
connectivity graphs (c,d) in Fig. 7. (a) The noisy- and
ideal-VQC cost functions versus gate error rate. θ′opt
were obtained by optimizing a noisy VQC. (b) Average
λs (see Eq. (93)) versus the number of VQC layers for
graph (c). (c) Average λs versus the number of VQC
layers for graph (d). The shaded areas represent the
standard deviation of 100 samples.

point is averaged over 100 samples. Compared
with the one-dimensional ring (graph (c)), ver-
tices in the complete graph (graph (d)) are more
tightly connected, local errors can be transformed
into global white noise more rapidly. For both
graphs, λ1 � λ2 when L is relatively small and
λ1 � λ2 when L is relatively large. With the
decrease of gate error rate and the increase of cir-

cuit depth, VarQEC will become more resilient to
noise. Additionally, one might also consider esti-
mating cost functions in VarQEC more precisely
with error mitigation techniques like virtual dis-
tillation [82, 83].

7 Barren Plateaus

The barren plateau (BP) [84, 85] and the noise-
induced barren plateau (NIBP) [86] are two
daunting challenges in variational quantum op-
timization. In this section, we numerically inves-
tigate their effects in the VarQEC algorithm.

The barren plateau is a phenomenon where
the gradients vanish exponentially with the in-
creasing number of qubits [84]. It occurs when
the VQCs form a unitary 2-design, regardless of
whether the VQC is noisy or noiseless. Ref. [85]
connected the locality of the cost function and the
trainability of the corresponding VQC. If the cost
function is local and the circuit depth is of order
O(log(n)), the BP does not occur (i.e., the VQC
is trainable). However, if the cost function is
global or the circuit depth is of order O(poly(n)),
a BP occurs in the optimization landscape, and
the VQC is untrainable.

In near-term quantum computation, dominat-
ing errors always only act on several local qubits.
Accordingly, the cost functions C`1n,K,E (Eq. (15))
and C`2n,K,E (Eq. (16)) are merely influenced by
local errors Eµ. Therefore, we expect the same
conclusion to hold for VarQEC: the BP does not
occur when the circuit depth is of order O(log(n))
and occurs when the circuit depth is of order
O(poly(n)).

Without loss of generality, here we use the
star connectivity graph Sn−1 (S7 is illustrated in
Fig. 10(b) inset) and focus on C`2n,2,E with E =
{Oα | wt (Oα) < 3}, i.e., searching for QECCs
that encode one logical qubit information and
correct an arbitrary single-qubit error. Fig. 10(a)
plots the partial derivative of the off-diagonal cost∑
Eµ∈E

∑
1≤i<j≤K

∣∣〈i|〈0|U †(θ)EµU(θ)|j〉|0〉
∣∣2

(95)

and the diagonal cost

∑
Eµ∈E

K∑
j=1

∣∣〈j|〈0|U †(θ)EµU(θ)|j〉|0〉 − 〈Eµ〉
∣∣2/4.

(96)

Accepted in Quantum 2022-09-30, click title to verify. Published under CC-BY 4.0. 18



4 6 8 10 12 14 16 18 20 22

n

10°2

10°1

|@
C
` 2
/@
µ j

|

L = 3, oÆ-diagonal

L = 3, diagonal

L = dlog(n)e, oÆ-diagonal

L = dlog(n)e, diagonal

L = n, oÆ-diagonal

L = n, diagonal

0 5 10 15 20 25 30

L

10°6

10°5

10°4

10°3

10°2

10°1

100

|@
C
` 2
/@
µ j

|
(a)

(b)

Figure 10: Barren plateaus and noise-induced barren
plateaus in VarQEC. (a) Partial derivatives of the off-
diagonal and diagonal parts of C`2

n,K,E with respect to a
random circuit parameter for different system sizes and
circuit depths. Each point is averaged over 1000 sam-
ples. (b) Partial derivatives of C`2

n,K,E with respect to a
random parameter for gate noise rates (from top to bot-
tom) p = 0, 5 × 10−3, 0.01, 0.02, 0.03, 0.04, 0.05. Each
point is averaged over 1000 samples, and the shaded
areas represent the standard deviations. Inset: connec-
tivity graph of S7.

with respect to a randomly selected circuit pa-
rameter θj . When the number of VQC layers
is L = 3 or L = dlog(n)e, the circuit is train-
able. However, when L = n, both off-diagonal
and diagonal gradients decay exponentially with
the increasing number of qubits.

The noise-induced barren plateau refers to a
conceptually different phenomenon where cost
gradients vanish exponentially with L due to
hardware noise accumulation [86]. Consequently,
the gradients vanish exponentially with n if L
grows linearly with n. Unlike the noise-free BP,
NIPB only occurs when the VQC is noisy, re-
gardless of whether the circuits form a unitary
2-design. Still, we consider the local noise model
illustrated in Fig. 8, system size n = 8, num-
ber of layers L = 1, 5, 10, 15, 20, 25, 30, noise rate

p = 0, 5 × 10−3, 0.01, 0.02, 0.03, 0.04, 0.05. The
numerical results for the gradients are shown in
Fig. 10(b). With the increase of L, the partial
derivatives of C`2n,K,E with respect to a random pa-
rameter decay exponentially, and the decay factor
is determined by the noise rate. This illustrates
that although VarQEC can find a roughly cor-
rect encoder after adequate training with a noisy
VQC (noise resilience), the required training time
grows exponentially with the number of circuit
layers.

BPs and NIBPs manifest themselves in Var-
QEC when the circuit depth gets large. Never-
theless, we do not need to worry too much about
them. From a practical standpoint, we are more
interested in QECCs with a shallow (even con-
stant depth) encoding circuit. The gradients of
cost functions tend to be large when searching
for these codes. In addition, there are more and
more effective strategies to mitigate BPs, e.g.,
cost function partitioning and meta-learning [87]
as well as optimization guided by classical shad-
ows [88]. These protocols can be applied to Var-
QEC reasonably.

8 Experiment on an IBM machine
Now we experimentally demonstrate VarQEC
with a real superconducting quantum machine,
ibm_quito [89]. The connectivity graph of
ibm_quito is shown in Fig. 11(a). Our goal is
to find a 4-qubit approximate QECC to correct
one amplitude damping error [43] using physical
qubits Q0, Q1, Q2, Q3.

The Kraus operators of the amplitude damping
channel are

A0 =
(

1 0
0
√

1− γ

)
= I − γ

4 (I − Z) +O
(
γ2
)
,

A1 =
(

0 √
γ

0 0

)
=
√
γ

2 (X + iY ).

(97)

Each (I − Z) term contributes a factor of γ and
each (X + iY ) term contributes a factor of √γ.
To correct a single amplitude damping error, we
only need to consider error products with total
order less than γ3/2:

E = {I,Xj + iYj , Xj − iYj , (Xi − iYi)(Xj + iYj),
Ij − Zj}.

(98)
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The variational quantum circuit we use is illus-
trated in Fig. 11(b). When the rotation angle θ =
±π/2, the VQC serves as an exact encoder. Since
Q2 and Q3 are not directly connected, the IBM
compiler adds 2 additional SWAP gates (each re-
alized by 3 CNOT gates) to implement CNOT be-
tween Q2 and Q3). The hardware-efficient VQC
after compiling is shown in Fig. 11(c).

Due to hardware constraints, we slightly mod-
ify the VarQEC algorithm and enhance it with
quantum error mitigation (EM) as follows. Sup-
pose the initial parameter θ = 0.1, we itera-
tively apply the VQC to input states |0000〉 and
|0010〉, do quantum state tomography on the out-
put mixed states and record their density matri-
ces ρ1 and ρ2. Then we classically extract their
dominating eigenstates

|ψ̃1〉 = lim
M→∞

ρM1
Tr(ρM1 )

, |ψ̃2〉 = lim
M→∞

ρM2
Tr(ρM2 )

,

(99)
estimate the cost functions C`2n,K,E and C`1n,K,E of
logical basis states {|ψ̃1〉, (|ψ̃2〉−〈ψ̃1|ψ̃2〉|ψ̃1〉)/c},
where c is a normalization factor.

The cost gradients are estimated by finite dif-
ferencing:

∂C4,2,E(θ)
∂θ

≈ C4,2,E(θ + δθ)− C4,2,E(θ − δθ)
2δθ

(100)
with δθ = 0.05. In the first stage (first 15 it-
erations), we minimize C`2n,K,E with learning rate
η = 1 until C`2n,K,E < 0.01. Then we switch to
C`1n,K,E and minimize it with a smaller learning
rate η = 0.05. The training curves of the esti-
mated C`2n,K,E with/without error mitigation and
its real value are shown in Fig. 11(d). After ad-
equate training (25 iterations), the parameter θ
converges to about 1.63, slightly greater than the
ideal angle π/2 (indicated by the dashed line in
the inset). Nevertheless, this difference is accept-
able, the VQC still encodes an approximate am-
plitude damping code.

We implement a total of 152 quantum circuits
for this experiment: 100 for estimating the gra-
dients and 52 for estimating the cost functions.

9 Conclusions and Outlooks

In this work, we proposed VarQEC, an effec-
tive variational quantum algorithm for finding
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Figure 11: Experimental results of VarQEC for finding an
approximate amplitude damping code. (a) The hardware
connectivity of ibm_quito. Q0, Q1, Q2, Q3 are used in
the experiment. Q2 encodes the initial logical informa-
tion. (b-c) The original and the compiled variational
quantum circuits. (d) The estimated `2-norm cost func-
tions with/without error mitigation (EM) and its real
value during variational learning. Inset: the rotation an-
gle θ during learning.

various quantum error-correcting codes. Var-
QEC is capable of finding arbitrary quan-
tum codes since the cost functions therein
are based on the most general requirement
of a QECC, the Knill-Laflamme conditions.
We demonstrated its efficacy by discover-
ing/rediscovering some symmetric, asymmetric,
and channel-adaptive codes, e.g., ((5, 2, 3))2,
((5, 6, 2))2, ((6, 2, 3))2, ((7, 2, 3))2, ((12, 26, 3))2,
((14, 28, 3))2, ((10, 4, 4))2, ((6, 2, de(2) = 4))2,
((8, 3, de(2) = 4))2. Some discovered codes are
equivalent to stabilizer ones and some are not.
We investigated them in detail. In particu-
lar, VarQEC provided numerical evidence that a
quantum code with parameters ((7, 3, 3))2 does

Accepted in Quantum 2022-09-30, click title to verify. Published under CC-BY 4.0. 20



not exist. It is worth mentioning that the
channel-adaptive codes with optimized encoding
circuits found by our method can then be used as
inner codes on the physical level in a concatena-
tion scheme. Stabilizer QECCs for qudits can be
used as outer codes.

VarQEC is robust to hardware noise; therefore,
it is particularly promising in the NISQ era. A
problem worth studying further is how to choose
the most resource-efficient variational quantum
circuit in VarQEC. There is reason to believe
that the optimal VQC ansatz is code-dependent.
For example, when the target quantum code is
translational-invariant, one may use a VQC with
a certain amount of symmetry, where different
gates can share the same parameter. If we slightly
modify the cost functions, VarQEC can be used
for finding some QECC variants like the hybrid
quantum-classical codes [90], estimating the zero-
error capacity of noisy quantum channels [91],
and solving quantum marginal problems [92].

VarQEC can also be directly revised to a clas-
sical algorithm. When a NISQ processor is not
accessible, one can replace the VQCs with classi-
cal variational ansatzes like tensor networks [93–
95] or neural network quantum states [96], and
then similarly implement optimization and search
for eligible quantum codes merely with a classi-
cal computer. However, the encoding circuits can
not be naturally obtained.
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Appendices
A Proof of Proposition 3
Proof From the completeness relation of the
Kraus operators {Eα},

m∑
α=1

E†αEα = I, (101)

we know

Tr(
m∑
α=1

EαE
†
α) =

m∑
α=1

Tr(EαE†α)

=
m∑
α=1

Tr(E†αEα)

= Tr(
m∑
α=1

E†αEα)

=2n.

(102)

Each EαE†α and E†αEα are positive semidefinite.
Denote the eigenvalues of EαE†α as ξα1 ≥ ξα2 ≥
· · · ≥ ξα2n ≥ 0, the eigenvalues of EβE

†
β as ξβ1 ≥

ξβ2 ≥ · · · ≥ ξ
β
2n ≥ 0,

∑
α,j ξ

α
j =

∑
β,j ξ

β
j = 2n.

Then we have

Tr
( m∑
β=1

m∑
α=1

(E†αEβ)†E†αEβ
)

=
m∑
β=1

m∑
α=1

Tr(EαE†αEβE
†
β)

≤
m∑
β=1

m∑
α=1

2n∑
j=1

ξαj ξ
β
j

≤
m∑
β=1

m∑
α=1

2n∑
i=1

2n∑
j=1

ξαi ξ
β
j

=22n.

(103)

The first inequality uses von Neumann’s trace in-
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equality.
Each Eα non-trivially acts on no more than
b(d − 1)/2c qubits, therefore, each error product
E†αEβ non-trivially acts on no more than (d− 1)
qubits. We expand E†αEβ in the Pauli basis,

E†αEβ =
∑
γ

χαβγ Oαβγ , (104)

where each Oαβγ is a Pauli tensor product with
weight less than d, Oαβ†γ Oαβγ = I, |{Oαβγ }| ≤
4d−1m2. Then

Tr
(
(E†αEβ)†E†αEβ

)
=
∑
γ

Tr
(
|χαβγ |2Oαβ†γ Oαβγ

)
=
∑
γ

|χαβγ |2 Tr(Oαβ†γ Oαβγ )

=2n
∑
γ

|χαβγ |2,

(105)

Tr
( m∑
β=1

m∑
α=1

(E†αEβ)†E†αEβ
)

= 2n
∑
α,β,γ

|χαβγ |2.

(106)
According to Eq. (103), we have∑

α,β,γ

|χαβγ |2 ≤ 2n. (107)

For the basis states {|ψ1〉, |ψ2〉, . . . , |ψK〉},∑
α,β

∑
1≤i<j≤K

∣∣〈ψi|E†αEβ|ψj〉∣∣
=
∑
α,β,γ

∑
1≤i<j≤K

|χαβγ |
∣∣〈ψi|Oαβγ |ψj〉∣∣

≤
∑
α,β,γ

|χαβγ |
∑

1≤i<j≤K

∑
wt(Oα′ )<d

∣∣〈ψi|Oα′ |ψj〉
∣∣

≤2n/2+d−1m
∑

1≤i<j≤K

∑
wt(Oα′ )<d

∣∣〈ψi|Oα′ |ψj〉
∣∣.

(108)
Similarly, we have

∑
α,β

K∑
j=1

∣∣〈ψj |E†αEβ|ψj〉 − 〈E†αEβ〉∣∣/2
≤2n/2+d−1m

∑
wt(Oα′ )<d

K∑
j=1

∣∣〈ψj |Oα′ |ψj〉 − 〈Oα′〉
∣∣/2.

(109)
Denote
E ′ = {E†αEβ|Eα, Eβ are Kraus operators of N},
we have

C`1n,K,E ′ ≤ 2n/2+d−1mC`1n,K,E . (110)

According to Proposition 2, the code is ε-
correctable with ε bounded by

ε ≤ K
√

2C`1n,K,E ′ ≤ 2n/4+d/2K
√
mC`1n,K,E . (111)

�

B Proof of Proposition 4
Proof Since each Eα is proportional to a Pauli
error, we have

E†αEα = EαE
†
α. (112)

Further, from the completeness relation of the
Kraus operators {Eα},

m∑
α=1

E†αEα = I, (113)

we obtain the completeness relation of the error
products, {E†αEβ}

m∑
β=1

m∑
α=1

(E†αEβ)†E†αEβ =
m∑
β=1

E†βEβ = I. (114)

The cZ-effective weight of each Eα smaller than
de(cZ)/2, therefore, each error product E†αEβ is
proportional to a Pauli tensor product with cZ-
effective weight

wte(E†αEβ, cZ) < de(cZ). (115)

Denote
E†αEβ = χαβOαβ, (116)

where Oαβ is a Pauli tensor product.
According to Eq. (114), we have the normal-

ization condition∑
α,β

|χαβ|2 = 1. (117)

For the basis states {|ψ1〉, |ψ2〉, . . . , |ψK〉},∑
α,β

∑
1≤i<j≤K

∣∣〈ψi|E†αEβ|ψj〉∣∣
=
∑
α,β

∑
1≤i<j≤K

|χαβ|
∣∣〈ψi|Oαβ|ψj〉∣∣

≤
∑
α,β

|χαβ|
∑

1≤i<j≤K

∑
wte(Oα′ ,cZ)<de(cZ)

∣∣〈ψi|Oα′ |ψj〉
∣∣

≤m
∑

1≤i<j≤K

∑
wte(Oα′ ,cZ)<de(cZ)

∣∣〈ψi|Oα′ |ψj〉
∣∣.

(118)
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Similarly, we have

∑
α,β

K∑
j=1

∣∣〈ψj |E†αEβ|ψj〉 − 〈E†αEβ〉∣∣/2
≤m

∑
wte(Oα′ ,cZ)<de(cZ)

K∑
j=1

∣∣〈ψj |Oα′ |ψj〉 − 〈Oα′〉
∣∣/2.

(119)
Denote
E ′ = {E†αEβ|Eα, Eβ are Kraus operators of N},
we have

C`1n,K,E ′ ≤ mC`1n,K,E . (120)

According to Proposition 2, the code is ε-
correctable with ε bounded by

ε ≤ K
√

2C`1n,K,E ′ ≤ K
√

2mC`1n,K,E . (121)

�

C Parameter Dimension and Overpa-
rameterization
The quantum Fisher information matrix (QFIM)
is an essential concept in quantum metrology [97–
99]. In recent years, its applications in NISQ algo-
rithms and quantum machine learning have also
been noticed [61, 100]. Ref. [61] uses the QFIM
to assess the expressive power of a VQC with the
fixed input state |0〉⊗n. In VarQEC, however, we
useK orthogonal input states to find an ((n,K))2
quantum code. In this section, we generalize the
notion of QFIM to multiple input states to quan-
tify the expressive power of a VQC for preparing
an ((n,K))2 quantum code. Based on that, we
discuss the parameter dimension and the overpa-
rameterization of a VQC encoder.

Suppose the VQC encoder has parameters

θ = (θ1, θ2, . . . , θN ). (122)

For a fixed pure input state, one relates the QFIM
F(θ) to the distance in the space of pure quantum
states by

Dist(|ψ(θ)〉, |ψ(θ + dθ)〉)2 =
∑
l,m

Fl,m(θ)dθldθm,

(123)
where Dist(|ψ(θ)〉, |ψ(θ′)〉) = 1−|〈ψ(θ)|ψ(θ′)〉|2.
The QFIM is an N by N matrix

Flm(θ) = 4 Re [〈∂lψ|∂mψ〉 − 〈∂lψ|ψ〉 〈ψ|∂mψ〉] .
(124)

where |∂lψ〉 denotes ∂|ψ(θ)〉/∂θl. In this case,
the parameter dimension Dc for a VQC is de-
fined as the number of independent parameters
that the VQC can express in the space of output
states. Numerical evidence shows that Dc is usu-
ally equivalent to the rank of QFIM for hardware-
efficient VQCs with periodic and non-correlated
random parameters θ [61].

In VarQEC, the inputs are K orthogonal pure
states. Denote the projector onto the output
space as Pc. We relate F(θ) to the distance in
the space of K-dimensional projectors,

DistK(Pc(θ), Pc(θ + dθ))2 =
∑
l,m

Fl,m(θ)dθldθm,

(125)
where the distance

DistK(Pc(θ),Pc(θ′)) =(
Tr
√√

Pc(θ)Pc(θ′)
√
Pc(θ)

K

)2

(126)
is defined as the fidelity between the normalized
mixed states of projectors Pc(θ) and Pc(θ′). Sup-
pose the projector Pc(θ) has eigen decomposition

Pc(θ) =
K∑
j=1
|ψj〉〈ψj | (127)

and denote the basis of its orthogonal comple-
ment as {|ψj〉}j=K+1,K+2,...,2n , the QFIM under
our framework is of the form

Flm(θ) = 2 ∂2

∂δl∂δm
DistK(Pc(θ), Pc(θ + δ))|δ=0

= 2
K2

∑
min {i,j}≤K

Re (〈ψi |∂lPc|ψj〉 〈ψj |∂mPc|ψi〉)
〈ψi|Pc|ψi〉+ 〈ψj |Pc|ψj〉

.

(128)
We remark that the derivation of QFIM for pro-
jectors is the same as for density matrices [98].
Therefore, a similar formula can be used to
compute the QFIM of a VQC with mixed in-
puts/outputs.

Through sampling random parameters θ from
the interval [0, 2π)N and computing the QFIM,
we can estimate the parameter dimension Dc by
rank(F(θ)). The VarQEC algorithm searches
a Dc-dimensional submanifold of the complex
Grassmannian Gr(K, 2n).

Without loss of generality, we consider the con-
nectivity graph shown in Fig. 12. For K =
1, 2, 3, 4, we randomly sample parameters θ and
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Figure 12: The bipartite connectivity graph for finding a
quantum code with parameters ((7, 3, 3))2. Qubits Q0
and Q1 are selected to prepare the logical data.
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Figure 13: Rank(F(θ)) versus the number of VQC lay-
ers for the connectivity graph shown in Fig. 12. For
code dimensions K = 1, 2, 3, 4, the maximum ranks
are Dmax

c = 254, 504, 750, 992, and the required num-
bers of VQC layers to achieve overparameterization are
Lcrit = 10, 21, 31, 41.

plot rank(F(θ)) as a function of the number of
VQC layers L in Fig. 13. Almost no parameter-
ized gate is redundant when the circuit is under-
parameterized (Dc/N ≈ 1). With the increase of
L, rank(F(θ)) increases approximately linearly
until achieving its maximum Dmax

c . The maxi-
mum parameter dimension for code length n and
code dimension K is of the form

Dmax
c = 2K(2n −K). (129)

This agrees with the fact that the dimension of
the complex Grassmannian Gr(K, 2n) is K(2n −
K) [101]. When Dc = Dmax

c , the VQC can ex-
plore the whole Gr(K, 2n) manifold and prepare
arbitrary ((n,K))2 quantum code. The required
number of layers to saturate the maximum pa-
rameter dimension is approximately

Lcrit =
⌈2K(2n −K)− 2n

2n+ |E(G)|
⌉
, (130)

where |E(G)| is the number of edges of the con-
nectivity graph.

To find a quantum code with parameters
((7, 3, 3))2, we sample 100 different initial val-
ues of θ and implement VarQEC with an over-
parameterized VQC (L = 31). However, the cost
function C`1n,K,E(θ) is always greater than 1. A
((7, 3, 3))2 code is improbable to exist.

D A variational quantum encoder for
additive codes

The VQC with bipartite connectivity performs
well in most cases. However, for some code
parameters (e.g., ((10, 4, 4))2), it needs a large
bunch of samples of the initial θ to find an eligible
code. Here we propose AC-VQC, another varia-
tional quantum circuit with all-to-all connectiv-
ity, to complement the bipartite ansatz.

The AC-VQC is especially resource-efficient in
finding encoding circuits of additive codes. The
structure of an AC-VQC is similar to the cir-
cuit of the quantum Fourier transform, as shown
in Fig. 14. We start from two physical qubits
(Q0, Q1) and apply a 2-qubit parameterized uni-
tary operator U01 to them. Then, we add another
qubit (Q2), apply 2-qubit parameterized unitary
operators U02/U12 to the new one and each of the
qubits that already exist (Q0-Q2, Q1-Q2). Re-
peat the steps until the system size equals n. In
the end, we apply single-qubit rotations Rz and
Rx to all qubits to explore the manifold of locally
equivalent codes. The initial k qubits prepare the
logical data. The total circuit depth is of order
O(
∑n−1
j=1 j) = O(n2).

| j0⟩
| j1⟩
|0⟩
|0⟩

U01

|0⟩

U02

U02

Q0
Q1
Q2
Q3
Q4

Rx

Rx

Rx

Rx

Rx

Rz

Rz

Rz

Rz

Rz

U12

U03

U03

U13

U13
U23

U04

U04

U14

U14

U24

U24
U34

Rx

Rx

Rzz

Rz

Rz

Uij =

Figure 14: Schematic of AC-variational quantum circuit
with n = 5, k = 2. Physical qubits are added layer by
layer.
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E Non-CWS Quantum Codes with Pa-
rameters ((6, 2, 3))2, ((7, 2, 3))2

The ((5, 2, 3))2 code is known to be unique.
However, the classification and construction of
((6, 2, 3))2 and ((7, 2, 3))2 quantum codes are un-
clear. Some are said to be “non-CWS” since they
are not locally equivalent to CWS codes. Here we
present a general construction of non-CWS quan-
tum codes based on stabilizer ones.

Theorem 6 If there exists a quantum code C with
parameters ((n, 2k, d))q, then there exist degener-
ate ((n′, 2k, d))q codes {C′} with n′ > n that are
not locally equivalent to a CWS code.

Proof For n′ > n+1, we can directly obtain non-
CWS codes by taking the tensor product with a
non-stabilizer state.

For n′ = n+1, we take the tensor product of the
code C with a fixed (stabilizer) state, then apply a
non-Clifford entangling unitary operation to one
of the original qudits and the additional qudit.
This will conjugate the Pauli-stabilizers to non-
local stabilizers. The resulting code is a non-CWS
degenerate code with parameters ((n′, 2k, d))q. �

For example, we start from the ((5, 2, 3))2 code
(Q0,Q1,. . . , Q4) and initialize an addition qubit
(Q5) in state |0〉, then apply the transformation
U on Q5, controlled by Q4 with

U = 1
5

(
3 4
−4 3

)
. (131)

The resulting code is a non-CWS degenerate
((6, 2, 3))2 code with basis states

|ψ1〉 =
√

2
20 (5|000000〉 − 5i|001100〉 − 3i|010010〉

+ 4i|010011〉+ 3|011110〉 − 4|011111〉
− 3|100110〉+ 4|100111〉 − 3i|101010〉
+ 4i|101011〉 − 5i|110100〉 − 5|111000〉,

(132)

|ψ2〉 =
√

2
20 (3|00110〉 − 4|00111〉 − 3i|01010〉

+ 4i|01011〉 − 5i|10100〉+ 5|11000〉
+ 5|100000〉+ 5i|101100〉+ 3i|110010〉
− 4i|110011〉+ 3|111110〉 − 4|111111〉.

(133)
Its weight enumerators are

A(z) =1 + 9
25z + 16

25z
2 + 311

25 z
4 + 391

25 z
5 + 48

25z
6,

(134)

B(z) =1 + 9
25z + 16

25z
2 + 654

25 z
3 + 193

5 z4

+ 937
25 z

5 + 594
25 z

6.
(135)

Likewise, non-CWS ((7, 2, 3))2 codes can be con-
structed based on ((6, 2, 3))2 stabilizer codes.

Another class of non-CWS ((6, 2, 3))2 codes are
unitarily related to the additive ((6, 2, 3))2 code
stabilized by

g1 = Y I Z X X Y
g2 = Z X I X I Z
g3 = I Z X X X X
g4 = I I I I Z Z
g5 = Z Z Z Z I I.

(136)

Here “unitarily related” means they can be trans-
formed to this code when allowing permutations
of qubits and a unitary transformation of the form
U = ⊗5

j=1Uj where U1,U2,U3,U4 are single-qubit
unitaries and U5 is a 2-qubit unitary. In our nu-
merical experiments, all the ((6, 2, 3))2 codes dis-
covered by VarQEC are unitarily related to this
((6, 2, 3))2 stabilizer code or the ((5, 2, 3))2 per-
fect code, some are related to both.

Consider a quantum code C that is capable
of correcting an error set E . If linearly inde-
pendent errors in E map C to linearly indepen-
dent subspaces, we say C is non-degenerate with
respect to E . If linearly independent errors in
E map C to mutually orthogonal subspaces, we
say C is pure with respect to E [74]. A pure
code must be non-degenerate. For additive codes
and CWS codes, “non-degenerate” and “pure” are
equivalent [74]. However, we note that some
of our ((7, 2, 3))2 codes are non-degenerate but
impure. Here we give a “trivial” construction
of non-degenerate and impure ((7, 2, 3))2 codes.
Still, we start with the ((5, 2, 3))2 code on qubits
Q0, Q1, . . . , Q4 and add two additional qubits Q5,
Q6 in a fixed state |00〉. Then we can apply ei-
ther a three-qubit unitary on, e.g., Q4, Q5, Q6,
or two two-qubit unitaries on, e.g., Q3, Q5 and
Q4, Q6. When these unitaries are non-Clifford,
the resulting code is a non-CWS degenerate and
impure code. We give a detailed example here.
The following basis states span a non-degenerate
but impure ((7, 2, 3))2 code:
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|ψ1〉 = 1
20(−4ω3|0000011〉+ 3ω2|0000100〉 − 3ω|0001110〉 − 4ω|0001111〉+ 3ω3|0010110〉

+ 4ω3|0010111〉 − 4ω|0011011〉+ 3|0011100〉+ 3ω3|0100110〉+ 4ω3|0100111〉 − 4ω|0101011〉
+ 3ω|0101100〉 − 4ω3|0110011〉+ 3ω2|0110100〉 − 3ω|0111110〉 − 4ω|0111111〉 − 4ω3|1000011〉
+ 3ω2|1000100〉+ 3ω|1001110〉+ 4ω|1001111〉+ 3ω3|1010110〉 − 4ω3|1010111〉 − 4ω|1011011〉
− 3|1011100〉 − 3ω3|1100110〉 − 4ω3|1100111〉〉 − 4ω|1101011〉+ 3|1101100〉+ 4ω3|1110011〉
− 3ω2|1110100〉 − 3ω|1111110〉 − 4ω|1111111〉),

(137)
|ψ2〉 = 1

20(4ω|0000011〉 − 3|0000100〉+ 3ω3|0001110〉+ 4ω3|0001111〉+ 3ω|0010110〉+ 4ω|0010111〉

− 4ω3|0011011〉+ 3ω2|0011100〉 − 3ω|0100110〉 − 4ω|0100111〉+ 4ω3|0101011〉 − 3ω2|0101100〉
− 4ω|0110011〉+ 3|0110100〉 − 3ω3|0111110〉 − 4ω3|0111111〉 − 4ω|1000011〉+ 3|1000100〉
+ 3ω3|1001110〉+ 4ω3|1001111〉 − 3ω|1010110〉 − 4ω|1010111〉 − 4ω3|1011011〉+ 3ω2|1011100〉
− 3ω|1100110〉 − 4ω|1100111〉 − 4ω3|1101011〉+ 3ω2|1101100〉 − 4ω|1110011〉+ 3|1110100〉
+ 3ω3|1111110〉 − 4ω3|1111111〉),

(138)

where ω = exp(iπ/4). Its weight enumerators are

A(z) =1 + 106
125z + z2 + 144

125z
3 + 1299

125 z
4

+ 3318
125 z

5 + 2451
125 z

6 + 432
125z

7,

(139)

B(z) =1 + 106
125z + z2 + +606

25 z
3 + 7071

125 z
4

+ 9318
125 z

5 + 8679
125 z

6 + 3546
125 z

7.

(140)

F Quantum Weight Enumerators

This section lists the quantum weight enumera-
tors of some QECCs discovered/rediscovered by
VarQEC.

F.1 Symmetric codes

A{5,6,2}(z) = 1 + 1.667z4 + 2.667z5, (141)

B{5,6,2}(z) = 1 + 20z2 + 50z3 + 75z4 + 46z5;
(142)

A{5,2,3}(z) = 1 + 15z4, (143)

B{5,2,3}(z) = 1 + 30z3 + 15z4 + 18z5; (144)

A{6,2,3}(z) =1 + 0.267z + 0.732z2 + 12.070z4

+ 15.732z5 + 2.197z6,

(145)

B{6,2,3}(z) =1 + 0.267z + 0.732z2 + 25.605z3

+ 37.676z4 + 38.126z5 + 24.591z6;
(146)

A{7,8,2}(z) = 1 + 5z4 + 2z5 + 2z6 + 6z7, (147)

B{7,8,2}(z) =1 + 17z2 + 40z3 + 195z4 + 328z5

+ 299z6 + 144z7;
(148)

Non-degenerate ((7, 2, 3))2:
A{7,2,3}(z) =1 + 1.437z2 + 18.125z4 + 43.437z6,

(149)

B{7,2,3}(z) =1 + 1.437z2 + 25.311z3 + 18.125z4

+ 117.377z5 + 43.437z6 + 49.311z7;
(150)

Degenerate ((7, 2, 3))2:
A{7,2,3}(z) = 1 + 5z2 + 11z4 + 47z6, (151)

B{7,2,3}(z) =1 + 5z2 + 36z3 + 11z4 + 96z5

+ 47z6 + 60z7;
(152)

A{8,2,3}(z) =1 + 0.015z3 + 13.924z4 + 24.091z5

+ 40.030z6 + 39.893z7 + 9.046z8,

(153)

B{8,2,3}(z) =1 + 11.970z3 + 38.152z4

+ 119.817z5 + 159.939z6

+ 124.213z7 + 56.909z8;
(154)

A{8,8,3}(z) = 1 + 28z6 + 3z8, (155)
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B{8,8,3}(z) =1 + 56z3 + 210z4 + 336z5 + 728z6

+ 504z7 + 213z8;
(156)

A{9,8,3}(z) =1 + 0.042z4 + 5.875z5 + 16.083z6

+ 24.083z7 + 14.875z8 + 2.042z9,

(157)

B{9,8,3}(z) =1 + 40z3 + 162.332z4 + 479.004z5

+ 952.664z6 + 1224.664z7

+ 932.004z8 + 304.332z9;
(158)

A{10,16,3}(z) =1 + 0.127z5 + 8.525z6 + 20.443z7

+ 21.253z8 + 11.430z9 + 1.221z10,

(159)

B{10,16,3}(z) =1 + 55.810z3 + 275.961z4

+ 954.241z5 + 2366.014z6

+ 4120.948z7 + 4622.227z8

+ 3061.001z9 + 926.797z10;
(160)

A{10,4,4}(z) = 1 + 90z6 + 135z8 + 30z10, (161)

B{10,4,4}(z) =1 + 90z4 + 216z5 + 720z6 + 720z7

+ 1485z8 + 600z9 + 264z10.

(162)

A{11,32,3}(z) =1 + 0.160z6 + 12.522z7 + 23.316z8

+ 18.319z9 + 7.524z10 + 1.158z11

(163)

B{11,32,3}(z) =1 + 75.003z3 + 443.260z4

+ 1729.654z5 + 5219.456z6

+ 11343.613z7 + 16918.654z8

+ 16859.456z9 + 10185.630z10

+ 2760.274z11

(164)

A{12,64,3}(z) =1 + 2z7 + 15z8 + 24z9 + 16z10

+ 6z11,

(165)

B{12,64,3}(z) =1 + 104z3 + 649z4 + 2976z5

+ 10472z6 + 27184z7 + 50691z8

+ 67616z9 + 60952z10 + 33192z11

+ 8307z12.

(166)

A{13,128,3}(z) =1 + 5z8 + 16z9 + 24z10 + 16z11

+ 2z12,

(167)

B{13,128,3}(z) =1 + 138z3 + 929z4 + 4814z5

+ 19592z6 + 58628z7 + 131987z8

+ 219836z9 + 263864z10

+ 215954z11 + 107925z12

+ 24918z13.

(168)

A{14,256,3}(z) =1 + 2z8 + 4z9 + 18z10 + 28z11

+ 11z12,

(169)

B{14,256,3}(z) =1 + 180z3 + 1295z4 + 7436z5

+ 34418z6 + 117320z7

+ 307391z8 + 616280z9

+ 923372z10 + 1007300z11

+ 755921z12 + 348636z13

+ 74754z14.

(170)

F.2 Asymmetric codes

A{6,2,de( 1
2 )=2}(z) = 1 + 6z2 + 9z4 + 16z6,

(171)

B{6,2,de( 1
2 )=2}(z) =1 + 15z2 + 8z3 + 39z4

+ 24z5 + 41z6;
(172)

A{7,3,de( 1
2 )=2}(z) =1 + 1.111z2 + 2.667z3

+ 4.778z4 + 13.333z5

+ 15.444z6 + 53.333z7,

(173)

B{7,3,de( 1
2 )=2}(z) =1 + 3.667z2 + 24z3 + 61.667z4

+ 120z5 + 125.667z6 + 48z7;
(174)

A{5,2,de(2)=3}(z) = 1 + 4z2 + 3z4 + 8z5, (175)

B{5,2,de(2)=3}(z) =1 + 12z2 + 10z3 + 19z4

+ 22z5;
(176)

A{6,4,de(2)=3}(z) = 1 + z3 + 4z4 + 7z5 + 3z6,

(177)
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B{6,4,de(2)=3}(z) =1 + 7z2 + 36z3 + 75z4 + 92z5

+ 45z6;
(178)

A{7,8,de(2)=3}(z) = 1 + z4 + 6z5 + 6z6 + 2z7,

(179)

B{7,8,de(2)=3}(z) =1 + 9z2 + 64z3 + 179z4

+ 312z5 + 323z6 + 136z7;
(180)

A{6,2,de(2)=4}(z) = 1 + z2 + 11z4 + 16z5 + 3z6,

(181)

B{6,2,de(2)=4}(z) =1 + z2 + 24z3 + 35z4 + 40z5

+ 27z6;
(182)

A{8,3,de(2)=4}(z) =1 + 0.224z2 + 1.770z3

+ 4.919z4 + 17.794z5

+ 28.155z6 + 23.103z7

+ 8.368z8,

(183)

B{8,3,de(2)=4}(z) =1 + 2.021z2 + 18.612z3

+ 68.016z4 + 154.775z5

+ 237.904z6 + 210.612z7

+ 75.058z8.

(184)

F.3 Channel-adaptive codes

F.3.1 Nearest-neighbor collective amplitude
damping

This part lists the quantum weight enumera-
tors of the channel-adaptive codes for the one-
dimensional nearest-neighbor collective ampli-
tude damping errors discussed in Sec. 5.3.1.

A{4,3}(z) =1 + 0.111z + 1.222z2 + 0.778z3

+ 2.222z4,

(185)

B{4,3}(z) =1 + 1.667z + 11.667z2 + 17z3

+ 16.667z4;
(186)

A{5,2}(z) = 1 + z + 2z2 + 2z3 + 5z4 + 5z5,

(187)

B{5,2}(z) = 1 + z + 10z2 + 18z3 + 21z4 + 13z5;
(188)

A{6,5}(z) =1 + 1.307z2 + 0.032z3 + 3.890z4

+ 0.097z5 + 6.474z6,

(189)

B{6,5}(z) =1 + 18.533z2 + 32.162z3 + 103.449z4

+ 96.485z5 + 68.371z6;
(190)

A{7,8}(z) = 1 + z4 + 6z5 + 6z6 + 2z7, (191)

B{7,8}(z) =1 + 9z2 + 64z3 + 179z4 + 312z5

+ 323z6 + 136z7;
(192)

A{8,9}(z) =1 + 0.038z2 + 0.124z3 + 0.827z4

+ 5.282z5 + 10.035z6 + 8.816z7

+ 2.322z8,

(193)

B{8,9}(z) =1 + 6.119z2 + 57.119z3 + 200.778z4

+ 475.985z5 + 713.867z6 + 618.896z7

+ 230.237z8;
(194)

A{9,16}(z) =1 + z5 + 8z6 + 14z7 + 7z8 + z9,

(195)

B{9,16}(z) =1 + 4z2 + 80z3 + 326z4 + 936z5

+ 1924z6 + 2464z7 + 1841z8

+ 616z9.

(196)

F.3.2 Nearest-neighbor collective phase-flips

This part lists the quantum weight enumerators
of the channel-adaptive codes for the combined
noise channel N (Eq. (68)) with hardware con-
nectivity graphs shown in Fig. 7.

A{a}(z) = 1 + z2 + 11z4 + 16z5 + 3z6, (197)

B{a}(z) = 1 + z2 + 24z3 + 35z4 + 40z5 + 27z6;
(198)

A{b}(z) = 1 + z2 + 11z4 + 16z5 + 3z6, (199)

B{b}(z) = 1 + z2 + 24z3 + 35z4 + 40z5 + 27z6;
(200)
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A{c}(z) = 1 + 2z3 + 9z4 + 24z5 + 22z6 + 6z7,
(201)

B{c}(z) = 1 + 17z3 + 45z4 + 78z5 + 82z6 + 33z7;
(202)

A{d}(z) = 1 + 2z3 + 9z4 + 24z5 + 22z6 + 6z7,
(203)

B{d}(z) = 1 + 17z3 + 45z4 + 78z5 + 82z6 + 33z7;
(204)

A{e}(z) =1 + 3.944z4 + 12.112z5 + 24z6

+ 19.888z7 + 3.056z8,
(205)

B{e}(z) =1 + 27.888z3 + 86.336z4 + 215.776z5

+ 319.776z6 + 268.336z7 + 104.888z8;
(206)

A{f}(z) =1 + 3.983z4 + 12.033z5 + 24z6

+ 19.967z7 + 3.017z8,
(207)

B{f}(z) =1 + 27.967z3 + 86.100z4 + 215.933z5

+ 319.933z6 + 268.100z7 + 104.967z8;
(208)

A{g}(z) =1 + 0.886z3 + 3.282z4 + 11.604z5

+ 30.352z6 + 45.220z7 + 29.366z8

+ 6.290z9,

(209)

B{g}(z) =1 + 21.648z3 + 78.704z4 + 232.520z5

+ 482.255z6 + 618.352z7 + 462.041z8

+ 151.480z9;
(210)

A{h}(z) =1 + 0.004z3 + 3.996z4 + 10.009z5

+ 35.974z6 + 44.004z7 + 23.030z8

+ 9.983z9,

(211)

B{h}(z) =1 + 16.026z3 + 89.948z4 + 224.044z5

+ 487.965z6 + 623.974z7 + 445.087z8

+ 159.956z9.

(212)
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