
Under consideration for publication in Math. Struct. in Comp. Science

Quantum Weakest Preconditions

ELLIE D ’HONDT 1 and PRAKASH PANANGADEN2†

1 Vrije Universiteit Brussel, Belgium
2 McGill University, Montreal, Canada

Received 24 January 2005; Revised 15 December 2005

We develop a notion of predicate transformer and, in particular, the weakest

precondition, appropriate for quantum computation. We show that there is a Stone-type

duality between the usual state-transformer semantics and the weakest precondition

semantics. Rather than trying to reduce quantum computation to probabilistic

programming we develop a notion that is directly taken from concepts used in quantum

computation. The proof that weakest preconditions exist for completely positive maps

follows immediately from the Kraus representation theorem. As an example we give the

semantics of Selinger’s language in terms of our weakest preconditions. We also cover

some specific situations and exhibit an interesting link with stabilizers.

1. Introduction

Quantum computation is rapidly becoming a significant topic in theoretical computer
science. To be sure, there still are essential technological and conceptual problems to
overcome in building functional quantum computers. Nevertheless there are fundamen-
tal new insights into quantum computability (Deutsch, 1985; Deutsch and Jozsa, 1992),
quantum algorithms (Grover, 1996; Shor, 1994) and into the nature of quantum mechan-
ics itself (Peres, 1995, Part III), particularly with the emergence of quantum information
theory (Nielsen and Chuang, 2000, Ch. 12).

These developments inspire one to consider the problems of programming general-
purpose quantum computers. Much of the theoretical research is aimed at using the new
tools available – superposition, entanglement and linearity – for algorithmic efficiency.
However quantum algorithms are currently programmed at a very low level – comparable
to classical computing 60 years ago. In the search for structure in the space of quantum
algorithms one is led to consider issues like compositionality, semantics, type systems and
logics; these are issues that usually arise in the context of programming languages. The
present paper is situated in the nascent area of quantum programming methodology and
the design and semantics of quantum programming languages. We extend the well-known
paradigm of weakest preconditions (Hoare, 1969; Dijkstra, 1976) to the quantum context.

† Ellie D’Hondt was funded by the FWO and the VUB (Flanders) and Prakash Panangaden was funded

in part by a grant from NSERC (Canada) and in part by a visiting fellowship from EPSRC (U.K.).



E. D’Hondt and P. Panangaden 2

The influence of Dijkstra’s work on weakest preconditions has been deep and pervasive
and even led to textbook level expositions of the subject (Gries, 1981). The main point
is that it leads to a goal-directed program or algorithm development strategy. Hitherto
quantum algorithms have been invented by brilliant new insights. As more and more
algorithms accumulate and a stock of techniques start to accumulate there will be need
for a systematic program development strategy. It is this that we hope will eventually
come out of the present work.

In this paper we make two contributions: first, we develop the appropriate quantum
analogue of weakest preconditions and develop the duality theory. Rather than reducing
quantum computation to probabilistic computation and using well-known ideas from this
setting (Kozen, 1981; Kozen, 1985), we define quantum weakest preconditions directly.
It turns out that the same beautiful duality between state-transformer (forwards) and
predicate-transformer (backwards) semantics that one finds in the traditional (Smyth,
1983; Plotkin, 1983) and the probabilistic settings (Kozen, 1985) appears in the quantum
setting. This is related to the fact that when state transformers are specified to be com-
pletely positive maps, we can prove the existence of corresponding weakest preconditions
in a very general way using a powerful mathematical result called the Kraus representa-
tion theorem (Nielsen and Chuang, 2000, Sec. 8.2.4). In fact the correspondence is very
much more direct in this case than in the case of conventional or probabilistic languages.

Second, we write the detailed weakest precondition semantics for a particular quan-
tum programming language. Quantum programming languages have started to appear
recently. Perhaps the best known is the quantum flow chart language (Selinger, 2003),
also referred to as QPL, which is based on the slogan “quantum data and classical con-
trol”. QPL has a clean denotational semantics and a clear conceptual basis; we give an
alternative weakest precondition semantics for this language. It should be noted, how-
ever, that our notion of weakest preconditions and the basic existence results are language
independent.

The structure of this paper is as follows. In Sec. 2 the general setup, in particular
quantum state transformers and quantum predicates, is laid out. Next, in Sec. 3 we
define quantum weakest preconditions and healthy predicate transformers, proving their
existence for arbitrary completely positive maps and observables. In Sec. 4 we summarize
the basic structure of Selinger’s language, and develop its weakest precondition semantics.
We apply our results to specific situations such as Grover’s algorithm and stabilizers in
Sec. 5, and conclude with Sec. 6.

2. The quantum framework

In this section we define the main concepts on which our theory of quantum weakest
preconditions is based. We first give a general overview, after which we specify con-
crete definitions for quantum states and state transformers in Sec. 2.1 and for quantum
predicates in Sec. 2.2.

Traditionally, there are several means of developing formal semantics for programming
languages. In the operational semantics for an imperative language one has a notion of
states, typically denoted s, such that the commands in the language are interpreted as



Quantum Weakest Preconditions 3

state transformers. If the language is deterministic the state transformation is given by
a function, and composition of commands corresponds to functional composition. The
flow is forwards through the program. This type of semantics is intended to give meaning
to programs that have already been written. It is useful for guiding implementations of
programming languages but is, perhaps, less useful for program development. By contrast,
in a predicate transformer semantics the meaning is constructed by flowing backwards
through the program, starting from the final intended result and proceeding to determine
what must be true of the initial input. States are replaced by predicates p over the state
space, together with a satisfaction relation |=. Language constructs are interpreted as
predicate transformers. This type of semantics is useful for goal-directed programming.
Of course the two types of semantics are intimately related, as they should be! In a sense
to be made precise in Sec. 3.4 they are dual to each other. The situation for deterministic
languages can be found in the first column of Table 1.

In the world of probabilistic programs one sees the same duality in action, after suitably
generalizing the notions of states and predicates. Probability distributions now play the
role of states. There are, of course, states as before and, in a particular execution, there
is only one state at every stage. However, in order to describe all the possible outcomes
(and their relative probabilities) one keeps track of the probability distribution over
the state space and how it changes during program execution. What plays the role of
predicates? Kozen has argued (Kozen, 1985) that predicates are measurable functions –
or random variables, to use the probability terminology. We note that a special case of
random variables are characteristic functions, which are more easily recognizable as the
analogues of predicates; in fact they are predicates. In a probabilistic setting one has
expectation value rather than truth: truth values now lie in [0, 1] rather than in {0, 1}.
Third, the pairing between measurable functions f and probability distributions µ is
now given by the integral, which is the probabilistic expression of the expectation value.
These measurable functions are to be viewed as observations, which may or may not lead
to termination. The pairing between f and µ then expresses the probability with which
termination is achieved when observing f . For probabilistic languages the second column
of Table 1 summarizes the main concepts.

For the quantum world we again need a notion of state – or, more precisely, probability
distributions over possible states – a notion of predicate, and a pairing. Our choices
are very much guided by the probabilistic case, but we are not claiming that quantum
computation can be seen as a special case of classical probabilistic computation. Instead,
we take density matrices as the analogue of probability distributions, while for predicates
we take the observables of the system. These are given by (a certain restricted class of)
Hermitian operators. Finally, the notion of a pairing is again the expectation value, but
given by the rules of quantum mechanics; that is we have tr(Mρ), where tr stands for the
usual trace from linear algebra, ρ is a density matrix and M an observable. Throughout
this paper we work with finite-dimensional Hilbert spaces and one can think of M and ρ
as matrices. We discuss these concepts in more depth in Secs. 2.1 and 2.2; a summary can
be found in the last column of Table 1. Note however that, just as for the probabilistic
case, the pairing tr(Mρ) may be interpreted as the probability of termination when
observation M is made in the state ρ.



E. D’Hondt and P. Panangaden 4

Table 1. Comparing situations.

Deterministic Probabilistic Quantum

states probability distributions density matrices

s µ ρ

predicates measurable functions observables

p f M

satisfaction expectation value quantum expectation value

s |= p
∫

fdµ tr(Mρ)

Why cannot one just use probabilistic predicates and the general theory of probabilistic
predicate transformers in a quantum context? The following simple example – due to one
of the referees – illustrates why. Suppose that we have a two-dimensional Hilbert space
of states with basis vectors written |0〉 and |1〉. Two other states in this Hilbert space
are 1√

2
(|0〉 + |1〉) and 1√

2
(|0〉 − |1〉). We use the notation {|ψ〉} for the density matrix

|ψ〉〈ψ| and write convex combinations like λ{|ψ〉}+ (1− λ){|ψ〉} for the density matrix
of a mixed state, i.e. an ensemble. Now consider the measurable function f defined by:

f(|0〉) = 0

f(|1〉) = 0

f(
1√
2
(|0〉+ |1〉)) = 1

f(
1√
2
(|0〉 − |1〉) = 1 .

(1)

This function is indeed measurable but not linear and cannot correspond to any kind
of physical observable or measurement. To see what happens, consider the ensemble
ρ = 1

2{|0〉}+ 1
2{|1〉}. When f is applied to this one obtains 0. However, when f is applied

to the ensemble ρ′ = 1
2{

1√
2
(|0〉+ |1〉)}+ 1

2{
1√
2
(|0〉−|1〉)} we obtain the value 1. The point

is that ρ and ρ′ are physically indistinguishable, and thus one cannot have a physical
observable that tells these “two” ensembles apart. When developing a theory of predicates
and predicate transformers one must therefore restrict to mathematical objects that are
compatible with the linear structure of quantum mechanics. It is a conceptual error to
think that quantum mechanics can be understood just with probabilistic constructs. We
note that the work in (Butler and Hartel, 1999), which uses probabilistic predicates to
analyze Grover’s algorithm (Grover, 1996), avoids this conundrum because it considers
only pure-state situations.

2.1. Quantum states and state transformers

Typically a quantum system is described by a Hilbert space, physical observables are
described by Hermitian operators on this space and transformations of the system are
effected by unitary operators (Peres, 1995). However, we need to describe not only so-
called pure states but also mixed states. These arise as soon as one has to deal with



Quantum Weakest Preconditions 5

partial information in a quantum setting. For example, a system may be prepared as a
statistical mixture, it may be mixed as a result of interactions with a noisy environment
(decoherence), or by certain parts of the system being unobservable. For all these reasons
we need to work with probability distributions over the states in a Hilbert space. In
quantum mechanics this situation is characterized by density matrices, of which a good
expository discussion appears in (Nielsen and Chuang, 2000, Ch. 2). Concretely, a density
matrix ρ on a Hilbert space H is a positive operator, that is, for all states |x〉 in H one
requires that 〈x|ρx〉 ≥ 0, with furthermore trρ ≤ 1. The reason why we do not have the
usual equality is that we do not assume that everything is always normalized. Hence,
in order to interpret a density matrix as a probability distribution one first needs to
renormalize if necessary. This is a bit of a nuisance if one wants a direct interpretation
of the density matrix at every stage of the computation; however, one does recover the
probabilities correctly if one starts with a normalized density matrix at the start of
a computation and multiplies out everything at the end. This convention saves some
notational overhead and is used by Selinger (Selinger, 2003). We denote the set of all
density matrices over a Hilbert space H by DM(H).

As we have mentioned in the above, forward operational semantics is described by
quantum state transformers. The properties of such state transformers are now well
understood. A physical transformation must take a density matrix to a density matrix.
Thus it seems reasonable to require that physical operations correspond to positive maps,
which are linear maps that take a positive operator to a positive operator. However, it is
possible for a positive map to be tensored with another positive map - even an identity
map - and for the result to fail to be positive. Physically this is a disaster. Indeed, this
means that if we formally regard some system as part of another far away system which
we do not touch (that is, to which we apply the identity transformation), then suddenly
we have an unphysical transformation. A simple example is provided by the transpose
operation, which is a positive map while its tensor with an identity is not. Therefore,
we need the stronger requirement that physical operations are completely positive, a
property which is defined as follows.

Definition 2.1. A map E is completely positive when it takes density matrices to density
matrices, and likewise for all trivial extensions I ⊗ E .

Note that such a map may operate between distinct Hilbert spaces, that is in general we
have E : DM(H1) → DM(H2). We denote by CP(H1,H2) the set of all such maps, and
write CP(H) for CP(H,H).

We frequently rely on the Kraus representation theorem for completely positive maps.

Theorem 2.1 (Kraus Theorem). The map E : DM(H1) → DM(H2) is a completely
positive map if and only if for all ρ ∈ DM(H1) we have that

E(ρ) =
∑
i

EiρE
†
i (2)

for some set of operators {Ei : H1 → H2}, with
∑
iE

†
iEi ≤ I.

The condition on the Ei ensures that trace of the density matrix never increases. Eq.(2) is



E. D’Hondt and P. Panangaden 6

also known as the operator-sum representation. The proof to this theorem can be found,
for example, in (Nielsen and Chuang, 2000, Sec. 8.2.4). Note there is nothing in the
theorem that says that the Ei are unique.

2.2. Quantum predicates

In this section, we define quantum predicates and the associated order structure required
for the development of our theory. Concretely, we need an ordering on predicates so as
to define weakest preconditions, and this order should be Scott-continuous in order to
deal with programming language aspects such as recursion and iteration.

As argued above, quantum predicates are given by Hermitian operators. However,
general Hermitian operators will not yield a satisfactory logical theory with the duality
that we are looking for. We need to restrict to positive operators and - in order to obtain
least upper bounds for increasing sequences - we need to bound them. More precisely,
we have the following definition.

Definition 2.2. A predicate is a positive - hence Hermitian - operator with the maximum
eigenvalue bounded by 1.

The reason for taking predicates to have the maximum eigenvalue bounded by 1 is in
order to get a complete partial order (CPO); we clarify this below. Since our predicates
are positive operators their eigenvalues are real and positive. We denote the set of all
predicates on a Hilbert space H by P(H).

Proposition 2.1. Let M be a Hermitian operator. Then 0 ≤ tr(Mρ) ≤ 1 holds for all
density matrices ρ if and only if M is positive and its eigenvalues are bounded by 1.

Proof. Note that for any element |ψ〉 of H we have tr(M |ψ〉〈ψ|) = 〈ψ |M | ψ〉. Assume
that 0 ≤ tr(Mρ) ≤ 1 for all density matrices ρ. Choose ρ = |ψ〉〈ψ| where |ψ〉 is an
arbitrary normalized vector. We have 0 ≤ tr(M |ψ〉〈ψ|) = 〈ψ |M | ψ〉, which says that
M is positive. Now choose |ψ〉 to be a normalised eigenvector of M with eigenvalue λ,
necessarily real and positive, so we have that tr(M |ψ〉〈ψ|) = 〈ψ |M | ψ〉 = λ〈ψ|ψ〉 =
λ ≤ 1. Thus the eigenvalues are bounded by 1. The converse is obvious once we note that
any density matrix is a convex combination of density matrices of the form |ψ〉〈ψ|.

Thus we could have defined predicates as positive operators M such that for every
density matrix ρ we have 0 ≤ tr(Mρ) ≤ 1. This exhibits the predicates as “dual” to
density matrices.

We define an ordering as follows.

Definition 2.3. For matrices M and N in Cn×n we define M v N if N −M is positive.

This order is known in the literature as the Löwner partial order (Löwner, 1934). Note
that this definition can be rephrased in the following way, where DM(H) denotes the
set of all density matrices.

Proposition 2.2. M v N if and only if ∀ρ ∈ DM(H).tr(Mρ) ≤ tr(Nρ)



Quantum Weakest Preconditions 7

Proof. Indeed, N −M positive means that for all x ∈ H we have 〈x|N −M |x〉 ≥ 0,
or, equivalently, tr((N −M).|x〉〈x|x) ≥ 0. By linearity of the trace and the fact that the
spectral theorem holds for all ρ ∈ DM(H) we obtain the desired result. For the converse,
take all pure states ρ = |x〉〈x|. Then we find that for all x ∈ H we have 〈x|N −M |x〉 ≥ 0,
or in other words M v N .

Put otherwise, M v N if and only if the expectation value of N exceeds that of M .
With the above definitions, we have the following result.

Proposition 2.3. The poset (P(H),v) is a complete partial order (CPO), i.e. it contains
least upper bounds of increasing sequences.

Taking predicates to be bounded Hermitian operators leads to Prop. 2.3, which guar-
antees the existence of fixpoints and thus allows for the formal treatment of iteration and
recursion in Sec. 4.

3. Quantum weakest preconditions and duality

In this section we elaborate our theory of quantum weakest preconditions. We first give
the main definitions in Sec. 3.1, after which we explore healthiness conditions in Sec. 3.2.
Next, we investigate weakest precondition predicate transformers for completely positive
maps in Sec. 3.3. With the latter results we obtain a duality between the forward state
transformer semantics and the backward weakest precondition semantics in Sec. 3.4.

3.1. Definitions

In a quantum setting, the role of the satisfaction relation is taken over by the expectation
value of an observableM , just as for probabilistic computation. The quantum expectation
value of a predicate M is given by the trace expression tr(Mρ). Preconditions for a
quantum program Q – described in an unspecified quantum programming language –
are defined as follows. We write Q for the program as well as for the trace-nonincreasing
completely positive map that it denotes.

Definition 3.1. The predicate M is said to be a precondition for the predicate N with
respect to a quantum program Q, denoted M{Q}N , if

∀ρ ∈ DM(H).tr(Mρ) ≤ tr(NQ(ρ)) (3)

We also introduce the notation ρ |=r M to mean that tr(Mρ) ≥ r. Thus we think of this
as a quantitative satisfaction relation with the real number r providing a “threshold”
above which we deem that ρ satisfies M .

The exact syntax of the quantum program Q is left unspecified deliberately, as we want
to state these definitions without committing to any particular framework. Of course we
expect Q to implement at least some transformation on density matrices, in particular we
may think of Q as implementing a completely positive map. Note however, that Def. 3.1,
as well as Def. 3.2 below, does not exclude other possibilities. For example we could also



E. D’Hondt and P. Panangaden 8

investigate possibilities proposed in (Shaji and Sudarshan, 2005), where it is argued that
positive but not completely positive or even not positive maps are also good candidates
for describing open quantum evolutions.

This definition deserves motivation. If all density matrices were normalized then it is
easy to motivate Def. 3.1: if we want the expectation value of N in the state Q(ρ) to
be above some real number r, say, then this is guaranteed if the expectation value of
M in the state ρ is above r. In the case of our unnormalized density matrices we have
to do a little calculation to see that the same holds. We write the expectation value of
M in a state (density matrix) ρ as 〈M〉ρ. Now we assume that M,N and Q satisfy the
conditions of Def. 3.1. Let ρ be any (unnormalized) density matrix and let its normalized
version be ρ = ρ/tr(ρ). Then we have

〈M〉ρ = tr(Mρ)

=
1

tr(ρ)
· tr(Mρ)

≤ 1
tr(ρ)

· tr(NQ(ρ))

=
tr(Q(ρ))

tr(ρ)
· 1
tr(Q(ρ))

tr(NQ(ρ))

=
tr(Q(ρ))

tr(ρ)
· 〈N〉Qρ

≤ 〈N〉Q(ρ) .

(4)

Thus, even though the density matrices are not normalized and we cannot read the
expectations directly at every intermediate stage, Def. 3.1 still has the same import as
in the normalized case, as well as in the case of probabilistic predicate transformers.

From this we define weakest preconditions in the usual way.

Definition 3.2. A weakest precondition for a predicate M with respect to a quantum
program Q, denoted wp(Q)(M), is such that for all preconditions L{Q}M implies L v
wp(Q)(M).

Note that weakest in this context is equal to largest ; indeed, a larger predicate means
that Eq.(3) holds for more initial states ρ, and thus corresponds to a weaker constraint.
The weakest precondition predicate transformer for a program Q, if it exists, is denoted
wp(Q) : P(H2) → P(H1), where H2 and H1 are the output and input Hilbert spaces
respectively.

3.2. Healthiness conditions

In analogy with (Dijkstra, 1976), we want to formulate healthiness conditions for quan-
tum predicate transformers. These are important because they characterize exactly those
programs that can be given a weakest precondition semantics which is dual to its for-
wards state transformer semantics. Moreover, healthiness conditions allow one to prove



Quantum Weakest Preconditions 9

general laws for reasoning about programs. The healthiness conditions we propose for the
quantum case are linearity and complete positivity, leading to the following definition.

Definition 3.3. A healthy predicate transformer α : P(H2) → P(H1) is a predicate
transformer that is linear and completely positive, i.e. it it takes predicates to predicates
and likewise for all trivial extensions I ⊗ α. We denote the associated space of healthy
predicate transformers as PT (H2,H1).

As we shall see in the following section these conditions all hold in the framework where
quantum programs correspond to completely positive maps. Linearity is certainly a re-
quirement in the inherently linear context of quantum mechanics, as the example given
in Sec. 2 clearly shows. Just as in the probabilistic case (Morgan and McIver, 2004),
linearity implies the analogues of some of the healthiness conditions for deterministic
programs, namely feasibility, which means that wp(Q)(0) = 0, monotonicity and conti-
nuity. These proofs are easy and are left to the reader. The requirement that predicate
transformers should be completely positive on P(H), is a very natural one. Indeed, if α
is a predicate transformer, which acts only on part of a composite Hilbert space H, then
composing it with the identity predicate transformer working on the rest of the Hilbert
space should still result in a valid predicate transformer.

We equip PT (H2,H1) with an order structure by extending the Löwner order on
predicates in the following way.

Definition 3.4. For healthy predicate transformers α and β in PT (H2,H1) we define
α v β if β − α is a healthy predicate transformer.

If α v β then for all predicates M ∈ P(H2) we have that α(M) v β(M), where α(M)
and β(M) are predicates on H1. Requiring only this would be the obvious extension
of the Löwner order, however, since we are working in the space of healthy predicate
transformers we also need to demand that β − α is completely positive. That is, for all
extended predicates Me ∈ P(H2 ⊗H) we have (α⊗ IH)(Me) v (β ⊗ IH)(Me). We then
have the following result.

Proposition 3.1. The poset (PT (H2,H1),v) is a CPO.

Proof. The proof is analogous to that of Lemma 6.4 of (Selinger, 2003).
Note that the CPO structure as defined on predicates P(H) and associated predicate

transformers PT (H) is identical to that for density matrices DM(H) and associated
completely positive maps CP(H), as defined in (Selinger, 2003).

Furthermore, for healthy predicate transformers, we have the following immediate con-
sequence of Kraus’s theorem.

Proposition 3.2. The operator α is a healthy predicate transformer if and only if one
has that

∀M ∈ P(H).α(M) =
∑
u

A†uMAu (5)

for some set of linear operators {Au} such that
∑
uA

†
uAu ≤ I.



E. D’Hondt and P. Panangaden 10

3.3. Predicate transformers for completely positive maps

Let us now consider the following framework: the forward semantics of a quantum pro-
gram Q is given by a trace-nonincreasing completely positive map E ∈ CP(H1,H2),
which we write as JQK = E . In this section we prove an existence theorem of weakest
preconditions for completely positive maps, and show that they satisfy the healthiness
conditions given in Sec. 3.2, i.e. that they are healthy predicate transformers.

Proposition 3.3. ∀E ∈ CP(H1,H2) and N ∈ P(H), wp(E)(N) exists and is unique.
Furthermore, we have that

∀ρ.tr(wp(E)(N)ρ) = tr(NE(ρ)) (6)

Proof.
To prove existence, take an arbitrary predicate N and operation E . From the Kraus

representation theorem stated in Sec. 2.1, one has that

E(ρ) =
∑
m

EmρE
†
m (7)

with
∑
mE

†
mEm ≤ I. Using this, together with the fact that the trace is linear and

invariant under cyclic permutations, we obtain for a predicate N that

tr(NE(ρ)) = tr((
∑
m

E†mNEm)ρ) (8)

If we then take

M =
∑
m

E†mNEm (9)

in Eq.(8), we obtain

∀ρ.tr(Mρ) = tr(NE(ρ)) (10)

So M is a precondition for N with respect to E . Now take any other precondition M ′ for
N with respect to E . In other words

∀ρ.tr(M ′ρ) ≤ tr(NE(ρ)) (11)

but because of Eq.(10) and Prop. 2.2, this implies that M ′ v M . So M is the weakest
precondition for N with respect to E , denoted wp(E)(N).

To prove uniqueness, suppose the predicate P is also a weakest precondition for N
with respect to E . Then we have M v P , but also, since M is a weakest precondition,
P vM . But then, since v is an order, we have M = P .

From Eq.(9) and Prop. 3.2 we obtain the following.

Corollary 3.1. For all E ∈ CP(H), wp(E) ∈ PT (H), i.e. it is a healthy predicate
transformer.



Quantum Weakest Preconditions 11

3.4. Duality

In this section, we investigate the duality between the forward semantics of completely
positive maps as state transformers, and the backwards semantics of healthy predicate
transformers. This duality is part of a web of dualities known to mathematicians as
Stone-type dualities (Johnstone, 1982), the prototype of which is the duality between
boolean algebras and certain topological spaces called Stone spaces. For readers with a
background in category theory we note that such a duality is captured by an adjoint
equivalence mediated by a pairing, for example the satisfaction relation between states
and predicates. Kozen - following suggestions of Plotkin - found such a duality in the
context of probabilistic programs (Kozen, 1985). We show that such a duality exists in
the quantum setting as well.

In the quantum context, we find the duality by defining an isomorphism between
the set of all completely positive maps CP(H1,H2) and the set of all healthy predicate
transformers PT (H2,H1). We can associate a healthy predicate transformer with every
operation E ∈ CP(H1,H2); this follows immediately from Prop. 3.3. Indeed, we asso-
ciate with every operation E its weakest precondition predicate transformer wp(E). To
complete the duality, we need to associate an operation A ∈ CP(H1,H2) with a predi-
cate transformer α ∈ PT (H2,H1). Using the operator-sum representation for predicate
transformers as given in Eq.(5), we have that

tr(α(M)ρ) = tr((
∑
u

A†uMAu)ρ)

= tr(M.(
∑
u

AuρA
†
u) (12)

If we then take

A(ρ) =
∑
u

AuρA
†
u (13)

we obtain

tr(α(M)ρ) = tr(MA(ρ)) (14)

thus associating a state transformer with every healthy predicate transformer. Analo-
gously to the above, one could say that this expression defines the “strongest post-state”
A(ρ) for a state ρ, with respect to a predicate transformer α ∈ PT (H).

To see this as a duality more clearly, we use the notation ρ |=r M defined in Sec. 3.
Then we have

E(ρ) |=r M

ρ |=r wp(E)M
. (15)

It is straightforward to see that we have an order isomorphism between the domain of
predicate transformers PT (H2,H1) and the domain of state transformers CP(H1,H2),
and this for arbitrary Hilbert spaces H1 and H2. As an aside we note that because of



E. D’Hondt and P. Panangaden 12

this and the fact that maps in PT (H2,H1) are Scott-continuous, we immediately obtain
that healthy predicate transformers are Scott-continuous as well.

4. Weakest precondition semantics for QPL

The quantum flow chart language or Quantum Programming Language (QPL), is a typed
programming language for quantum computation with a formal semantics, which is built
upon the idea of quantum data and classical control (Selinger, 2003). It is very different
from previously defined quantum programming languages, which do not have a formal
semantics and are imperative rather than functional. Syntactically, programs in QPL are
represented either by flow charts or by QPL terms. The basic language constructs are
allocating or discarding bits or qubits, assignment, branching, merge, measurement and
unitary transformation. One can then build more complex programs from these atomic
flow chart components through context extension, vertical and horizontal composition,
iteration and recursion.

At each moment the denotation of the system, called a state in (Selinger, 2003), is
given by a tuple of density matrices. The tuple dimension originates from classical bits
present in the program, while tuple entries represent the state of all available qubits as
density matrices. Each member of the tuple corresponds to a particular instantiation of
the classical variables in lexicographical order; this is otherwise interpreted as a classical
control path. Concretely, a state for a typing context containing n bits and m qubits is
given by a 2n-tuple (ρ0, . . . , ρ2n−1) of density matrices in DM(C2m

). Program transfor-
mations are given by tuples of trace-decreasing completely positive maps which act on
states – these are called superoperators in (Selinger, 2003). Note that positivity on tuples
is defined such that it holds for each entry, while the trace of a tuple is defined as the
sum of the traces of its entries.

The formal semantics of QPL is developed within the category Q, which has signa-
tures (which define tuples of complex finite-dimensional vector spaces) as its objects and
superoperators as its morphisms. This category is equipped with a CPO-structure, com-
position, a coproduct ⊕ and a tensor product ⊗, all of which are Scott-continuous, and
a monoidal trace Tr. The latter is just the categorical trace for the co-pairing map ⊕;
as per (Selinger, 2003) we use the term monoidal to avoid confusion with the categorical
trace for the tensor product, i.e. the matrix trace tr. The coproduct ⊕ denotes concatena-
tion of signatures. Note that, unlike the very similar situation of finite-dimensional vector
spaces, it is not a product, as the diagonal map ∆ : A→ A⊕A does not respect matrix
traces and hence is not a superoperator. All basic flow chart components are morphisms
of this category. For example,the semantics of measurement of one qubit q is defined as

Jmeasure qK : qbit → qbit⊕ qbit : ρ→ (E0 ⊕ E1)(ρ) = P0ρP0 ⊕ P1ρP1 , (16)

where Pψ = |ψ〉〈ψ|. Context extension is modeled by specific ⊕ or ⊗ operations on the
state. Vertical and horizontal composition correspond to composition and coproducts of
morphisms respectively, while iteration is interpreted via the monoidal trace. Specifically,
suppose that an operation E : σ⊕ τ → σ′⊕ τ , where σ, σ′ and τ are signatures, has been
decomposed into components E11 : σ → σ′, E12 : σ → τ , E21 : τ → σ′ and E22 : τ → τ .



Quantum Weakest Preconditions 13

The operation obtained from E by iterating over τ is then given by the monoidal trace
of E , defined as

Tr(E) = E11 +
∞∑
i=0

E21; E i22; E12 . (17)

The existence of this limit is ensured by the CPO structure on superoperators (Selinger,
2003).

QPL also allows recursively defined operations E = F (E), where F is a flow chart.
In this case, F defines a Scott-continuous function ΦF on morphisms, such that the
interpretation of E is given as the least fixed point of ΦF . Concretely,

E = tiFi with F0 = 0 and Fi+1 = ΦF (Fi) (18)

= tiΦiF (0) , (19)

where 0 is the zero completely positive map, which corresponds to the divergent program.
Again, the existence of these fixed points is ensured by the CPO structure.

In what follows we derive a weakest precondition semantics for QPL. Note that in
order to to this, our predicates need to operate on tuples of density matrices. We do this
by writing expressions of the type M1⊕M2 where M1 and M2 are predicates in the sense
of Def. 2.2. This works since ⊕ is in fact defined on arbitrary linear maps. We frequently
write wp(Q) instead of wp(JQK); by this we mean that we use the forward semantics of Q,
which is given by a tuple of completely positive maps, to derive the weakest precondition
predicate transformer for Q according to the results in Sec. 3.3.

Basic flow charts. In our approach we uniformly consider all basic flow charts to be
operations in the operator-sum representation as in Eq.(7). As such Prop. 3.3 already
provides a weakest precondition semantics for these atomic flow charts. Note, however,
that predicates need to be defined in accordance with the type of the tuple exiting a
basic flow chart. As a concrete example, we mention measurement, for which the forward
semantics is specified in Eq.(16). We find that for all predicates M1 ⊕M2 we have

wp(measure q)(M1 ⊕M2) = wp(E0 ⊕ E1)(M1 ⊕M2)

= wp(E0)(M1) + wp(E1)(M2)

= P0M1P0 + P1M2P1 .

(20)

We now turn towards weakest precondition relations for composition techniques of
QPL.

Sequential composition. Suppose we take the sequential composition of two operations
E1 and E2, as shown in Fig. 1. For the composed operation E1; E2 and for all predicates
M we have that

tr(M.(E1; E2)(ρ)) = tr(wp(E1; E2)(M).ρ) . (21)



E. D’Hondt and P. Panangaden 14

ε1

ε2

wp(ε1)(wp(ε2)(M))

wp(ε2)(M)

M

ε1;ε2

wp(ε1;ε2)(M)

M

ε1; ε2

Fig. 1. Sequential composition schematically.

If we calculate weakest preconditions for both operations separately and then compose
them sequentially, we obtain

tr(M.(E1; E2)(ρ)) = tr(M.E2(E1(ρ)))

= tr(wp(E2)(M).E1(ρ))

= tr(wp(E1)(wp(E2)(M)).ρ)

= tr((wp(E2); wp(E1))(M).ρ) .

(22)

Hence by Eqs.(21) and (22) we obtain that weakest predicate transformers compose
sequentially as follows,

wp(E1; E2) = wp(E2); wp(E1) . (23)

This is the same rule as one finds for sequential composition in classical programming
languages (Dijkstra, 1976).

Parallel composition. Suppose we take the parallel composition of two operations E1 and
E2, as shown in Fig. 2. For the composed operation E1 ⊕ E2 we have that

tr((M1 ⊕M2).(E1 ⊕ E2)(ρ1 ⊕ ρ2)) = tr(wp(E1 ⊕ E2)(M1 ⊕M2).(ρ1 ⊕ ρ2)) . (24)

On the other hand, if we calculate weakest preconditions for both operations separately
and then compose them in a parallel way, we obtain

tr((M1 ⊕M2).(E1 ⊕ E2)(ρ1 ⊕ ρ2)) = tr(M1.E1(ρ1)⊕M2.E2(ρ2))

= tr(M1.E1(ρ1)) + tr(M2.E2(ρ2))

= tr(wp(E1)(M1).ρ1) + tr(wp(E2)(M2).ρ2)

= tr((wp(E1)(M1)⊕ wp(E2)(M2)).(ρ1 ⊕ ρ2))

= tr((wp(E1)⊕ wp(E2))(M1 ⊕M2).(ρ1 ⊕ ρ2)) .

(25)

Comparing Eqs.(24) and (25) we obtain that for parallel composition weakest precondi-
tion predicate transformers compose as follows,

wp(E1 ⊕ E2) = wp(E1)⊕ wp(E2) (26)



Quantum Weakest Preconditions 15

ε1 ε1⊕ε2

wp(ε1⊕ ε2)(M1⊕M2)

M1⊕M2M1

wp(ε1)(M1)

ε2
M2

wp(ε2)(M2)

⊕

Fig. 2. Parallel composition schematically.

Context extension. Let us now study what occurs if we weaken a context with dummy
classical or quantum variables. Suppose first that we have a QPL program Q with deno-
tation E . We first modify Q by picking a fresh classical variable b and adding it to Q’s
context; denote the resulting program Qb. The forward semantics of the latter is given
by E ⊕ E (Selinger, 2003), and hence by Eq.(26) we find that

wp(Qb) = wp(Q)⊕ wp(Q) . (27)

Suppose next that we add a fresh qubit q to Q’s context, and write Qq for the resulting
program. The forward semantics of Qq is given by

JQqK

 ρ1 ρ2

ρ3 ρ4

 =

 E(ρ1) E(ρ2)

E(ρ3) E(ρ4)

 , (28)

which we write more concisely as

JQqK =

 E E

E E

 . (29)

Accordingly, we find that

wp(Qq) =

 wp(E) wp(E)

wp(E) wp(E)

 . (30)

Iteration. Consider a flow chart which is obtained from a program Q by introducing a
loop. As explained in the above, the semantics of the flow chart is given by the monoidal
trace Tr(E), where E is the semantics of the flow chart obtained from Q by removing the
loop. For a predicate M we have that

tr(M.(Tr(E))(ρ)) = tr(wp(Tr(E))(M).ρ) (31)

By iterating explicitly and using Eqs.(17) and (23) we obtain



E. D’Hondt and P. Panangaden 16

ε

22
 

1112

21

M

wp(tr(ε))(M)

tr(ε)

Fig. 3. Iteration schematically.

tr(M.(Tr(E))(ρ))

= tr(M.(E11 +
∞∑
i=0

E21; E i22; E12)(ρ))

= tr(M.E11(ρ)) +
∞∑
i=0

tr(M.(E21; E i22; E12)(ρ))

= tr(wp(E11)(M).ρ) +
∞∑
i=0

tr((wp(E12); wp(E22)
i; wp(E21))(M).ρ)

= tr((wp(E11) +
∞∑
i=0

wp(E12); wp(E22)
i; wp(E21))(M).ρ) .

(32)

Comparing Eqs.(31) and (32) we obtain that

wp(Tr(E)) = wp(E11) +
∞∑
i=0

wp(E12); wp(E22)
i; wp(E21) . (33)

Moreover, the existence of the limit in Eq.(33) is guaranteed due to Prop. 3.1.

Recursion. Consider an operation which is defined recursively, i.e. an operation E satis-
fying the equation E = F (E), where F is a flow chart. The required fixed point solution
to this recursive equation is given by Eqs.(18) and (19). If we work out the weakest
precondition relations using Eq.(18) and the fact that weakest precondition predicate
transformers are Scott-continuous we obtain

tr(M.E(ρ)) = tr(M.(tiFi)(ρ))
= tr(wp(tiFi)(M).ρ)

= tr((tiwp(Fi))(M).ρ) .

(34)

Combining this result with Prop. 3.3 we find that the weakest precondition predicate
transformer for a recursively defined operation E = F (E) is obtained as

wp(E) = tiwp(Fi) = tiwp(ΦiF (0)) . (35)



Quantum Weakest Preconditions 17

The existence of the least upper bound in Eq.(35) is guaranteed by Prop. 3.1. This
result depends of course on the concrete recursive specification considered. Specifically,
one needs to determine ΦF in order to determine the weakest precondition predicate
transformer corresponding to an operation E , defined recursively as E = F (E).

5. Applications

In this section we look at some specific situations and their weakest precondition predicate
transformers.

5.1. Grover’s algorithm

We first look into Grover’s algorithm, also known as the database search algorithm
(Grover, 1996). The algorithm is parameterized by the number of qubits n and is specified
in QPL as follows, where we write N for 2n.

Grover(N) ::= new qintn q :=
1√
N

N−1∑
i=0

|i〉 ;

new int k := C ;

while k > 0 do {
q ∗= G ;

k := k − 1 ;

}
measure q

(36)

Note that we assume the presence of product types of quantum integers qintn – qubit
registers of size n – and integers int, which were elaborated in (Selinger, 2003), and also
the presence of integer operations.

The Grover operator G is given by

G = O; IAM , (37)

where O is a quantum oracle, which labels solutions to the search problem, and IAM is
the inversion about mean operation, specifically IAM = 2

N

∑N−1
i,j=0 |i〉〈j| − I.

Supposing the solution to the search problem is given by s, then the relevant postcon-
dition for Grover is given by

⊕N−1
i=0 |s〉〈s|, in particular we wish to obtain

tr(
N−1⊕
i=0

|s〉〈s|ρfi
) = 1 , (38)

where
⊕N−1

i=0 ρfi
is the final state of the algorithm, and the tuple summation is present

due to measurement branching.
We work our way backwards through the algorithm using Eq.(23) in order to find the

weakest precondition corresponding to the postcondition
⊕N−1

i=0 |s〉〈s|. First we derive



E. D’Hondt and P. Panangaden 18

the weakest precondition for the measurement in the last step of the algorithm. We do
this according to a generalization of Eq.(20) for N -valued measurements, as follows.

wp(measure q)(
N−1⊕
i=0

|s〉〈s|) = wp(E0 ⊕ . . .⊕ EN−1)(
N−1⊕
i=0

|s〉〈s|)

= wp(E0)(|s〉〈s|) + · · ·+ wp(EN−1)(|s〉〈s|)
= P0|s〉〈s|P0 + · · ·+ PN−1|s〉〈s|PN−1

= |s〉〈s| .

(39)

Note that, since the remainder of the algorithm consists of unitary evolution, all relevant
preconditions continue to be pure state projectors. In this case Eq.(38) holds only if the
output state equals the predicate, that is if ρf = |s〉〈s|, so that pure state precondi-
tions are at the same time the states required for the algorithm to satisfy Eq.(38) after
termination.

We now focus in the while loop in the algorithm. Geometrically, the Grover operator is
a rotation in the two-dimensional space (Nielsen and Chuang, 2000, Sec. 6.1.3) spanned
by the states |s〉 and

|α〉 =
1√
N − 1

∑
x6=s

|x〉 (40)

More specifically, G can be decomposed as

G =
(

cos θ − sin θ
sin θ cos θ

)
with sin θ =

2
√
N − 1
N

. (41)

Applying again Eq.(23), we obtain as weakest precondition with respect to the while loop
the following,

wp(while k > 0 do q ∗= G)(|s〉〈s|) = (Gk)|s〉〈s|Gk , (42)

where we omit explicit weakest precondition reasoning for the purely classical command
k := k− 1. Using Eq.(41), we see that (GC)†|s〉 corresponds to C rotations over an angle
of −θ in the state space spanned by |α〉 and |s〉. By choosing C = arccos 1√

N
(Nielsen and

Chuang, 2000, Sec 6.1.3), one rotates the postcondition |s〉〈s| towards the precondition
|ψi〉〈ψi|, where |ψi〉 is the initial state of the algorithm, i.e. the equal superposition state,
which lies in the space spanned by the states |α〉 and |s〉. In other words, using Eq.(6)
and Eq.(38) we obtain that for all ρi

tr(wp(Grover)(|s〉〈s|)ρi) = tr(|s〉〈s|Grover(ρi))
⇐⇒ tr(|ψi〉〈ψi|ρi) = 1 .

(43)

That is, Eq.(38) holds if and only if ρi = |ψi〉〈ψi| which is the case by construction of the
algorithm. Hence we have established the correctness of the algorithm via our backwards
semantics.

We note that an alternative derivation for Grover’s algorithm based on probabilistic
weakest preconditions has been reported in (Butler and Hartel, 1999). However, the



Quantum Weakest Preconditions 19

use of probabilistic notions only works there because Grover’s algorithm is considered
for pure states only. The mathematical structures underlying their analysis is that of
probabilistic weakest preconditions, which are in fact not suited at all for a generalized
quantum setting, as we have stressed in Sec. 2. In our setting we could reason about mixed
state solutions to Grover and compare them with the pure state solution elaborated in the
above. Also, while it may seem at first sight that in (Butler and Hartel, 1999) the value of
C is derived via the backward semantics this is in fact not the case. Instead, a recurrence
relation for amplitudes occurring in each Grover iteration is solved; these amplitudes are
found by applying the Grover iteration backwards, just as we did. We chose to adhere to
the interpretation of G as a rotation in a two-dimensional state space in order to find C;
we could just as well have adhered to the derivation in (Butler and Hartel, 1999). While
their proof is an ingenious alternative to that in (Nielsen and Chuang, 2000), it is not
based on the theory of probabilistic weakest preconditions.

5.2. Tossing a coin

As a second application, we derive the weakest precondition for the flow chart imple-
menting a fair coin toss (Selinger, 2003, Example 4.1). In QPL terms the flow chart is
specified as follows, where r is an input qubit register of unspecified length.

coin(r) ::= new qbit q := 0;

q ∗= H;

measure q;

discard q

(44)

An arbitrary postcondition for this program is of the form M1 ⊕M2, where M1 and
M2 are both predicates over P(C2n

) and n is the number of qubits in the register r.
We derive the corresponding weakest precondition by flowing backwards through the
program, starting with the discard operation. The latter induces the following quantum
operation, where IN is the (N ×N) identity map with N = 2n as before, 0 denotes the
(N ×N) zero block matrix, and ρ is a density matrix in DM(C2n+1

),

Jdiscard qK(ρ) =
(
IN 0

)
ρ

 IN

0

 +
(

0 IN
)
ρ

 0

IN

 . (45)

This leads to the following weakest precondition,

wp(discard q)(M1 ⊕M2) =

 M1 0

0 M1

⊕

 M2 0

0 M2

 . (46)

Next, we have the measurement step. We just give the result here, as this type of deriva-
tion was already encountered in the Grover example above.

wp(measure q)[

 M1 0

0 M1

⊕

 M2 0

0 M2

] =

 M1 0

0 M2

 . (47)



E. D’Hondt and P. Panangaden 20

The Hadamard transformation is straightforward and leads to

wp(q ∗= H)

 M1 0

0 M2

 =
1
2

 M1 +M2 M1 +M2

M1 +M2 M1 +M2

 . (48)

Finally we move through the first command in the coin toss program, namely the addition
of a new qubit. The forward semantics of this command is as follows, where ρ is a density
matrix in DM(C2n

),

Jnew qbit q := 0K(ρ) =

 IN

0

 ρ
(
IN 0

)
. (49)

Hence, we obtain the following,

wp(new qbit q := 0)(
1
2

 M1 +M2 M1 +M2

M1 +M2 M1 +M2

) =
1
2
(M1 +M2) . (50)

Wrapping all individual steps of the coin toss program up into one weakest precondition
predicate transformation according to Eq.(23) we obtain

wp(coin(r))(M1 ⊕M2) =
1
2
(M1 +M2) . (51)

5.3. Stabilizers are predicates

The stabilizer formalism is an alternative description of quantum states (Gottesman,
1999). Instead of describing states as vectors in a suitable Hilbert space, they are de-
scribed by a set of operators which leave the state invariant. Concretely, for an n-qubit
system these operators are taken from the Pauli group Gn, i.e. the group of n-fold tensor
products of the Pauli matrices with factors ±1,±i in front. Note that if we allow all posi-
tive operators instead one obtains the more familiar density matrix formalism. Of course
not all states can be described in this way. Formally, a stabilizer state is a simultaneous
eigenvector of an abelian subgroup of the Pauli group with eigenvalue 1. This subgroup
is then called the stabilizer S of this state, and usually represented by its generators.
Surprisingly, some forms of entanglement, such as graph states for example (Raussendorf
et al., 2003), as well as all Clifford group operations, can be described efficiently via
stabilizers – a celebrated result known as the Gottesman-Knill theorem (Nielsen and
Chuang, 2000, Sec. 10.5.4). This is because for an n-qubit stabilizer state its stabilizer
S has n − 1 generators (as opposed to 2n amplitudes in the state formalism). A nice
overview of stabilizer theory can be found in (Nielsen and Chuang, 2000, Ch. 10).

Stabilizers, which are unitaries, fit well within the setting of weakest preconditions,
because when restricting ourselves to pure states, they are in fact quantum predicates.
This follows from the following theorem.

Proposition 5.1. Given a pure state ρ = |ψ〉〈ψ| and a unitary U we have that

tr(Uρ) = 1 ⇐⇒ U |ψ〉 = |ψ〉 (52)



Quantum Weakest Preconditions 21

Proof. For the left to right direction, we have that

tr(U |ψ〉〈ψ|) = 〈ψ | U | ψ〉 = 1

⇒ (〈ψ| − 〈ψ|U†)(|ψ〉 − U |ψ〉) = 0

⇒ |ψ〉 − U |ψ〉 = 0

⇒ |ψ〉 = U |ψ〉 .

(53)

The other direction is obvious.
For example, consider the creation of a Bell state |B〉 = |00〉+|11〉√

2
by applying U =

CNOT.(H ⊗ I) to |00〉. The stabilizer of |B〉 is generated by Z1Z2 and X1X2. Hence by
the above result we have tr(Z1Z2EU (|ψ〉〈ψ|)) = tr(X1X2EU (|ψ〉〈ψ|)) = 1, where |ψ〉 is
the initial state of the algorithm and EU (ρ) = UρU† for all ρ. Applying Eq.(9), we obtain
as weakest preconditions wp(EU )(Z1Z2) = Z2 and wp(EU )(X1X2) = Z1. By Prop. 3.3
we thus also have tr(Z1|ψ〉〈ψ|) = tr(Z2|ψ〉〈ψ|) = 1. But then by the above result Z1 and
Z2 are stabilizers of |ψ〉. Hence |ψ〉 = |00〉, as required.

6. Conclusions

In this article, we have developed the predicate transformer and weakest precondition
formalism for quantum computation. We have done this by first noting that the quantum
analogue to predicates are expectation values of quantum measurements, given by the
expression tr(Mρ). Then we have defined the concept of weakest preconditions within this
framework, proving that a weakest precondition exists for arbitrary completely positive
maps and observables. We have also worked out the weakest precondition semantics for
the Quantum Programming Language (QPL) developed in (Selinger, 2003). QPL is the
first model for quantum computation with a denotational semantics, and as such the first
serious attempt to design a quantum programming language intended for programming
quantum algorithms compositionally.

With this development in place one can envisage a goal-directed programming method-
ology for quantum computation. Of course one needs more experience with quantum
programming idioms and the field is not yet ready to produce a “quantum” Science of
Programming. It is likely that in the field of communication protocols, such as those
based on teleportation, we have a good stock of ideas and examples which could be used
as the basis of methodologies in this context.

The most closely related work - apart from Selinger’s work on his programming lan-
guage - is the work by Sanders and Zuliani (Sanders and Zuliani, 2000) which develops
a guarded command language used for developing quantum algorithms. This is a very
interesting paper and works seriously towards developing a methodology for quantum
algorithms. However, they use probability and nondeterminism to capture probabilistic
aspects of quantum algorithms. Ours is an intrinsically quantum framework. The notion
of weakest precondition that we develop here is not related to anything in their frame-
work. There are other works (Baltag and Smets, 2004) - as yet unpublished - in which a
quantum dynamic logic is being developed. Clearly such work will be related though they



E. D’Hondt and P. Panangaden 22

use a different notion of pairing. Also the work in (Edalat, 2004) is related and merits
further investigation. Edalat uses the interval domain of reals rather than the reals as
the values of the entries in his density matrices. This seems a good way to deal with
uncertainty in the values.

There is a large literature on probabilistic predicate transformers including several pa-
pers from the probabilistic systems group at Oxford. A forthcoming book (Morgan and
McIver, 2004) gives an expository account of their work. We emphasize again that the
theory of probabilistic predicate transformers does not capture the proper notions appro-
priate for the quantum setting. Linearity and complete positivity are essential aspects
of the theory of quantum predicate transformers. If one tries to work with probabilistic
predicates alone one will not be able to express healthiness conditions that capture the
physically allowable transformations, as the example presented in Sec. 3 illustrates.

One might worry that the predicates are too restricted. There are many “observables”
in physics that are not positive; for example, the z-component of angular momentum,
written Jz, for a spin 1

2 system takes on the values ± 1
2 . However, for reasoning about the

evolution of Jz one can work instead with the operator 1
2 [I + Jz] which has eigenvalues

1
4 and 3

4 and so is a predicate. Of course one cannot do this for unbounded operators like
the energy, but this will not be a handicap for quantum computation.

One pleasant aspect of the present work is that it is language independent; though we
have used it to give the semantics of QPL the weakest precondition formalism stands on
its own. We can therefore apply it to other computational models that are appearing, for
example the one-way model (Raussendorf and Briegel, 2001; Raussendorf et al., 2003)
for which language ideas are just emerging (Danos et al., 2004).

Acknowledgements

It is a pleasure to thank Samson Abramsky, Bob Coecke, Elham Kashefi and Peter
Selinger for helpful discussions. Comments by the referees were very helpful.

References

Baltag, A. and Smets, S. (2004). Quantum dynamic logic. In Selinger, P., editor, Proceedings

of the 2nd Workshop on Quantum Programming Languages (QPL04), Turku, Finland. Turku

Centre for Computer Science, TUCS General Publication No 33.

Butler, M. J. and Hartel, P. H. (1999). Reasoning about Grover’s quantum search algorithm

using probabilistic wp. ACM transactions on programming languages and systems, 21(3):417–

430.

Danos, V., Kashefi, E., and Panangaden, P. (2004). The measurement calculus. quant-

ph/0412135.

Deutsch, D. (1985). Quantum theory, the Church-Turing principle and the universal quantum

computer. Proc. R. Soc. Lond., pages A400: 97–117.

Deutsch, D. and Jozsa, R. (1992). Rapid solution of problems by quantum computation. Proc.

R. Soc. Lond. A, pages 439–553.

Dijkstra, E. W. (1976). A Discipline of Programming. Prentice-Hall.



Quantum Weakest Preconditions 23

Edalat, A. (2004). An extension of Gleason’s theorem for quantum computation. Int. J. of

Theor. Phys. (to appear).

Gottesman, D. (1999). The Heisenberg representation of quantum computers. In Corney, S. P.,

Delbourgo, R., and Jarvis, P. D., editors, Proceedings of the XXII International Colloquium

on Group Theoretical Methods in Physics, pages 32–43. International Press.

Gries, D. (1981). The Science of Programming. Springer-Verlag.

Grover, L. K. (1996). A fast quantum mechanical algorithm for database search. In ACM

Symposium on Theory of Computing, pages 212–219.

Hoare, C. (1969). An axiomatic basis for computer programming. Communications of the ACM,

12(10):576–580.

Johnstone, P. (1982). Stone Spaces, volume 3 of Cambridge Studies in Advanced Mathematics.

Cambridge University Press.

Kozen, D. (1981). Semantics of probabilistic programs. Journal of Computer and Systems

Sciences, 22:328–350.

Kozen, D. (1985). A probabilistic PDL. Journal of Computer and Systems Sciences, 30(2):162–

178.

Löwner, K. (1934). Uber monotone matrixfunktionen. Mathematische Zeitschrift, 38:177–216.

Morgan, C. and McIver, A. (2004). Abstraction, refinement and proof for probabilistic systems.

Springer-Verlag.

Nielsen, M. A. and Chuang, I. (2000). Quantum computation and quantum information. Cam-

bridge university press.

Peres, A. (1995). Quantum Theory: Concepts and Methods. Kluwer Academic Publishers.

Plotkin, G. D. (1983). Lecture notes on domain theory.

Raussendorf, R. and Briegel, H. J. (2001). A one-way quantum computer. Phys. Rev. Lett.,

86(22):5188–5191.

Raussendorf, R., Browne, D. E., and Briegel, H. J. (2003). Measurement-based quantum com-

putation on cluster states. Phys. Rev. A, 68(2):022312.

Sanders, J. W. and Zuliani, P. (2000). Quantum programming. In Mathematics of Program

Construction, number 1837, pages 80–99. Springer-Verlag.

Selinger, P. (2003). Towards a quantum programming language. Math. Struct. in Comp. Science.

Shaji, A. and Sudarshan, E. (2005). Who’s afraid of not completely positive maps? Phys. Lett.

A, 341:48–54.

Shor, P. W. (1994). Algorithms for quantum computation: Discrete logarithms and factoring.

In IEEE Symposium on Foundations of Computer Science, pages 124–134.

Smyth, M. (1983). Powerdomains and predicate transformers. In Diaz, J., editor, Proceedings

of the International Colloquium On Automata Languages And Programming, pages 662–676.

Springer-Verlag. Lecture Notes In Computer Science 154.


