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Abstract-We discuss a number of theoretical and experimental is- 
sues in quantum well lasers with emphasis on the basic behavior of the 
gain, the field spectrum, and the modulation dynamics. It  is revealed 
that the use of quantum well structures results in improvement of these 
properties and brings several new concepts to optical semiconductor 
devices. 

T zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI. INTRODUCTION 

HE ability  to  fabricate  single  quantum well (SQW) 
and  multiple  quantum  well  (MQW)  devices has given 

rise to new optical  and  electronic  devices  as well as  to 
new physical phenomena [l]. Since  the first investigation 
of optical  properties  in  quantum wells by  Dingle et zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAal., 
[2] the  application  of  quantum well structures  to  semicon- 
ductor  laser  diodes  [3], zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[4] has  received  considerable at- 
tention  because of physical  interest  as well as its superior 
characteristics,  such  as low threshold current density [ 5 ] ,  
[6], low temperature  dependence  of  threshold  current [7]- 
[9], lasing  wavelength  tunability, and excellent  dynamic 
properties  [lo]-[12]. By controlling  the width of the 
quantum  wells,  one  can modify the  electron and hole 
wavefunctions, which leads  to  the modification of mate- 
rial parameters.  This  results in improvements of the  laser 
characteristics,  as well as  introduction of new concepts to 
semiconductor  optical  devices. 

In this paper,  we  describe  the  basic properties of the 
quantum well laser with emphasis  on its dynamic  and 
spectral  properties as well as gain  characteristics.  We  also 
discuss new device  concepts  including  a Q-switched 
quantum well laser [13] and  a  quantum  wire  laser [9], 

[lo]. 

11. GAIN AND THRESHOLD  CURRENT 

A.  Density of States 

In  a  quantum  well  (QW)  structure,  a  series of energy 
levels and associated  subbands  are  formed  due  to  the 
quantization of electrons  in  the  direction of the QW thick- 
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ness. The density of  states  (per  unit  energy  and  area) of 
such confined electrons in a  SQW  structure is given by 

where H [ x ] ,  m,, fi, and E, are  the  Heaviside  function,  the 
effective mass of  electrons,  Planck’s  constant (h) divided 
by 27r, and  the  quantized  energy  level of electrons in the 
nth subband of the  QW, respectively.  When  the  barriers 
are sufficiently high and the  barrier  thickness is suffi- 
ciently large, E ,  is  equal to 

(nnh)’ 
E ,  = - 

2rn,L; (2) 

where L, is the  thickness of the QW. 
If we  use  a  MQW  structure instead of the  SQW, the 

density of states  is modified. When  barrier  layers  between 
wells are  thick  enough,  each well is independent. In this 
case,  the  density of states is just N times density of states 
of electrons in an SQW. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

m 

where N is the  number of QW’s. On the  other  hand, if the 
barrier is sufficiently thin or its  barrier height is small 
enough so that coupling between adjacent wells is sub- 
stantial,  the  quantized  energy  levels  are no longer  degen- 
erate,  and  each  single well level  splits  into N different 

energy levels. In this case,  the  density of states  -(per unit 
energy and  area) is expressed by 

m N  

where ( k  = 1, * * , N )  are  the energy levels which 
split from a  single  well  energy  level.  Kroemer et al. [ 141 
and Yariv et al. [15] analytically  estimated  the energy 
broadening  due to this  coupling. The coupling is impor- 
tant for  obtaining  a uniform carrier  distribution  in  the 
MQW structure.  However,  strong  coupling  leads to  the 
smearing of the configuration of the  density of states  and 
a resulting reduction in the  two-dimensional  character of 
the  wells.  We  can  characterize  the  smearing due to cou- 
pling by A E ( = max enk - min E , ~ ) .  This A E corresponds 
to  the  degree to which the  smearing in the density of states 
occurs.  Since  the  tunneling  time 7, of electrons through a 
barrier  is on the  order of Tz/AE, the  following relations 
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are required for  obtaining good uniformity of carrier con- 
centration and maintaining the two-dimensional proper- 
ties [14]: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

hlr, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA<< AE( =h/r,) << h/rin (5 )  

where r, is  the  carrier recombination time at lasing and 
rin is the intraband relaxation  time (i.e., T2 time).  The first 
inequality indicates that the tunneling time  for uniform 
carrier  distribution should be much smaller than the re- 
combination  time. The second one implies that  the  smear- 
ing due  to the  coupling  should be much smaller than the 
smearing  due to the  carrier relaxation effects. A  locali- 
zation effect in two slightly asymmetric wells is also  dis- 
cussed by Lang et al. [16] and Yariv et al. [15].  In  order 
to simplify  the  discussion in this  paper,  we  assume that 
the  coupling in an MQW is weak enough that the density 
of states can be described by (3). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
B. Linear  Gain 

The  gain  properties in QW lasers  have been investi- 
gated using different theoretical  treatments [17]-[23]. The 
main features of the  gain  properties in QW lasers  are  the 
gain flattening effect,  dependence  on the number and  the 
thickness of the  QW's  and  the  anisotropy of the momen- 
tum matrix element.  When  the recombination is domi- 
nated by the band-to-band radiative  process  [24],  [25], 
the  linear bulk gain  derived  under k-selection rule is given 

by  [261 

o m  

- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf"(E7JJ) W ( E ,  E )  Lie. (7) 

The bulk gain is the  gain  exercised by an electromagnetic 
field  if  it were completely confined to  the QW (i.e., a 
confinement factor of unity). E is the photon energy, j 
designates  either  light holes ( 1 )  or heavy holes (h) ,  p,kd, is 
the reduced density of states which is defined by pied, = 

((pen)-' + (pLn)- ' ) - ' ,  pi, is the density of states of light 
holes ( j  = I )  or heavy holes ( j  = h) ,  and f, ( f , )  is the 
quasi  Fermi-Dirac  distribution  function  for electrons 
(holes) in the  conduction band (the  valence band) with the 
Fermi-energy efC (E&). Ec,, and E;,, are  equal  to (m,& + 
&"E + m&,,)/{m, + mi) and (m,eJ,, - m,E + miecn)/(rn, 
+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd;), respectively,  where mi and EL,, are  the effective 
mass  and  the energy level of the nth subband of light holes 
( j  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI )  or heavy holes ( j  = h). xZ(E,  n) is the imaginary 
part of the susceptibility and gY"(E, E )  is the susceptibility 
of each electron-heavy hole  pair (or electron-light hole 
pair) in  the nth subband and is given by 

where nr is  the  refractive  index of the  active  layer, e is 
the  electron  charge, mo is the mass electrons, c is the  light 

velocity,  and Eg is the  bandgap. Although the possibility 
of the transition with no k-selection rule [19] and  a vio- 
lation of the An = 0 selection rule have been discussed, 
we will adopt the formula with k-selection rule with An 
= 0 selection  rule. 

In QW structures, it was observed by Kobayashi et  al. 
[27] that  the internal gain depends on the polarization of 
the light.  Asada et al. [28] and Yamanishi et al. [29] dis- 
cussed this phenomenon using the k * p perturbation 
method developed by Kane  [30].  For  instance, IMn,jl:ve 
for  the TE mode (polarized parallel to the  layers)  due to 
an electron-heavy hole  transition is given by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

l ~ n , h I E  = IWI:ve (1 + E / ( E ~ ~  - 4,)) (8) 

where IMol:v, is the  square of the  dipole matrix element 
of conventional  double  heterostructure  (DH)  lasers and is 
approximately equal to 1.33 mo Eg. For more precise dis- 
cussion  on this matrix element, nonparabolicity and an- 
isotropy of valence band should be  considered, which is 
discussed elsewhere.  The  calculated results shown below 
are,  however, on the  basis of the  above simple model. 

The  quasi-Fermi energy levels eFc and eFU in a  laser  are 
determined by both the  charge neutrality condition and 
the condition that  the modal gain gmod(E) =r,(E) where 
I' is the  optical confinement factor)  at  the photon energy 
El for  the  laser  oscillation is equal to the  total  losses atoral 
as  follows: 

gmod(El) = r g ( E )  = Oltotal 

= TICY,, + (1 - r) CY,, + L-' In (UR)  (9) 

where cyac, CY,,, R,  and L are  the  loss in the  active  region, 
the  loss in the cladding  layers,  the reflectivity, and  the 
cavity length,  respectively. 

Once  the  Fermi  energy  levels  are fixed, the injected 
current  density J is determined by the following equation: 

The  optical confinement factor I' depends strongly on 
the  structure. If we use the  separate confinement struc- 
ture,  can  be  expressed approximately by the following 
simple formulas [ 1 11 : 

r = 0 . 3 ~ -  Lz 
LO 

(1 1) 

where N is the  number of QW's, Lo is equal to 1000 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA, 
and the following structure is assumed;  the MQW laser 
has Gao.7sAlo.25As barriers and Ga0,7sA10.2sA~ waveguide 
layers,  and  the  dimension of the waveguide layers is de- 
termined so that  the total thickness, including QW's, bar- 
riers,  and  waveguide  layers, is equal  to 2000 A. The 
cladding layers  are  made of p-Gao,,AlO,,As and n- 
Ga0,6Alo.4As. In the following calculation,  we will ignore 
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Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 .  (a) The modal  gain gmod (=rg) as a  function of the  injected  current 
density with  various  number of quantum  wells N .  The thickness of each 
quantum  well  is  assumed to be 100 A .  (b) An illustration which  explains 
how the  gain  flattening effect  occurs  with the  increase of the  Fermi  en- 
ergy  levels. 

nonradiative effects such  as  the  Auger recombination and 
the  intervalence band effect [31]-[34]. 

If the  carrier  density,  hence  the  quasi-Fermi energy 
level, in each  QW  is  the  same,  the  modal gain with N 
QW's, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAgrfIod(El), is given by 

g:od(El ) = NgKZ '@l)  (12) 

where E! is the  lasing photon energy.  But,  this, of course, 
happens at 

J N  = NJ(N=~) 

or, stated in words,  the modal gain available from N QW's 
is N times  that of an SQW and is obtained at a  current 
density which is N times  that of an SQW laser.  Fig. l(a) 
shows the  calculated modal gain gEd(El) as  a  function of 
the injected current  density in a QW laser with N QW's 
on the  basis  of  (12)  and  (13).  We  notice  a very marked 
flattening ("saturation") of the gain at high injected cur- 
rents,  especially  in  an SQW (N = l ) .  This  gain flattening 
effect is due to the  step-like  shape of the density of states 
functions,  and  the  fact  that  once  the  quasi-Fermi energy 
levels  penetrate  into the conduction band and valence 
band, which happens  at high injected currents,  the prod- 
uct &d(E) (  fc - fu), which determines  the  gain, becomes 
a  constant  and no longer  increases with the  current.  This 
is illustrated in Fig.  l(b). This flattening effect was evi- 
denced recently by Arakawa et al. [35] in  a  systematic 
measurement of the threshold current of high-quality 
GRIN-SCH (graded  index waveguide-separate confine- 
ment heterostructure)  SQW  lasers of different cavity 
length. They observed  the jump of the  lasing wavelength 
with the  decrease of the cavity length from the wavelength 
corresponding  to ri = 1  transition  to  the wavelength cor- 
responding to n = 2 transition, which demonstrates  the 
existence of discrete  quantized energy levels. 

Owing to this  gain flattening effect,  there  exits  an op- 
timum number of QW's  for minimizing the threshold cur- 
rent  for  a given total loss cytotal. From  Fig. l(a), we  see 
that,  for low losses,  the  injected  threshold  current is min- 

(13) 

t- t , ,  , I I 

50 70 io0 200 5oc 
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Fig. 2. The threshold  current as a  function  of  the  quantum well  thickness 
with  various  total loss CY loss. The number of  quantum  wells  is  optimized 
so that  the  threshold  current is minimum. 

imum with N = 1 .  On the  other  hand, if cytotal = 20 c n - ' ,  
the  threshold  current with N = 1 is larger  than  that of 
N = 2. At higher  values of cytOtal which call for  larger  laser 
modal  gain,  a  larger  number of wells is  needed. When 
cytotal is 50 cm-', a five-well structure (N = 5 )  will have 
the  lowest threshold current. 

Fig.  2  shows  the threshold current  as  a  function of the 
QW  thickness for various cytotal. In this  .calculation,  the 
number of QW's is optimized  for  each QE thickness so 
that the threshold current is minimum.  The results indi- 
cate that the  threshold  current of thinner QW lasers (Lz = 

50-100 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA) is much lower than that  of  thicker QW lasers. 
We also notice that the threshold current is minimized with 
L, = 60 A when cyloss is low (aloss = 10-30 cm-'). This 
is mainly due to the  fact that the  current  for transparency 
(gain equals to zero) is minimized at  the  thickness of 
L, = 60 in  the  case of N = 1  and  also  due to the  fact 
that  the  optimum N in  QW  lasers with each  thickness is 1 
in the  case of low cytotal for thin QW  structures. 

C. Experiment 
Many experiments on GaAsIGaAlAs QW laser  [5],  [7], 

[36]-[43], hGaAsP/InP QW lasers [44]-[47], InGaAlAs 
QW lasers  [48],  and AlGaSb QW  lasers [49] have been 
reported.  Fuji et al. [5] reported  a very low threshold cur- 
rent density  as low as  175  A/cm2 with 480  pm cavity 
length in  a GaAdAlGaAs GRIN-SCH SQW laser.  This 
demonstrates  the realization of high gain with lower  spon- 
taneous  emission  rate  owing to the  step-like density of 
states. 
sulting in a red shift  of the excitonic  absorption  energy. 
The band discontinuities prevent the  ionization of the ex- 
citon,  allowing  excitonic  resonances to be observed at 
room temperature with large  applied fields (> lo5 V/cm). 

The  concept of the  size effect modulation proposed by 
Yamanishi et al. [74] ais0  utilizes  the  application of elec- 
tric field. This  causes  the  spatial of the  electron  distribu- 
tion and hole  distribution in a  well, which leads to the 
modulation of the matrix elements. 
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Fig. 3. The  light  output  power  versus  injection  current  under pulsed con- 
dition of a 100  pm  wide and 480  pm broad  area  GaAsiAlGaAs  GRIN- 
SCH laser  (400 ns, 25 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAHz). 

Fig.  4.  The far-field  pattern parallel  to  the  injection  plane of a 100 pm 
wide  broad  area  GaAsiAlGaAs  GRIN-SCH  laser at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI = 1 .21th. The mea- 
sured  full  width at half maximum  is  0.8"  which  is  quite  close  to  the 
diffraction limit of 0.4". 

Recently, in MBE-grown broad area GaAdAlGaAs 
GRIN-SCH SQW  lasers,  a  quantum efficiency around 70 
percent with a  single far-field lobe  as narrow as 0.8" has 
been achieved by Larsson zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet al. [50].  Fig.  3 shows the 
measured light  output  power versus injection  current un- 
der pulsed condition (400  ns, 25 Hz) using calibrated  Si 
photodiodes and  filters. The threshold current is 110 mA, 
which corresponds to a threshold current density of 230 
A/cm2.  The maximum output  power of 1.35 W from one 
mirror was limited by the  available  current from current 
source.  The high external  quantum efficiency is  a  com- 
bined result of the low threshold  current density and  the 
high differential quantum efficiency of 84 percent.  This 
can be explained in terms of the  step-like density of states 
associated with the  quasi-two-dimensional  structure of the 
SQW,  enhanced  carrier  and  optical confinement in  the 
GRIN region,  and  optimized  growth  conditions.  The in- 
ternal loss  estimated by measuring the differential quan- 
tum efficiency of the  lasers with various cavity length is 
as low as 1.8 cm-'.  Fig. 4 shows the far-field pattern 
parallel to the  junction plane for  a  100 pm wide laser  at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1 = 1 . 2 1 t h  where &h is the threshold current.  The measured 
full width at half maximum (FWHM) is 0.8", to be  com- 
pared to the diffraction limit of 0.4". This  extremely nar- 

row far field is a result of increased  lateral  coherence pro- 
duced by uniformly distributed and phase-locked 
filaments. 

111. DIFFERENTIAL GAIN AND MODULATION BANDWIDTH 

A. Relaxation  Oscillation  Frequency and Differential 
Gain 

The  direct modulation of a semiconductor laser has been 
a subject of active research for  the past 20 years [51]- 
[55]. Experiments  have  shown  the  existence of a reso- 
nance peak in the modulation response. In the early stage 
of the  semiconductor  laser  development,  the principal 
concern was in optimizing  structures  for realizing low 
threshold currents and high quantum efficiencies. With the 
increasing sophistication of the  laser and the maturing of 
the  technology,  their high-speed dynamic  characteristics 
became a  subject of increasing importance. Many efforts 
have been devoted to realizing a  wide bandwidth in con- 
ventional DH semiconductor  lasers by changing the  laser 
geometry.  Another  approach  is to modify the  basic ma- 
terial  properties  through  the  use of QW  structures.  In this 
section,  we  discuss  the possibility of the improvement of 
these  characteristics. 

The relaxation oscillation  corner frequency f, gives the 
useful direct modulation bandwidth of a  semiconductor 
laser. The simple rate equation  for  laser dynamics can be 
described as follows: 

where P is the  photon  density, /3 is  the spontaneous emis- 
sion coefficient into  the lasing mode, r, is the  carrier  life- 
time, J ( t )  (cmP2) is the injected current  density, n is the 
carrier concentration,  and g(n, El )  (cmW2) is the bulk gain, 
while I'g(n, E l )  is the modal gain  as  a  function of the 
carrier  density n at  the  lasing  photon energy El .  To  em- 
phasize the  dependence of the gain on carrier  concentra- 
tion,  we  denote  the  gain  as g(E, n) hereafter. When we 
discuss  the  carrier density in QW structures,  we usually 
use  the two-dimensional density (per  cm2).  However, the 
proper "bookkeeping" of photons and carriers requires 
that n stand for  carrier density per unit volume. The re- 
laxation resonance frequency f, is determined by a  small- 
signal analysis of (14) and (15).  The result can simply be 
expressed by [53] 

where Po is  the stationary photon density in the cavity and 
g'(El , n)  is the differential gain (i.e., g' (E,  n) = dg(E,  
n)ldn). This result suggests  several ways to improve f, : 
larger g' (E l ,  n) ,  smaller rp, and  larger Po. The reduction 
of rp and  the  increase of Po are realized with the use of 
short cavity lasers [53] and  window-type  lasers  [54].  To 
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Fig. 5. The differential gain  as a  function  of  the  conduction  band  quasi- 
Fermi  energy  level in  a  conventional  double  heterostructure  laser  and  a 
quantum well laser  with 50 A well  thickness. 

increase zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg‘(El, n),  operation  at low temperatures [55] and 
the use of coupled cavity lasers zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[56] have been consid- 
ered. 

The basic  quantum mechanical expression  for g’(E, n) 
suggests yet another way to  increase g’(E, n): changing 
the  electron  density of states with the  use of QW’s [lo], 
[ 113. Since  the  gain g(E, n) is proportional to the imagi- 
nary part x l (E,  n),  as  shown in (6), g ’ (E ,  n) can be ex- 
pressed by the  following  equation: 

It is easily seen from this equation that the density of states 
plays  an  important  role in determining  the  properties of 
g’(E, n) as well as g(E, n). The  step-like density of states 
narrows the  gain  spectrum  compared to that in  the bulk 
material,  which  leads to an  increase of g’(E, n). 

Fig. 5 shows  the  calculated differential gain g’(E,, 
n(eF,)) for  a  conventional DH laser and a QW laser  as  a 
function of the conduction band quasi-Fermi energy level 
eFc (measured from the  lowest subband energy level).  The 
thickness  of  the QW structures is equal  to 50 A. The 
quasi-Fermi  energy  level  for the holes is determined by 
the  charge neutrality condition.  The result predicts  an en- 
hancement  of g‘(E, n)  for  the QW active  layer.  Note that 
since g’(El, n) is a  bulk  parameter, it is independent of 
the  number of QW’s. 

This figure also  shows that g’(E,, n) depends strongly 
on eF, (i.e., necessary excitation for  laser  oscillation). The 
Fermi energy dependence  of g’(El, n) implies that there 
is  an  optimum  number N of QW’s in  a  laser  structure 
which causes  the  largest  enhancement off ,  . To  see  this, 
consider,  again,  the  threshold  condition  for  lasing  in (9). 
For  simplicity,  we ignore. the  dependence of aYtotai on the 
structure.  Since  the  gain  is  a monotonically increasing 
function of eFc, the required eFc for  laser  oscillation de- 
creases monotonically with the  increase  of N .  Conse- 
quently,  there  exits  an  optimum N for  realizing epcax, de- 
fined to yield the  maximum g’(El, n). It  is easily shown 
that the eFc at  lasing  threshold  for N = 1 is much larger 
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Fig. 6 .  The relaxation  resonance  frequency  in  a  quantum  well  laser as a 
function of the well thickness.  The  number of quantum  wells and  quan- 
tum  wires  is  optimized for  each  quantum  well  thickness. 

than e y .  Therefore,  the  largest g’(El, n) and  the  fastest 
modulation speeds  are  achieved  for  the MQW cases (N 2 

2). Fig. 6 shows  the  calculated f, as  a  function  of Lz (the 
QW width); atotal is  assumed to be 50 cm-’. At each L,, 
the number of wells is  optimized andf,  is  normalized by 
f, of a  conventional DH laser  (i.e., L, -+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA03). The results 
suggest that by optimizing N ,  f, can be enhanced by a 
factor of two in thin QW lasers. 

3. Experiment 

The  enhancement of f r  was experimentally demon- 
strated by Uomi et  al. [57]. They used an MQW laser 
with a  self-aligned  structure  grown by MOCVD and  mea- 
sured the  relaxation  oscillation  observed in the  transient 
characteristics without dc bias at room temperature. fr was 
measured as  a  function of (PIP,) where P is  the  output 
power  and PC is the  power  for  catastrophic  optical  dam- 
age.  It was found thatf, of the MQW laser  is  about  twice 
as  large  as  that of a DH laser with the  same  structure. 
They estimated  the  modulation  frequency to be  11 GHz 
near  the  catastrophic  optical  damage  limit.  This  experi- 
mental result supports  the  above  theoretical  calculations. 
Iwamura et  al. [58]  measured the  longitudinal  mode be- 
havior  in MQW lasers  under  modulation,  and they ob- 
tained a result which suggest that the  narrower  gain spec- 
trum of an MQW laser  causes  fewer  longitudinal modes 
under  modulation. 

IV. SPECTRAL  NOISE  PROPERTIES 
A.  Spectral  Linewidth 

Recently,  the  subject of semiconductor  laser noise has 
received considerable  attention. The deviation of conven- 
tional DH laser  noise  characteristics  from well-estab- 
lished norms was demonstrated  by  Fleming et al. [59]. 
They found  that  the  linewidth  varies  inversely with output 
power,  as  predicted by the modified Schawlow-Townes 
formula. The coefficient of the  power  dependence,  how- 
ever, was significantly larger  than  predicted by the  for- 
mula. This  discrepancy  was  explained physically by 
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Fig. 7. The linewidth  enhancement  factor zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA01 as a  function  of  the  conduc- 
tion  band  quasi-Fermi  energy  level  in  a  conventional  double  heterostruc- 
ture  laser  and a  quantum  well  laser  with 50 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA well  thickness. 

Henry [60],  and  a new theory was developed by Vahala zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
et aZ. [61],  [62]. They showed that  the  expected  broaden- 
ing enhancement is a  factor (1 + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACY') where CY is named 
the  linewidth  enhancement  factor. The basic  explanation 
is that phase fluctuations can result from index variations 
during  relaxation  oscillations  after  a spontaneous event, 
as well as by direct  spontaneous  emission  events.  For re- 
ducing  the  linewidth,  the use of an external mirror,  cou- 
pled cavity laser, and distributed  feedback  laser  have been 
investigated.  Another  approach  for reducing the linewidth 
is to modify the density of states.  In  this  section,  we in- 
dicate how the  linewidth  (or a)  is reduced through the use 
of QW structures  [lo]-[12],  [63]. 

The spectral  linewidth Av can be expressed by [60], 

[611, ~ 4 1  

u,hvl?, R n 

TP 
Av = rn sp (1 + CY2) 

R,, u,, hv, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI?, g, nsp, and P are  the  mirror loss, the group 
velocity of light,  the photon energy,  the  optical confine- 
ment factor,  the  bulk gain at  threshold,  the spontaneous 
emission  factor,  and  the  laser  output  power,  respectively. 
xR(E, n)  is  the real part of the  complex susceptibility and 

(21) 

a reflects the  strong  amplitude-phase  coupling of the 
lasing field in  a  semiconductor  laser resulting from the 
highly detuned  optical gain spectrum.  Equation (18) in- 
dicates that Av depends on the electronic  density of states 
through CY and nsp. 

0 1 1  I I I I 
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Fig. 8. The  spectral  linewidth in a quantum  well  laser as a  function  of  the 
well thickness.  The  number of quantum  wells is optimized for each  quan- 
tum well  thickness. 

The  denominator of (19) is proportional to g ' (E l ,  n). 
Therefore, from the results of the previous section,  an  in- 
crease of the  denominator  can be expected with the use of 
QW's.  The  numerator in (19),  however, is also enhanced 
in QW structures.  Therefore, it is difficult to predict the 
behavior of CY in these  structures without numerical cal- 
culations.  Fig. 7 gives  a  calculation  of CY as  a function of 
eFc for conventional DH lasers  and QW  lasers. In this fig- 
ure,  the  thickness of the  QW's is equal to 50 A. These 
calculation indicate first that CY depends strongly on eFC (or 
equivalently, on the  level of injection which is determined 
by optical  gain required for  laser  oscillation), its magni- 
tude  decreasing  for  larger eFc. (This result has been ob- 
served experimentally  for conventional DH lasers [65].) 
Second,  this reduction of la1 with increasing excitation is 
larger in QW lasers than in  conventional DH lasers. 
Therefore,  a  smaller  number of QW's leads to a smaller 
value of I C Y (  because  a  laser with a  smaller number of 
QW's requires higher  Fermi  energy  levels  for  a given 
modal gain. 

The  linewidth Av also  contains  the spontaneous emis- 
sion factor nsp which decreases monotonically with the 
increase of eFC and  converges  to 1 .  This n is the ratio of 
the spontaneous emission rate into  the  lasmg  mode to the 
stimulated  emission  rate and is given by 

sp 

(22) 

If the  energy broadening due to the intraband relaxation 
is extremely  small,  we can approximate nSp at the photon 
energy El by 

1 
nsp = (23) 

1 - exp ((El - E ~ ,  + eFC)/kT)' 

As shown in this  equation, nsp is  a monotonically decreas- 
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ing function of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE ~ , .  Therefore,  for  a fixed loss (Le., Fg is 
constant), it is advantageous to operate  with  a  high eFC to 
attain a reduction in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAv. With regard to  the  number of 
QW’s, this means  that, in contrast to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA, the  SQW  active 
layer  is  the  optimum  choice  for  phase noise reduction. 
Fig.  8 gives the  minimum  attainable Av as  a function of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
L, with various aloss. We notice that Av is reduced great9 
for a thin active  layer. Av is minimum  around L, = 80 A 
because there is the current region in which a of L, = 80 

is  smaller than that of L, = 50 in the case of cyloss 

= 10  cm-’.  Since  the  value Av for  a  DH  laser (0.1 Frn 

active layer) is calculated to be  60  MHzImW  with atOtal 

= 30 cm-’ , Av can  be substantially reduced  with  a  thin 
QW  structure by a  factor of & compared to Av for DH 
lasers.  For all L,, Av increases  monotonically  when  the 
number  of  QW’s  increases. 

B. Experiments 
Recently,  Ogasawara et  al. [66] measured the a param- 

eter  of MQW lasers  experimentally.  The  active  layer  con- 
sisted of  four  40  thick  GaAs wells and  four 50 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA thick 
Al0,,Gao.,As barriers.  They  measured  the  change in 
aXR(El,  n)/an and aXr(El,  n)/an separately. aXR(El,  n)/an 
is  measured  from the wavelength  shift of a  Fabry-Perot 
mode  with  pulsed  current injection below threshold and 
8 x I ( E l ,  n)/an is  measured  from  the  depth of modulation 
in the  spontaneous  emission intensity. Although their 
measurement  is not a  direct  measurement  and  the  mea- 
sured a is obtained  below  threshold, their result supports 
our  prediction.  Their  experiment suggests that a of a QW 
laser  is  smaller by a  factor of 4 compared  to that of a 
conventional DH laser  with the same  carrier concentra- 
tion. 

V. NEW OPTICAL DEVICES USING QUANTUM  WELLS 

A.  New Optical  Devices  Using QW Structures 

As discussed above, the QW  laser is a  promising light 
source for various applications, and considerable effort has 
been  devoted  to  developing high-quality QW lasers.  In 
addition,  other  new  optical  devices  based  on  QW struc- 
tures have  been  proposed  and  demonstrated.  These in- 
clude optical  modulators [67], [68], optical bistable de- 
vices [69],  tunable p-i-n QW photodetectors [70], [71], 
size effect modulation  light  sources 1741, Q-switching 
laser light sources [9], and  modulation-doped detectors 
[72], [73]. The first three  devices utilize the  quantum- 
confined Stark effects [84], [85] described as follows. The 
room-temperature absorption spectrum of  MQW displays 
enhanced absorption at the band edge, with  a double- 
peaked structure caused by excitons whose  binding  en- 
ergy  is  enhanced by the  two-dimensional confinement. 
When  an  electric field is applied to the  QW’s perpendic- 
ular to the layers,  the  exciton absorption peak shifts to 
lower  energy.  This effect is much  larger than the  Franz- 
Keldysh effect seen in bulk  materials.  The  dominant 
mechanism is the  decrease in confinement  energies, re- 
sulting in a red shift of the excitonic absorption energy. 

(b) 

Fig. 9. (a)  Perspective  view of the  two-segment  quantum well laser.  The 
lengths of the  amplifier section I ,  and the  modulator  section Z2 were 250 
and 50 pm,  respectively. (b) The  associated  energy  band  diagram of the 
active  layer. 

The  band discontinuities prevent  the ionization of the ex- 
citon,  allowing excitonic resonances  to  be  observed  at 
room  temperature  with  large  applied fields (> lo5 V/cm). 

The  concept of the  size effect modulation  proposed by 
Yamanishi zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet al. [74] also  utilizes  the  application of elec- 
tric field. This  causes the spatial displacement of the  elec- 
tron distribution and  hole distribution in a  well,  which 
leads to the modulation of the  matrix  elements. 

B. Q Switching  in an MQW Laser  with  an Internal Loss 
Modulation 

Picosecond  pulse  generation  technology in semicon- 
ductor  laser  diodes is important  for  high-speed  optical 
communication  systems 1751-[83]. In Q-switching  lasers, 
in contrast to mode-locked  lasers,  no external mirror is 
needed [80], [81] and  lower  modulation  power  is required 
compared  to  gain switching systems  [82],  [83]. Recently, 
effective active  Q  switching was successfully demon- 
strated by Arakawa et  al. [13] in a  GaAsIAlGaAs MQW 
laser with an intracavity monolithic electroabsorption loss 
modulator.  The physical phenomena utilized are the 
quantum  confined  Stark effect in the modulation section 
and the enhanced carrier-induced band shrinkage effect 
[86] in the optical amplifier section. Optical pulses as nar- 
row as  18.6 ps full width  at half maximum (FWHM), as- 
suming  a  Gaussian  waveform, are  generated. 

Fig. 9(a) illustrates the two-segment MQW laser  con- 
sisting of an  optical amplifier section and an electroab- 
sorption loss modulator  section. The  device  structure  was 
grown by molecular  beam  epitaxy.  The associated energy 
band  diagram  is  shown in Fig.  9(b).  A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 pm  wide sepa- 
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Fig.  10.  Intensity  autocorelation  trace  obtained  from  second  harmonic 
generation  widht 1.5 GHz modulation  frequency  and  0 V bias.  The  cur- 
rent injected  into  the  optical  amplifier  section  is  170 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmA. 

ration was selectively etched in the p+-GaAs between the 
two  segments  for  electrical  isolation.  The  lengths of the 
amplifier section Il  and  the  modulator section Z2 were  250 
and 50  pm, respectively. 

In the amplifier section,  the  carrier-induced band shift 
occurs.  This effect is enhanced in MQW lasers  compared 
to conventional  DH  lasers, resulting in a  decrease of the 
lasing photon energy by about 17 meV [86] compared to 
the  absorption edge.  Therefore, with no electronic field, 
the absorption loss is small  at  the  lasing photon energy, 
which results in extremely large  loss changes induced by 
the  application of an electrical field with the quantum- 
confined Stark effects to the  modulation  section. 

Q switching  was  obtained by applying both a  dc bias 
voltage zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv b  and a  microwave  signal  to  the modulator. Fig. 
10 shows an intensity autocorrelation  trace obtained from 
the second harmonic  generation  under  the condition of 1.5 
GHz modulation frequency and v b  = 0. The  autocorre- 
lation FWHM is 26.3  ps, which corresponds  to  a pulse 
full width at half maximum  AT^,^ of 18.6 ps  if a Gaussian 
waveform is assumed. 

The efficient Q switching in the two-segment MQW 
laser results from the  following  mechanisms.  In  the Q- 
switching  regime,  a  large loss change  and  a high differ- 
ential gain (the  derivative of the  gain with respect to car- 
rier concentration) will lead to a narrow pulse  width.  In 
this  device,  a  large  loss  change is realized with the quan- 
tum-confined Stark effect in  the  modulator section and the 
band shrinkage effect in the  optical amplifier section. On 
the  other  hand,  a high differential gain is also expected in 
the  quasi-two-dimensional  electronic system in an MQW 
structure [ 101, [ 111. Thus, by the  use of an MQW struc- 
ture,  the  two-segment  laser satisfies both requirements for 
the  generation of narrow optical  pulses. 

The modulation frequency response (i.e., repetition 
rate) of the  laser  was  also  measured. We observed the 
fundamental spectrum as well  as  harmonic spectrum lines 
in  the  spectrum  analyzer  display. At the present stage,  the 
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Fig. 11. (a) Illustration of the  active  layer  with  a  multiquantum  well  struc- 
ture,  a  multiquantum  wire  structure,  and  a  multiquantum  box  structure, 
(b) Density of states of electrons in a DH structure,  a  multiquantum well 
structure,  a  multiquantum  wire  structure,  and  a  multiquantum  box  struc- 
ture. 

maximum repetition rate which still  leads  to regular pulse 
generation is 5.2 GHz. 

VI.  QUANTUM WIRE AND QUANTUM Box LASERS AND 

THEIR  EXPERIMENTAL  DEMONSTRATION 

A. Concepts of Quantum  Wire  Laser and Quantum zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBABox 
Laser 

The QW structure has proved to be very promising for 
application to semiconductor  lasers, which is  due mainly 
to the  two-dimensional  properties of the  carriers [9]. Ar- 
akawa et aZ. [9] proposed the  concept of quantum wire 
lasers or quantum box lasers  with,  respectively,  a one- 
dimensional  or/and  a  zero-dimensional  electronic  system. 
They predicted a reduction in the  temperature  dependence 
of the threshold current  due to the peaked structure of the 
density of states.  In  addition,  the  gain  characteristics [87] 
and the  dynamic  properties  were  also investigated [lo]. 
Although Petroff tried to  fabricate  quantum wire struc- 
tures [88], no satisfactory quantum wire structure has been 
fabricated  for  optical  devices  or  electronic  devices [89] to 
date. Another approach  for realizing the one- or two-di- 
mensional effects experimentally is the use of magnetic 
fields [9], [90]-[95]. One-dimensional  electronic systems 
can be formed by placing a conventional DH laser  in  a 
high magnetic  field. If we  place  a  quantum well laser in 
a high magnetic field so that the  quantum well plane is 
perpendicular  to the field,  a zero-dimensional electronic 
system is realized. In this  section, we discuss  the  possible 
properties obtained in quantum wire lasers and quantum 
box lasers  theoretically and then demonstrate these effects 
in high magnetic field experiments. 

Fig. 1 l(a) shows simple  illustrations of the  active  layer 
in multiquantum well, multiquantum wire, and multi- 
quantum box lasers. By making such multidimensional 
microstructures,  the  freedom of the  carrier motion is re- 
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Fig. 12. The  differential  gain  and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa as  a  function of the  conduction  band 
quasi-Fermi  energy  level  in  a  quantum  wire  laser  with 50A quantum 
dimensions. 

duced to one or zero.  The  density of states of electrons in 
these  structures is expressed as 

for the quantum wire laser (24) 

for the quantum box laser zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(25) 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE,, and Ek are  the  quantized  energy levels of a 
quantum  wire  laser  and  a  quantum box laser. As shown 
in Fig. 1 l(b), the  density  of  states  has  a  more peaked 
structure with the  decrease of the  dimensionality.  This 
leads  to  a  change  in  the gain profile,  a reduction of thresh- 
old  current  density,  and  a reduction of  the  temperature 
dependence of the threshold current.  Furthermore,  im- 
provements of the  dynamic  properties  are  also  expected. 

The  narrower  gain profile due  to  the peaked density of 
states  leads to a high differential gain.  One  curve in Fig. 
12 shows  the differential gain  as  a  function of the  Fermi 
energy level for quantum  wire  lasers. A comparison of 
this figure to  Fig. 5 reveals  two  important  results.  One is 
that a  higher differential gain  can  be obtained with the  use 
of quantum wire structures. The second one  is that the 
dependence of the differential gain on the  Fermi energy 
level  is  enhanced  for  quantum wire lasers compared to 
quantum well lasers. A higher differential gain,  therefore, 
is  obtained in a  quantum wire laser with a  large  number 
of  quantum  wires,  and the sensitivity of the differential 
gain to the  number is more  enhanced  for quantum wire 
lasers  compared to  the quantum well lasers. 

One  curve in Fig. 13 shows  the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfi as  a function of the 
dimension of the  quantum  wires. In this calculation,  it is 
assumed that  the  two  quantum  dimensions are equal  and 
that  the  number  of  quantum wires is optimized for each 
quantum  dimension.  This result indicates  that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfr is  en- 
hanced by a  factor of 3 with the  use of thin quantum wires 
compared  to the conventional DH. The spectral  properties 
of  the  quantum  wire  laser  are  also  improved.  The second 
curve  in  Fig. 12 shows  the  dependence of a! on  the  Fermi 
energy  level. As shown in this  figure,  the  dependence of 
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Fig. 13. The  relaxation  resonance  frequency  and  the  linewidth in a  quan- 
tum  wire  laser  as a function  of  the  wire  thickness. The number  of  quan- 
tum  wells  and  quantum  wires is optimized  at  each  quantum  well  thick- 
ness. 

a! in  a  quantum  wire  laser is not as  enhanced  and is almost 
constant in  the whole range. The second  curve in  Fig.  13 
shows Av as  a  function of the  thickness of the  quantum 
wells.  This  indicates  that a! is reduced with the decrease 
of the  thickness. 

The a! parameter of quantum box  lasers should be noted. 
If we can ignore  higher  subbands'  effect,  the density of 
states is a 6 function-like.  Therefore,  the photon energy 
with the maximum gain  coincides with the  energy  levels, 
which leads  to  the  disappearance of the  detuning  and the 
real  part of the  complex susceptibility becomes  zero. 
Consequently, a! is expected to be extremely small in a 
quantum box laser with a  simultaneous  improvement of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5 .  

B. Magnetic Field Experiment 
A  quasi-quantum wire effect in a  semiconductor  laser 

can  be realized through  the  use of high magnetic fields 
[8], [SI, in which case  electrons  can  move freely only in 
the  direction of the  magnetic field. The motion of such 
electrons is quantized  in  the  two  transverse  directions (x,  
y ) ,  forming  a  series of Landau energy subbands.  The  den- 
sity of  states  for  the  system P , ( E )  can  be  expressed  as 

312 m 

P C ( € )  = ( A w 3  @) 1 
(26) 

j = o  JC - ( j  + +) hoc 

where w, and mC are  the  cyclotron  corner frequency and 
the effective mass of electrons.  When Tzu, is large enough 
(i.e., the B field is  large  enough),  only  the first Landau 
subband is occupied,  resulting in a  true  one-dimensional 
electronic  system.  In  the  actual  system,  the  carrier relax- 
ation effect should also  be  considered. 

Fig. 14 shows  the  measured  spectral  linewidth at. 190 
K for  various  magnetic fields ( B  = 0, 11, 16, 19 tesla) as 
a  function of the  reciprocal  mode  power 1/P 1941. A 
GaAlAs buried heterostructure  laser grown by liquid phase 
epitaxy was operated  in  a  stationary  magnetic field of up 
to 19 tesla  at  190 K. The test  laser (an ORTEL  Corpora- 
tion experimental model) has a 0.15 pm  active region 
thickness, 3 pm  stripe  width,  and  was 300 pm long. As 
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Fig.  14.  The  measured  spectral  linewidth  as a  function of the reciprocal 
of output  power (in relative  units)  for  magnetic fields  of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB = 0, 11, 16, 
and 19  tesla at 190 K. 

shown  in  the  figure,  the  measured linewidth for each mag- 
netic field varies  linearly with the  reciprocal mode power. 
Such a variation indicates that the  linewidth results from 
quantum broadening  (spontaneous  emission).  The  exper- 
imental results indicate  that  this  power-dependent  line- 
width is substantially reduced with the  increase of the 
magnetic field. At 19 tesla,  the  linewidth  decreases by a 
factor of 0.6 compared to the linewidth without a mag- 
netic field.  This  improvement of the power-dependent 
linewidth is believed to  be  due mainly to quantum wire 
effects through the  formation of a quasi-one-dimensional 
electronic  system  as discussed above. 

One  important difference between ‘‘true”  quantum wire 
structures and the  quasi-quantum wires due to magnetic 
fields is that  the  optical confinement factor  for  true  quan- 
tum wire  structures can be controlled by varying  the num- 
ber of quantum wires. Theoretical predictions indicate that 
a  higher  Fermi  energy level for  laser  oscillation  leads to 
lower (Y and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAnSp [7]. Therefore, in the  true  quantum wire 
case, it should be possible to decrease nSp and a by re- 
ducing the  number of quantum  wires while maintaining 
the  one-dimensional  electronic  properties.  This would al- 
low one to reap the benefits of quantum wires in terms of 
smaller a’s without paying a penalty in nsp. The  overall 
reduction of linewidth zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAV would then be much larger than 
demonstrated  here. 

f r  was also measured at room temperature  [93].  Fig.  15 
shows  the measured f r  with and without a magnetic field 
of 20 tesla  as  a  function of the  square root of the  output 
power Po. Open circles (B = 0) and closed circle ( B  = 

20 tesla)  indicate  the  measured fr . The  straight  lines in 
the figure are  drawn by the  least  square  error method. 
Since, as shown in (16), f r  is proportional to fro, f r  should 
lie on a  straight  line.  The variation of the  slope of this 
line will mainly reflect the  change in differential gain zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg’ 
which has resulted from  the  applications of the magnetic 
field. We notice thatf, with B = 20 tesla is enhanced 1.4 
times  compared  to fr with B = 0. From this change, we 
can estimate  that g’ (B = 20 tesla) is 1.9 times  larger than 

Quantum box effects (i.e., full quantization) were also 
investigated by Arakawa et al. [95] by placing a  GaAs/ 

g’ (B = 0). 
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Fig. 15. The measured  relaxation  resonance  frequency  as a  function  of  the 
square  root of output  power (in relative units) for  magnetic fields  of B 
= 0, 20 tesla  at  room  temperature. 
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Fig. 16. (a)  Electron  motions  confined by the  quantum  well  potential as 
well as Lorentzian  force,  being in  zero-dimensional  electronic  states.  (b) 
Experimental  results  of  the  wavelength  shift  of  the  spontaneous  emission 
spectrum  as  a  function  of  the  pulsed  magnetic field up to 30 tesla. 

GaAlAs quantum well laser  in  a high magnetic field. If a 
magnetic field is applied  perpendicular to the quantum 
well plane as  shown in Fig. 16(a],  electrons  are confined 
by the  quantum well potential as well as the Lorentzian 
force, being in  zero-dimensional  electronic  states. In this 
case,  the density of states is described by the following 
formula: 

The  evidence of the  formation of the full quantized effects 
was obtained by measuring anistropic properties of the 
spectral  shift with the  increase of the magnetic field. If a 
magnetic field is applied parallel to the QW plane,  the 
cyclotron motion is  interrupted by the QW potentials. 
Therefore, as long as  the  magnetic field is not extremely 
strong,  the  spectral peak shift  is  suppressed. On the  other 
hand, with the  perpendicular  magnetic  field,  the  spectral 
peak  shift  occurs  towards  a  shorter wavelength through 
the  increase of the Landau energy level.  Fig. 16(b) is the 
experimental results of the wavelength shift of the spon- 
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taneous  emission  spectrum  as  a  function of the pulsed 
magnetic field up  to 30 tesla. The results clearly indicate 
the  anisotropic  properties, which is the  evidence of the 
formation of the  zero-dimensional  electron  states. 

VII. CONCLUSIONS 

We  have  discussed a number of interesting  theoretical 
and  experimental results of quantum well lasers with em- 
phasis on the  basic  physical phenomena involved  in  the 
gain,  the spectral fields, and the modulation response. The 
results reveal  that  an  optimized  use of the  quantum well 
structure can lead to substantial improvement in most of 
the important  properties of these  devices. 
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