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Quantum wideband traveling-wave analysis of a degenerate
parametric amplifier
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We develop a wideband traveling-wave formalism for analyzing quantum mechanically a degenerate parametric
amplifier. The formalism is based on spatial differential equations-spatial Langevin equations-that propagate
temporal Fourier components of the field operators through the nonlinear medium. In addition to the parametric
nonlinearity, the Langevin equations include absorption and associated fluctuations, dispersion (phase mismatch-
ing), and pump quantum fluctuations. We analyze the dominant effects of phase mismatching and pump quantum
fluctuations on the squeezing produced by a degenerate parametric amplifier.

1. INTRODUCTION

A degenerate parametric amplifier (DPA) is the prototypic
device for generating squeezed-state light.1-3 A DPA runs

on the nonlinear interaction between a signal field near
frequency Q and a pump field at frequency Qp = 2Q.4 This
parametric interaction has been exploited to generate
squeezed-state light 5 -but in an oscillator, rather than an
amplifier configuration. In the oscillator configuration the
nonlinear medium is enclosed in an optical cavity, in which
multiple passes through the medium increase the effective
nonlinearity.6-'0 If one could find materials with larger x(2)
nonlinearities, however, one might prefer an amplifier con-
figuration because of its intrinsically wider bandwidth.

The conventional approach to quantum problems in non-
linear optics is to specialize to a few interacting modes of the

electromagnetic field. All the spatial dependence is con-
tained in the spatial mode functions. The basic equations
are temporal differential equations that describe the evolu-
tion of the modes. In one realization these equations are
temporal operator Langevin equations for the evolution of
the creation and annihilation operators of the modes.

This conventional approach is well suited for analyzing a
parametric oscillator, in which the appropriate modes are
modes of the optical cavity, but it is ill suited for analyzing a

DPA, which is a traveling-wave device not easily thought of

in terms of a few discrete modes. To analyze a DPA, one

would like a set of spatial differential equations for the
propagation of the fields through the nonlinear medium.
One way to get such spatial differential equations is to take
the temporal differential equations for discrete modes inter-
acting parametrically and to replace t with Z/Vph, where Vph is

the phase velocity in the medium.' Aside from its ques-
tionable validity, this procedure runs into trouble when
there is dispersion, and it does not address questions about
bandwidths. These problems with the conventional ap-
proach have been stressed by Tucker and Walls,12 who de-

veloped a wave-packet formalism in an attempt to deal with
them.

In this paper we model a DPA in a different way. Our

approach is patterned after the approach used in classical

nonlinear optics, which is formulated in terms of spatial
differential equations for coupled Fourier components of the
fields. We start with an ideal, lossless, dispersionless medi-
um with a nonlinear susceptibility x(2). In such a medium
the Heisenberg equations for the field operators are an oper-
ator version of the macroscopic Maxwell equations, together
with a constitutive relation that includes the nonlinearity.13
A temporal Fourier transform then yields spatial differential
equations for propagation of the Fourier components of the
field operators through the medium. These equations de-
scribe a parametric interaction between signal frequencies Q
i e and the pump at frequency Qp. Because there is no
dispersion, the parametric interaction is perfectly phase
matched.

Our next step is to include absorption and dispersion
phenomenologically. We replace the actual nonlinear medi-
um by a sequence of slabs of ideal medium separated by
beam splitters. Reflection at the beam splitters models a
linear loss mechanism, and frequency-dependent phase
shifts at the beam splitters introduce dispersion. The final
result is a set of spatial propagation equations that include
absorption and phase mismatching. These equations might
well be called spatial operator Langevin equations for the
propagation of the field through the nonlinear medium.

Throughout our analysis we are interested in the domi-
nant effect of quantum fluctuations in the pump field, our
goal being to investigate the conditions under which the
pump can be treated classically. The dominant effect arises

from quantum phase fluctuations in the pump, which feed
noise from the amplified signal quadrature into the squeezed
signal quadrature. The quantum phase fluctuations in the
pump can be viewed as due to vacuum fluctuations at unex-
cited frequencies near Qp, which couple to signal frequencies
through the parametric nonlinearity. The bandwidth over
which such vacuum fluctuations are important, which can be

thought of as the pump bandwidth, determines the size of
the quantum phase fluctuations in the pump. This pump
bandwidth is limited by phase mismatching, which renders
frequencies sufficiently far removed from 6p effectively un-
coupled from the signal frequencies. We evaluate this
pump bandwidth within our model. Perhaps surprisingly,
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it is smaller than the bandwidth over which the DPA is phase
matched.

In Section 2 we describe our model of a DPA, present a
simple heuristic argument for the conditions necessary for a
classical pump, and then derive the spatial Langevin equa-
tions for the model. In Section 3 we use the spatial Lange-

vin equations to investigate the effects of phase mismatch-
ing and pump quantum fluctuations on the squeezing spec-

trum.

2. MODEL FOR THE DEGENERATE
PARAMETRIC AMPLIFIER

A. Description of Model

Consider a nonlinear medium of length L, which lies be-

tween z = 0 and z = L. The nonlinearity is described by a

nonlinear susceptibility x2). Propagating through the me-
dium in the +z direction is a strong pump wave at frequency
QP and a signal wave at frequencies near the degeneracy

frequency Q = Qp/2. The parametric nonlinearity couples
the pump to signal frequencies + e. We idealize all the

waves as plane waves with a single polarization in which the

electric (magnetic) field lies along the x axis (y axis). Spe-

cializing to a single polarization ignores the details of how

phase matching is achieved in many real DPA's, but these
details are not important for our quantum analysis. Spe-

cializing to plane waves ignores the transverse structure of

the waves, which we, nonetheless, take into account crudely
by introducing an effective cross-sectional area o- for the

waves.
We assume for simplicity that the index of refraction for

frequencies near Qp is uniform with value np = no; hence the
pump wave number is Kp = Qpno/c. The index of refraction

for frequencies w = Q + e near Q is allowed to be dispersive

with value n(o) = no + An(c); the corresponding wave num-

ber is denoted k(o) = wn(o)/c. We assume perfect phase

matching at degeneracy, i.e., An(Q) = 0, so that the wave

number at degeneracy is K = Qno/c = Kp/2.
We assume, for convenience, that the medium is lossless

for frequencies near 5p, but we allow for absorption at fre-

quencies co near Q. The absorption is characterized by an
absorption coefficient y(o), which gives the loss per unit

length in photon units.
The pump's magnetic field has complex amplitude iApeiP

= iApe2ik, where AP is the pump amplitude and /p = 20 is the

pump phase. The corresponding pump power is Pp = (coY
87rno)Ap .

It is useful to introduce a dimensionless measure of-the

nonlinearity,

27rxA(2A X
12) I87SP 1/2

ao - 2 P = 2r 3/2 (2.1)
no n o

in terms of which the nonlinear gain coefficient of the medi-
um is

got -ao(Q/c) = ao(K/no). (2.2)

There are three important spatial rates in our model: (i) the

rate of accumulation of phase K, (ii) the nonlinear gain
coefficient go, and (iii) the absorption coefficient -y. The

fundamental assumption of our analysis-just as it is the

fundamental assumption of a classical analysis of a DPA4-

is that these spatial rates satisfy

go, -y << K. (2.3)

That go << K is equivalent to saying that the dimensionless
nonlinearity ao << 1.

The nonlinear gain is effective only over the bandwidth for

which the medium is phase matched. The extent of phase
mismatching at frequencies Q i is characterized by

Ak(e) n KP - k(Q + e) - k(S2 - E)_ (0 + E)An() + e) ( -e)An(Q-E) (2
c c

The index of refraction varies only a small amount over the

phase-matched bandwidth, so we can expand it as

An(Q + e) = InE + /2n e
2

, (2.5)

where the derivatives of n(c) are evaluated at Q. One then

finds that

Ak(e) = -pe2 /Qc, p - 2Qn' + Q2n", (2.6)

where p is a dimensionless factor for which a typical value

might be pJ - 0.1. One can now introduce frequencies l

and E2 at which the medium begins to be badly mismatched:

IAk(e,)LI = 1 =e = JPi 1(QC/L)112,

IAk(e)/2go1 = 1 E2 = |pi-1/2(29cgo)1/2.

(2.7a)

(2.7b)

The bandwidth A/2ir over which the DPA is phase matched
can be defined as

A/27r -7r- 1 min(el, e2) << Q/2r. (2.8)

B. Conditions for a Classical Pump

The pump wave is, of course, not completely classical. Its

monochromatic excitation at frequency Up is inevitably ac-
companied by quantum fluctuations, which lead to fluctua-
tions in the pump amplitude and phase. The limit in which
the quantum fluctuations can be totally ignored and the
pump is strictly classical is not just the limit of a very strong
pump; rather, it is that the pump amplitude Ap - a, while
the nonlinear susceptibility x2

- 0, in such a way that the
dimensionless nonlinearity ao X(2 )Ap (or the nonlinear gain
go) is held constant. Knowing this limit, however, does not

tell one whether the pump in a given DPA can be treated

classically to a good approximation. Indeed, the important
practical question concerns a given nonlinear medium with a
fixed value of x(2)-not a fixed value of ao. One would like to

know, given x(2), the range of pump powers Pp for which the

pump is approximately classical.
There is a simple heuristic argument 4 for the dominant

effect of pump quantum fluctuations. If the DPA were
powered by a classical pump, it would produce ideal

squeezed light at phase-matched signal frequencies. Such
ideal squeezed light can be represented in a complex-ampli-
tude diagram by an ellipse15" 6 with radius e-goL for the
squeezed quadrature and radius egoL for the amplified quad-
rature (ellipse with solid lines in Fig. 1). The orientation of

the ellipse is determined by the phase of the pump; in Fig. 1
the pump phase is chosen so that the ellipse with solid lines
is oriented along the real and imaginary axes.
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Fig. 1. Effect of pump quantum fluctuations on squeezing. Ideal
squeezing is represented by the ellipse with solid lines. Pump phase
fluctuations cause the orientation of the ellipse to fluctuate through
a characteristic angle A-0 = 1/4 Ap, as indicated schematically by
the dotted ellipse. These fluctuations feed noise from the amplified
signal quadrature into the squeezed signal quadrature.

A A= /4Gp Given a pump bandwidth AP/27r, one can identify the
number of pump photons as

Na PP cc- - ~A,2
N, = hQ A /27r 4nohQ AP2 = Ava) AP. (2.10)

Here

Avac- (4nohQ (2.11)

is an effective amplitude for the pump quantum fluctua-
tions; it corresponds to a vacuum power Pv8 = (co/87rno)
X Avac2 = hQp\Ap/2r. Notice that the variance in the pump
phase is

(/Op)2 = 1/4Np = (h,/4Pp)(A/2ir). (2.12)

It is useful to introduce a dimensionless nonlinear suscepti-
bility

a0 27rX
2
'Avac

avac .>- 2
AP no

(2.13)

which measures the intrinsic nonlinearity of the medium in
units of the pump vacuum amplitude.

Now write condition (2.9) for a classical pump as

(2.14)

For a given nonlinear medium with a fixed value of
ava,(9L/c), there is a restricted range of pump amplitudes
for which the pump is approximately classical. The upper
end of the range is determined by the solution of

The dominant effect of pump quantum fluctuations arises
from the phase fluctuations, which have characteristic size
A4 = 1/2NP,/2

= 1/2Ap. Here N, is the number of pump

photons, and Ap is a dimensionless pump amplitude in pho-
ton units. The pump phase fluctuations cause the orienta-
tion of the ellipse in Fig. 1 to fluctuate, as indicated schemat-
ically by the dotted ellipse. The characteristic angle
through which the ellipse turns is A = p/2 = 1/4A,.
These orientation fluctuations feed noise from the amplified
signal quadrature into the squeezed signal quadrature,
thereby degrading the squeezing. The characteristic size of
the noise added to the squeezed quadrature is AqoegoL. Thus
the condition for a classical pump is

AoegoL = eL/4J «j oL A >> 1/4 eOL = 1/4 e2ao(L/c)

(2.9)

One sees in this condition the limit for a strictly classical
pump: a = constant, AP - .

Missing from the preceding argument is any hint of how to
relate the physical pump amplitude AP to the dimensionless
amplitude AP,. That relation requires identifying an appro-
priate bandwidth. The pump quantum fluctuations can be
regarded as arising from vacuum fluctuations in unexcited
frequencies near Up, which are coupled to signal frequencies
by the parametric nonlinearity. The size of the phase fluc-
tuations-and, hence, the effective number of pump pho-
tons-depends on the bandwidth of nearby frequencies that
must be considered. Clearly this pump bandwidth A,/27r is

limited by phase mismatching, which means that frequen-
cies sufficiently far removed from p are not effectively
coupled to frequencies in the signal field.

Amax = /4 exp[2avac(QL/c)maj; (2.15)

to be approximately classical, the pump must have dimen-
sionless amplitude AP much bigger than 1 but somewhat
smaller than Amax. Rewritten in terms of physical parame-
ters, the condition for a classical pump becomes

I AP [ (2> (_ _) 8Pp 1/2]P ,, > » B6-- h y-exp [8 w i ( c c i J (2.16)

These considerations hinge on knowing the pump band-
width A P/27r. One's first guess might be that A,/27r is about
the same size as the phase-matched bandwidth A/2r, but our
detailed calculation in Subsection 3.D confirms the preced-
ing argument and shows that, within our model,

Ap,/27r = cg 0 /01n'l, (2.17)

which is typically smaller than A/27r.
Previous analyses of pump fluctuations in a DPA have

idealized to a few discrete modes; thus they do not address
bandwidth questions. W6dkiewicz and Zubairy 7 special-
ized to a single-mode pump and a single-mode signal, and
they analyzed classical fluctuations in the pump amplitude
and phase. Their result is consistent with the above argu-
ment, with AO, given by classical phase diffusion instead of
quantum fluctuations. Hillery and Zubairy 4 considered a
single-mode pump and a single-mode signal, and they evalu-
ated the effect of pump quantum fluctuations by using a
path-integral analysis. Their result is consistent with the
preceding argument. Scharf and Walls1 8 specialized to a
single-mode pump and a two-mode signal (signal and idler
modes), and they did a detailed asymptotic analysis of pump
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quantum fluctuations. In their analysis the dominant effect
of pump quantum fluctuations is an error term e3 oL/8Ap
(in our notation), a bigger effect than the dominant effect
egoL/4,Ap suggested by the above argument. If the Scharf-
Walls result is correct, then pump quantum fluctuations are
more serious than our analysis indicates.

C. Spatial Langevin Equations

We are primarily interested in the behavior of the signal
field. Propagating toward the nonlinear medium from the
vacuum region z < 0 is the input signal field, a free field

whose positive-frequency field operators can be written as

Bin(+) = Din(+) = Ein(+) = I -(2Ch)

X ain(w)exp[ic(z/c - t)], z _ 0, (2.18)

where the integral runs over a bandwidth J. about 0, which
contains all relevant signal frequencies. The operators
ain(w) and aint(a) are annihilation and creation operators for
the input signal field; they satisfy continuum commutation
relations

[ain(-), aint(o')] = 27rO(ao - a"). (2.19)

The total energy (power integrated over all time) transport-
ed by the input signal field through a surface z = constant is

J d hwain(w)ain(a).
27r

Similar considerations apply to the output signal field,
which propagates away from the nonlinear medium into the
vacuum region z > L. We denote it in the same way as the

input signal field, but with the designation "in" replaced by
"out."

Inside the nonlinear medium we write the signal field in
terms of a temporal Fourier expansion. The positive-fre-
quency part of the magnetic-field operator is given by

Bs(+) = I d B8(ca, z)exp[i(kz -t)],
2r

k = wn(w)/c, 0 _ z _ L, (2.20a)

B8 a, z) = Ci /22rn()h] a,(co, z). (2.20b)
Ln(a')Vg(a)JL cc-

Here vg(a) - (dk/dco)-1 is the group velocity in the medium.
If there were no nonlinearity, the Fourier components

B8 (a, z) would have no z dependence, and the displacement-

field operator D,(+) and the electric-field operator Es(+)
would have Fourier expansions similar to Eq. (2.20a), with
D8(a) = [n(co)]2Ea' = n(a')B(a). In addition, the total
energy transported by the signal field through a surface z =

constant would be

J ca,1()ajo)
2327r

[the group-velocity factor in Eq. (2.20b) is included to ensure
this form]. Since the nonlinearity is small, we ignore the

energy stored in the nonlinear polarization; hence we can

write the total energy transported by the signal field through
a surface z = constant in the nonlinear medium as

|dcw haa'(c, z)a,,(co, z).
53 27r

Thus the operators a,(w', z) are Fourier components normal-
ized to be in photon units.

These considerations show that, if there are no reflections
at the input and output surfaces (perfect antireflection coat-
ings), then appropriate boundary conditions are

a,(w, 0) = ain(ao), aout(w) = a6(a, L). (2.21)

A priori one does not know the commutators of the Fourier
components aO, z), because knowing them would require

knowing the nonequal-time field commutators. Nonethe-
less, in this simple case of plane waves propagating in one
direction with no reflections, the above boundary conditions
specify the commutators for a8(co, 0) and at(a', 0) and also

the commutators for a(w, L) and at(w', L). Further, since
the output boundary could be put at any value of z, one in
fact knows the equal-position commutators for any value of

[ask(, z), at(a", z)] = 2r6(w - O). (2.22)

Besides the signal field, one also needs the pump field.
Inside the medium we expand the pump's magnetic-field
operator as

Bp(+) = d B,(co, z)exp[i(z -t)],

ko = an./c, 0 _ z _ L, (2.23a)

B. (co, Z) =1 iA e'0P27r6(a - 0,) + (2°rn ap(', z).c2 /
(2.23b)

Here the integral runs over a bandwidth 8,p about 0p, which

contains all relevant pump frequencies. The first term in
B(a', z) is the strong mean pump field, and the second term
represents fluctuations about the mean. Considerations
identical to those for the signal field show that ap(a', 0) and
ap(a, L) are input and output annihilation operators at fre-
quency a. Throughout our analysis we assume that, aside
from the strong excitation at frequency Up, the input pump
field is in the vacuum state.

We would like to include in our description absorption and
dispersion in the signal field, but there is a difficulty in doing
so. The equations that we use to describe the nonlinearity
are an operator version of the macroscopic Maxwell equa-
tions, which are the Heisenberg equations derived from an
appropriate Hamiltonian. It is difficult to include losses
and dispersion in such a Hamiltonian formalism. 3 There-
fore we separate the losses and dispersion from the nonlin-
earity by using a trick (Fig. 2): Suppose that we have man-
aged to propagate the signal and pump fields to position z in
the medium and we wish to propagate them a further small
distance Az. We replace the actual medium between z and z
+ Az by a beam splitter followed by a slab of ideal nonlinear
medium, which has no absorption and no dispersion. The
reflectivity of the beam splitter accounts for losses, and
frequency-dependent phase shifts at the beam splitter intro-
duce dispersion. The ideal nonlinear medium has uniform
index of refraction no and nonlinear susceptibility x(.
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O (, z + Az)eiko(Z+ Az)

z Z+Az

I; v k<7 / , .L,
ap(wzJe"'07, aop(w,z)e'o' =o ap (wz)e 

ik, z r
Ideal

no

aos (w, z) ekoz

= eAnAz/c [( Az)1 2 s (z)eikZ

+ (YAz) 1/2 b5 ()eikz]

medium

Xl 2)

ap(w, z + Az)eiko (Z + A )

I = a0 (S z+Az)eiko(Z+ Az)

Js (ah Z AZ )ik (z + Az )
o a,(w, z +Az)e

= o 9s(W, z + Az)eiko(Z+AZ)

Fig. 2. Trick for introducing absorption and dispersion (phase mismatching). The actual nonlinear medium between z and z + Az is replaced
by a slab of ideal (lossless, dispersionless) nonlinear medium preceded by a beam splitter. Reflection at the beam splitter accounts for losses,
and frequency-dependent phase shifts at the beam splitter introduce dispersion.

The problem that must be solved is to relate the fields
entering the actual medium at z + Az, i.e., the Fourier com-
ponents a(, z + Az)exp[ik(z + Az)] and ap(a' z + Az)
X exp [iko(z + Az)], to the fields leaving the actual medium at
z, i.e., the Fourier components a,(a', z)eikz and a,(a, z)eikoz

(Fig. 2). To do this, we need to know how to propagate the

fields through the beam splitter and the ideal nonlinear
medium.

As a first step, we need to describe the fields within the
ideal nonlinear medium. We denote these fields by a sub-
script 0, and we write each field operator as a sum of a signal

field and a pump field. For example, the positive-frequency
part of the magnetic-field operator within the ideal nonlin-
ear medium is

Bo(+) = Bos(+) + Bop (2.24)

The signal and pump fields are written in terms of temporal
Fourier transforms:

Bo,(+) = J 2 Bo,(a, 4)exp[i(ko4 -t)],

ho = wno/c, (2.25a)

/ 2vz-n~ha 1/2
B0 (', 4) = I c ao8(12 , ), (2.25b)

BP0 >" = J 2 Bop(c', 4)exp[i(ko4 - cot)], (2.26a)
fp 

BO(a, ) = 2 iAe o2r(a' - 0P)

2irnoh' 1/2
+ a0 ,p(co, 4) (2.26b)

(z _ 4 • z + Az). Just as before, the operators a0 8(a, 4) and
ap(a, 4) give the energy transported in photon units, so it is
appropriate to impose boundary conditions in terms of
them.

The beam splitter transforms the fields that leave the
actual medium at z before they reach the slab of ideal medi-
um. Since the beam splitter has no effect on the pump field,
the appropriate transformation at pump frequencies is

a,(aw, z) = ap(a, z). (2.27)

At signal frequencies the beam splitter has frequency-
dependent reflectivity y(co)Az, which thus becomes the loss
in photon units at frequency co within the slab Az. In other
words, y(a') is the absorption coefficient (loss per unit
length) of the actual medium. To conserve energy (or to
preserve unitarity), the beam splitter must have a second
input port, into which propagates a free field with annihila-
tion operators b(a), satisfying continuum commutation re-
lations

[bja'), bt(a'9] = 2ir6(co - a'). (2.28)

This auxiliary signal field accounts for fluctuations associat-
ed with absorption; it is assumed to be in the vacuum state.
The transformation law for the beam splitter at signal fre-
quencies is

as(co, z)eikc = exp[iwAn(a')Az/c]{[1 - _y(a')Az]'/2a8(w, z)eikz

+ [jy(w)Az]l/
2
b,(a)etiZ}. (2.29)

The phase factors eikz and eikoz are included so as to match
the phase of the field leaving the actual medium to the phase
of the field entering the ideal medium. The frequency-
dependent phase shift at the beam splitter, a'An(a)Az/c,
where An(U a n(w) - no, is simply the additional phase shift

- ikwz

b (@),
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required to account for dispersion in the actual medium
within the slab Az.

It is useful in what follows to write b.(a') as an integral over

a continuum of contributions within the slab Az:

z+Az
b, (co) = (z)- 1/2 d~bs(w, ).

(ii) a pump equation,

dao0 (a, 4) go dco' [wo(o - 1) /
d4 2 Ap , 27r L Q2 Qp J

(2.30)

The operators b(a, 4) obey the commutation relations

[b8 (a', 4), bt(w', 4')] = 27r6(w' - a)6( - 4') (2.31)

At the far end of the slab, the appropriate boundary condi-
tions to get back into the actual medium are

ap(w, z + Az) = aop(w, z + Az), (2.32)

a,(co, z + Az)exp[ik(z + Az)] = a08(a, z + Az)

x exptiko(z + Az)].

(2.33)

Just as above, the phase factors in Eq. (2.33) match the
phase of the field leaving the ideal medium to the phase of
the field entering the actual medium.

What remains now is to propagate the field through the
slab of ideal nonlinear medium. If we describe the nonlin-
earity by a susceptibility x(2), then the Heisenberg equations
for a lossless, dispersionless nonlinear medium are simply an
operator version of the macroscopic Maxwell equations, sup-
plemented by a constitutive relation.' 3 The two important
Maxwell equations are cDo/(+)/Ot = -Bc,(+)/O and
8Eoq()/4 = -cr'OB0q(+)/Ot, where q can stand for either s or
p. We choose to write a constitutive relation for the electric
field in terms of the displacement field'3 rather than the
usual relation for the displacement field in terms of the
electric field. Thus we use a nonlinear susceptibility -q(2) =

no-6x(2). Decomposed in terms of signal and pump fields,
the constitutive relation becomes

Eo.(+) = noT2DS() - 87re2)DOP(+)Do(-) (2.34a)

Eop( = no72DOP(+) - 4(2) [Do,(+)]2 . (2.34b)

By plugging the Fourier expansions [Eqs. (2.25) and
(2.26)] into the Maxwell equations and the constitutive rela-
tion and by keeping only the highest-order terms in ao << 1
and ao/Ap << a0 , we find the following two spatial propaga-
tion equations:

(i) a signal equation,

da,,(w, 4)
d4

= -goa0 e2;a] aos] t(Q - , )

+ i go dco' r@I( - W) /2

A P 2 r 2
IP E L - P .j

X (A/2,)1/2a0t(w' - Wc, (52.35a)

ao,(w', )aO8(aw - Co, )

X< (4/27r)1/2
(2.35b)

The first term in the signal equation is the primary effect of
the parametric nonlinearity. It is the standard nonlinear
coupling, mediated by the pump at frequency Qp, between
signal frequencies a' = Q + E and Qp - a = 0- . The second
term is an integral over equivalent couplings mediated by
initially unexcited pump frequencies ' within the band-
width $p; it includes the effects of pump quantum fluctua-
tions. The pump equation describes an integral over non-
linear couplings between a pump frequency and signal
frequencies co' and a - a'; it includes, for example, the effects
of pump depletion.

Equations (2.35) are the desired equations for propaga-
tion through the slab of ideal nonlinear medium. If we
assume that the slab is sufficiently thin that g0Az << 1, then
we can approximate the solutions of Eqs. (2.35) as

aoa(wz + Az) = ao,(a, Z) + d A |=z ,

aop(, z + Az) = aop( Z) + dt =Az.

(2.36a)

(2.36b)

If we further assume that y(co)Az << I and aAn(a')Az/c << I

and linearize in these quantities, we can combine Eqs. (2.27),
(2.29), (2.32), (2.33), (2.35), and (2.36) to relate the fields

entering the actual medium at z + Az to the fields leaving the
actual medium at z. By taking the limit Az - 0 and simul-
taneously introducing the operators b8 (, ) of Eq. (2.30), we
can rewrite these relations as the following two spatial dif-
ferential equations:

(i) a signal equation,

da,(w, z) (co

dz = - y(a')a8(a', a),d( 2

-g a(Q ]'J/2 e2 iexp[iAK(0P, a')z]

x a(QP - a', z) + [y(w)]'/2 b8(co, z)

*go dco" F '(w" - a' 1/2
+i7-J 2 [° 2 J exp[iAK(a"', )z]A(aP", ) _t.
X (/2r12a tW, -W, ); (2.37a)
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(ii) a pump equation,

da,(a, ) i go d" coa'(' - ) 1/2

dz 2 A f 2r L Q2op J

X exp[-iAK (a, a")a] )(A / w' )-

(2.37b)

These two equations are the spatial Langevin equations for
our model of a DPA. The quantity

AK(a', a) a 0 - k() - k(aco' - co)
c

a'Aln(a') (a - a)n(a- a') (9 29

C

characterizes the phase mismatching between a pump fre-
quency a' and signal frequencies and a - '.

The first term in the signal equation (2.37a) describes
attenuation that is due to absorption, and the third term
represents the fluctuations associated with absorption. The
second and fourth terms are a consequence of the parametric
nonlinearity; they are the same as the equivalent terms in
the signal equation (2.35a) for an ideal medium, except for
the presence of phase-mismatching factors. The character-
istic size of the pump-fluctuation term is 1/Ap times the size
of the primary nonlinear term. The pump equation (2.37b)
differs from the pump equation (2.35b) for an ideal medium
because of a phase-mismatching factor.

The spatial Langevin equations (2.37) display clearly the
classical-pump limit: go = constant, AP -a C. In this limit

the pump-fluctuation term in the signal equation goes away,
and the pump is decoupled from the signal field.

It is instructive at this point to contrast our approach with
the wave-packet formalism developed by Tucker and
Walls,12 which has been applied to a DPA by Lane et al.19 In

our approach, because we work in the temporal Fourier do-

main, frequency matching is enforced exactly. Just as in the
usual classical analysis, phase mismatching appears as a
mismatch AK(w', a) between wave numbers whose corre-
sponding frequencies match exactly. Tucker and Walls ide-
alize to an infinitely long medium so that wave-number
matching is enforced exactly. In their formalism phase mis-
matching appears as a mismatch between frequencies whose
corresponding wave numbers match exactly.

Before going further, we make a series of simplifications.
We assume that the absorption coefficient is constant over
the signal bandwidth, i.e., y(co) = y; we ignore the variation

of the square-root-of-frequency factors in Eqs. (2.37); and
we choose the pump phase to be 4 = 2 = 0. With these

assumptions, it is convenient to rewrite Eqs. (2.37) in terms
of deviations of signal and pump frequencies from Q and QP:

daO( + , z) l

dz =-/2 ya8(0 +, a)

- go expliAk()z]a.t(Q - , )

+ y'/ 2b (Q + e, z) + P(E, z), (2.39a)

dap(Qp + E, ) - I - exp[-iAk(E', ' - E)z]

dz 2 A J 2e

a,(0 + c, z)a8 (Q + e - c', z)

(A4/2,0 1/2

(2.39b)

Here the pump-fluctuation term is given by

P(e, z) _ i K d exp[iAk(¼, E')z] P (it /2 )

X at(Q -E', z), (2.39c)

and the phase mismatching is redefined in terms of

Ak(E, Cig) - AK(Qp + - C, Q + )

(Q + )An(Q + E) (0 - )An(Q -E')
(2.40a)

Ak(e) --Ah(e,Ef)

_(0 + e)An(0 + 6) (0 - )n(0 - 6) (2.40b)
c c

[cf. Eq. (2.4)]. In Eqs. (2.39) we formally extend the
integration limits to ±co, anticipating that in the calcula-
tions of Subsection 3.D the phase-mismatching factors pro-
vide a natural cutoff for the integrals.

We now introduce quadrature-phase amplitudes716 2 0 for
the signal field, defined by

ae(e, z) /2[aj( + , z) + at(q -, Z)],
a2(E, Z) a - '/2[a5(Q + e, z) - at(Q - , z)].

(2.41a)

(2.41b)

The quadrature-phase amplitudes are the Fourier compo-
nents of the quadrature phases of the signal field, defined
with respect to frequency . Evaluated at z = L, they
contain the spectral information about the squeezing pro-
duced by the DPA. They are defined here with respect to a
phase such that when 4, = 0 the a, quadrature shows maxi-

mum squeezing near degeneracy. The frequency argument
6 of a quadrature-phase amplitude is always assumed to be
nonnegative.

Suppose that the output of the DPA is detected by a
balanced homodyne detector.212 2 If the detector is ideal,
the quadrature-phase amplitudes (multiplied by an appro-
priate factor) give the Fourier components of the differenced
photocurrent at the output of the detector.7 23 Hence they
provide the spectrum of the differenced photocurrent. Spe-
cifically, if the phase of the local oscillator powering the
homodyne detector is chosen so as to display maximum
squeezing for the phase-matched frequencies near degenera-
cy, then al(e) gives the Fourier component at rf frequency 6
of the differenced photocurrent.

We find it useful to introduce another set of quadrature-
phase amplitudes.

al(f, ) -=/ 2jexp-iAk(e)z/2]a 5 (Q + , z)

+ exp[iAk()z/2]a't( - , z)j, (2.42a)

C. M. Caves and D. D. Crouch
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c62(6, Z) --Vi2jexp[-iAk(e)z/2]a,(Q + e, z)

- exp[iAk(6)z/2]a.t(Q - , z)j, (2.42b)

which are related to the original quadrature-phase ampli-
tudes by a frequency- and position-dependent rotation:

&l(E, Z) = al(e, z)cos[Ak(6)z/2]

+ a 2 (e, Z) sin[Ak(e)z/2],

a 2 (e, z) = -a(e, z)sin[Ak(dEz/2]

+ a2(f, Z) cos[Ak(e)z/2].

(2.43a)

(2.43b)

Evaluated at z = L, these barred quadrature-phase ampli-
tudes also contain the spectral information about the
squeezing produced by the DPA but with some of the effects

of phase mismatching removed. To detect these barred
quadrature-phase amplitudes, one would have to vary the

phase of the local oscillator in a homodyne detector as a

function of rf frequency c.
We now put the signal equation (2.39a) into the form that

we use in Section 3 by writing it in terms of the barred

quadrature-phase amplitudes:

dz,¼, a) + &,) ° (6a Z) + Ak(6)a2(E, Z)

3. MODEL PREDICTIONS FOR SQUEEZING
SPECTRA

A. Solution of Signal Equations
We can write a formal Green-function solution of the signal

equations (2.44) for the barred quadrature-phase ampli-
tudes:

a (m6 a) E Z ( )&(, 0) + JZ dz'Gmn¼, a - a')

[71/24(6, Z') + P(,E, Za)]J, m = 1, 2. (3.1)

Here the Green-function matrix is given by

(3.2a)

(3.2b)

(3.2c)

0,(e z) = &zZ/2 erz - 2ep
1 - $2

G22(e z) = eYZ/2 -, I
1 $2- 

G02(f, Z) =-G 2 1(6, Z) = ge" 17 - e
1 -$

where

g(,E) -- go2 -[Ak(f)1 21/2,

g = g~f) -
-Ak(OE/2

g + g(e)

(3.3a)

(3.3b)

+ 71/24,(E, Z) + PI(E, z),

da 2(6, z)

dz
+ (go - ) a2(6, Z) - 1/2Ak(6)a(6, ;

+ 1/22(6E, Z) + P2 (6, Z).

Here

4,(6, z) a /2 exp[-iAk(e)z/2]b8(Q + e, z)

+ exp[iAk()z/2] bt(Q -e, z)),

42(E, Z) =- /2 exp[-iAk()z/2]b(0 + 6, z)

- exp[iAk(E)z/2] bt(0- , z)

(2.44a) The Green-function matrix represents the familiar classical

solution for a DPA with phase mismatching and absorption.
Of course, only in the classical-pump limit, for which the

pump-fluctuation terms P vanish, does Eq. (3.1) give an

actual solution of the signal equations. In the presence of
(2.44b) pump fluctuations, Eq. (3.1) is an integral equation, which

can be used as the starting point for an iterative solution
procedure.

If c lies well within the phase-matched bandwidth /27r
[Eq. (2.8)], then Ak(e) - 0. Thus the barred quadrature-
phase amplitudes become the same as the unbarred quadra-

(2.45a) ture-phase amplitudes and, in addition, g(e) - g0 and p(e) -

0, so that the Green-function matrix becomes diagonal, with
the diagonal elements given by

(2.45b) Gll(,E z) = e -z/2ejo, G22(f, z) = (3.4)

are quadrature-phase amplitudes for the fluctuations associ-
ated with absorption, and the pump-fluctuation terms are
defined by

P1 (e, z) a '/2 lexp[-iAk()z/2]P(+e, z)

+ exp[iAk(e)z/2] pt(_c, z)J, (2.46a)

P2 (e, z) - /2t exp[-iAk(e)z/2]P(+e, z)

- exp[iAk(e)z/2] pt(_e, z)]. (2.46b)

Equations (2.44) show that the primary effect of the para-
metric interaction is to deamplify (squeeze) the -51 quadra-

ture and to amplify the ii2 quadrature. This primary effect
is degraded by absorption and phase mismatching.

This is the classical solution for a phase-matched DPA with
absorption; the parametric interaction deamplifies
(squeezes) the al quadrature and amplifies the a2 quadra-
ture.

B. Squeezing Spectrum
Our goal is to calculate squeezing spectra for the light gener-
ated by our model DPA. Spectral information about the
squeezing produced by the DPA is contained in the spectral-
density matrix7 6 2023 Smn(e) of the output quadrature-
phase amplitudes am(e, L). The spectral-density matrix
arises from second-order noise moments of the quadrature-
phase amplitudes:

(Aamt(', L)Aa,(c, L))sym = 7rSmn(6)6(e - ),

m, n = 1, 2. (3.5)
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Here, for any operator 0, AO 0 - (), and sym denotes a
symmetrized product. A similar spectral-density matrix
can be defined for the barred quadrature-phase amplitudes:

(Aasmt(6I, L)Aa°,(,E LY)sym = 7rSmn()6(E - C').

These two spectral-density matrices are related by

S1 = S11 cos2(AkL/2) + 322 sin2(AkL/2)

- (2 + S2 1)cos(AkL/2)sin(AkL/2),

S22 = 11 sin2 (AkL/2) + 322 cos
2

(AkL/2)

+ (12 + S2 1)cos(AkL/2)sin(AkL/2),

matched bandwidth A/2ir, then Smn(6) = Smn(E) becomes

diagonal, with the diagonal elements given by

1 y + 2go exp[-(7 + 2go)L]
(3.6) z y - Zgo

3= 22() = 1 y -2go exp[-(-2g)L]
2 'y -2g 0

(3.10a)

(3.10b)

This is the familiar situation of squeezing competing with
(3.7a) losses. In the absence of absorption, Eqs. (3.10) reduce

further to the spectra for ideal squeezing:

S, (E) = /2 e 2gL, S22(6) = 1/2e
2
goL

(3.7b)
(3.11)

S12 = S21* = (11 - 22)cos(AkL/2)sin(AkL/2)

+ 812 cos2(AkL/2) - 821 sin2(AkL/2), (3.7c)

where Ak = Ak(e).

We are primarily interested in the spectrum of the
squeezed quadrature, i.e., 81 or ,11. As noted in Subsection

2.C, S1(e) gives the spectrum of the differenced photocur-
rent in an ideal balanced homodyne detector, when the
phase of the local oscillator is chosen so as to display maxi-

mum squeezing for the phase-matched frequencies near de-
generacy. The spectrum S11(e) would apply if one suitably
varied the phase of the local oscillator as a function of rf
frequency .

We must also specify the spectra of the input signal field

and the auxiliary field associated with absorption. We as-
sume that both are in the vacuum state, which means that
their first moments vanish and that their second moments
are given by

(amt( 6 ', O)a(s, 0
))sym = (mt(el, O)a,(E, 0))sym

= /27wmn(sE - ), (3.8a)

(flm'(f' Z)4n(,E Z))sym = /27rmn6(e - C)5(z - z'). (3.8b)

Recall also that we assume that the input pump field is in the
vacuum state, aside from the strong excitation at frequency
Qp.

In the classical-pump limit (Pm = 0), it is straightforward
to calculate the output spectral-density matrix Smn(E) in
terms of the Green-function matrix:

Smn (s) = 2 [mp* ( s L)Gp(e, L)
p = 1,2

+ y J dz Gmp*(e, L - z)Gp(es, L - )]. (3.9)

The first term in this spectral-density matrix comes from
the vacuum fluctuations in the input signal field, processed
through the parametric interaction; this first term includes
phase mismatching and attenuation that is due to absorp-
tion. The second term arises from the fluctuations associat-
ed with absorption. It is an integral over fluctuations inject-
ed at positions z within the medium; after a fluctuation is
injected at z, it is processed through the remainder of the
nonlinear medium between z and L.

If we assume further that e lies well within the phase-

C. Phase Mismatching

The preceding analysis can be applied immediately to inves-
tigate the effect of phase mismatching on the squeezing
spectrum. To isolate the phase-mismatching effect, we as-
sume that there is no absorption (y = 0) and that the pump is
classical (Pm = 0). Then the spectrum of the &, quadrature
becomes

S11(s) = /2[I011(E, L)1
2

+ I102(6, L)1
2
]. (3.12)

The significance of phase mismatching for S11(e) is quanti-

fied by the dimensionless parameter

Ak(c)/2go =-(p/pl)(E/E2)2 (3.13)

[cf. Eq. (2.7b)]. We assume that 1Ak(E)/2go << 1, i.e., E << 62,

and we then expand in Ak(E)/2g0 J, keeping only the largest
corrections to ideal squeezing. Under these circumstances,
one sees that g = g0 and

$(e) = Ak(e)/4g0 =-ll2(P/1P)(E/E2). (3.14)

When there is at least a moderate amount of squeezing, i.e.,
goL is somewhat larger than 1, the largest correction to ideal
squeezing is the one that grows fastest with goL. This means
that we can approximate

G11(E, L) = e , G12(6, L) = A(Oeg°L, (3.15)

which leads to a squeezing spectrum

S1,(E) = 1/1je-2gOL + [t(f)]2 e2OL} = l/2[e2gOL + /4(6/(2)4eg].

(3.16)

The dominant correction to ideal squeezing arises because
phase mismatching feeds a fraction I$(s)l of the amplified
quadrature into the squeezed quadrature. In order to ne-
glect phase mismatching and have ideal squeezing in the
spectrum S,,(E), one requires

I A W e)| << e gjL ' << 2 1/22e goL. (3.17)

To explore the effect of phase mismatching on the squeez-
ing spectrum S11(e), one needs to consider an additional
dimensionless parameter

Ak(c)L =-(p/lpl)(s/s,) 2
(3.18)

[cf. Eq. (2.7a)]. Assuming that Ak(E)LI << 1 and performing.

a similar analysis to find the largest correction to ideal
squeezing, one finds
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S 11(e) = 1/2{e 2,oL + [A(E) - 1/2k(E)L]2e2goL} (3.19)

D. Pump Quantum Fluctuations
We turn now to an analysis of quantum fluctuations in the
pump field. The starting point is the formal solution [Eq.
(3.1)] for the squeezed quadrature &l(e, L). To simplify the
analysis and to highlight the effect of pump fluctuations, we
assume that there is no absorption (y = 0), and we assume

that lies well within the region of perfect phase matching (e
<< e-gL). With these simplifications, we can write

Gl n(e, z) = blnegX (3.20)

and the formal solution becomes

a, (e, L) = e a, (E, 0) + J dz exp[-go(L - z)]P(e, z).

(3.21)

One can solve Eq. (3.21) by an iterative procedure in which

the fundamental expansion parameter is 1AP << 1. The
procedure is to evaluate Pl(E, z) to progressively higher or-
ders in 1/Ap by plugging in progressively higher-order ap-
proximations to the signal and pump fields. Here we are
interested only in the first-order correction to a,1(E, L), so we
can evaluate Pi(e, z) by using the zero-order solutions for the
signal and pump fields.

Furthermore, we are interested in the dominant effect of
pump fluctuations when there is at least a moderate amount
of squeezing, i.e., goL is somewhat larger than 1. In this case

The next step is to substitute the zero-order solutions into
Eq. (3.22). The zero-order solution for the pump is that the
operators ap(w, z) = ap(w) have no z dependence (decoupling

from the signal), and the zero-order solution for &2(e', z) is

given by the first term in Eq. (3.1) with -y = 0. This step
taken, one then performs the integral over z in Eq. (3.21).
Before proceeding, however, the form [Eq. (3.22)] for Pi(e, z)
permits a further dramatic simplification.

The phase-mismatching factors conspire in Eq. (3.22) to
introduce new oscillating phase factors exp[iQn'(' - E)z/c]

and exp[-i~ln'(e' + )z/c]. Once the integral over z in Eq.
(3.21) is done, these phase factors cut off the E' integral in Eq.
(3.22). The first phase factor cuts off the integral when E' is
sufficiently far from E that the phase factor oscillates rapidly
on the scale go-' set by the nonlinear gain. Similarly, the
second phase factor cuts off the integral when e' is sufficient-
ly far from -E. The frequency scale of these cutoffs is

characterized by a frequency E3, defined by

_____ _ == E3 2cg0/Qln'l.
2g0

(3.23)

Notice that 3 is typically somewhat smaller than 2 [Eq.
(2.7b)]; indeed we assume that Q << 2e-goL.

Since by assumption E lies well within the region of perfect

phase matching, and since e' in Eq. (3.22) is restricted to be
within about a distance 3 of E, we are entitled to use in Eq.
(3.22) the perfectly phase-matched zero-order solution for
&2(e, z), i.e., &2(e', z) = egoz&2(eW, 0). Substituting the zero-
order solutions into Eq. (3.22), and performing the integral
over z in Eq. (3.21), one finds that

&,(e, L) = e g1 oel(, 0) + e J de/ exp[iin'(' - )L/c] ap(Qp + e - e') + apt(Qp- e + e')

_ (P/27r)/2 2(" 0)
1 co(E' E)Icg

+ exp[-i2n'(E' + E)L/c] a(Qp + E + E') + aPt(Qp - 6 - E')

1-i-' + E)
2cgo

t(gt O)j. (3.24)

the dominant contribution to P1 comes from the amplified
& 2 quadrature, so we can neglect the contribution to PI from
ce1.

With
(2.39c),

this final assumption in mind, we use Eqs. (2.46a),
(2.40), and (2.42) to put PI in the form

Pl(E, z) = 1/2 I - {exp[ign'(E' - )z/c]

X ap (Qp +, e-e ', z) + a (Qp e E E" &a2(El z)

+ exp[-iQn'(E' + )z/c]

aP(QP + e + ', z) + a E(Q e ) -'E" z) }

(3.22)

where we make explicit use of the Taylor expansion (2.5) for

the index of refraction.

This equation is the basic result for the dominant effect of
pump quantum fluctuations on the squeezed quadrature.

The form of Eq. (3.24) [or of Eq. (3.22)] confirms the.
heuristic argument given in Subsection 2.B. The pump
field can be decomposed into quadrature phases whose

quadrature-phase amplitudes are

aoj(E, z) -- /2 [dp(Qp + E, z) + apt(Qp- E, z)], (3.25a)

ap2(E, z) - - 2 [aP(QP + e, z) - ap p- E, z)]. (3.25b)

When p = 0, the strong mean pump field at frequency Qp
has complex amplitude iAp. Thus the ap 2 quadrature repre-
sents fluctuations that are in phase with the strong mean
field, i.e., pump amplitude fluctuations; the a°p quadrature
represents fluctuations that are 900 out of phase with strong
mean field, i.e., pump phase fluctuations. A glance at Eq.
(3.24) shows that the dominant effect of pump quantum
fluctuations comes from fluctuations in the ap, quadra-
ture-phase fluctuations-which feed noise from the ampli-
fied signal quadrature into the squeezed signal quadrature.
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The characteristic size of this effect is given by the factor
egotL4Ap in front of the integral in Eq. (3.24) [cf. Eq. (2.9)].
All that remains now is to use the integral to determine the
pump bandwidth Ap/27r.

Substituting Eq. (3.24) into the expression (3.6), one finds
a flat squeezing spectrum

5 1s= (e 290L + +2g0L\

21 16A11 )
-e 0L

Cs<<s2 e (3.26)

where the pump bandwidth is defined by

JAEJ de + 1 - 1 cgo (3.27)

2r __ 27r 1 + (3 )2 2 3 = 910

[cf. Eq. (2.17)1. As expected, the frequency 63, which comes

ultimately from phase mismatching, provides a cutoff for the
pump bandwidth.

One further point deserves mention. We have calculated
the first-order correction to &1(e, L) resulting from pump
quantum fluctuations; this first-order correction goes as
1/Ap1. Squared in calculating the spectral density, it pro-
duces a correction to the spectrum that goes as 1/A p2. The
second-order term in &,1(E, L) due to pump fluctuations goes
as l/Ap 2 . Multiplied by the zero-order solution egoLcs,(e, O)
ip forming the spectral density, this second-order term also
yields a correction to the spectrum that goes as 1/.Ap2. Why
have we ignored this correction when it is formally of the

same size as the effect that we have calculated? Because
one can convince oneself, either by tedious analysis or by
clever insight, that the correction to the spectrum that is due
to the second-order term does not grow so fast as e2goL.
Hence, the correction that we have calculated is the domi-
nant effect when there is at least a moderate amount of
squeezing.
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Note added in proof. A recent paper by Potasek and
Yurke2 4 on four-wave mixing in an optical fiber obtained

results that are formally identical to Eqs. (3.2) and (3.9) in
the absence of absorption (y = 0). It prompted us to realize

that Eqs. (3.16) and (3.19) overstate the deleterious effects
of phase mismatching. A frequency-dependent rotation of

the barred quadrature-phase amplitudes &l(e, L) and & 2(6,

L) [similar to the rotation of aie, L) and ac2(e, L) in Eqs.

(2.43)] by an appropriate angle O(s, L) diagonalizes the re-

sulting spectral-density matrix Smn(e). This choice of O(e, L)
minimizes (maximizes) S,,(s) [22(s)1. Keeping only the
dominant correction to ideal squeezing for goL somewhat
larger than 1 and for e << 2, one finds that

S,,(c) = _ -Zr 0L j1 + 4[$(s)]2g0Lj = 1/2
e

2g'L[ + (/E 2)4g0 L.

(3.28)

The dominant correction arises from the reduction in the
nonlinear gain due to phase mismatching [Eq. (3.3a)]. In
order to ignore phase mismatching and achieve ideal squeez-
ing in the spectrum S,1(s), one requires that

21.()lI(g0L)"
2

<< 1 =C << 2(g )- 4 (3.29)

Relation (3.29) imposes a much less stringent restriction on
the radio frequency e than does expression (3.17).
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