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Quark–anti-quark (q̄-q) potentials with finite quark masses are studied from the q̄-q
Nambu-Bethe-Salpeter (NBS) wave functions in quenched lattice QCD. With the use of a
method which has been recently developed in the derivation of nuclear forces from lattice
QCD, we derive the q̄-q potentials from the NBS wave functions. We calculate the q̄-q NBS
wave functions in pseudo-scalar and vector channels for several quark masses. The derived
potentials at each quark mass in both channels show linear plus Coulomb form. We also
discuss the quark-mass and channel dependence of the q̄-q potentials.

Subject Index: 164, 232

§1. Introduction

An inter-quark potential is one of the most important ingredients of quantum
chromodynamics (QCD). Experimentally, Regge slope1) suggests that the inter-
quark potentials show linear behavior at long distance. The string tension of the
potentials between a quark and an anti-quark, σ ≃ 1.3 GeV/fm, can be roughly es-
timated by mass spectra of hadrons using the relation J = M2/(4σ) with the spin J
and the mass M of hadrons. At short distance, the inter-quark potential shows like
the Coulomb interaction, which is, for example, suggested by the analogy between
quarkonium and positronium. In fact, the linear plus Coulomb behaviors of the
inter-quark potentials reproduce the low-lying hadron spectra well in quark models.

Theoretically, the study of the inter-quark potentials is challenging issue due
to the non-perturbative nature of low energy phenomena in QCD. Lattice QCD
simulation is the powerful tool for a numerical investigation in such a strong-coupling
region of QCD. From the expectation value of the Wilson loops, the potential for
an infinitely heavy quark and anti-quark (Q̄-Q potential) and also the three-quark
potential (3Q potential) can be obtained on lattices.2),3) The Q̄-Q potential from
quenched lattice QCD simulations reveals the form of V (r) = σr − A/r + C with
σ = 0.92 GeV/fm and A = 51 MeV·fm.2)–5)

The actual inter-quark potentials suffer from the effect of quark motions, which
is not included in the Q̄-Q potential. One can take into account the corrections
coming from finite quark masses mq order by order with the use of the heavy quark
effective field theory. The effective field theory utilizes the hierarchy of scales coming
from the heavy quark mass mq and the relative velocity of heavy quarks, v. The
potential nonrelativistic QCD (pNRQCD) is such an effective field theory at the
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942 Y. Ikeda and H. Iida

ultrasoft scale mqv
2 obtained by integrating out the hard scale mq and the soft scale

mqv.2),6)–9) It is convenient to employ pNRQCD to obtain the corrections of heavy
quarkonium spectra to the heavy quark motion.

On the other hand, one can also study the mass spectra of mesons with phe-
nomenological models of constituent quarks. In the constituent quark models, the
potential between a quark and an anti-quark is usually parametrized by the Coulomb
plus linear confinement force and spin-dependent terms expected by one-gluon ex-
change. With this potential, the constituent quark models well reproduce the mass
spectra in wide energy region (see, e.g., Ref. 10)) and are commonly used for the
studies of hadron structures. However, since such a phenomenological parametriza-
tion of the potentials affects interpretations of hadron structures, the derivation of
the quark model potential from QCD is an important issue. In this work, we study
potentials between a quark and an anti-quark with a finite mass (q̄-q potentials) from
quenched lattice QCD simulations. In order to explore the q̄-q potentials, we apply
the systematic method which utilize the equal-time Nambu-Bethe-Salpeter (NBS)
amplitudes to extract hadronic potentials11)–23) to the q̄-q systems with finite quark
masses. Due to the absence of the asymptotic fields of quarks, the reduction formula
cannot be applied directly. Therefore, we assume that the equal-time NBS ampli-
tudes for the q̄-q systems satisfy the Nambu-Bethe-Salpeter (NBS) equation with
constant quark masses which could be considered as the constituent quark masses.
By using the derivation of the relativistic three-dimensional formalism from the NBS
equation developed by Lévy, Klein and Macke (LKM formalism),25)–28) we shall ob-
tain the q̄-q potentials without expansion in terms of mq. The preliminary results
of the NBS wave functions and potentials of the q̄-q systems have been reported in
Ref. 29).

The paper is organized as follows. In §2, we present our method to extract the
q̄-q potentials. In §3, we show the lattice QCD setup. We then show our numerical
results of the q̄-q wave functions and potentials in pseudo-scalar and vector channels
for four different quark masses in §4. The obtained potentials reveal the linear plus
Coulomb forms which are similar to the Q̄-Q potential from the Wilson loop. We
perform fitting analyses of the q̄-q potential data. Section 5 is devoted to discussion
and a summary.

§2. Method of the extraction of inter-quark potentials

Following the formulation to define the potentials on lattices,11),12),27) we show
the basic equations to extract the q̄-q potentials on the lattice below. As shown
in Ref. 27), the equal-time choice of the Nambu-Bethe-Salpeter (NBS) amplitudes
satisfies the relativistic Schrödinger-type equation without an instantaneous approx-

imation for original interaction kernels of the NBS equation. Therefore, we can start
with the Schrödinger-type equation (which is referred to as LKM equation in Ref.
27)) for the NBS wave function φ(�r; Jπ) in the spin-parity Jπ channels to define
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q̄-q Potentials from NBS Amplitudes 943

potentials:∗)

−∇2

2µ
φ(�r; Jπ) +

∫

d�r ′U(�r, �r′; Jπ)φ(�r′; Jπ) = Eφ(�r; Jπ), (2.1)

where µ(= mq/2) and E(= M2
meson/4mq − mq) denote the reduced mass of the q̄-q

system and the non-relativistic energy, respectively, and we simply assume non-
relativistic kinematics. Note that the potential U(�r, �r ′; Jπ) is generally energy-
independent and non-local.12),24) In Appendix A, we discuss potentials derived from
the Schrödinger-type equation with relativistic kinematics. The relativistic effects
may be necessary to reproduce the meson mass spectra in the wide energy region.

For the two-nucleon case, it is proved that the Schrödinger-type equation is
derived by using the reduction formula.12) Due to the absence of asymptotic fields
for confined quarks, we suppose that the q̄-q systems satisfy the NBS equation with
their constant quark masses. In this study, constant quark masses mq are determined
by half of vector meson masses MV , i.e., mq = MV /2, as usually taken in constituent
quark models. Then, one finds Schrödinger-type equation of Eq. (2.1) as a three-
dimensional reduction of NBS equation by applying LKM25)–28) method.

The energy-independent and non-local potential U(�r, �r′; Jπ) can be expanded in
powers of the relative velocity �v = −i∇/µ of q̄-q systems at low energies,

U(�r, �r′; Jπ) = V (�r,�v; Jπ)δ(�r − �r′)

= (VLO(�r; Jπ) + VNLO(�r; Jπ) + · · · )δ(�r − �r′), (2.2)

with

VLO(�r; Jπ) = VC(�r) + VT (�r)S12, (2.3)

VNLO(�r; Jπ) = VLS(�r)�L · �S, (2.4)

where the NnLO term is of order O(�vn), and S12, �L and �S being the tensor oper-
ator,∗∗) orbital angular momentum and spin of the q̄-q systems, respectively. Note
that the velocity expansion is different from the usual 1/mq expansion, and the cen-
tral force VC(�r) in the leading order potential includes not only linear plus Coulomb
confinement interaction, Vconf(�r), but also higher order terms in the 1/mq expan-
sion such as the spin-spin interaction, Vspin(�r)�σq̄ · �σq, which is regarded as an order
O(1/m2

q). This spin-spin interaction is an important ingredient of the mass formula
in the constituent quark model. At the leading order, one finds

V (�r; Jπ) ≃ VLO(�r; Jπ) =
1

2µ

∇2φ(�r; Jπ)

φ(�r; Jπ)
+ E. (2.5)

The s-wave effective leading order q̄-q potentials VLO(�r; Jπ) are studied in this work.
As proposed in Ref. 21), we shall show both Vconf(�r) and Vspin(�r), which can be

∗) In this paper, the three-dimensional interactions U(�r, �r′; Jπ) of the Schrödinger-type equation

in Eq. (2.1) are referred to as potentials, which is faithful to the equal-time NBS amplitudes.
∗∗) The tensor potential gives a coupling between s-wave and d-wave components in the vector

meson channel.
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944 Y. Ikeda and H. Iida

constructed by

Vconf(�r) − Eav =
1

mq

[

1

4

∇2φ(�r; 0−)

φ(�r; 0−)
+

3

4

∇2φ(�r; 1−)

φ(�r; 1−)

]

, (2.6)

Vspin(�r) − ∆E =
1

mq

[∇2φ(r; 1−)

φ(�r; 1−)
− ∇2φ(�r; 0−)

φ(�r; 0−)

]

, (2.7)

with Eav = 1/4(E(0−) + 3E(1−)) and ∆E = E(1−) − E(0−) to be determined by
the energy eigenvalues in the pseudo-scalar and vector channels.

The convergence of the expansion of �v can be checked by studying the energy
dependence of the local potential VLO(�r; Jπ) as in Ref. 15). When the local potential
VLO(�r; Jπ) has little energy dependence, the potential between q̄-q is well described
only by VLO(�r; Jπ). In contrast, if the energy dependence is large, higher order terms
are necessary. The study of the energy dependence of the local potential in the q̄-q
systems is an important future work.

In order to obtain the NBS wave functions of the q̄-q systems on the lattice, let
us consider the following equal-time NBS amplitudes:

χ(�x + �r, �x, t − t0; J
π) = 〈0| q̄(�x + �r, t)Γq(�x, t)J q̄q(t0; J

π) |0〉
=

∑

n

An 〈0| q̄(�x + �r, t)Γq(�x, t) |n〉 e−Mn(t−t0), (2.8)

with the matrix elements

An = 〈n| J q̄q(t0; J
π) |0〉 . (2.9)

Here Γ represents the Dirac γ-matrices, and J q̄q(t0; J
π) stands for the source term

which creates the q̄-q systems with spin-parity Jπ on the lattice. The NBS amplitudes
in Eq. (2.8) are dominated by the lowest mass state of mesons with the mass M0 at
large time separation (t ≫ t0):

χ(�r, t − t0; J
π) =

1

V

∑

�x

χ(�x + �r, �x, t − t0; J
π)

→ A0φ(�r; Jπ)e−M0(t−t0), (2.10)

with V being the volume of the box. Thus, the q̄-q NBS wave functions are defined
by the spatial correlation of the NBS amplitudes.

The NBS wave functions in s-wave states are obtained under the projection onto
zero angular momentum (P (l=0)),

φ(�r; Jπ) =
1

24

∑

g∈O

P (l=0)φ(g−1�r; Jπ), (2.11)

where g ∈ O represents 24 elements of the A1 representation of the cubic rotational
group,∗) and the summation is taken for all these elements. Using Eqs. (2.5) and
(2.11), we will find the q̄-q potentials and NBS wave functions from lattice QCD.

∗) The higher partial waves (l ≥ 4) can couple to states in the A1 representation, but such higher

partial waves are exponentially suppressed.
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q̄-q Potentials from NBS Amplitudes 945

Table I. Simulation parameters used in this work. Scale is set so as to reproduce the string tension,√
σ = 427 MeV, from the expectation value of the Wilson loop.3), 5)

β a lattice size volume Nconf

6.0 0.104 fm 323 × 48 (3.3 fm)3 100

§3. Numerical setup of the lattice simulations

In this section, we show the actions and simulation parameters in this work. We
employ the standard plaquette gauge action,

SG[U ] ≡ β

Nc

∑

x,µ,ν

ReTr{1 − Pµν(x)}, (3.1)

with β ≡ 2Nc/g2. The plaquette Pµν is defined as

Pµν = Uµ(x)Uν(x + µ̂)U †
µ(x + ν̂)U †

ν (x), (3.2)

where Uµ(x) is a link variable. As for quark fields ψ(x), we adopt the standard
Wilson fermion action,

SF [ψ̄, ψ, U ] ≡
∑

x,y

ψ̄(x)K(x, y)ψ(y), (3.3)

K(x, y) ≡ δx,y − κ
∑

µ

{(1− γµ)Uµ(x)δx+µ̂,y + (1 + γµ)U †
µ(y)δx,y+µ̂}, (3.4)

where κ is the hopping parameter.
We generate the quenched gauge fields on a 323 × 48 lattice with QCD coupling

β = 6.0, which corresponds to the physical volume V = (3.3 fm)3 and the lattice
spacing a = 0.104 fm determined so as to reproduce the string tension,

√
σ =

427 MeV, from the expectation value of the Wilson loop.3),5) We measure the q̄-q
NBS wave functions for four different hopping parameters κ = 0.1520, 0.1480, 0.1420,
0.1320: the corresponding pseudo-scalar (PS) meson masses MPS in the calculation
are 0.94, 1.27, 1.77, 2.53 GeV, and vector (V) meson masses MV=1.04, 1.35, 1.81,
2.55 GeV, respectively. The number of configurations used in this simulation is 100
for each quark mass. The simulation parameters are summarized in Table I. The
calculation of the q̄-q NBS wave functions requires gauge fixing, because q and q̄
operators are spatially separated at the sink time slice. Here we adopt Coulomb
gauge, which is frequently used for studies of hadron spectroscopy in lattice QCD.
As for the source operator of the q̄-q systems, we employ a static wall source in
Eq. (2.8),

J q̄q(t0; J
π) = Q̄(t0)ΓQ(t0), (3.5)

with the static wall quark operator

Q(t0) ≡
∑

�x

ψ(�x, t0). (3.6)

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

/a
rtic

le
/1

2
8
/5

/9
4
1
/1

8
9
6
9
7
9
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2



946 Y. Ikeda and H. Iida

Fig. 1. The q̄-q NBS wave functions in PS (a) and V (b) channels. The wave functions are normal-

ized to be
R

d3rφ(�r)φ∗(�r) = 1. All the wave functions are localized in the box and indicate the

bound states.

Since the ground state saturations have been already achieved at time slice t−t0 = 20,
we shall show the NBS wave functions and the potentials at t − t0 = 20.

We note that gauge fixings and sink operators can be arbitrary chosen in the
formalism, and all potentials with different gauge fixings and sink operators give the
same physical observables, i.e., mass spectra and scattering lengths for instance. In
this work, we employ Coulomb gauge and a local operator for sink operators. We can
take another gauge fixing and sink operator, and the potential obtained with these
conditions is generally different from that obtained in this work. In Appendix B,
we discuss the sink-operator dependence of the potential by using a gauge-invariant
smeared operator for the sink.

§4. Numerical results for the q̄-q potentials

First, we show the numerical results of the NBS wave functions in Fig. 1. Figures
1(a) and (b) are the NBS wave functions for each quark mass in PS and V channels,
respectively. The NBS wave functions mostly vanish at r = 1.5 fm for all quark
masses in both channels. This indicates that the spatial volume V = (3.3 fm)3 is
large enough for the present calculations. The size of a wave function with a lighter
quark mass becomes larger than that with a heavier one. Comparing the results in
PS and V channels, little channel dependence between PS and V channels is found,
although the quark-mass dependence of the wave functions is a bit larger for V
channel.

In Fig. 2, we show the Laplacian parts of q̄-q potentials in Eq. (2.5), ∇2φ(r)/φ(r),
for each quark mass and channel. Figure 2(a) shows ∇2φ(r)/φ(r) = 2µ(V (r)−E) in
PS channel for each quark mass. As shown in Fig. 2, one can see that the potential
form is similar to that obtained from the Wilson loop, namely, that looks like linear
plus Coulomb form, although the derivation of the potentials is largely different
between these two methods. Figure 2(b) represents ∇2φ(r)/φ(r) in V channel for
each quark mass. The basic properties are similar to that in PS channel, although
quark mass dependence is a bit larger for V channel.

Figures 3(a) and (b) show the potentials with the constant energy shifts E, i.e.,
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q̄-q Potentials from NBS Amplitudes 947

Fig. 2. Plots of ∇2φ(r)/φ(r) = 2µ(V (r) − E) in PS channel (a) and V channel (b) for each quark

mass. The potentials show the linear plus Coulomb form.

Fig. 3. Plots of the potential with the constant energy shift V (r) − E = ∇2φ(r)/(2µφ(r)) in PS

channel (a) and V channel (b) for each quark mass. The solid curves are the fit function with

linear plus Coulomb form shown in Table II.

V (r)−E=∇2φ(r)/(2µφ(r)) in PS and V channels, respectively, for each quark mass.
Note that the quark mass mq(= 2µ) is determined by the half of vector meson mass,
mq = MV /2, as mentioned in the previous section.

We perform fit analyses of the potentials in Figs. 3(a) and (b). For the fit
function, we choose the linear plus Coulomb form, f1(r) = σr − A/r + C. We fit
f1(r) to the potential data for each quark mass and channel. We use the on-axis data
with the range 3 ≤ r/a ≤ 10 in the fit.∗) The fit results are summarized in Table II,
and denoted by solid curves in Figs. 3(a) and (b). χ2/Ndf is around 0.5 for all the fit,
which means the data are well described by the linear plus Coulomb form. We find
moderate quark mass dependence of the string tension. The string tension becomes
larger as increasing quark masses in both channels, and that for heaviest quark
mass in our simulation is about 820 MeV/fm, which is comparable to that obtained
from an expectation value of the Wilson loop. On the other hand, the Coulomb
coefficient A strongly depends on quark masses. The Coulomb coefficient becomes
small as increasing quark masses, and is roughly approaching to that obtained from
an expectation value of the Wilson loop.

∗) In our preliminary analysis,29) not only on-axis but also off-axis data are taken into account in

the fit. Both data do not coincide due to the discretization error under the s-wave (A1) projection.
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948 Y. Ikeda and H. Iida

Table II. The fitting results of the potentials in Fig. 3. The function to be fitted is f1(r) =

σ(mq, i)r − A(mq, i)/r + C(mq, i). The fit range is 3 ≤ r/a ≤ 10.

Pseudo-scalar Vector

κ σ(mq, PS) A(mq, PS) χ2/Ndf σ(mq, V ) A(mq, V ) χ2/Ndf

MeV/fm MeV·fm MeV/fm MeV·fm
0.1320 819(47) 215(7) 0.32 825(48) 195(7) 0.63

0.1420 753(34) 264(5) 0.35 765(37) 216(6) 0.61

0.1480 691(30) 338(5) 0.46 723(39) 249(7) 0.44

0.1520 601(29) 443(5) 0.31 697(63) 291(13) 0.23

Table III. The fitting results of the potentials for f2(r) without the channel and the quark mass

dependences of the string tension. The obtained string tension is σ = 723(30) MeV/fm. The fit

range is 3 ≤ r/a ≤ 10.

Pseudo-scalar Vector

κ A(mq, PS) A(mq, V )

MeV·fm MeV·fm
0.1320 231(5) 212(5)

0.1420 271(5) 225(5)

0.1480 332(5) 249(5)

0.1520 415(6) 285(7)

Fig. 4. (a) Spin-independent confinement potentials, Vconf(r)−Eav, and (b) spin-dependent poten-

tials, Vspin(r) − ∆E.

Next, we perform another type of fit analysis. Assuming that the string tension σ
is independent of the quark masses due to the quenched QCD simulations, where the
contributions from quark loops are eliminated, we perform the fit by minimizing the
general χ2/Ndf which is defined as χ2/Ndf =

∑

mq ,i χ2(mq, i)/Ndf with i = PS, V .30)

We call the fit “universal fit” here. The fit function f2(r) can be explicitly written
by f2(r) = σr−A(mq, i)/r+C(mq, i). The free parameters of the fit are σ, A(mq, i),
C(mq, i) for f2(r). In the fit, we choose the range of the potential data as 3 ≤ r/a ≤
10. The fitting results are shown in Table III. The general χ2/Ndf is achieved with
1.52 for f2(r) with σ = 723 (30) MeV/fm. Since our simulation includes all the
quark mass effects, f2(r) is modified by the higher order effect of 1/mq expansion.

From the NBS wave functions in PS and V channels, we calculate the spin-
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q̄-q Potentials from NBS Amplitudes 949

Table IV. The fitting results of the confinement potentials. The fitting function is chosen as the

Cornell-type, V (r) = σr − A/r + C.

κ σ (MeV/fm) A (MeV·fm)

0.1320 822(49) 200(7)

0.1420 766(38) 228(6)

0.1480 726(39) 269(7)

0.1520 699(57) 324(12)

Fig. 5. (a) String tensions of the spin-independent potentials (filled circles) as a function of inverse

vector meson masses 1/MV. The string tension obtained from the Wilson loop is represented by

open circle. The solid line denotes a linear extrapolation of the string tension to infinitely heavy

quark mass limit together with 1σ error (shaded area). (b) Comparison of the spin-independent

confinement potential (filled circle), Vconf(r) − Eav, for the heaviest quark mass (κ = 0.1320)

with that obtained from the expectation value of the Wilson loop (open square).

independent and -dependent forces through Eqs. (2.6) and (2.7). In Fig. 4 (a), we
show the spin-independent parts of the inter-quark potentials, while, in Fig. 4 (b),
we show the spin-dependent potentials. The spin-independent potentials reveal the
linear plus Coulomb confinement forces, and the spin-dependent potentials show
short range repulsive interactions as expected from meson mass spectra.

We fit Cornell-type function, V (r) = σr−A/r+C, to the spin-independent con-
finement potentials. The fitting results are summarized in Table IV. As expected in
Table II, both the string tension and the Coulomb coefficient have the quark mass
dependence. To compare our potential with the static potential, we extrapolate
the quark mass dependent string tension to the infinitely heavy quark mass limit.
Figure 5 (a) shows the string tension of the spin-independent confinement potentials
as a function of the inverse vector meson mass, 1/MV, and the solid line denotes a
linear extrapolation to infinitely heavy quark mass limit. With this extrapolation,
the string tension at the limit is 889(28) MeV/fm, which is consistent with that
calculated from the Wilson loop (923(13) MeV/fm as in Ref. 5)) within the error
denoted as shaded area in Fig. 5 (a). Figure 5 (b) shows the comparison of poten-
tials in our approach with κ = 0.1320 with the static potential obtained from the
expectation value of the Wilson loop. Both potentials coincide with each other at
long distance, while a deviation is found at short distance. Several possibilities are
considered for the deviation. One is the finite quark mass effects, because the higher
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order terms in the 1/mq expansion can contribute to short range interactions. The
others are the artifact of discretization in the short range part of the potential and
the definition of the constant quark mass adopted in this study. In Ref. 21), the
relativistic heavy quark action and self-consistent determination of constant quark
masses are employed, and both the linear and Coulomb coefficients at heavy quark
limit are found to be consistent with Wilson loop analyses.

§5. Discussion and summary

We have studied the inter-quark potentials between a quark and an anti-quark
(q̄-q potentials) from the q̄-q Nambu-Bethe-Salpeter (NBS) wave functions. For this
purpose, we have utilized the method which has been recently developed in the
calculation of nuclear force from QCD.11),12) We have calculated the NBS wave
functions for the q̄-q systems with four different quark masses in pseudo-scalar and
vector channels and obtained the leading order q̄-q potentials in the velocity expan-
sion through the Schödinger-type equation. In this framework, the q̄-q potentials
basically contains full quark motions with the finite masses. As a result, we have
found that the shapes of the q̄-q potentials are the linear plus Coulomb form which
is similar to the static Q̄-Q potential obtained from the Wilson loop.

For the fitting, we have employed the Cornell-type function. We have found
that both linear and Coulomb coefficients depend on the quark masses. We have
also performed the linear extrapolation of the quark mass dependent string tension
of the spin-independent potential to the heavy quark mass limit. As a result, we
find that the extrapolated string tension obtained in this study is consistent with the
static potential obtained from the Wilson loop. Our choice of constant quark masses,
mq, is rather phenomenological, and the Coulomb coefficient at heavy quark limit is
larger than that of the static potential. Meanwhile, with the method presented in
this paper, the self-consistent determination of the constant quark masses proposed
in Ref. 21) gives a good agreement with the static potential. Therefore, this new
approach to define the q̄-q potential from NBS wave functions contains important
properties of the Wilson loop.

This is the first step to study the q̄-q potentials from the NBS wave functions,
and we find that the obtained leading order q̄-q potential in the velocity expansion
has the basic property of that obtained from the Wilson loop. Therefore, this method
will be useful for the study of the q̄-q potentials and hadron spectroscopies with finite
quark masses.
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Fig. 6. Comparison of “relativistic” potentials V R.(r) with non-relativistic potentials V N.R.(r)

shown in the main part.

of Science (No. 23-8687) and Scientific Research on Innovative Areas (Nos. 2004:
20105001, 20105003, 23105713).

Appendix A

Inter-Quark Potential with Relativistic Kinematics

In the main part of the paper, we assume the non-relativistic kinematics for the
Schrödinger-type equation. Our aim here is to show the q̄-q potentials with relativis-
tic kinematics. Since the relativistic kinematics are used in the phenomenological
constituent quark models10) for the purpose to reproduce higher excited states, it is
necessary to show how the change of the kinematics affects the shape of the potentials
from lattice QCD.

The Schrödinger-type equation with relativistic kinematics for the q̄-q system in
the continuum limit is written as
∫

d3r′
[
∫

d3p′

(2π)3
2
√

�p ′2 + m2
qe

−i�p ′·(�r−�r ′)

]

φ(�r ′; Jπ) + V (�r; Jπ)φ(�r; Jπ) = Eφ(�r; Jπ),

(A.1)

with the leading order potential V (�r; Jπ) of the velocity expansion and the relativistic
energy E = Mmeson−2mq. On the lattice, a discrete Fourier transformation of �r gives

sin(�p). Thus,
√

�p 2 + m2
q is replaced by

√

sin2(�p) + m2
q , and the integral becomes a

summation on the lattice. Similar as the procedure in the main part, we obtain the
potential from the discretized version of the Schrödinger-type equation of Eq. (A.1).

Figure 6 is a comparison of the s-wave potentials in V channel with relativistic
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952 Y. Ikeda and H. Iida

Fig. 7. Schematic figure of gauge-invariant smeared operator.

kinematics, V R.(r), and non-relativistic potential, V N.R.(r), shown in the main part.
The relativistic potentials for κ = 0.1320 (κ = 0.1520) are shown by open square
(filled square) in Fig. 6, while the non-relativistic potentials for κ = 0.1320 (κ =
0.1520) are shown by open circle (filled circle). As shown in Fig. 6, V R.(r) again
shows the linear plus Coulomb behavior, and V R.(r) and V N.R.(r) coincide at large
r region. On the other hand, at small r region, the difference between them becomes
large as naturally expected, and the short distance differences of the potentials may
contribute to reproducing nodal excited states.

Appendix B

Potential from a Gauge-Invariant Smeared Operator

As we showed, the obtained potentials exhibit a Coulomb plus linear behavior.
However, potentials with different operators are generally different. Therefore, the
Cornell-like behavior is not universal. Here, we show a potential with a different
operator from that used in the main part.

The NBS amplitude with gauge-invariant smeared sink operators is defined by

χsmr(�x + �r, �x, t − t0; J
π) ≡ 〈0| q̄(�x + �r, t)L(�r, �x, t; m)Γq(�x, t)J q̄q(t0; J

π) |0〉 ,

L(�r = nµ̂, �x, t) ≡ Uµ(�x + nµ̂, t) · · ·Uµ(�x + µ̂, t)Uµ(�x, t). (B.1)

A schematic figure of the amplitude is shown in Fig. 7. The operator L(�r, �x, t; m)
constructed by link variables connects �x and �x + �r with a straight-line path. Here,
the direction of �r is chosen to be the x-, y-, or z-direction, i.e., on-axes.

Figure 8 shows a potential obtained from the smeared NBS amplitude, V smr(r)
(red points for V channel and blue points for PS channel), and that obtained in
Coulomb gauge, V Coul.(r) (green points for V channel and blue points for PS chan-
nel). Note that the data of V smr(r) are only calculated on the points with integral
multiples of the lattice spacing a, because �r in Eq. (B.1) is on-axis. V smr(r) shows
the linear plus Coulomb behavior similar to that in Coulomb gauge, and, more over,
the two potentials almost coincide. This fact shows that the gauge-invariant operator
is also a suitable one for a constituent quark mass, and the Coulomb-gauge operator
used in the main part is similar to the gauge-invariant operator of Eq. (B.1).
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Fig. 8. Comparison of a potential with gauge-invariant smeared operator, V smr(r), to that with

Coulomb-gauge operator, V Coul.(r). The red (blue) points are the data with gauge-invariant

smeared operator in V (PS) channel, and the green (magenta) points are that in Coulomb gauge

in V (PS) channel. The two potentials almost coincide.
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24) W. Królikowski and J. Rzewuski, Nuovo Cim. 4 (1956), 1212.
25) M. M. Levy, Phys. Rev. 88 (1952), 725.
26) A. Klein, Phys. Rev. 90 (1953), 1101.
27) A. Klein and T.-S. H. Lee, Phys. Rev. D 10 (1974), 4308.
28) W. Macke, Phys. Rev. 91 (1953), 195.
29) Y. Ikeda and H. Iida, PoS(Lattice 2010)143.
30) G. Hohler et al., Nucl. Phys. B 114 (1976), 505.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

/a
rtic

le
/1

2
8
/5

/9
4
1
/1

8
9
6
9
7
9
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2


