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1 Introduction

Collisions of high-energy hadrons continue to serve as laboratories for precision mea-
surements of known physics and searches for new physics beyond the Standard Model
(SM) [1–3]. A subset of these processes, where the production and decay of interme-
diate bosons occurs, or Drell-Yan (DY) processes [4], have been studied for over half a
century and have proved to be indispensable in validating the modern theory of strong
interactions, quantum chromodynamics (QCD). In particular, the study of DY processes
has been essential for understanding the structure of hadrons and establishing features of
hadronic collisions; the discovery of the SM electroweak gauge bosons and heavy quarks;
and searches for new physics at the Large Hadron Collider (LHC) [5].

An interesting potential signal for new physics that has gained considerable attention in
recent years is the breakdown of CPT and Lorentz invariance [6]. These principles have been
tested with exceptional precision in numerous experiments involving SM particles and grav-
itational fields [7]. The model-independent framework for quantifying tiny deviations from
exact CPT and Lorentz invariance, potentially emerging from new short-distance physics, is
based on effective field theory and is known as the Standard-Model Extension (SME) [8–11].
The Lagrange density for the SME incorporates all CPT- and Lorentz-violating terms for
gravitational fields coupled to the SM. Each term is a coordinate-independent contraction
of a coefficient for Lorentz violation with a product of field operators that transform co-
variantly under observer Lorentz transformations [8]. Operators in the SME are classified
according to their mass dimension d. The finite set of gauge-invariant and renormalizable
operators with d = 3, 4 in Minkowski spacetime is known as the minimal SME. The infinite
set of operators with d ≥ 5 is referred to as the nonminimal SME.
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Experiments involving hadrons provide opportunities to constrain the comparatively
unexamined CPT- and Lorentz-violating effects on mesons, baryons, and underlying quark
and gluon (parton) degrees of freedom [12]. To date, d = 3 quark coefficients have been con-
strained using K,D,Bd, and Bs meson oscillations [13–25]. Relatively recently, techniques
of chiral perturbation theory have established connections between minimal effective meson
and baryon coefficients and parton coefficients, leading to several constraints on d = 3, 4
quark and ed = 4 gluon coefficients using low-energy experiments and high-energy as-
trophysical sources [26–30]. Additional recent advances in the study of scalar fields have
initiated investigations into the nonminimal meson sector, leading to constraints on effec-
tive d = 5 coefficients for K,D,Bd, and Bs mesons [31, 32].

Constraints on hadron and quark coefficients from high-energy processes have typically
come from the observed absence of cosmic-ray processes, including photon decay and vac-
uum Cherenkov radiation [33–36]. Constraints on heavy quarks are sparse in comparison to
light quarks, however, a few bounds have been extracted from e+e− collisions at the Large
Electron-Positron Collider (LEP), tt̄ production at the Fermi National Accelerator Labo-
ratory (Fermilab) and the LHC, radiative corrections, and potentially stable top hadrons
from astrophysical sources [37–42]. Direct probes of minimal and nonminimal effects on
initial-state partons can also be made through measurements of the scattering cross sec-
tion in deep inelastic scattering and the DY process [43–45]. Collider processes such as
these offer a complementary approach for constraining the space of parton coefficients,
as the majority of existing quark-sector bounds from astrophysical sources are limited to
the subset of isotropic (rotationally-invariant) coefficients. In contrast, experiments with
Earth-based sources provide natural access to non-isotropic effects through sidereal mod-
ulations of scattering observables, enabling a broad search of the coefficient space.

In this work, we extend the recently developed formalism for addressing CPT- and
Lorentz-violating effects in the collisions of high-energy hadrons at large momentum trans-
fer [45] to include spin-dependent effects. Precisely, we consider a set of dimensionless,
CPT-even, parity-odd, and spin-dependent minimal SME coefficients affecting the propa-
gation and interactions of quarks in the neutral-current DY process. It is demonstrated
that the unpolarized DY process in the ultrarelativistic limit, through γ/Z interference
and pure Z exchange, provides a natural avenue for accessing and constraining these co-
efficients. Note that effects of Lorentz violation on the Z boson have also been studied in
similar processes [46–48], however, these considerations are outside the scope of this work.
The leading-order cross section as a function of the dilepton invariant mass is derived.
Coupled with data on Z-boson production from the LHC, real and simulated constraints
are placed on the coefficients for Lorentz violation for u, d, s, and c quarks.

2 Theory

2.1 Interactions

The dominant Lorentz-violating effects on quarks from the minimal SME are the subset of
CPT-even interactions [9, 49]

LCPT+ ⊃ 1
2 ic

µν
Qi
Qiγµ

↔
DνQi + 1

2 ic
µν
Ui
U iγµ

↔
DνUi + 1

2 ic
µν
Di
Diγµ

↔
DνDi , (2.1)
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where Dν is the conventional gauge-covariant derivative. The fields have the conventional
definitions

Qi =
(
ui
di

)
L

, Ui = (ui)R , Di = (di)R , (2.2)

where i = 1, 2, 3 denotes flavors ui = (u, c, t) and di = (d, s, b). The coefficients cµνQi
, cµνUi

,
and cµνDi

transform as tensors under observer Lorentz transformations and are treated as
perturbations with respect to conventional Lorentz-invariant effects. Hermiticity ensures
real matrix elements, and energy-momentum conservation is preserved under the assump-
tion the coefficients are spacetime constants. Field redefinitions render the antisymmetric
parts of the coefficients unobservable at first order in Lorentz violation and the traces are
Lorentz invariant [9, 50, 51]. It is customary to define the coefficients

cµνui
= (cµνQi

+ cµνUi
)/2, cµνdi

= (cµνQi
+ cµνDi

)/2 ,

dµνui
= (cµνQi

− cµνUi
)/2, dµνdi

= (cµνQi
− cµνDi

)/2 , (2.3)

with the constraint cµνui
− cµνdi

= dµνdi
− dµνui

.

2.2 Partonic description of scattering

The framework for the description of scattering in the presence of flavor-diagonal and spin-
independent CPT- and Lorentz-violating operators of arbitrary mass dimension was re-
cently developed in ref. [45]. We extend this approach by including minimal spin-dependent
interactions, which requires additional attention. Given the perturbative approach, it is
assumed throughout that effects at first order in Lorentz violation are considered. We be-
gin with the modified kinetic Lagrange density stemming from eqs. (2.1)–(2.3) for a single
massless fermion field ψ,

L = 1
2 iψ̄ (ηµν + cµν + dµνγ5) γµ

↔
∂νψ. (2.4)

Projecting out the chiral components of the resulting modified Dirac equation gives the
following modified Weyl equations

i /̃∂LψL = 0, (2.5)

i /̃∂RψR = 0, (2.6)

where ψL,R = PL,Rψ with the usual left and right projectors PL = (1 − γ5)/2 and PR =
(1 + γ5)/2, respectively. The tilde variables are defined as

∂̃µL = (ηµν + cµν + dµν)∂ν ≡ η̃µνL ∂ν , (2.7)

and similarly for ∂̃µR with dµν → −dµν . Multiplying by the associated Dirac operator and
converting to momentum space yields the following dispersion relations

k̃2
L,R = 0, (2.8)
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with k̃µL,R ≡ η̃µνL,Rkν . Note that k̃L 6= k̃R only for nonzero d coefficients, implying species
of definite handedness propagate according to dispersion relations related by a change of
sign of the d coefficients. This is transparent when considering the propagator may be
written as

= PL
i/̃kL

k̃2
L

+ PR
i/̃kR

k̃2
R

. (2.9)

The presence of nonzero d coefficients splits the spin degeneracy leading to four distinct
eigensolutions to the modified Dirac equation. In the ultrarelativistic limit this is clear
upon decomposing the chiral spinors into the two-component form

ψL =
(

0
χ±

)
, ψR =

(
φ±

0

)
, (2.10)

where ± denotes positive- and negative-energy solutions. After some calculation paralleling
the conventional case, we find

̂̃
kL · ~σχ± = ∓χ±, (2.11)̂̃
kR · ~σφ± = ±φ±, (2.12)

where ̂̃k is a unit vector in the direction of k̃j . In contrast to the Lorentz-invariant case,
eigenstates of the chirality operator γ5 are eigenstates of a modified helicity operator ∼ ̂̃k ·~σ.
The conventional helicity operator ∼ k̂ · ~σ no longer commutes with Hamiltonian in the
presence of nonzero d coefficients, so helicity is no longer conserved. Instead, the eigenvalues
of the operator corresponding to the spin projected along the momentum direction that
satisfies the massless on-shell condition (2.8) are identified with states of definite chirality.
In this limit, the d coefficients act as a set of c coefficients which change sign depending on
the state’s handedness.

We wish to apply the above description to large momentum transfer processes. The
original description of partons as nucleon constituents [52], as well as the field-theoretic
description [53, 54], suggests that partons participating in deep-inelastic processes are
reasonably approximated as massless physical particles with dispersion relation k2 ' 0. In
the present case, the on-shell condition is modified and given by eq. (2.8), k̃2

L,R = 0. For
an analogous partonic description, it is crucial to notice that observer Lorentz covariance
is maintained in the SME and a covariant parametrization of the parton momentum in
terms of its parent hadron is desired. For covariance to be maintained, in addition to the
approximations of on-shell and massless partons, the unique choice of

k̃µL,R = ξpµ (2.13)

must be made, where ξ ≡ k̃+
L,R/p

+ is interpreted as the fraction of the parent hadron’s
momentum pµ that is carried by the parton. The relevant procedure is therefore to impose
conditions (2.8), (2.13) as appropriate, from which the typical perturbative calculation of
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the scattering process parallels the conventional case. The dominant contribution to the
resulting hadron cross section σH for, e.g., the unpolarized DY process at leading order in
electroweak interactions is found to take the schematic form

σH ∼
∑
f

∫
dξdξ′σ̂f (ξ, ξ′)ff (ξ)ff̄ (ξ′). (2.14)

The perturbative (hard) partonic cross section σ̂f (ξ, ξ′) is integrated against the nonper-
turbative (soft) parton distribution functions (PDFs) for partons and antipartons. The
PDFs may be expressed as hadron matrix elements of bilocal quark fields integrated along
shifted light-cone directions:

ffL,R(ξ) =
∫
dλ

2πe
−iξp·nλ 〈p| ψ̄fL,R(λñµfL,R) /n2ψfL,R(0) |p〉 , (2.15)

ff̄L,R(ξ) = −
∫
dλ

2πe
+iξp·nλ 〈p| ψ̄fL,R(λñµfL,R) /n2ψfL,R(0) |p〉 . (2.16)

These expressions along with their potential dependence on the coefficients for Lorentz
violation will be derived in explicit calculations in section 3.2.

In a particular observer frame, the PDFs describe the probability for finding a left-
or right-handed parton with momentum fraction ξ such that k̃L,R = ξp. However, given
that the PDFs are generically functions of ξ,Q2 and potentially other Lorentz scalars, the
functions themselves are Lorentz invariant in the conventional case and Lorentz observer
invariant (but not particle invariant) in the Lorentz-violating case. The same considerations
apply to the partonic cross sections σ̂f (ξ, ξ′). These former features can be understood in
the context of local and Lorentz observer-invariant operator products [43, 45],

Oµ1···µn

fL,R = ψ̄fL,Rγ
{µ1(iD̃µ2

L,R)(iD̃µ3
L,R) . . . (iD̃µn}

L,R)ψf − traces. (2.17)

Taking the hadron matrix elements and contracting with external light-cone vectors shows
that the matrix-element coefficients are identified with the moments of the PDFs given
by eqs. (2.15)–(2.16). This connection is crucial for determining how the PDFs poten-
tially depend on the coefficients for Lorentz violation. Establishing whether these features
hold in the presence of radiative corrections and DGLAP evolution is worthy of further
investigation but is outside the scope of this work.

3 The Drell-Yan process

As an explicit example of the formalism of the previous section, we study the unpolarized
neutral-current DY process p1 + p2 → γ/Z → l1 + l2 + X at leading order, including
the Lorentz-violating effects on the quarks as described in eq. (2.1). At this level the
process is initiated by the annihilation of a quark-antiquark pair of the same flavor, each
residing in either of the two initial-state hadrons, producing a lepton pair l1 + l2 and an
unmeasured hadronic final state X. In the following section, we calculate the cross section
for this process. Using LHC events near and below the Z-boson pole, first constraints
are placed on several coefficients that produce time-independent shifts to the conventional
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Lorentz-invariant result. For coefficients that induce time-dependent effects, simulations
are performed to extract estimated constraints by binning the cross section as a function
of sidereal time.

3.1 Setup

In the limit of massless quarks, it is advantageous to work in terms of chiral fields ψL,R.
We introduce chiral SME coefficients and shifted Minkowski metrics

cµνfL ≡ c
µν
f + dµνf , cµνfR ≡ c

µν
f − d

µν
f , η̃µνfL,R ≡ η

µν + cµνfL,R, (3.1)

for quark flavor f . Note that cµνuL = cµνdL = cµνQ1
, cµνuR = cµνU1

, and cµνdR = cµνD1
(and similarly

for the second and third generations). The subset of interactions and notation introduced
thus far leads to a model Lagrange density expressed in terms of quantities below the
electroweak scale

L =
∑
f

1
2 iψ̄fLη̃

νµ
fLγν

(
↔
∂µ − 2i(eefAµ + gZgfLZµ)

)
ψfL + (L→ R), (3.2)

where the massless and massive gauge boson fields are Aµ and Zµ, respectively. The quark
charges are ef and the couplings of the Z boson in terms of the weak mixing angle θW are
gZ = e/ sin θW cos θW , gfL = I

(3)
W − ef sin2 θW , and gfR = −ef sin2 θW .

At energies much greater than the hadron masses the differential cross section reads

dσ = 1
2s

d3l1
(2π)3l01

d3l2
(2π)32l02

∑
X

| 〈l1, l2, X|T̂ |p1, s1, p2, s2〉 |2, (3.3)

where | 〈l1, l2, X|T̂ |p1, s1, p2, s2〉 |2 = (2π)4δ4(p1 + p2 − l1 − l2 − pX)|Mγ +MZ |2 [45]. The
amplitude has the form

M = ū(l1)gγµ(gLPL + gRPR)ν(l2)Dµν(q,M) 〈X| jν(0) |p1, s1, p2, s2〉 , (3.4)

where g is the electroweak vertex coupling, gL, gR are the left and right lepton couplings,
Dµν(q,M) is the intermediate propagator, and 〈X| jν(0) |p1, s1, p2, s2〉 the hadron current
matrix element. The spin indices of the leptons are suppressed as the polarizations of the
final leptons are not measured. Combining the momentum-conserving delta function with
the sum over intermediate hadron states and the hadron matrix elements yields the tensor

Wµν =
∫
d4xe−iq·x 〈p1, s1, p2, s2| j†µ(x)jν(0) |p1, s1, p2, s2〉 . (3.5)

Calculating the unpolarized cross section requires an average over initial hadron spins and
sum over final lepton spins for each of the four terms |Mγ +MZ |2 = |Mγ |2 +M∗γMZ +
MγM∗Z + |MZ |2. The pure electromagnetic contribution has been calculated and is given
by eq. (4.18) in ref. [45]. An interesting feature of this contribution is that the d coefficients
produce no observable effect — this occurs because they generate totally antisymmetric
contributions to the hadron tensor, whereas the lepton tensor for this contribution is sym-
metric. One might think that the absence of contributions from the d coefficients in the
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hard process may not necessarily imply nonperturbative contributions from the PDFs will
be absent. However, the equality of left- and right-handed couplings in electromagnetic
interactions implies that potential contributions ∼ ±dpp would be canceled upon expanding
the PDFs to first order in Lorentz violation. Therefore, we are primarily concerned with
effects stemming from interferenceM∗γMZ +MγM∗Z and pure Z exchange |MZ |2.

3.2 Illustration of the pure Z-exchange contribution

It is illustrative to show some of the required calculations in detail. For this purpose, we
outline the |MZ |2 contribution. The reader is encouraged to consult ref. [45] for additional
details and discussion.

We begin by expanding the current jµZ in terms of chiral components:

jµZ = gZψ̄fΓµf (gfLPL + gfRPR)ψf (3.6)

= gZ
[
gfLψ̄fLΓµfLψfL + gfRψ̄fRΓµfRψfR

]
, (3.7)

where ΓµfL,R ≡ (ηνµ + cνµfL,R)γν . The relevant current product in eq. (3.5) admits several
Dirac structures; however, a single term dominates in the leading-twist approximation for
unpolarized scattering [55, 56], giving

j†µZ (x)jνZ(0) '− g2
Z

12
(
g2
fLTr

[
PLΓµfLγ

ρPLΓνfLγσ
]

×
[
ψ̄fL(0)γρψfL(x)

] [
ψ̄fL(x)γσψfL(0)

]
+ (L→ R)

)
. (3.8)

From here it is useful to choose an observer frame. We choose the hadrons’ center-of-
mass (CM) frame and parametrize the momenta as p1 = p+

1 n̄, p2 = p−2 n, where n̄, n are
two lightlike vectors n̄µ = (1, 0, 0,+1)/

√
2, nµ = (1, 0, 0,−1)/

√
2. This choice will yield

large +(−) components for the |p1〉 (|p2〉) matrix elements. Identifying the combination of
gamma matrices that project out the large components of the matrix elements, arranging
the bilinear operators to preserve colorless matrix elements, and employing the Sudakov
decomposition gives the dominant contribution to the hadron tensor for a given flavor f as

Wµν
f '−

g2
Zg

2
fL

4Ncp
+
1 p
−
2
Tr
[
PLΓµfL/p1PLΓνfL/p2

]
×
∫
d4xe−iq·x 〈p1| ψ̄fL(x)γ+ψfL(0) |p1〉 〈p2| ψ̄fL(0)γ−ψfL(x) |p2〉+ (L→ R),

(3.9)
where Nc = 3 for the SU(3)c gauge group. With the appropriate dispersion relation (2.8)
taken into account, each term may be independently factorized according to the known
procedure [45]. After some calculation the hadron tensor takes the form

Wµν
f = s̃

2

∫
dξ1dξ2

{
Hµν
fL(ξ1, ξ2)

[
ffL(ξ1)ff̄L(ξ2) + ffL(ξ2)ff̄L(ξ1)

]
+ (L→ R)

}
, (3.10)

where hard scattering coefficient functions are

Hµν
fL,R(ξ1, ξ2) =

8g2
Zg

2
fL,R

Ncs̃
Tr
[
PLΓµfL,R

ξ1/p1
2 PLΓνfL,R

ξ2/p2
2

]
× (2π)4δ4

(
qµ + ξ1(cµp1

fL,R − p
µ
1 ) + ξ2(cµp2

fL,R − p
µ
2 )
)
, (3.11)
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with s̃ ≡ 2ξ1ξ2p1 · p2. Note that eqs. (3.9)–(3.11) are valid in any observer frame by
Lorentz observer covariance. The hadron tensor represents two possibilities: one where the
incident parton pair are eigenstates of definite left chirality, and the other definite right
chirality. This can be seen by inspecting the hard scattering coefficient (3.11)—the trace
terms are exactly what one finds for a left- or right-handed parton pair annihilating with
an on-shell momentum parameterization k̃L,R = ξp. The PDFs in eq. (3.10) are given by
eqs. (2.15)–(2.16), which we repeat here for completeness:

ffL,R(ξ, cppfL,R/Λ
2
QCD) =

∫
dλ

2πe
−iξp·nλ 〈p| ψ̄fL,R(λñµfL,R) /n2ψfL,R(0) |p〉 , (3.12)

ff̄L,R(ξ, cppfL,R/Λ
2
QCD)) = −

∫
dλ

2πe
+iξp·nλ 〈p| ψ̄fL,R(λñµfL,R) /n2ψfL,R(0) |p〉 . (3.13)

In the presence of Lorentz-violating effects, the PDFs have the potential to depend on
additional dimensionless scalar quantities that are functions of the external hadron mo-
mentum. Here, the explicit dependence on cµνfL,R in the field ψ̄fL,R(λñµfL,R) translates, via
considerations of the product of local operators and the reparametrization invariance of
the PDFs, to an implicit dependence of cppfL,R/Λ2

QCD.

3.3 Cross section

Calculation of the remaining interference terms M∗γMZ +MγM∗Z follows similarly as
the calculation of |MZ |2 from the previous section, differing only in the relevant currents
and couplings. To construct the differential distribution dσ/dQ2, where q2 ≡ Q2 > 0, it
is simplest to evaluate eq. (3.3) in the dilepton CM frame. Contracting the lepton and
hadron tensors and integrating over the solid angle of the final-state leptons produces a
Lorentz observer-invariant function of the external hadron momenta. The final dilepton
distribution is found to be

dσ

dQ2 = 4πα2

3Nc

∑
f

[
e2
f

2Q4 −
1−m2

Z/Q
2

(Q2 −m2
Z)2 +m2

ZΓ2
Z

1 + 4 sin2 θW
12 sin2 θW cos2 θW

efgfL

+ 1
(Q2 −m2

Z)2 +m2
ZΓ2

Z

1 + (1− 4 sin2 θW )2

32 sin4 θW cos4 θW
g2
fL

]∫ 1

τ
dx
τ

x
σ̂′f

(
x, τ/x, cµνfL

)
+ (L→R),

(3.14)

where τ ≡ Q2/s is the scaling variable, mZ ,ΓZ are the mass and width of the Z boson, and

σ̂′f

(
x, τ/x, cµνfL

)
≡
(

1 + 2
s
cµνfL(1 + x2/τ)(p1µp1ν + p1µp2ν + (p1 ↔ p2))

)
ffS(x, τ/x)

+ 2
s
cµνfL

(
xp1µp1ν + τ

x
p1µp2ν + (p1 ↔ p2)

)
f ′fS(x, τ/x), (3.15)

where the flavor-symmetric PDF products are defined as

ffS(x, τ/x) ≡ ff (x)ff̄ (τ/x) + ff (τ/x)ff̄ (x), (3.16)

f ′fS(x, τ/x) ≡ ff (x)f ′
f̄
(τ/x) + f ′f (τ/x)ff̄ (x). (3.17)
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The first contribution in eq. (3.14) is due to pure electromagnetic exchange |Mγ |2 and
matches eq. (4.18) in ref. [45] when evaluated in the collider frame and accounting for the
sum over left and right coefficients. The second and third terms are due to interference
M∗γMZ +MγM∗Z and pure Z exchange |MZ |2, respectively. Notice that eq. (3.15) differs
from the conventional result τffS(x, τ/x) by terms proportional to the coefficients for
Lorentz violation and reduces to the Lorentz-invariant result in the limit of vanishing
coefficients [57, 58]. The correct symmetrization properties of the coefficients, as dictated
from field redefinitions, are also displayed.

Parity invariance of QCD connects the PDF products (3.16)–(3.17) to those of
eqs. (3.12)–(3.13). However, as the d coefficients are odd under parity, additional cor-
rections of O(cppf ) to the electromagnetic contribution and O(cppfL, c

pp
fR) to the interference

and Z contributions may stem from the expansion of the PDFs to first order in Lorentz
violation. Given the inherently nonperturbative albeit unknown origin of these additional
contributions [59], we have suppressed them in the final result (3.14). While these effects
constitute an interesting open issue, they have little bearing on extracting bounds on the
coefficients for Lorentz violation and are neglected in the analysis that follows.

The cross section (3.14) enables a comparison with the entire Q2 spectrum measured at
LHC. In ref. [45] it was shown that the photon contribution is dominated by measurements
at low Q2 [60]. We revisit the impact of measurements at low Q2 and present estimated
bounds using total cross-section measurements on the Z pole by the CMS collaboration [61].
The main difference between photon and Z interactions is the presence of parity violation
which, in turn, introduces dependence on the parity-odd d coefficients defined in eq. (2.3).
At low Q2, eq. (2.3) includes the interference between diagrams mediated by the exchange
of a photon or Z boson. Thus, we expect some sensitivity to the d coefficients in addition
to the parity-even c coefficients away from the Z pole. On the Z pole, parity-violating
effects are maximal, and we expect a strong sensitivity to the d coefficients.

To highlight these issues, we present the results using two bases: the (cUi , cDi , cQi)
basis introduced in eq. (2.1), and the (cui , cdi

, dui) basis defined in eq. (2.3), with ddi
=

dui + cui − cdi
. The former choice is the most natural in situations in which parity is

maximally broken. In this case the bounds on cUi , cDi , and cQi are expected to be mostly
independent. The latter is more useful to disentangle correlations between the expected
bounds for situations in which the dui,di

coefficients are poorly constrained (as in DY
at low Q2). These features can be understood by inspecting the Lorentz-violating part
of eq. (3.14) in the collider frame, for which it can be shown that only the coefficients
c33
fL,R and c00

fL,R appear. In figure 1, a comparison is made for combinations of the former
coefficients for several values of Q ∈ [17.5, 90]GeV. It is observed that all coefficients have
decreasing sensitivity from low Q until approaching the Z pole, in agreement with the prior
results of ref. [45]. Near the Z pole, the d-type coefficients produce the greatest signal, as
expected from prior considerations of parity violation.

We remind the reader that the formalism presented in section 2 applies in the limit of
massless quarks, implying that the validity of any derived constraints is contingent upon
the scale of the momentum transfer. As we consider data for Q . 100GeV, reasonable
limits can only be extracted for the first two generations — the hard scattering is thus
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Figure 1. An illustration of the Lorentz-violating contributions σLV from eq. (3.14) in the collider
frame for select coefficients fixed to magnitudes of 10−5.

sensitive to u, d, s, and c partons and bounds in the following sections are extracted for
these flavors.

3.4 Time-independent bounds

We follow the convention of reporting constraints on coefficient combinations as they appear
in the Sun-centered frame with coordinates T̂ , X̂, Ŷ , Ẑ [62–64]. The Sun-centered frame
and laboratory (collider) frame are related by a rotation to an excellent approximation,
yielding the relations c00

fL,R = cTTfL,R and

c33
fL,R = 1

2(cXXfL,R + cY YfL,R)
(
cos2 χ sin2 ψ + cos2 ψ

)
+ cZZfL,R sin2 χ sin2 ψ

− 2cXZfL,R sinχ sinψ [cosχ sinψ cos(Ω⊕T⊕) + cosψ sin(Ω⊕T⊕)]
− 2cY ZfL,R sinχ sinψ [cosχ sinψ sin(Ω⊕T⊕)− cosψ cos(Ω⊕T⊕)]

+ cXYfL,R

[
(cos2 χ sin2 ψ − cos2 ψ) sin(2Ω⊕T⊕)− cosχ sin(2ψ) cos(2Ω⊕T⊕)

]
+ 1

2(cXXfL,R − cY YfL,R)
[
(cos2 χ sin2 ψ − cos2 ψ) cos(2Ω⊕T⊕)

+ cosχ sin(2ψ) sin(2Ω⊕T⊕)
]
. (3.18)

Notice that the coefficients with indices of the form TT,XX + Y Y,ZZ are associated
with time-independent effects, whereas those of the forms XZ, Y Z and XY,XX −Y Y are
associated with first and second harmonics of the Earth’s sidereal frequency Ω⊕ and local
sidereal time T⊕, respectively.

The time-independent bounds are given in table 1 and depend on the difference between
the measured cross section and the SM prediction. Moreover, theory uncertainties are
taken into account for the latter by combining with statistical and systematic errors in
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coefficient [ dσdQ ]Q=17.5 GeV [ dσdQ ]Q=mZ

|cTTu1 | 1.3× 10−4 2.6× 10−3

|cXXu1 + cY Yu1 | 1.5× 10−4 2.6× 10−3

|cZZu1 | 2.4× 10−3 4.1× 10−2

|cTTd1
| 1.1× 10−3 1.3× 10−3

|cXXd1
+ cY Yd1

| 1.3× 10−3 1.3× 10−3

|cZZd1
| 2.1× 10−2 2.1× 10−2

|dTTu1 | 4.0× 10−3 1.2× 10−3

|dXXu1 + dY Yu1 | 4.7× 10−3 1.1× 10−3

|dZZu1 | 7.5× 10−2 1.8× 10−2

|cTTu2 | 7.6× 10−3 3.9× 10−2

|cXXu2 + cY Yu2 | 8.8× 10−3 4.0× 10−2

|cZZu2 | 1.4× 10−1 6.4× 10−1

|cTTd2
| 1.1× 10−2 1.2× 10−2

|cXXd2
+ cY Yd2

| 1.2× 10−2 1.2× 10−2

|cZZd2
| 2.0× 10−1 1.8× 10−1

|dTTu2 | 1.2× 10−1 2.0× 10−2

|dXXu2 + dY Yu2 | 1.4× 10−1 1.9× 10−2

|dZZu2 | − 3.0× 10−1

Table 1. Bounds on the time-independent coefficients in the Sun-centered frame and in the
(cui

, cdi
, dui

) basis for Q = mZ and Q = 17.5 GeV. The bound on dZZ
u2

has no sensitivity at
Q = mZ and has been excluded.

quadrature. We employ SM predictions calculated using the FEWZ package [65–68] at
NNLO accuracy using the NNPDF 3.1 [69] NNLO PDF set.

The bounds listed in table 1 support the general trend shown in figure 1 that c (d)-
type coefficients are more sensitive to lower (higher) values of Q. A number of these
bounds represent first constraints on u, d, s, and c quarks, in particular those with the
indices XX + Y Y and ZZ; however, constraints on the isotropic TT coefficients are not
competitive with existing constraints [33, 35, 36].

3.5 Time-dependent bounds

The remaining coefficient combinations XZ, Y Z,XY,XX−Y Y in the Sun-centered frame
produce sidereal oscillations as a function of T⊕. These effects average to zero using data
taken over long periods of time, which is typically the case for collider cross-section mea-
surements. Thus, without event timestamps, existing SM measurements cannot be used
to constrain time-dependent effects — instead, simulated or expected constraints can be
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placed. The procedure adopted to calculate the expected bounds has been detailed in
several previous analyses [43–45]. The idea is to simulate the outcome of binning the data
in sidereal time and to perform measurements in each time bin. For those coefficients that
generate dependence on sidereal time without affecting the time-averaged cross section,
one can show that sources of systematic experimental uncertainties 100% correlated across
time bins do not impact the extracted bounds.

The dominant source of systematic uncertainties in the measurements at low Q2 pre-
sented in ref. [60] originate from theory (δth), luminosity (δlumi), and lepton selection effi-
ciency (δsel). While theory errors are 100% correlated across sidereal bins, the latter two
are more complex. In fact, the stochastic components of uncertainties associated with lu-
minosity and selection efficiency are actually uncorrelated in time bins. We present the
three limiting cases in which the luminosity and selection efficiency are considered either
uncorrelated or 100% correlated. In all cases, the theoretical uncertainty is taken to be
fully correlated. The measurement of the Z-pole DY cross section presented in ref. [61]
has subdominant statistical uncertainties and among the systematic errors most likely to
be partially correlated in sidereal time we focus on the luminosity and selection efficiency.
Both uncertainties have a stochastic component that is difficult to estimate without a de-
tailed experimental analysis. We present three scenarios in which we assume that no errors
(nothing), luminosity, and both luminosity and selection efficiency are correlated between
sidereal bins.

Finally, we present bounds that can be extracted from an analysis of the cross sections
at Q = mZ and Q = 17.5 GeV. This ratio has the considerable advantage that luminosity
uncertainties of numerator and denominator exactly cancel because they are 100% cor-
related. This is true to a certain extent for systematic errors due to selection efficiency.
Accordingly, we consider the two cases in which either (δth, δlumi) or (δth, δlumi, δsel) are
correlated. While the first scenario is certainly correct, we have higher confidence in the
bin-to-bin correlation of selection efficiency for the ratio rather than for the individual cross
sections. In conclusion, we expect that the bounds corresponding to the second scenario
are on more solid ground than the most aggressive bounds we obtain from the cross sections
at Q = mZ and Q = 17.5 GeV.

The expected upper bounds that we obtain from the Q = 17.5 GeV measurement are
presented in tables 2 and 3 for the two bases, respectively. As expected, from table 3 it is
observed that the bounds on dJKu1 are more than an order of magnitude worse than on cJKu1 .
This also underscores how the bounds in table 2 are highly correlated. The corresponding
results for the Z-pole measurement and the ratio of cross sections are presented in tables 4
and 5. We observe that considering Z-pole measurements alone, the expected bounds on
the d coefficients are actually stronger than those for the c coefficients. Interestingly, this
is not the case when considering the ratio of cross sections. The reason is that the dui

dependence of the cross sections at Q = mZ and Q = 17.5 GeV cancels in the ratio.

– 12 –



J
H
E
P
0
4
(
2
0
2
1
)
2
2
8

coefficient
[ dσdQ ]Q=17.5 GeV

δth δth, δlumi δth, δlumi, δsel

|cXYU1
| 5.1× 10−5 4.5× 10−5 2.1× 10−5

|cXZU1
| 1.3× 10−4 1.2× 10−4 5.5× 10−5

|cY ZU1
| 1.3× 10−4 1.2× 10−4 5.5× 10−5

|cXXU1
− cY YU1

| 2.9× 10−4 2.5× 10−4 1.2× 10−4

|cXYD1
| 4.8× 10−4 4.2× 10−4 1.9× 10−4

|cXZD1
| 1.2× 10−3 1.1× 10−3 5.1× 10−4

|cY ZD1
| 1.2× 10−3 1.1× 10−3 5.1× 10−4

|cXXD1
− cY YD1

| 2.7× 10−3 2.4× 10−3 1.1× 10−3

|cXYQ1
| 4.9× 10−5 4.3× 10−5 2.0× 10−5

|cXZQ1
| 1.3× 10−4 1.2× 10−4 5.2× 10−5

|cY ZQ1
| 1.3× 10−4 1.2× 10−4 5.2× 10−5

|cXXQ1
− cY YQ1

| 2.7× 10−4 2.4× 10−4 1.1× 10−4

|cXYU2
| 3.0× 10−3 2.6× 10−3 1.2× 10−3

|cXZU2
| 7.8× 10−3 7.1× 10−3 3.2× 10−3

|cY ZU2
| 7.7× 10−3 7.1× 10−3 3.2× 10−3

|cXXU2
− cY YU2

| 1.7× 10−2 1.5× 10−2 6.7× 10−3

|cXYD2
| 4.5× 10−3 4.0× 10−3 1.8× 10−3

|cXZD2
| 1.2× 10−2 1.1× 10−2 4.8× 10−3

|cY ZD2
| 1.2× 10−2 1.1× 10−2 4.8× 10−3

|cXXD2
− cY YD2

| 2.5× 10−2 2.2× 10−2 1.0× 10−2

|cXYQ2
| 1.9× 10−3 1.7× 10−3 7.8× 10−4

|cXZQ2
| 5.0× 10−3 4.6× 10−3 2.1× 10−3

|cY ZQ2
| 5.0× 10−3 4.6× 10−3 2.1× 10−3

|cXXQ2
− cY YQ2

| 1.1× 10−2 9.6× 10−3 4.4× 10−3

Table 2. Expected best constraints on the time-dependent coefficients in the (cUi
, cDi

, cQi
) basis

for Q = 17.5 GeV. The part of the experimental uncertainties that are assumed to be 100%
correlated between binned data is indicated in the column label.
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coefficient
[ dσdQ ]Q=17.5 GeV

δth δth, δlumi δth, δlumi, δsel

|cXYu1 | 2.6× 10−5 2.3× 10−5 1.1× 10−5

|cXZu1 | 7.0× 10−5 6.2× 10−5 2.9× 10−5

|cY Zu1 | 7.0× 10−5 6.1× 10−5 2.8× 10−5

|cXXu1 − c
Y Y
u1 | 1.4× 10−4 1.3× 10−4 5.9× 10−5

|cXYd1
| 2.3× 10−4 2.1× 10−4 9.6× 10−5

|cXZd1
| 6.3× 10−4 5.6× 10−4 2.6× 10−4

|cY Zd1
| 6.3× 10−4 5.6× 10−4 2.5× 10−4

|cXXd1
− cY Yd1

| 1.3× 10−3 1.2× 10−3 5.4× 10−4

|dXYu1 | 8.2× 10−4 7.3× 10−4 3.3× 10−4

|dXZu1 | 2.2× 10−3 2.0× 10−3 9.1× 10−4

|dY Zu1 | 2.2× 10−3 2.0× 10−3 8.9× 10−4

|dXXu1 − d
Y Y
u1 | 4.6× 10−3 4.1× 10−3 1.9× 10−3

|cXYu2 | 1.5× 10−3 1.4× 10−3 6.3× 10−4

|cXZu2 | 4.2× 10−3 3.7× 10−3 1.7× 10−3

|cY Zu2 | 4.2× 10−3 3.7× 10−3 1.7× 10−3

|cXXu2 − c
Y Y
u2 | 8.6× 10−3 7.7× 10−3 3.5× 10−3

|cXYd2
| 2.2× 10−3 2.0× 10−3 9.0× 10−4

|cXZd2
| 5.9× 10−3 5.3× 10−3 2.4× 10−3

|cY Zd2
| 5.9× 10−3 5.2× 10−3 2.4× 10−3

|cXXd2
− cY Yd2

| 1.2× 10−2 1.1× 10−2 5.0× 10−3

|dXYu2 | 2.5× 10−2 2.2× 10−2 1.0× 10−2

|dXZu2 | 6.8× 10−2 6.0× 10−2 2.8× 10−2

|dY Zu2 | 6.8× 10−2 6.0× 10−2 2.7× 10−2

|dXXu2 − d
Y Y
u2 | 1.4× 10−1 1.3× 10−1 5.7× 10−2

Table 3. Expected best constraints of the time-dependent coefficients in the (cui
, cdi

, dui
) basis.

See the caption in table 2 for further details.
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coefficient
[ dσdQ ]Q=mZ

[ dσdQ ]Q=mZ
/[ dσdQ ]Q=17.5 GeV

nothing δlumi δlumi, δsel δth, δlumi δth, δlumi, δsel

|cXYU1
| 5.2× 10−4 1.5× 10−4 7.1× 10−5 4.4× 10−5 2.0× 10−5

|cXZU1
| 1.4× 10−3 3.9× 10−4 1.9× 10−4 1.2× 10−4 5.5× 10−5

|cY ZU1
| 1.4× 10−3 4.0× 10−4 1.9× 10−4 1.2× 10−4 5.5× 10−5

|cXXU1
− cY YU1

| 2.9× 10−3 8.2× 10−4 4.0× 10−4 2.5× 10−4 1.1× 10−4

|cXYD1
| 8.7× 10−4 2.4× 10−4 1.2× 10−4 5.3× 10−4 2.4× 10−4

|cXZD1
| 2.3× 10−3 6.5× 10−4 3.2× 10−4 1.4× 10−3 6.6× 10−4

|cY ZD1
| 2.3× 10−3 6.6× 10−4 3.1× 10−4 1.5× 10−3 6.7× 10−4

|cXXD1
− cY YD1

| 4.9× 10−3 1.4× 10−3 6.6× 10−4 3.0× 10−3 1.4× 10−3

|cXYQ1
| 2.4× 10−3 6.7× 10−4 3.3× 10−4 4.0× 10−5 1.8× 10−5

|cXZQ1
| 6.4× 10−3 1.8× 10−3 8.7× 10−4 1.1× 10−4 5.0× 10−5

|cY ZQ1
| 6.3× 10−3 1.8× 10−3 8.6× 10−4 1.1× 10−4 5.1× 10−5

|cXXQ1
− cY YQ1

| 1.3× 10−2 3.8× 10−3 1.8× 10−3 2.3× 10−4 1.0× 10−4

|cXYU2
| 2.4× 10−2 6.6× 10−3 3.2× 10−3 2.6× 10−3 1.2× 10−3

|cXZU2
| 6.3× 10−2 1.8× 10−2 8.6× 10−3 7.0× 10−3 3.2× 10−3

|cY ZU2
| 6.2× 10−2 1.8× 10−2 8.5× 10−3 7.0× 10−3 3.2× 10−3

|cXXU2
− cY YU2

| 1.3× 10−1 3.7× 10−2 1.8× 10−2 1.4× 10−2 6.6× 10−3

|cXYD2
| 7.6× 10−3 2.1× 10−3 1.0× 10−3 5.1× 10−3 2.4× 10−3

|cXZD2
| 2.0× 10−2 5.7× 10−3 2.8× 10−3 1.4× 10−2 6.4× 10−3

|cY ZD2
| 2.0× 10−2 5.8× 10−3 2.7× 10−3 1.4× 10−2 6.4× 10−3

|cXXD2
− cY YD2

| 4.3× 10−2 1.2× 10−2 5.8× 10−3 2.9× 10−2 1.3× 10−2

|cXYQ2
| 7.8× 10−2 2.2× 10−2 1.1× 10−2 1.6× 10−3 7.3× 10−4

|cXZQ2
| 2.1× 10−1 5.9× 10−2 2.9× 10−2 4.3× 10−3 2.0× 10−3

|cY ZQ2
| 2.1× 10−1 6.0× 10−2 2.8× 10−2 4.3× 10−3 2.0× 10−3

|cXXQ2
− cY YQ2

| 4.4× 10−1 1.2× 10−1 6.0× 10−2 8.9× 10−3 4.1× 10−3

Table 4. Expected best constraints on the time-dependent coefficients in the (cUi
, cDi

, cQi
) basis

for Q = mZ and Q = 17.5 GeV. See the caption in table 2 for further details.
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coefficient
[ dσdQ ]Q=mZ

[ dσdQ ]Q=mZ
/[ dσdQ ]Q=17.5 GeV

nothing δlumi δlumi, δsel δth, δlumi δth, δlumi, δsel

|cXYu1 | 8.4× 10−4 2.4× 10−4 1.1× 10−4 2.2× 10−5 1.0× 10−5

|cXZu1 | 2.3× 10−3 6.3× 10−4 3.1× 10−4 5.9× 10−5 2.7× 10−5

|cY Zu1 | 2.3× 10−3 6.3× 10−4 3.1× 10−4 6.0× 10−5 2.7× 10−5

|cXXu1 − c
Y Y
u1 | 4.7× 10−3 1.3× 10−3 6.4× 10−4 1.2× 10−4 5.7× 10−5

|cXYd1
| 4.3× 10−4 1.2× 10−4 5.9× 10−5 2.7× 10−4 1.2× 10−4

|cXZd1
| 1.2× 10−3 3.2× 10−4 1.6× 10−4 7.2× 10−4 3.3× 10−4

|cY Zd1
| 1.2× 10−3 3.2× 10−4 1.6× 10−4 7.3× 10−4 3.3× 10−4

|cXXd1
− cY Yd1

| 2.4× 10−3 6.9× 10−4 3.3× 10−4 1.5× 10−3 6.9× 10−4

|dXYu1 | 3.7× 10−4 1.1× 10−4 5.1× 10−5 8.6× 10−3 4.0× 10−3

|dXZu1 | 1.0× 10−3 2.8× 10−4 1.4× 10−4 2.3× 10−2 1.0× 10−2

|dY Zu1 | 1.0× 10−3 2.8× 10−4 1.4× 10−4 2.3× 10−2 1.0× 10−2

|dXXu1 − d
Y Y
u1 | 2.1× 10−3 6.0× 10−4 2.9× 10−4 4.8× 10−2 2.2× 10−2

|cXYu2 | 1.3× 10−2 3.7× 10−3 1.8× 10−3 1.2× 10−3 5.7× 10−4

|cXZu2 | 3.6× 10−2 9.7× 10−3 4.8× 10−3 3.3× 10−3 1.5× 10−3

|cY Zu2 | 3.5× 10−2 9.8× 10−3 4.8× 10−3 3.3× 10−3 1.5× 10−3

|cXXu2 − c
Y Y
u2 | 7.3× 10−2 2.1× 10−2 1.0× 10−2 6.9× 10−3 3.2× 10−3

|cXYd2
| 3.8× 10−3 1.1× 10−3 5.2× 10−4 2.6× 10−3 1.2× 10−3

|cXZd2
| 1.0× 10−2 2.8× 10−3 1.4× 10−3 6.9× 10−3 3.1× 10−3

|cY Zd2
| 1.0× 10−2 2.9× 10−3 1.4× 10−3 7.0× 10−3 3.2× 10−3

|cXXd2
− cY Yd2

| 2.1× 10−2 6.0× 10−3 2.9× 10−3 1.4× 10−2 6.7× 10−3

|dXYu2 | 6.1× 10−3 1.8× 10−3 8.4× 10−4 2.1× 10−2 9.7× 10−3

|dXZu2 | 1.7× 10−2 4.6× 10−3 2.3× 10−3 5.6× 10−2 2.5× 10−2

|dY Zu2 | 1.7× 10−2 4.7× 10−3 2.3× 10−3 5.7× 10−2 2.6× 10−2

|dXXu2 − d
Y Y
u2 | 3.4× 10−2 9.8× 10−3 4.7× 10−3 1.2× 10−1 5.4× 10−2

Table 5. Expected best constraints of the time-dependent coefficients in the (cui , cdi , dui) basis
for Q = mZ and Q = 17.5 GeV. See the captions in table 2 and table 4 for further details.

4 Conclusions and future outlook

In this work, we have extended the framework developed in [45] to describe spin-dependent
effects coupled through the production of Z bosons. Real and estimated bounds on CPT-
even and dimensionless quark-sector coefficients for Lorentz violation for the first two gen-
erations of quarks are placed using data taken at the LHC. Bounds generically range from
the 10−1-10−5 level, with the most sensitivity for the light quarks given their greater PDFs
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magnitudes at low x. These results highlight encouraging prospects for expanding the
space of constraints on numerous quark-sector Lorentz-violating effects. Future studies in-
corporating mass effects from heavy quarks, charged-current processes, polarized processes,
and effects from radiative corrections and nonabelian gauge fields, will significantly extend
the reach for detecting potential violations of CPT and Lorentz invariance in existing and
future collider experiments.
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