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zur Erlangung des Grades eines

Doktors der Naturwissenschaften

(Dr. rer. nat.)

vorgelegt von

Carina Popovici
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Zusammenfassung

Quantenchromodynamik [QCD] wird heute als die Theorie betrachtet, welche die Starke
Wechselwirkung zwischen den fundamentalen Konstituenten der Hadronen, den Quarks
und Gluonen, korrekt beschreibt [1–5]. Bei großen Energien (kleinen Abständen) ver-
schwindet die Kopplungskonstante – ein Phänomen, das gemeinhin als asymptotische
Freiheit bezeichnet wird. In dem entsprechenden Impulsbereich wurde die Störungstheorie
angewendet und in tiefinelastischen Streuexperimenten erfolgreich überprüft. Für mittlere
und kleine Impulse hingegen wird die Kopplungskonstante so groß, dass die Störungsthe-
orie nicht mehr angewendet werden kann. Daher müssen andere Methoden angewendet
werden, um das Confinement zu erklären, also das Phänomen, dass im Experiment nur
farblose Hadronenzustände beobachtet werden. In dieser Dissertation wird der Quark-
Sektor der QCD in Coulomb-Eichung mit Hilfe der Dyson-Schwinger-Gleichungen unter-
sucht. In diesem Rahmen nutzen wir verschiedene Strategien, um die Eigenschaften der
QCD sowohl bei großen als auch bei kleinen Impulsen zu studieren.

Im ersten Kapitel erinnern wir an einige grundsätzliche Eigenschaften der QCD. Aus-
gehend von der Lagrangefunktion der QCD präsentieren wir die Eichfixierung und mo-
tivieren unsere Wahl der Coulomb-Eichung. Verschiedene Aspekte des Confinements wer-
den diskutiert, insbesondere der Gribov-Zwanziger-Confinement-Mechanismus und seine
Relevanz in Coulomb-Eichung.

Das zweite Kapitel beschäftigt sich mit der grundsätzlichen Ableitung der Dyson-
Schwingen-Gleichungen. Funktionale Methoden werden eingeführt und der Quark-Pro-
pagator sowie die Quark-Beiträge zur Gluon-Zweipunktfunktion und zur Quark-Gluon-
Vertexfunktion werden formal abgeleitet.

Im dritten Kapitel werden diese Funktionen in 1-Loop-Störungstheorie ausgearbeitet.
Um die in den Gleichungen auftretenden nicht-kovarianten Loop-Integrale in Coulomb-
Eichung zu behandeln, wird eine neue Methode basierend auf Differentialgleichungen und
partieller Integration entwickelt. Physikalische Resultate werden verifiziert, so z.B. die
Gltigkeit der analytischen Fortsetzung zwischen Minkowski- und Euklidischer Raum-Zeit
und die Renormierung der Quarkmasse. Des weiteren wird der Quark Beitrag zum 1-
Loop-Koeffizient der β-Funktion berechnet.

Das vierte Kapitel ist der Slavnov-Taylor-Identität der Quark-Gluon-Vertexfunktion
gewidmet. Insbesondere wird das Auftreten des sogenannten Quark-Geist-Streukerns un-
tersucht.

In Kapitel 5 nähern wir uns dem Confinement-Problem durch Betrachtung des Gren-
zfalls schwerer Quarks. In diesem Limes nutzen wir den (vollständig nicht-störungsthe-
oretischen) funktionalen Formalismus kombiniert mit einer Entwicklung nach Potenzen
des Inversen der schweren Quarkmasse. Durch Einschränkung auf die führende Ordnung
in dieser Massen-Entwicklung leiten wir eine strenge analytische Lösung für den Propag-
ator der schweren Quarks ab. Anschließend nutzen wir die Gleichungen für gebundene
Zustände von Mesonen und Baryonen, um das linear wachsende Potential abzuleiten, das
Quark-Confinement erklärt.



Kapitel 6 behandelt die Vier-Punkt Greenschen Funktionen der Theorie. Ausgehend
vom in Kapitel 2 eingeführten Funktionalformalismus werden diese Funktionen explizit
abgeleitet und ihre Beziehung zu den Gleichungen gebundener Zustände aus dem vor-
angegangenen Kapitel diskutiert.

Kapitel 7 enthält die Zusammenfassung und das Fazit. Es folgen die Anhänge in denen
unter anderem die in Kapitel 3 abgeleiteten nicht-kovarianten Integrale explizit überprüft
werden und auch einige in der Arbeit benötigte Zwei- und Drei-Punkt-Integrale berechnet
sind.



Abstract

Quantum Chromodynamics [QCD] is widely believed to be the correct theory of strong
interactions between the fundamental constituents of the hadrons, the quarks and gluons
[1–5]. At high energies (small distances), the coupling between quarks and gluons tends
to zero, a phenomenon known as asymptotic freedom. In this momentum region, per-
turbation theory has been applied and successfully tested in deep inelastic processes. At
intermediate and low momenta though, the coupling constant becomes strong enough
to invalidate perturbation theory. Different methods must be employed to investigate
color confinement, i.e. the phenomenon that only colorless hadronic states are observed
in the experiment. This thesis deals with the quark sector of Coulomb gauge QCD and
the method we employ is the Dyson–Schwinger equations. In this framework, we utilize
different strategies to explore both the large and small momentum properties of QCD.

In the first chapter we review some basic properties of strong QCD. Starting with
the QCD Lagrangian, the gauge fixing procedure is presented, and our choice of using
Coulomb gauge is motivated. Certain aspects of confinement are discussed, in particular
the Gribov-Zwanziger confinement mechanism and its relevance in Coulomb gauge.

The second chapter is concerned with the formal derivation of the Dyson–Schwinger
equations. Functional methods are introduced and the quark propagator, along with the
quark contribution to the gluon two-point functions and the quark-gluon vertex functions
are formally derived.

In the third chapter, these functions are examined at one-loop perturbative level. To
handle the Coulomb gauge noncovariant loop integrals entering the equations, a new
method based on differential equations and integration by parts technique is developed.
Physical results are verified, such as the validity of the analytic continuation between
Minkowski and Euclidian space, and the quark mass renormalization. The quark contri-
bution to one-loop coefficient of the β-function is also calculated.

Chapter 4 is devoted to the Slavnov–Taylor identity for the quark-gluon vertices. In
particular, the appearance of the so-called quark-ghost scattering kernels is explored.

In Chapter 5, we address the problem of confinement by restricting ourselves to the
heavy quark sector of the theory. In this limit, we employ the (full nonperturbative)
functional formalism, combined with an expansion in the inverse of the heavy quark mass.
Restricting to the leading order in the mass expansion, we derive an exact, analytical
solution for the heavy quark propagator. We then consider the bound state equations for
mesons and baryons and use them to derive the linearly rising potential which confines
the quarks.

Chapter 6 is devoted to the four-point Greens functions of the theory. Based on the
functional formalism introduced in Chapter 2, these functions are explicitly derived and
their connection to the bound state equations from the previous chapter is discussed.

Chapter 7 includes the summary and conclusions. It is followed by appendices where,
among others, the noncovariant integrals derived in Chapter 3 are checked explicitly, and
also some standard two- and three-point integrals needed in this work are evaluated.
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Chapter 1.

QCD in Coulomb gauge

A deep understanding of QCD requires a whole toolbox of theoretical methods: analytical
perturbative methods for weak coupling, numerical lattice gauge theory, along with the
canonical approach [6], and functional methods [2]. The latter two methods have the ad-
vantage that they are not restricted to weak coupling and can still be treated analytically.
The functional methods most commonly used are the renormalization group equations
(see, for example, Refs. [7, 8] for reviews) and the Dyson–Schwinger equations of motion
for the Green’s functions of the theory [9–11]. In this thesis, we employ the functional
equation techniques and derive the Dyson–Schwinger equations.

Since QCD is a non-abelian gauge theory, within the functional approach considered
here it is necessary to fix the gauge. Thus, after briefly introducing the QCD Lagrangian,
we will present the gauge fixing procedure and the problems related to it, with emphasis
on Coulomb gauge. We will then motivate why among various gauges, Coulomb gauge has
the advantage that it is “physical”: after converting to first order formalism, we will show
that the number of dynamical variables reduces to the number of the physical degrees of
freedom. Further, the Gribov-Zwanziger confinement scenario [12, 13] will be introduced
and its relevance for Coulomb gauge will be put forward. The alternative approaches
to QCD in Coulomb gauge will be also reviewed, and in particular, the results obtained
within the Hamiltonian formalism will be outlined.

Although Coulomb gauge seems to be more efficient in identifying the physical degrees
of freedom, noncovariance introduces severe technical difficulties1 and moreover, the prob-
lems related to renormalization have not yet been solved. From a practical point of view,
Landau gauge has the advantage of being covariant and thus many infrared investigations
have been undertaken, however studies are still in progress. A brief review of the results
obtained in this gauge, also in correspondence to the confinement mechanism, will be
presented at the end of this chapter.

1.1. QCD as non-abelian gauge theory

QCD is a non-abelian gauge theory whose matter constituents, the quarks, are spin 1/2
fermions and obey the Dirac Lagrangian2

Lq = q̄α(x) [iγµD
µ −m]αβ qβ(x), q̄ = q†γ0 (1.1)

where the Dirac γµ matrices satisfy the Clifford algebra, {γµ, γν} = 2gµν and the indices
α, β . . . commonly denote the Dirac spinor, flavor and (fundamental) color. The quark

1The noncovariant Feynman integrals in Coulomb gauge will be examined in Chapter 3.
2Initially we use Minkowski metric defined in the Appendix A.
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fields q̄, q transform in the fundamental representation of the gauge group SU(Nc)
3, with

Nc = 3 realized in QCD. The covariant derivative (in the fundamental representation) is
given by

Dµ = ∂µ − igAµ, (1.2)

where g is the coupling constant of the theory and Aµ(x) = Aa
µ(x)T

a. The non-abelian
gauge field Aa

µ(x) transforms according to the adjoint representation of the gauge group.
Given an infinitesimal transform U(x) = 1−iθa(x)T a the variation of the gauge and quark
fields is

δAa
µ(x) = −1

g
D̂ac

µ (x)θc(x) (1.3)

δqα(x) = −iT aθa(x)qα(x) (1.4)

where the covariant derivative in the adjoint representation reads

D̂ac
µ = δac∂µ + gfabcAb

µ. (1.5)

Defining the field strength tensor

Fµν = T a(∂µA
a
ν − ∂νA

a
µ + gfabcAb

µA
c
ν) (1.6)

we can construct a kinetic term for the non-abelian gauge field Aµ

LYM = −1

2
TrFµνF

µν = −1

4
F a
µνF

aµν , (1.7)

such that the total Lagrange density LQCD = Lq + LYM is invariant under local gauge
transformations.

Let us now consider the functional integral

Z =

∫

D[Aq̄q] exp {iSQCD}, (1.8)

where D[Aq̄q] denotes the functional integration measure for the Yang–Mills and quark
fields and the QCD action is given by

SQCD =

∫

d4x

{

q̄α(x) [iγµD
µ −m]αβ qβ(x)−

1

4
F a
µνF

aµν

}

. (1.9)

The difficulty with the functional integral Eq. (1.8) is that the measure D[Aq̄q] runs over
infinitely many gauge equivalent configurations (field configurations that are connected
by gauge transformations), whereas the the action SQCD is gauge invariant. Hence it
introduces for every gauge orbit4 a divergent factor (the volume of the gauge group).
The way to handle this problem is to use a method introduced by Faddeev and Popov
[14]. The idea is to single out one representative from each orbit by imposing a gauge
fixing condition to the functional integral Eq. (1.8). In this thesis we shall be considering
only Coulomb gauge, but also other choices such as Landau gauge are possible. As a
consequence, a new set of Grassmann fields, known as ghosts, are introduced. The gauge
fixing procedure, the ghost fields and the problems associated with them will be discussed
in the next section.
3Some relevant formulas for the group SU(Nc) are collected in the Appendix A.
4A gauge orbit contains all configurations connected by gauge transformations and will be explicitly
defined in the next section.
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1.2 Gauge fixing and ghosts

AAA

A

gauge orbit

Figure 1.1.: Depiction of a gauge orbit containing Aµ and the gauge transformed field Aθ
µ

1.2. Gauge fixing and ghosts

We start by defining the gauge orbit for some configuration Aµ as the set of all gauge
equivalent configurations, i.e. each point AU

µ on the gauge orbit is obtained by acting
upon Aµ with the gauge transformation U (see also Fig. 1.1):

[Aorbit
µ ] =: {AU

µ = UAµU
† − i

g
(∂µU)U † | U ∈ SU(Nc)}. (1.10)

Then the integral over all the gauge fields
∫

DA can be written as an integral over a full
set of gauge-inequivalent configurations

∫

DAref , where Aref is a reference gauge field
representative for the orbit (i.e., integral over all possible gauge orbits), and an integral
around each gauge orbit

∫

DO(Aref )
∫

DA =

∫

DAref

∫

DO(Aref ). (1.11)

Since one integrates over infinitely many equivalent configurations related by a gauge
transformation, the integral around the gauge orbit

∫

DO(Aref ) is infinite and must be
eliminated. The strategy is to extract only one representative gauge-field configuration out
of each orbit by imposing a gauge fixing condition χ[A] = 0. Each gauge field configuration
on the orbit O(Aref ) is a gauge transformation of Aref , i.e. one can (up to a volume factor)
rewrite the integral

∫

DO(Aref ) as an integral over the gauge group
∫

DU . The gauge
fixing condition is implemented by inserting the identity

1 = ∆[A]

∫

DUδ[χ(AU )] (1.12)

into the functional integral Eq. (1.8). Ideally, the gauge fixing condition χ(A) = 0 should
be satisfied by only one Aµ of each gauge orbit. 5 The Faddeev-Popov determinant
∆[A] = ∆[AU ] accounts for the functional determinant arising from the argument of the
delta function. Using the invariance of the action under gauge transformations, one can
rewrite the functional integral of the theory as

Z =

∫

DUZgf (1.13)

where the gauge fixed amplitude is given by

Zgf =

∫

D[Aq̄q]∆[A]δ[χ(A)] exp {iSQCD}, (1.14)

5But, as will shortly be discussed, this is in practice impossible due to topological restrictions.

3
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and the divergent measure
∫

DU has been factorized as an overall constant which can be
absorbed in the normalization. In the following, we will use the notation Z (instead of
Zgf ) for the gauge fixed functional integral, since no confusion can arise.

In Coulomb gauge, the (noncovariant) gauge fixing condition is given by:

χ[A] = ~∇· ~Aa = 0 (1.15)

and hence the temporal and spatial components of the gauge field must be treated dif-
ferently. The gauge fixing condition can be implemented by rewriting the delta function
with the help of a Lagrange multiplier λa

δ[χ(A)] →
∫

Dλ exp

[

−i

∫

d4x λa~∇· ~Aa

]

, (1.16)

and the Faddeev-Popov determinant

∆[A] = Det [~∇· ~Dab] (1.17)

can be written as a functional integral over two new Grassmann valued fields c and c̄, the
so-called “Faddeev-Popov ghosts”6:

∆[A] →
∫

D[c̄c] exp

[

−i

∫

d4x ca~∇· ~Dabcb
]

. (1.18)

In the above, we have introduced the spatial component of the covariant derivative
Eq. (1.5) (in the adjoint representation)

~Dac = δac~∇− gfabc ~Ab. (1.19)

Due to their unusual spin-statistics (they obey Fermi-Dirac statistics, and at the same
time are scalar), the ghost fields are only allowed to appear in closed loops in Feynman
diagrams and never as initial or final states in a physical process. Putting all these
together, we can write for the Coulomb gauge functional integral:

Z =

∫

D[Aq̄qc̄cλ] exp {iSQCD + iSFP}, (1.20)

with

SQCD =

∫

d4x

{

q̄α

[

iγ0D0 + i~γ · ~D −m
]

αβ
qβ − 1

4
F a
µνF

aµν

}

, (1.21)

SFP =

∫

d4x
[

−λa~∇· ~Aa − ca~∇· ~Dabcb
]

. (1.22)

In the QCD action, Eq. (1.21), we have separated the covariant derivative into temporal
and spatial components (implicitly in the fundamental color representation), given by:

D0 = ∂0 − igT cσc, ~D = ~∇+ igT c ~Ac, (1.23)

where the temporal component of the gauge field A0a has been renamed to σa. SFP

collects the terms originating from the gauge fixing condition Eq. (1.16) and the Faddev-
Popov determinant Eq. (1.18).

6A pedagogic introduction on this topic can be found in [4].
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1.2 Gauge fixing and ghosts

Figure 1.2.: Illustration of the hyperplane Γ in gauge field configuration space obtained by gauge
fixing. Furthermore, the first Gribov region Ω and the fundamental modular region Λ
are shown. A gauge orbit [A] intersects the hyperplane Γ several times thus generating
Gribov copies. The fundamental modular region, by definition, is intersected only
once.

The gauge fixing procedure described above is not yet complete, in the sense that
the simple Faddeev-Popov trick is not sufficient to extract a single gauge configuration
from each gauge orbit. The reason is the presence of the so-called Gribov copies [13], i.e.
configurations Aµ connected by a gauge transformation that produce multiple intersection
points of a gauge orbit with the hyperplane Γ generated by the gauge fixing condition (see
also Fig. 1.2). In order to avoid the Gribov copies, it is necessary to restrict the hyperplane
Γ to the so-called Gribov region Ω. This is obtained by minimizing the L2-norm of the
vector potential

FA[U ] =

∫

d3x tr
[

AU
i (x)

]2
(1.24)

along the gauge orbit [15]. In this region, any local minimum of this norm implements the
gauge fixing condition (in this case, Coulomb gauge) and the Faddeev-Popov operator is
restricted to positive eigenvalues:

Ω ≡
{

~A : ~∇· ~A = 0;−~∇· ~D ≥ 0
}

. (1.25)

Importantly, the Gribov region Ω contains the trivial configuration g ~A = 0 (i.e., it contains
all configurations relevant for perturbation theory) and therefore the ultraviolet regime is
not influenced by this restriction. Moreover, the Faddeev-Popov determinant vanishes on
the boundary ∂Ω of the first Gribov horizon [16].

In general, Ω is still not free of Gribov copies7, thus in principle one has to restrict
further the gauge field configurations to the fundamental modular region Λ – the region
of global minima of the norm defined above:

Λ ≡
{

~A : FA[1] ≤ FA[U ] ∀U
}

. (1.26)

This gauge condition is also known as “minimal Coulomb gauge” [12]. In practise, these
configurations are extremely complicated to identify8. However, in the continuum Zwan-
ziger showed by means of stochastic quantization that Gribov copies inside the Gribov

7A proof of the existence of Gribov copies inside Ω was given in [17].
8For recent lattice studies see, for example, [18–21].
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Chapter 1. QCD in Coulomb gauge

region do not affect the Green’s functions of the theory [16]. Precisely, the dominant
configurations lie on the common boundary of Ω and Λ and hence, in practise, restriction
to the Gribov region is sufficient. This restriction might eventually generate nontrivial
boundary terms which could influence the derivation of the field equations of motion (and
implicitly the Dyson–Schwinger equations), but since by definition the Faddeev-Popov
operator vanishes on the boundary of Ω, these boundary terms are identically zero.

1.3. Approaches to Coulomb gauge QCD

1.3.1. First order functional formalism

As already mentioned, the gauge of choice in this work is Coulomb gauge. Although this
gauge does not have so many practical advantages as Landau gauge for example, there
are several reasons motivating our choice: in Coulomb gauge there is a natural picture
of confinement, Gauss law is naturally built in (such that in principle gauge invariance
is fully accounted for) and the total color charge is conserved and vanishing [12, 22].
However, except for the original work of Khriplovich [23], only recently Dyson–Schwinger
studies in Coulomb gauge have been undertaken. The technical barrier stems from the
so-called energy divergence problem – the unregulated divergences generated by the ghost
loops [24–26]. The way to circumvent this problem is to use the first order functional
formalism9. Within this formalism these divergences cancel exactly and moreover, the
system reduces automatically to “would-be-physical” degrees of freedom [12]. All these
aspects will be discussed in detail in the course of this section.

Motivation and main idea

The main advantage of working in Coulomb gauge stems from the fact that in this gauge
the Gribov-Zwanziger mechanism of confinement10 becomes particularly transparent. In
this picture, the long range confining force is provided by the instantaneous Coulomb
interaction, which appears to be enhanced for small three-momenta ~q2 → 0, whereas the
transverse (colored) gluon is suppressed, reflecting the absence of the colored states in
the spectrum. In covariant gauges such as Landau gauge, a quantity that leads to the
confinement potential has not been identified so far.

The conversion to the first order (or phase-space) formalism is motivated by the fact
that within this formalism the famous Coulomb gauge energy divergence [24–26] can
be avoided. Energy divergence means that the functional integral Eq. (1.20) gives an
ill-defined integration, stemming from the energy-independent ghost loops11 which are
integrated over both 3-momentum and energy. As an example, consider the following
one-loop integral [30]:

∫

dk0

∫

d3~k[(~k − ~p)2~k2]−1. (1.27)

9However, since we are mainly concerned with the quark sector of QCD, in the course of our investigations
we will come across few points where restriction to second order formalism [27, 28] will be sufficient.

10The Gribov-Zwanziger confinement scenario will be presented in more detail in Section 1.4.
11 The energy independence of the ghost propagator follows from the fact that the Faddeev-Popov operator
involves only spatial derivatives and spatial components of the gauge fields (see Refs. [27, 29] for a
complete derivation and discussion).
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1.3 Approaches to Coulomb gauge QCD

This divergence appears in any number of dimensions and cannot be regularized by usual
dimensional regularization, although when taken as a full set in the Dyson–Schwinger
equations, all such loops cancel. To handle this type of divergences, Leibbrandt in-
troduced a modified form of the dimensional regularization, the so-called split dimen-
sional regularization [24], in which two complex parameters ω and σ are introduced,
d3~q → d2ω~q and dq0 → d2σq0 with the limits ω → 3/2 and σ → 1/2 to be taken after all
the integrations have been completed. An alternative approach is the so-called negative
integration method (NDIM) [31, 32], where a “Feynman-like” integral is solved, i.e. a
loop integral in negative D-dimensional space with propagators raised to positive powers
in the numerator. With these two methods the Coulomb gauge integrals were studied
up to one and two-loop level perturbatively and results for the divergent part for several
of them have been achieved. These divergences do in principle cancel order by order
in perturbation theory (tested up to two-loops [33]), but this cancellation is difficult to
isolate.

Furthermore, within the first order formalism we are able to cancel the unphysical ghost
fields, i.e. the Faddeev-Popov term. This means that we reduce the functional integral
Eq. (1.20) to “physical” degrees of freedom, the transverse gluon and transverse ~π fields,
which in classical mechanics would be the configuration variables and their momentum
conjugates (see below).

We keep the term “physical” into quotations marks because it is realized that the true
physical objects are the color singlet states, their observables being the mass spectrum
and the decay widths.

The presentation of the first order formalism, together with the reduction to the “phys-
ical” degrees of freedom, follows [29] and is discussed in some detail. We start by express-
ing the field strength tensor Eq. (1.6) in terms of the chromo-electric and -magnetic fields
(recall that the temporal component A0a has been renamed to σa)

~Ea = −∂0 ~Aa − ~∇σa + gfabc ~Abσc, Ba
i = ǫijk

[

∇jA
a
k −

1

2
gfabcAb

jA
c
k

]

, (1.28)

such that the Yang–Mills action can be split into chromoelectric and -magnetic terms

SYM =

∫

d4x

[

1

2
~Ea · ~Ea − 1

2
~Ba · ~Ba

]

. (1.29)

Next, we consider the chromoelectric term in the action. We linearize this term and hence
convert to the first order formalism by introducing an auxiliary field ~π via the identity
[12]

exp

{

i

∫

d4x
1

2
~Ea · ~Ea

}

=

∫

D~π exp

{

i

∫

d4x

[

−1

2
~πa ·~πa − ~πa · ~Ea

]}

. (1.30)

Classically, the ~π field is interpreted as the momentum conjugate to ~A. The ~π field is then
split into transverse and longitudinal components using the identity

const =

∫

Dφδ
(

~∇·~π +∇2φ
)

=

∫

D {φ, τ} exp
{

−i

∫

d4xτa
(

~∇·~πa +∇2φa
)

}

. (1.31)
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Chapter 1. QCD in Coulomb gauge

After making the change of variables ~π → ~π − ~∇φ and collecting together all the parts
that contain ~π, we can write our full functional integral as (Φ denotes the collection of all
fields):

Z =

∫

DΦexp {iSq + iSYM + iSFP} =

∫

DΦexp {iSq + iSπ + iSB + iSFP} (1.32)

with

Sq =

∫

d4x q̄α

[

iγ0D0 + i~γ · ~D −m
]

αβ
qβ,

Sπ =

∫

d4x

[

−τa~∇·~πa − 1

2
(~πa − ~∇φa)·(~πa − ~∇φa) + (~πa − ~∇φa)·

(

∂0 ~Aa + ~Dabσb
)

]

,

SB =

∫

d4x

[

−1

2
~Ba · ~Ba

]

,

SFP =

∫

d4x
[

−λa~∇· ~Aa − ca~∇· ~Dabcb
]

. (1.33)

Having derived the functional integral and the full QCD action in the first order formal-
ism, we are now in the position to show that the ghost loops indeed cancel and the system
reduces to the “physical” degrees of freedom. In the next section, we will demonstrate
that the above QCD action simplifies to an expression where only the transverse ~A and
~π fields appear.

Reduction to “physical” degrees of freedom

Given the functional integral, Eq. (1.32), and Yang–Mills part of the action (the quark
field is not considered in this discussion), Eq. (1.33), we start by rewriting the Lagrange
multiplier terms as δ-function constraints, which automatically eliminates the ~∇· ~A and
~∇·~π terms in the action. In addition, we also rewrite the ghost terms as the original
Faddeev-Popov determinant. This has clearly the drawback that the local formulation
and the BRST invariance of the theory12 are no longer manifest. The functional integral
now reads

Z =

∫

DΦDet
[

−~∇· ~Dδ4(x− y)
]

δ
(

~∇· ~A
)

δ
(

~∇·~π
)

exp {iS} (1.34)

with

S =

∫

d4x

[

−1

2
~Ba · ~Ba − 1

2
~πa ·~πa +

1

2
φa∇2φa + ~πa ·∂0 ~Aa + σa

(

~∇· ~Dabφb + gρ̂a
)

]

,

(1.35)
where we have defined the effective color-charge of the gluons ρ̂a = fade ~Ad ·~πe. Next, we
use the fact that the action Eq. (1.33) has become linear in σ (after introducing the field
~π), and write the integral over σ as a δ-function constraint. This enforces the chromo-
dynamical equivalent of Gauss’ law giving

Z =

∫

DΦDet
[

−~∇· ~Dδ4(x− y)
]

δ
(

~∇· ~A
)

δ
(

~∇·~π
)

δ
(

−~∇· ~Dabφb − gρ̂a
)

exp {iS}
(1.36)

12The standard BRST and time-dependent Gauss–BRST transformations used in this work will be intro-
duced in Chapter 4.
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1.3 Approaches to Coulomb gauge QCD

with

S =

∫

d4x

[

−1

2
~Ba · ~Ba − 1

2
~πa ·~πa +

1

2
φa∇2φa + ~πa ·∂0 ~Aa

]

. (1.37)

The implementation of the Gauss’ law is very important because this essentially ensures
the gauge invariance of the system. Defining the inverse Faddeev-Popov operator M :

[

−~∇· ~Dab
]

M bc = δac, (1.38)

we can factorize the Gauß law δ-function constraint as

δ
(

−~∇· ~Dabφb − gρ̂a
)

= Det
[

−~∇· ~Dδ4(x− y)
]−1

δ
(

φa −Mabgρ̂b
)

. (1.39)

The inverse functional determinant cancels the original Faddeev-Popov determinant from
Eq. (1.36), leaving us with

Z =

∫

DΦδ
(

~∇· ~A
)

δ
(

~∇·~π
)

δ
(

φa −Mabgρ̂b
)

exp {iS}. (1.40)

We now use the δ-function constraint to eliminate the φ-field. Since the inverse Faddeev-
Popov operator M is Hermitian, we can reorder the operators in the action to give us

Z =

∫

DΦδ
(

~∇· ~A
)

δ
(

~∇·~π
)

exp {iS} (1.41)

with

S =

∫

d4x

[

−1

2
~Ba · ~Ba − 1

2
~πa ·~πa − 1

2
gρ̂bM ba(−∇2)Macgρ̂c + ~πa ·∂0 ~Aa

]

. (1.42)

As promised, the action Eq. (1.42) contains only transverse ~A and ~π fields. All other
fields, especially the unphysical ghosts, have been formally eliminated. However, the
appearance of the functional δ-functions and the inverse Faddeev-Popov operator M have
led to a non-local formalism. It is not known how to do practical calculations within this
formulation, but the non-local nature of the above result certainly serves as a guide to
the local formulation.

Before we close this section, few more remarks are in order. Quite generally, one can
argue that first order formalism in Coulomb gauge is better suited to describe physical
phenomena then other gauges such as Landau gauge. Indeed, the natural decomposition
of degrees of freedom, both physical and unphysical, inherent to the first order formalism,
automatically leads to the cancellations of the unphysical components. The subtlety is
then to identify how these cancellations arise, and also it is very important to ensure that
approximation schemes employed respect such cancellations. For example, the unphysical
ghost loop of the gluon polarization should be cancelled in the Dyson–Schwinger equations.
Given that the ghost propagator is energy independent, the temporal component of the
gluon propagator must itself have a part that is independent of energy [34] in order to
cancel this divergence. Later on in Chapter 5 devoted to heavy quarks, this observation
will be used to show that only color singlet quark-antiquark bound states are physically
allowed, regardless of the specific form of the energy independent part of the temporal
gluon propagator.
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Chapter 1. QCD in Coulomb gauge

On the other hand, one unpleasant feature of this approach is the large number of
fields, but as it turns out this does not have serious implications for the Dyson–Schwinger
equations [29, 35]. More important though, the issue of renormalisability remains unclear,
in the sense that a complete proof of full multiplicative renormalization is still missing
and one does not have a Ward identity in the usual sense [12]. A brief overview of the
attempts to renormalize Coulomb gauge will be given at the end of this chapter.

1.3.2. Alternative methods

Currently, the most popular continuum formalism to QCD in Coulomb gauge is the
Hamiltonian formalism [36–42].13 In this approach, one starts by imposing Weyl gauge
Aa

0(x) = 0, and subsequently, the Coulomb gauge is fixed with the help of the Faddeev-
Popov method, whereas the Gauss law is imposed as constraint. The Yang–Mills Schrö-
dinger equation is then solved using the variational principle for the vacuum state, with
a Gaussian ansatz for the wave functional. Then the vacuum energy is minimized and
this leads to a coupled system of non-linear Dyson–Schwinger equations for the gluon en-
ergy, the ghost and the Coulomb form factor and for the curvature in configuration space
[36]. These have been solved analytically in the infrared and numerically in the whole
momentum regime [40]. Similar to Landau gauge (see [43] for a recent review), it has
been found that in Coulomb gauge there are two different infrared powerlaw exponents
for the gluon and the ghost propagator [41, 42]. The favored solution is the most singu-
lar – with the ghost propagator dressing function diverging as 1/|~k| – which generates a
linearly rising heavy quark potential at large distances [41].14 Also the gluon energy is
divergent in the infrared, reflecting the absence of the gluons in the physical spectrum at
low energies, which is again a signal of confinement. Recently, the static potential between
infinitely heavy color sources has been also studied with a method based on the Dyson
equation for the Wilson loop. In [44], the authors considered the temporal Wilson loop
with the instantaneous part of the gluon propagator and the spatial Wilson loop with the
static gluon propagator, and solved the corresponding Dyson equation in Coulomb gauge.
In both cases a linearly rising potential has been found.

A second approach to Coulomb gauge is the lattice QCD (see, for example, [45] for a
review of the results obtained on the lattice). The first lattice calculations have concen-
trated on the infrared behavior of the ghost and gluon propagators. In particular, in Ref.
[34] it has been shown that the static transverse gluon propagator is suppressed in the IR
limit, while the time-time component is enhanced. Moreover, in the infinite-volume limit,
it has been found that the transverse gluon is well described by the Gribov’s formula [13]
but unfortunately this study was not conclusive in the ultraviolet [34, 46]. Recently, in
[47] the residual temporal gauge has been fixed and the renormalization of the full gluon
propagator has been studied. It has been found that the static propagator is renormaliz-
able only in the limit of continuous time, i.e. the lattice Hamiltonian formulation, and the
resulting static propagator satisfies the Gribov’s formula at all momenta. For the ghost
propagator, lattice results have been reported in [48, 49], and more recently in [50]. An
infrared divergence stronger than 1/~k2 has been found, in agreement with the horizon con-
dition necessary in the Zwanziger confinement criterion. Very recently, lattice studies of

13In Ref. [39], the results obtained within the Hamiltonian approach to Yang–Mills theory are reviewed.
14In the next section, the connection to Landau gauge as well as the infrared ghost dominance will be
discussed in more detail.
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the Coulomb gauge quark propagator have been also undertaken and preliminary results
have been presented [50]. The ambiguities due to the Gribov copies have been analyzed
and it was found that their influence on the quark propagator is small. Moreover, the
residual gauge has been fixed, and it appears that the impact of the residual gauge fixing
is only reflected in the time-dependence of the propagator.

1.4. Connection to Landau gauge and aspects of confinement

Due to its covariance, Landau gauge ∂µA
a
µ = 0 has been for a long time the preferred

gauge for non-perturbative Dyson–Schwinger studies. It preserves Lorenz invariance and
it has a distinct property which makes it very attractive for practical approximations,
namely that the the ghost-gluon vertex remains bare in the infrared15.

The first non-perturbative calculations in Landau gauge date back to the late seventies,
when the infrared gluon propagator was first studied by Mandelstam and Bar-Gadda
[52, 53]. In this calculation, the ghost loop and the four-gluon vertex, which do not
contribute at first level in perturbation theory, have been neglected and only the (non-
abelian) triple gluon vertex has been considered. It was found that the gluon propagator
is infrared divergent and moreover, assuming a single gluon exchange, a linearly rising
potential between heavy quarks has been derived. Today this picture is known as infrared
slavery. In Landau gauge this picture has been rather misleading, in the sense that only
very late it has been shown that in this gauge it is not the gluons, but the ghosts that drive
the infrared properties of the theory16. More precisely, the gluon propagator vanishes at
zero momentum, whereas the ghosts provide for a long range correlation. The gluon and
ghost propagators are characterized by the so-called infrared exponents, which are related
by a scaling relation, hence the name scaling solution. We briefly mention that there exists
a second solution, the decoupling solution, which possesses quite different characteristics:
the ghost propagator is not infrared enhanced but remains bare in the infrared and the
gluon propagator becomes finite instead of going to zero [56, 57]. The connection between
the two solutions (scaling and decoupling), different only in the deep infrared, still remains
to be understood.

Let us now analyze the consequences of restricting the configuration space to a compact
region (Gribov or fundamental modular region), for the infrared properties of the theory.
As discussed in the beginning of this chapter (Sec. 1.2), the ultraviolet regime is not
affected by this restriction (when the coupling becomes small, all relevant configurations
lie in the vicinity of gA = 0), whereas the infrared can be in principle governed by any
domain within the Gribov region. Zwanziger argued that only the behavior of the gauge
field on the Gribov horizon (i.e., the boundary of the Gribov region) is important for
the infrared properties [58]. Pictorially, the situation is similar to a compact sphere of
radius r in high N dimensions, where the probability distribution is concentrated on the
boundary due to the volume measure rN−1dr. In Coulomb gauge, the Coulomb potential

15Or at least, from a semiperturbative analysis of the Dyson–Schwinger equation for the ghost-gluon
vertex (with nonperturbative ghost and gluon propagators and a bare ghost-gluon vertex), it follows
that deviations from the tree-level vertex are very small [51].

16We refer to the original works [54, 55], and for a review, see Ref. [43].
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Chapter 1. QCD in Coulomb gauge

between two external color charges17 has been derived [41], and it is related to

<M(−∇2)M>ab (~x, ~y), (1.43)

where M is the inverse Faddeev-Popov operator, defined in Eq. (1.38). Since on the
Gribov horizon the Faddeev-Popov operator develops a zero eigenvalue, the Coulomb
energy Eq. (1.43) becomes very large in the vicinity of the Gribov horizon, leading directly
to an asymptotically linear potential. This mechanism is known as the Gribov-Zwanziger
scenario of confinement. One can also inspect the relation between confinement and
the restriction to the Gribov region by examining the infrared behavior of the ghost
propagator. This propagator is given by to the expectation value of the inverse Faddeev-
Popov operator and therefore is strongly divergent, due to the vanishing eigenvalues of the
Faddeev-Popov operator on the Gribov horizon – this is known as the horizon condition
[13]. Hence, the ghost propagator becomes infrared enhanced from the effects of the
Gribov horizon.

As outlined above, in Landau gauge the infrared ghost dominance has been established,
but in Coulomb gauge, the Gribov-Zwanziger scenario has a somewhat different realiza-
tion, depending on the specific formalism. As discussed in the previous section, in the
Hamiltonian formalism the ghost propagator is infrared enhanced, whereas in the func-
tional formalism, apart from the ghost and the transversal spatial gluon propagator, there
is a third propagator, the temporal gluon propagator (in the canonical formalism, this
would correspond to the non-abelian color Coulomb potential, Eq. (1.43)). Assuming that
this propagator is largely independent of energy and diverges like 1/~k4 in the infrared (as
indicated by the lattice results [49]) one directly obtains a linearly rising potential for
color singlet quark-antiquark states, leading back to the old infrared slavery picture18.
We also mention that very recently, a relation between the ghost and temporal gluon
propagators has been found [60]. Based on the Gribov-Zwanziger scenario, this result,
together with the Slavnov–Taylor identities presented in Ref. [27], provide an important
element towards connecting the infrared slavery with the ghost dominance picture.

1.5. Issue of renormalizability

As already mentioned, the renormalizability of Coulomb gauge in the continuum has not
been proven yet. In the following, we briefly review the efforts made in this direction.
Among the various attempts, the most sophisticated approach has been pursued in Ref.
[61]. There, the authors define the so-called “interpolating gauge”

− a∂0A0 +∇ · ~A = 0 (1.44)

and recover Coulomb gauge in the limit a → 0. A linear shift in the field variables is
performed in order to exhibit a symmetry (called r-symmetry) between the Fermi and Bose
unphysical degrees of freedom. Individual closed Fermi-ghost loops and closed unphysical
Bose loops diverge like 1/

√
a, but they cancel in pairs at every order in perturbation

theory by virtue of the r-symmetry. Thus in the Coulomb gauge limit the correlation

17This potential is renormalization group invariant and is an upper bound for the gauge invariant potential
from the Wilson loop – a statement known as “no confinement without Coulomb confinement” [59].

18We postpone the detailed presentation of this mechanism to Chapter 5, concerning the heavy quarks.
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functions are finite, and this remains true also for the renormalized correlation functions.
However, there have been also identified one-loop graphs that vanish like

√
a, which do

not exist in the formal Coulomb gauge (i.e. for a = 0). These graphs can not be neglected
since they give a finite contribution at two-loop order, when inserted into the graphs
that diverge like 1/

√
a. One possibility is that these graphs are merely gauge artifacts

and decouple from the expectation values of all gauge-invariant quantities such as Wilson
loop, but up to know this has not been explicitly shown.

Renormalization of Coulomb gauge QCD has been studied also within the Lagrangian,
second order formalism. In Ref. [62], a proof of algebraic renormalizability of the theory
has been given with the help of the Zinn-Justin equation. Through diagrammatic analysis
the authors have shown that in the strict Coulomb gauge g2D00 (D00 is the time-time
component of the gluon propagator) is invariant under renormalization, in accordance
with a similar result obtained by Zwanziger [12]. In a covariant gauge, no component of
the gluon field has this property.

13





Chapter 2.

Dyson–Schwinger equations

Dyson–Schwinger equations are the equations of motions in quantum field theory (analog-
ous to the classical Euler-Lagrange equations) and they relate the various Green’s func-
tions of the theory. They are very powerful tools to treat nonperturbative phenomena,
such as confinement and chiral symmetry breaking, whereas in the weak coupling regime
the perturbative series is recovered. The most convenient way to derive Dyson–Schwinger
equations (which will also be employed in this work) is to use the functional method, i.e.
to derive these equations directly from the invariance of the generating functional under
the variation of the field [10, 11]. An alternative method is the Dyson resummation [9],
which reorganizes perturbative corrections into subdiagrams.

Dyson–Schwinger equations built an infinite tower of coupled non-linear integral equa-
tions, providing a complete description of the theory. Thus, in order to solve the theory
it would be in principle necessary to solve the whole set of equations. However, this is in
practice impossible and hence the main question is how to truncate the system, i.e. how
to find a way to reduce these equations to a smaller subset of simpler equations which can
be solved. The only systematic truncation relies on perturbation theory, otherwise one is
forced to make an ansatz for the unknown higher order Green’s functions. Importantly,
the ansatz must respect the symmetry properties of the theory, i.e. it must obey the
Ward–Takahashi identities in QED or the Slavnov–Taylor identities in QCD.

In this Chapter we present the formal derivation of the Dyson–Schwinger equations of
the two- and three-point quark Green’s functions (i.e., the quark gap equation and the
quark-gluon vertex functions). In Chapter 3 we will then present results in the perturb-
ative limit, and in the second part of this thesis we will derive the four-point Green’s
functions and analyze them in the limit of the heavy quark mass.

2.1. Field equations of motion

The full generating functional of the theory is constructed from the functional integral,
Eq. (1.32), by adding the corresponding source terms. Explicitly, we have (recall that DΦ
denotes the integration over all fields):

Z[J ] =

∫

DΦexp {iSq + iSYM + iSFP + iSs} (2.1)

with the action Eq. (1.33) and the sources defined by

Ss =

∫

d4x
[

ρaσa + ~Ja · ~Aa ++κaφa + ~Ka ·~πa + caηa + ηaca + ξaλa + qαχα + χαqα

]

.

(2.2)
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In the derivation of the quark field equation of motion (from which the Dyson–Schwinger
equations will be derived) the gauge-fixing term in the action, SFP , and the terms arising
from the conversion to the first order formalism, discussed in the previous Chapter, are
unimportant because the quarks are not connected by a primitive vertex to any of the
corresponding fields, including the ghosts (i.e., there is no direct coupling term in the
quark Lagrange density). What is however important later on is that these extra fields
will formally enter the discussion of the Legendre transform (through partial functional
derivatives) which, in principle, gives additional terms but which will turn to be vanishing
at one-loop order perturbatively.

Also, it is important to note that the generating functional, Eq. (2.1), is restricted to
the Gribov region. This restriction might generate complications due to the presence of
the Gribov copies inside the Gribov region. However, as discussed in Section 1.3.1, the
Gribov copies do not influence the derivation of the Dyson–Schwinger equations in the
continuum. Moreover, the boundary terms that may in principle appear are identically
zero due to the fact that the Faddeev-Popov operator vanishes on the boundary of the
Gribov region.

The quark equation of motion follows from the generating functional Eq. (2.1) and from
the observation that the integral of a total derivative vanishes:

∫

DΦ
δ

δiq̄xγ
exp

{

iSYM + i

∫

d4x [ q̄xα

(

iγ0D0 + i~γ · ~D −m
)

αβ
qxβ

+χ̄xαqxα + q̄xαχxα ] + . . .

}

= 0. (2.3)

In the above, we have inserted the explicit expression for the quark contribution to the
QCD action. Also, we have written the quark sources explicitly and denoted the rest with
dots. Using the expression for the components of the covariant derivative, Eq. (1.23), it
follows that
∫

DΦ

{

[

iγ0∂0x + i~γ · ~∇x + gT cγ0σc
x − gT c~γ · ~Ac

x −m
]

αβ
qxβ + χxα

}

exp {iS} = 0,

(2.4)
where S is the full action plus source terms. This expression can be rewritten in terms of
derivatives of the generating functional Z:

[

iγ0∂0x + i~γ · ~∇x −m
]

αβ

δZ

δiχ̄xβ
+
[

gT cγ0
]

αβ

δ2Z

δiρcxδiχ̄xβ
−
[

gT cγk
]

αβ

δ2Z

δiJc
kxδiχ̄xβ

+χxαZ=0

(2.5)
Th equation Eq. (2.4) is the starting point for the derivation of the quark Dyson–Schwinger
equations. Before we proceed to explicitly derive them, let us first introduce some nota-
tions and briefly review the various Green’s functions of the theory.

In general, the vacuum expectation values of the time-ordered products of field operators
– the full n-point Green’s functions of the theory (both connected and disconnected) –
are obtained by functional differentiation of the generating functional with respect to the
sources:

Gn(x1, . . . , xn) =
δnZ[J ]

δiJ(x1) . . . δiJ(xn)
. (2.6)

However, in practice we work with connected and one-particle irreducible n-point
Green’s functions. In order to eliminate the disconnected vacuum to vacuum diagrams,
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we use the generating functional of the connected Green’s functions W , defined as

Z[J ] = eW [J ], (2.7)

such that the connected Green’s functions are given by

Wn(x1, . . . , xn) =
δnW [J ]

δiJ(x1) . . . δiJ(xn)
. (2.8)

We now introduce a bracket notation for the functional derivatives of W with respect to
the sources, such that for a generic source Jα

<iJα>=
δW

δiJα
. (2.9)

Explicitly, we have:

δZ[J ]

δiχ̄xα
= Z[J ] <iχ̄ax>, (2.10)

δ2Z[J ]

δiρaxδiχxα

= Z[J ] [<iρaxiχxα> + <iρax><iχxα>] . (2.11)

Using the above equations, we convert Eq. (2.5) into derivatives of W [J ] and obtain :
[

iγ0∂0x + i~γ · ~∇x −m
]

αβ
<iχ̄xβ> +gT c { γ0 [<iρcx><iχ̄xα> + <iρcxiχ̄xα>]

−γk [<iJc
kx><iχ̄xα> + <iJc

kxiχ̄xα>] }+ χxα = 0. (2.12)

We define the generic classical field (since no confusion can arise, we use the same notation
for the quantum fields which are integrated over and for the resulting classical fields) to
be:

Φα =
1

Z

∫

DΦΦα exp {iS} =
1

Z

δZ

δiJα
. (2.13)

Explicitly, the classical quark and antiquark fields are given by:

qα(x) =
1

Z

∫

DΦqα(x) exp {iS} = 1
Z

δZ
δiχα(x)

=<iχα(x)>

qα(x) =
1

Z

∫

DΦqα(x) exp {iS} = − 1
Z

δZ
δiχα(x)

= − <iχα(x)> . (2.14)

Furthermore, we define the effective action (function of the classical fields) via the Le-
gendre transform of W [J ] with respect to the fields:

Γ[φ, q, q] = W [J, χ, χ]− iJαφα − iχαqα − iqαχα. (2.15)

In the above, we have explicitly separated the quark and Yang–Mills components, such
that Jα and φα denote generic gluonic (Yang–Mills ) sources and classical fields, respect-
ively, and we also use the common convention that summation over all discrete indices
and integration over continuous arguments is implicit. The generating functional Γ[Φ]
then yields the n-point proper or one-particle irreducible (1PI) Green’s functions, which
are those Green’s functions that are still connected after one internal line is cut:

Γn(x1, . . . , xn) =
δnΓ[Φ]

δiΦ(x1) . . . δiΦ(xn)
. (2.16)
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Chapter 2. Dyson–Schwinger equations

In the following, we introduce a bracket to denote derivatives of Γ with respect to fields
– although the notation is similar to the derivatives of W with respect to the sources, no
confusion can arise since we never mix derivatives with respect to sources and fields. This
gives:

<iJα>=
δW

δiJα
= Φα and <iΦα>=

δΓ

δiΦα
= −Jα. (2.17)

Note that care must be taken to observe the correct minus signs associated with the quark
(Grassmann) fields and sources. Explicitly, this reads:

qα(x) =<iχα(x)>, χα(x) = − <iqα(x)>,

qα(x) = − <iχα(x)>, χα(x) =<iqα(x)> . (2.18)

Having defined the proper (1PI) Green’s function, we can now rewrite the equation of
motion, Eq. (2.12), (and from which the Dyson–Schwinger equations will be derived) in
terms of proper functions as:

<iq̄xα> = −i
[

iγ0∂0x + i~γ · ~∇x −m
]

αβ
iqxβ

+ gT cγ0 [σc
xqxα+ <iρcxiχ̄xα>]− gT cγk [Ac

kxqxα+ <iJc
kxiχ̄xα>] . (2.19)

In a similar fashion, one can derive the gluon field equations of motion. They are given
by1 (the trace is over Dirac and fundamental color indices):

<iAa
ix> = −Γ

(0)a
q̄qAiαβ(iq̄xα)(iqxβ)− gTr

{

[T aγi]αβ <iχ̄xβiχxα>
}

−
∫

d4y d4z Γ
(0)cab
σAAij(z, x, y)

[

<iJb
jyiρ

c
z> −iAb

jyiσ
c
z

]

−
∫

d4y d4z
1

2!
Γ
(0)cab
σAσi (z, x, y)

[

<iρbyiρ
c
z> −iσb

yiσ
c
z

]

−
∫

d4y d4z
1

2!
Γ
(0)abc
3Aijk(x, y, z)

[

<iJb
jyiJ

c
kz> −iAb

jyiA
c
kz

]

+ . . . , (2.20)

<iσa
x> = −Γ

(0)a
q̄qσαβ(iq̄xα)(iqxβ) + gTr

{

[T aγ0]αβ <iχ̄xβiχxα>
}

−
∫

d4y d4z
1

2!
Γ
(0)abc
σAAjk(x, y, z)

[

<iJb
jyiJ

c
kz> −iAb

jyiA
c
kz

]

−
∫

d4y d4z Γ
(0)abc
σAσj (x, y, z)

[

<iJb
jyiρ

c
z> −iAb

jyiσ
c
z

]

+ . . . (2.21)

where Γ
(0)a
q̄qAiαβ, Γ

(0)a
q̄qσαβ , and Γ

(0)cab
σAAij ,Γ

(0)cab
σAσi , Γ

(0)abc
3Aijk are the tree-level quark-gluon and triple-

gluon vertices, respectively. The first two terms in the above gluon equations of motion,
containing the quark-gluon interactions, are needed for the derivation of the quark con-
tributions to the gluon proper two-point functions. The rest of the terms represent the
Yang–Mills self-interaction, and are required for the derivation of the Dyson–Schwinger
equations for the quark-gluon vertex functions (the dots represent the terms which are not
important for the quark sector of the theory and have been left aside). We also mention

1The complete derivation, carried on in the context of the Yang–Mills studies, has been presented in
Ref. [29] and will not be repeated here.
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2.1 Field equations of motion

that in principle one can derive another two equations of motion, for the ~π and φ fields,
but since the quarks do not directly couple to any of these fields, the quark field will
not give a contribution to the corresponding proper two-point functions (at least at one
loop-perturbative order).

At this stage, it is useful to introduce multiple functional derivatives with respect to
quark fields and sources, which will be later on used to derive the Dyson–Schwinger
equations. Consider the following partial differentiations, both with respect to sources
and fields:

δ

δiΦβ
<X(J)> = −iS[γ] <iΦβiΦγ><iJγX(J)> (2.22a)

δ

δiJβ
<Y (Φ)> = iS[γ] <iJβiJγ><iΦγY (Φ)> (2.22b)

where S[γ] = ±1 accounts for the fact that the quark fields are Grassmann-valued, i.e. a
minus sign appears when the index γ refers to the following combinations

<. . . iqγ><iχ̄γ . . .>, <. . . iχγ><iq̄γ . . .> . (2.23)

For X(J) = iJα, we have that

± i
δ

δiΦβ
<iJα>= ±S[γ] <iΦβiΦγ><iJγ iJα>= δαβ (2.24)

(the overall sign is negative for Φα ≡ q̄α). Taking the functional derivative of this with
respect to the source iJδ and using the relation Eq. (2.22b), we find

δ

δiJδ
S[γ] <iΦβiΦγ><iJγ iJα>

= iS[γ, κ] <iJδ iJκ><iΦκΦβiΦγ><iJγ iJα> +ηδβS[γ] <iΦβiΦγ><iJγ iJδiJα>= 0,

(2.25)

where the factor ηδβ = −1 if the fields δ, β anticommute. For X(J) = iJδ iJα, Eq. (2.22a)
becomes

δ

δiΦβ
<iJδiJα>= −iS[γ] <iΦβiΦγ><iJγ iJδ iJα> (2.26)

or, with the help of Eq. (2.25)

δ

δiΦβ
<iJδiJα>= −ηδβS[γ, κ] <iJδiJκ><iΦκΦβiΦγ><iJγ iJα> . (2.27)

With this notation multiple functional derivatives of arbitrary order can be efficiently
constructed. In particular, this will be used in the next Section for the derivation of the
quark gap equation. Also, later on in Chapter 6 the above formula will be employed in
the derivation of the 4-point quark Green’s functions.
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Chapter 2. Dyson–Schwinger equations

Figure 2.1.: Full nonperturbative diagram for the quark self-energy. Filled circles denote dressed
propagators and empty circles denote dressed vertices. Springs denote connected
(propagator) functions, solid lines denote quark propagators and wavy lines denote
the external legs of the proper functions.

2.2. Quark gap equation

We start the derivation of the gap equation by taking the functional derivative of the
quark field equation of motion, Eq. (2.19), with respect to the quark field iqw, and omit
those terms which will eventually vanish when the sources are set to zero. We arrive at:

<iq̄xαiqwβ>= Γ
(0)
q̄qαβ(x)δ(x −w)

−
∫

d4yd4z δ(x − y)δ(x− z)

[

Γ
(0)a
q̄qσαγ

δ

δiqwβ
<iρayiχ̄zγ> +Γ

(0)a
q̄qAjαγ

δ

δiqwβ
<iJa

jyiχ̄zγ>

]

.

(2.28)

where the (configuration space) tree-level quark proper two-point function Γ
(0)
q̄q (x) and

quark-gluon vertices Γ
(0)a
q̄qσ , Γ

(0)a
q̄qAj are obtained from the quark equation of motion Eq. (2.19).

In this thesis we will consider the gap equation both at one-loop perturbative order and
in the heavy quark limit. Consequently, the explicit form of the corresponding tree-level
quantities will be given separately in Chapter 3, which deals with perturbation theory,
and in Chapter 5, where the heavy quark limit is investigated.

We now use the formula Eq. (2.27) to calculate the functional derivatives appearing
in the bracket. As already mentioned, simply because of the presence of the ~π and φ
fields arising in the first order formalism, we must allow for the additional terms to be
generated. For completeness, we keep all these terms for the moment, bearing in mind
that they vanish when we consider the one-loop order in perturbation theory:

δ

δiqwβ
<iρayiχ̄zγ> = −

∫

d4vd4u <iχ̄zγ iχvδ><iρayiρ
b
u><iq̄vδiqwβiσ

b
u>

−
∫

d4vd4u <iχ̄zγ iχvδ><iρayiκ
b
u><iq̄vδiqwβiφ

b
u>, (2.29)

δ

δiqwβ
<iJa

jyiχ̄zγ> = −
∫

d4vd4u <iχ̄zγ iχvδ><iJa
yj iJ

b
uk><iq̄vδiqwβiA

b
uk>

−
∫

d4vd4u <iχ̄zγ iχvδ><iJa
yj iK

b
uk><iq̄vδiqwβiπ

b
uk> . (2.30)

At this point, it is useful to introduce our conventions and notations for the Fourier
transform. For a general two-point function (connected or proper) which obeys transla-
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2.3 Quark contributions to the gluon propagators

tional invariance we have:

<iJα(y)iJβ(x)> =

∫

d̄ k Wαβ(k)e
−ik·(y−x) (2.31)

<iΦα(y)iΦβ(x)> =

∫

d̄ k Γαβ(k)e
−ik·(y−x), (2.32)

where d̄ k = d4k/(2π)4. The propagator (connected 2-point function) Wαβ(y, x) and
proper (1PI) two-point function Γαβ(y, x) are related via the Legendre transform. Whereas
in covariant gauges this is simply an inversion, in Coulomb gauge this may not always
be the case. The relation between the connected and proper two-point functions follows
from Eq. (2.24). For the quark propagator, we find (in momentum space) the standard
relation

Wαγ(k)Γγβ(k) = δαβ. (2.33)

Returning to the gap equation, we insert the expressions Eq. (2.29), Eq. (2.30) into
Eq. (2.28), Fourier transform into momentum space, and we obtain the quark Dyson–
Schwinger (or gap) equation:

Γq̄qαβ(k) = Γ
(0)
q̄qαβ(k)

+

∫

d̄ ω Γ
(0)a
q̄qσαγ(k,−ω, ω − k)Wq̄qγδ(ω)Γ

b
q̄qσδβ(ω,−k, k − ω)W ab

σσ(k − ω)

+

∫

d̄ ω Γ
(0)a
q̄qσαγ(k,−ω, ω − k)Wq̄qγδ(ω)Γ

b
q̄qφδβ(ω,−k, k − ω)W ab

σφ(k − ω)

+

∫

d̄ ω Γ
(0)a
q̄qAiαγ(k,−ω, ω − k)Wq̄qγδ(ω)Γ

b
q̄qAjδβ(ω,−k, k − ω)W ab

AAij(k − ω)

+

∫

d̄ ω Γ
(0)a
q̄qAiαγ(k,−ω, ω − k)Wq̄qγδ(ω)Γ

b
q̄qπjδβ(ω,−k, k − ω)W ab

Aπij(k − ω). (2.34)

The self-energy corrections are presented diagrammatically in Fig. 2.1. We see that the
~π and φ fields do make a contribution thanks to the existence of the mixed propagators
WAπij and Wσφ in the first order formalism. But, as emphasized, these contributions will
drop out at one-loop order because of the absence of corresponding tree-level vertices,
i.e., there exist no direct interaction terms in the action between the quark fields and the
auxiliary fields of the first order formalism. However, for future studies one has to bear
in mind that additional contributions may arise.

In the second part of this thesis we will also consider the gap equation in the heavy
quark limit. In this case we shall work in the standard, second order formalism, where
the auxiliary fields do not appear from the first place.

2.3. Quark contributions to the gluon propagators

In order to understand the analytic structure of the gluon propagators, it is necessary to
explore the quark contributions to the gluonic proper two-point functions.2 In contrast

2Apart from the quark contribution, the gluon propagators contain ghost loops, as well as a collection
of terms generated by the tree-level 4-gluon interactions (which give rise to tadpole and explicit 2-loop
contributions to the gluon Dyson–Schwinger equations). All these will not be considered in this work
(a complete derivation of the Yang–Mills terms appearing in the Coulomb gauge gluon propagators can
be found in Ref. [29]).
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Chapter 2. Dyson–Schwinger equations

Figure 2.2.: One-loop diagram for the quark contributions to the gluon proper two-point functions.
Filled circles denote dressed propagators and empty circles denote dressed vertices.
Solid lines denote quark propagators and wavy lines denote the external legs of the
proper functions.

to covariant gauges, the various gluonic degrees of freedom (temporal and spatial) are
being separated into three proper two-point functions, Γσσ, ΓAA and ΓσA. The Dyson–
Schwinger equation for the third function, ΓσA, can be derived, since the quark-gluon
vertices entering the equation are defined, even though the function itself does not have
a tree level component in the first order formalism.

Starting with the σ equation of motion Eq. (2.21) and following the same procedure as
for the gap equation we derive the quark contribution to the proper two-point function
Γσσ (indicated by the index (q)) in configuration space:

<iσa
xiσ

b
w>(q)=−Tr

∫

d4yd4zd4ud4vΓ
(0)a
q̄qσαγ(z, y, x) <iχ̄yγ iχuβ><iq̄uβiqvδ iσ

b
w><iχ̄vδiχzα>.

(2.35)
In the above, the trace over Dirac and fundamental color indices is taken. Performing the
Fourier transform, we get in momentum space:

Γab
σσ(q)(k) = −Tr

∫

d̄ ω Γ
(0)a
q̄qσαγ(ω − k,−ω, k)Wq̄qγβ(ω)Γ

b
q̄qσβδ(ω, k − ω,−k)Wq̄qδα(ω − k).

(2.36)
Similarly we obtain:

Γab
σAi(q)(k) = −Tr

∫

d̄ ω Γ
(0)a
q̄qσαγ(ω − k,−ω, k)Wq̄qγβ(ω)Γ

b
q̄qAiβδ(ω, k − ω,−k)Wq̄qδα(ω − k),

(2.37)
(it is easy to check that ΓσAi(q) = ΓAσi(q)) and

Γab
AAij(q)(k) = −Tr

∫

d̄ ω Γ
(0)a
q̄qAiαγ(ω−k,−ω, k)Wq̄qγβ(ω)Γ

b
q̄qAjβδ(ω, k−ω,−k)Wq̄qδα(ω−k).

(2.38)
In Chapter 3 we will consider these loop contributions (shown collectively in Fig. 2.2) at
one loop perturbative level, and compare the results with the calculations performed in
covariant gauges. We can already anticipate that since at one loop perturbative level the
quark loop cannot be different from its covariant analog (the difference is that the spatial
and temporal degrees of freedom are separated into the corresponding proper two-point
functions), the one loop results should equal the covariant gauge calculations. Later on
we will see that this is indeed the case.
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= + + + +

+ + + +

(a) (b) (c) (d) (e)

(f) (g) (h) (i)

Figure 2.3.: Dyson–Schwinger equation for the (spatial or temporal) quark-gluon vertex, written
in terms of proper (1PI) Green’s functions. Blobs denote dressed vertices and all
internal propagators are fully dressed. Internal propagators denoted by springs may
be either spatial ( ~A) or temporal (σ) propagators, dashed lines represent the ghost
propagator and solid lines represent the quark propagator. Symmetry factors and
signs have been omitted.

2.4. Quark-gluon vertex

The quark-gluon vertex, as an important component that relates the Yang–Mills and the
quark sector of QCD, has been intensively studied in the last years, mostly in covariant
gauges. At perturbative level, it has been analyzed in Ref. [63], in arbitrary (covariant)
gauge and dimension. Also, in Landau gauge, nonperturbative studies have been carried
on (see, for example, [64] and references therein).

In Coulomb gauge, due to the intrinsic noncovariance, there are two quark-gluon ver-
tices, spatial and temporal.3 Just as for the quark contributions to the gluonic two-point
functions, the Dyson–Schwinger equations for the spatial and temporal quark-gluon ver-
tices are obtained by taking the functional derivative of the gluon field equations of motion
Eq. (2.20), Eq. (2.21) with respect to iq̄vδ, iqwγ and setting sources to zero.

Defining the Fourier transform for the vertex functions (all momenta are incoming):

Γ(x, y, z) =

∫

d̄ k1 d̄ k2 d̄ k3 (2π)
4δ(k1 + k2 + k3)e

−ik1·x−ik2·y−ik3·zΓ(k1, k2, k3), (2.39)

we get for the spatial quark gluon vertex, in terms of proper Green’s functions:

3In fact, within the first order formalism one can derive the Dyson–Schwinger equations for two more
vertex functions, corresponding to the interaction of the quarks with the additional fields π and φ.
However, since there are no direct interaction terms in the Lagrangian, these terms do not give a
contribution at one loop order in perturbation theory.
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Figure 2.4.: Momentum rooting for the quark-gluon vertex functions. Diagrams (a) and (c) rep-
resent the QED-like graphs, and diagrams (b) and (d) are the non-abelian graphs.

Γd
q̄qAiαβ(k1, k2, k3) = −gT d

αβγ
i

−
∫

d̄ ω
{

Γc
q̄qAkαγ(ω − k1, k1,−ω)Wq̄qγδ(ω)Γ

(0)d
q̄qAiδλ(k3, ω,−k3 − ω)Wq̄qλη(k3 + ω)

×Γb
q̄qAjηβ(k3 + ω, k2, k1 − ω)W bc

AAjk(k1 − ω)

+Γc
q̄qσαγ(ω − k1, k1,−ω)Wq̄qγδ(ω)Γ

(0)d
q̄qAiδλ(k3, ω,−k3 − ω)Wq̄qλη(k3 + ω)

×Γb
q̄qσηβ(k3 + ω, k2, k1 − ω)W bc

σσ(k1 − ω)

+Γa
q̄qAkαγ(ω − k1, k1,−ω)Wq̄qγδ(ω)Γ

e
q̄qσδβ(ω, k2,−k2 − ω)W ec

σσ(k2 + ω)

×G
(0)dbc
σAAij(k2 + ω, k3, k1 − ω)W ba

AAjk(ω − k1)

+Γa
q̄qσαγ(ω − k1, k1,−ω)Wq̄qγδ(ω)Γ

e
q̄qAkδβ(ω, k2,−k2 − ω)W ec

AAjk(k2 + ω)

×Γ
(0)dbc
σAAij(k2 + ω, k3, k1 − ω)W ba

σσ(ω − k1)

+Γa
q̄qAlαγ(ω − k1, k1,−ω)Wq̄qγδ(ω)Γ

e
q̄qAmδβ(ω, k2,−k2 − ω)W ec

AAmk(k2 + ω)

×Γ
(0)dbc
3Aijk(k2 + ω, k3, k1 − ω)W ba

AAjl(ω − k1)

+Γa
q̄qσαγ(ω − k1, k1,−ω)Wq̄qγδ(ω)Γ

e
q̄qσδβ(ω, k2,−k2 − ω)W ec

σσ(k2 + ω)

×Γ
(0)dbc
σAσi (k2 + ω, k3, k1 − ω)W ba

σσ(ω − k1)

+Γce
q̄qσσαβ(ω + k3, k2, k1, ω)W

ac
σσ(ω)Γ

(0)abd
σAσi (ω, k3,−ω − k3)W

be
σσ(ω + k3)

+ Γce
q̄qq̄qαβδγ(ω + k3, k1, k2,−ω)W ac

q̄qδγ(ω)Γ
(0)d
q̄qAiλη(ω, k3,−ω − k3)W

be
q̄qηγ(ω + k3)

}

+ . . . . (2.40)

Similarly, the temporal quark gluon vertex is given by:

Γd
q̄qσαβ(k1, k2, k3) = gT d

αβγ
0

−
∫

d̄ ω
{

Γc
q̄qAkαγ(ω − k1, k1,−ω)Wq̄qγδ(ω)Γ

(0)d
q̄qσδλ(k3, ω,−k3 − ω)Wq̄qλη(k3 + ω)

×Γb
q̄qAjηβ(k3 + ω, k2, k1 − ω)W bc

AAjk(k1 − ω)

+Γc
q̄qσαγ(ω − k1, k1,−ω)Wq̄qγδ(ω)Γ

(0)d
q̄qσδλ(k3, ω,−k3 − ω)Wq̄qλη(k3 + ω)

×Γb
q̄qσηβ(k3 + ω, k2, k1 − ω)W bc

σσ(k1 − ω)

+Γa
q̄qAkαγ(ω − k1, k1,−ω)Wq̄qγδ(ω)Γ

e
q̄qσδβ(ω, k2,−k2 − ω)W ec

σσ(k2 + ω)

×Γ
(0)dbc
σAσj (k2 + ω, k3, k1 − ω)W ba

AAjk(ω − k1)
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2.4 Quark-gluon vertex

+Γa
q̄qσαγ(ω − k1, k1,−ω)Wq̄qγδ(ω)Γ

e
q̄qAkδβ(ω, k2,−k2 − ω)W ec

AAjk(k2 + ω)

Γ
(0)dbc
σAσj (k2 + ω, k3, k1 − ω)W ba

σσ(ω − k1)

+Γa
q̄qAlαγ(ω − k1, k1,−ω)Wq̄qγδ(ω)Γ

e
q̄qAmδβ(ω, k2,−k2 − ω)W ec

AAmk(k2 + ω)

×Γ
(0)dbc
σAAjk(k2 + ω, k3, k1 − ω)W ba

AAjl(ω − k1)

+ Γce
q̄qq̄qαβδγ(ω + k3, k1, k2,−ω)W ac

q̄qδλ(ω)Γ
(0)d
q̄qσλη(ω, k3,−ω − k3)W

be
q̄qηγ(ω + k3)

}

+ . . . .

(2.41)

In the expressions Eq. (2.40), Eq. (2.41), the dots represent the interaction of the quarks
with the π and φ fields, which are not regarded here. Further, the (two-loop) Yang–Mills
diagrams arising from the 4-gluon vertex are not considered in this work (see also footnote
at the beginning of Section 2.3), but for completeness we have included these two-loop
contributions in the graphical representation from Fig. 2.3. The momentum rooting for
the vertex functions is shown diagrammatically in Fig. 2.4.

In both equations, the external gluon leg is connected to a bare vertex in the loop dia-
grams. Alternatively, one can start with the quark equation of motion and take functional
derivatives with respect to the gluon fields. Then in the corresponding Dyson–Schwinger
equations the external quark legs are attached to the bare internal vertex. In the full
theory, both equations should give the same quark gluon vertex, however in a truncated
theory one of these equations is eventually easier to solve.4 In this work we will only use
the first “version” of the quark-gluon vertex, based on Eqs. (2.40, 2.41).

In the next chapter, we will explicitly evaluate the divergences of the vertex functions at
one-loop perturbative level. Moreover, the corresponding one-loop expressions, combined
with the so-called quark-ghost kernels, will be then used to show that the Slavnov–Taylor
identity for the quark-gluon vertex is satisfied at leading order in perturbation theory,
without explicitly evaluating the integrals.

4 See also Appendix B of Ref. [64] for an extended discussion of this topic.
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Chapter 3.

One-loop perturbative results

This chapter is concerned with the limit when the coupling g between quarks and gluons
is small, i.e. the whole formalism can be expanded in powers of g, giving rise to the
perturbative expansion.

We will first derive the Feynman rules for the quark sector of the theory (basically, these
are the lowest perturbative order Green’s functions), and we will establish the general form
of the two-point functions. Then we will consider the proper two- and three-point Green’s
functions derived in the preceding chapter at one-loop order in perturbation theory, and
evaluate the corresponding two-point dressing functions. Coming across the problems
originating from the energy-divergence and the noncovariance inherent to Coulomb gauge,
we will derive the required noncovariant massive integrals, using a technique based on
differential equations and integration by parts. We then consider the renormalization
of the quark mass and propagator and we verify that the corresponding renormalization
factors agree with the results obtained in covariant gauges. We also evaluate the first
coefficient of the perturbative β-function, and again we find that our results agree with
the covariant gauge calculations. Moreover, we will consider the divergent parts of the
temporal and spatial quark-gluon vertices, and shortly discuss the implications for the
Slavnov–Taylor identity for the quark-gluon vertices presented in Chapter 4.

3.1. Feynman rules

In this section, we derive the basic Feynman rules and collect all the tree-level quantities
required for our one-loop calculations. In addition to tree-level propagators and proper
vertices we also derive the proper two-point functions of the theory.

With the field equation of motion written in the forms Eq. (2.4), Eq. (2.12), we can
now derive the Feynman rules for the quark components of the theory. We first derive the
quark propagator. From the quark equation of motion in terms of connected functions,
Eq. (2.12), ignoring interaction terms and functionally differentiating we get the tree-level
propagator in configuration space

0 =
[

iγ0∂0x + i~γ · ~∇x −m
]

αβ
<iχγ(z)iχβ(x)>

(0) −iδγαδ(z − x). (3.1)

For the quark propagator, the Fourier transform Eq. (2.31) explicitly reads (recall that
translational invariance is assumed):

<iχβ(z)iχα(x)>= Wqqβα(z − x) =

∫

d̄ k e−ik·(z−x)Wqqβα(k) (3.2)
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such that in momentum space, we get

0 =

∫

d̄ k e−ik·(z−y)
{

W
(0)
qqβα(k)

[

γ0k0 − γiki +m
]

αγ
+ iδβγ

}

. (3.3)

The solution is:

W
(0)
q̄qαβ(k) = (−i)

[

γ0k0 − γiki +m
]

k20 − ~k2 −m2
δαβ . (3.4)

In a similar fashion, starting with the quark equation of motion in terms of proper
functions, Eq. (2.19) the tree-level quark proper two-point function is derived. We obtain:

Γ
(0)
q̄qαβ(x) = i

[

iγ0∂0x + i~γ · ~∇x −m
]

αβ
(3.5)

or, after Fourier transforming to momentum space:

Γ
(0)
q̄qαβ(k) = i

[

γ0k0 − γiki −m
]

δαβ . (3.6)

Due to the noncovariance, we have written out explicitly the components of k/, but later
on (where appropriate), we will use the usual notation k/ = γ0k0 − γiki.

The (spatial and temporal) tree-level gluon propagators needed in this work have been
derived in [29] and are given by:

W
(0)ab
AAij (k) = δab

itij(~k)

k20 − ~k2
, W (0)ab

σσ (k) = δab
i

~k2
(3.7)

where
tij(~k) = δij − kikj/~k

2 (3.8)

is the transverse spatial projector. It is understood that the denominator factors involving
both temporal and spatial components implicitly carry the Feynman prescription, i.e.,

1

(k20 − ~k2)
→ 1

(k20 − ~k2 + i0+)
, (3.9)

such that the analytic continuation to the Euclidean space (k0 → ik4) can be performed.
This will be explicitly verified at one-loop order in perturbation theory.

There are two tree-level quark-gluon vertices, spatial and temporal, again obtained by
taking the functional derivatives with respect to quark, antiquark and gluon field:

Γ
(0)a
q̄qσαβ =

[

gT aγ0
]

αβ
, (3.10)

Γ
(0)a
q̄qAjαβ = −

[

gT aγj
]

αβ
. (3.11)

Later on, in the evaluation of the vertex functions, we will also need the tree-level
gluonic vertices derived in [28] (all momenta are defined as incoming and momentum
conservation is assumed):

Γ
(0)abc
σAAjk(pa, pb, pc) = igfabcδjk(p

0
b − p0c),

Γ
(0)abc
σAσj (pa, pb, pc) = −igfabc(pa − pc)j ,

Γ
(0)abc
3Aijk(pa, pb, pc) = −igfabc [δij(pa − pb)k + δjk(pb − pc)i + δki(pc − pa)j ] ,

Γ
(0)abc
ccAi (pc, pc, pA) = −igfabcpci. (3.12)
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3.2. Two-point functions

In this section, we introduce the general decompositions of the two-point functions derived
in the preceding chapter, and derive the one-loop perturbative expressions for the asso-
ciated dressing functions. In order to evaluate the noncovariant massive integrals arising
in the one-loop calculations, we employ a technique based on differential equations and
integration by parts. We then give the perturbative results for the two-point functions.

3.2.1. General decomposition

In order to investigate the Dyson–Schwinger equations for the quark gap equation derived
in the previous chapter, in addition to the tree-level forms given in the previous section,
we will also require the general decompositions for the quark propagator and proper two-
point function, and the relationship between them. Because we work in a noncovariant
setting, the usual arguments must be modified to separately account for the temporal and
spatial components. Starting with the quark propagator, we observe that (recall that DΦ
denotes the integration over all fields)

Wqqαβ(k
0, ~k) ∼ δαβ

∫

DΦ qq exp {iS} (3.13)

such that under both time-reversal and parity transforms, the propagator will remain
unchanged – the bilinear combination qq is scalar. Since the propagator depends on both
k0 and ~k, it has thus four components, in distinction to the covariant case where there
are only two (a dressing function multiplying k/ and a mass term). Hence we can write

Wq̄qαβ(k) = δαβ
(−i)

k20 − ~k2 −m2

{

k0γ
0Ft(k)− kiγ

iFs(k) +M(k) + k0kiγ
0γiFd(k)

}

(3.14)

where all dressing functions are functions of both k20 and ~k2. At tree-level, one can
trivially identify Ft = Fs = 1, Fd = 0 and M = m. The last term with Fd has no
covariant counterpart. The possible appearance of this term will be discussed below.

For the proper two-point function, the same arguments apply and we write

Γq̄qαβ(k) = iδαβ
{

k0γ
0At(k) − kiγ

iAs(k)−Bm(k) + k0kiγ
0γiAd(k)

}

(3.15)

and we will refer to At, As and Bm as the temporal, spatial and massive components,
respectively. Again the last component Ad has no covariant counterpart. The relation-
ship between the connected and proper two-point functions is supplied via the Legendre
transform (introduced in Chapter 2) and we have

Γq̄q(k)Wq̄q(k) = 1. (3.16)

Let us now discuss the possible appearance of the genuinely noncovariant term corres-
ponding to the dressing function Ad (or equivalently Fd). At one-loop order in perturba-
tion theory, these terms are vanishing. This can be deduced from the Dirac structure of
the self-energy loop, stemming from the quark propagator and tree-level vertices. Namely,
the tree-level quark propagator does not contain a term with k0kiγ

0γi and from the tree-
level vertices we only have either two γ0 or two γi matrices together (the gluon propagator
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is either purely temporal or spatial). This implies that there is no one-loop contribution
that has the overall structure γ0γi and in turn this means that Ad = 0 at one-loop order
perturbatively. Hence, the components Ad and Fd will only appear (if at all) at two-loop
order or beyond. In in fact, very recently lattice calculations have shown that Fd = Ad = 0
[50].

Using the definitions Eq. (3.14), Eq. (3.15), together with the relation Eq. (3.16), we
then get the following set of relations for the remaining dressing functions:

Ft =
(k20 − ~k2 −m2)At

k20A
2
t − ~k2A2

s −B2
m

, Fs =
(k20 − ~k2 −m2)As

k20A
2
t − ~k2A2

s −B2
m

, M =
(k20 − ~k2 −m2)Bm

k20A
2
t − ~k2A2

s −B2
m

.(3.17)

We again emphasize that these relations only hold up to one-loop perturbatively — in
possible future studies it must be recognized that the fourth Dirac structure, γ0γi, may
enter in a nontrivial fashion. In this case, the set of relations Eq. (3.17) should be replaced
with the following set (which includes the functions Ad and Fd):

Ft =
(k20 − ~k2 −m2)At

k20A
2
t − ~k2A2

s −B2
m + k20

~k2A2
d

,

Fs =
(k20 − ~k2 −m2)As

k20A
2
t − ~k2A2

s −B2
m + k20

~k2A2
d

,

M =
(k20 − ~k2 −m2)Bm

k20A
2
t − ~k2A2

s −B2
m + k20

~k2A2
d

,

Fd =
(k20 − ~k2 −m2)Ad

k20A
2
t − ~k2A2

s −B2
m + k20

~k2A2
d

. (3.18)

3.2.2. One-loop perturbative expansions

Let us now consider the one-loop perturbative expansions of the quark gap equation and
the quark contributions to the gluon two-point functions. Although so far the formalism
has been presented in 4-dimensional Minkowski space, in order to evaluate the resulting
loop integrals we have to convert to Euclidean space. This means that we make the
analytic continuation k0 → ik4, where k4 denotes the temporal component of the Euclidean
4-momentum, such that k2 = k24+

~k2. Additionally, to regularize the integrals, dimensional
regularization is employed1 with the Euclidean space integration measure

d̄ ω =
dω4d

d~ω

(2π)d+1
(3.19)

where d = 3 − 2ε is the spatial dimension. To preserve the dimension of the action we
must assign a dimension to the coupling through the replacement

g2 → g2µε, (3.20)

where µ is the square of a non-vanishing mass scale (which may be later associated with
a renormalization scale).

1An alternative method proposed by Leibbrandt is the so-called split dimensional regularization. This
has been discussed in the introductory chapter of this thesis.
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The perturbative expansion of a generic two-point dressing function is written as:

Γ = Γ(0) + g2Γ(1) (3.21)

where the factor µε is included in Γ(1) such that the new coupling and Γ(1) are dimen-
sionless.

Let us first consider the (full nonperturbative) gap equation, Eq. (2.34) (depicted in
Fig. 2.1). We first insert the various tree-level vertices and propagators given by Eqs. (3.4),
(3.7) (3.10), and (3.11). Then we insert the general decomposition of the proper two-point
functions, Eq. (3.15), occurring on the left-hand side of the gap equation, take the Dirac
projection, solve the color and tensor algebra and lastly perform the Wick rotation. The
one-loop temporal, spatial and massive components of the quark gap equation in Euclidean
space read (the Casimir invariant CF = (N2

c − 1)/2Nc is listed in the Appendix A):

At(k) = 1− g2µεCF
1

k24

∫

d̄ ω

{

k4ω4

(ω2 +m2)(~k − ~ω)2
− k4ω4(d− 1)

(ω2 +m2)(k − ω)2

}

, (3.22)

As(k) = 1− g2µεCF
1

~k2

∫

d̄ ω

{

− 2[~k · (~k − ~ω)][~ω · (~k − ~ω)]

(ω2 +m2)(k − ω)2(~k − ~ω)2
−

~k · ~ω
(ω2 +m2)(~k − ~ω)2

+
~k · ~ω(3− d)

(ω2 +m2)(k − ω)2

}

, (3.23)

Bm(k) = m+mg2µεCF

∫

d̄ ω

{

1

(ω2 +m2)(~k − ~ω)2
+

(d− 1)

(ω2 +m2)(k − ω)2

}

. (3.24)

As mentioned earlier, the possible contribution corresponding to the genuinely noncovari-
ant dressing function Ad does not appear at one-loop. To evaluate the integrals occurring
in Eq. (3.23), it is helpful to use the identity:

~k ·~ω =
1

2

[

k2 + ω2 − (k − ω)2
]

− k4ω4, (3.25)

which enables us to rewrite As as a combination of more straightforward integrals:

As(k) = 1− g2µεCF
1

~k2

∫

d̄ ω

{

−1

2

(k2 +m2)2

ω2[(k − ω)2 +m2]~ω2
+

2(k2 +m2)k4ω4

ω2[(k − ω)2 +m2]~ω2

+
2ε~k2 + 2k24

[(k − ω)2 +m2]ω2
+

2~k · ~ω(1− ε)

[(k − ω)2 +m2]ω2
− 1

2

m2 + 3k2

[(k − ω)2 +m2]~ω2

}

. (3.26)

Let us now examine the quark contributions to the various proper two-point gluon
dressing functions given by Eqs. (2.36-2.38) (presented in Fig. 2.2). Again, we insert the
tree-level factors given by Eqs. (3.4),(3.7), (3.10) and (3.11), solve the color and tensor
algebra and perform a Wick rotation. The one-loop integral expressions are (recall that
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we have Nf flavors of identical quarks):

~k2Γ
(1)
σσ(q)(k) = µεNf2

∫

d̄ ω
~ω2 − ω2

4 − ~ω · ~k + ω4k4 +m2

(ω2 +m2)[(k − ω)2 +m2]
, (3.27)

kik4Γ
(1)
σA(q)(k) = µεNf4

∫

d̄ ω
ωiω4 − kiω4

(ω2 +m2)[(k − ω)2 +m2]
, (3.28)

~k2tij(~k)Γ
(1)
AA(q)(k) + kikjΓ̄

(1)
AA(q)(k)

= 2Nfµ
ε

∫

d̄ ω
2ωiωj − 2ωikj + δij(ω4k4 + ~ω · ~k − ω2

4 − ~ω2 −m2)

(ω2 +m2)[(k − ω)2 +m2]
, (3.29)

where Γ
(1)
AA(q) and Γ̄

(1)
AA(q) are the transversal and longitudinal components of the proper

two-point function Γ
(1)ab
AAij(q) (given by Eq. (2.38)), respectively2.

Having derived the one-loop perturbative expressions for the propagator dressing func-
tions and the quark contributions to the gluonic two-point functions, we can now proceed
to evaluate the corresponding loop integrals. There are two categories of integrals arising:
those which can be solved using standard techniques (such as Schwinger parametrization
or Mellin representation — the details of these techniques are presented in the Appen-
dices B, C), and those which require a more complex approach. In the next section, we
will concentrate on this later variety. Since this part is rather technical, the reader might
skip this and go directly to Section 3.2.4, where the physical results are presented.

3.2.3. Noncovariant massive loop integrals

The noncovariant massive loop integrals appearing in the one-loop expansions from the
previous section are studied by using a technique based on differential equations and
integration by parts developed previously in Ref. [30]. We will consider the two integrals:

Am(k24 ,
~k2) =

∫

d̄ ω

ω2[(k − ω)2 +m2]~ω2
, (3.30)

A4
m(k24 ,

~k2) =

∫

d̄ ω ω4

ω2[(k − ω)2 +m2]~ω2
. (3.31)

3.2.3.1. Derivation of the differential equations

Let us first write Eqs. (3.30) and (3.31) in the general form (n = 0, 1)

In(k24 ,
~k2) =

∫

d̄ ω ωn
4

ω2[(k − ω)2 +m2]~ω2
. (3.32)

In this derivation k24 and ~k2 are treated as variables whereas the mass, m, is treated as a
parameter. The two first derivatives are:

k4
∂In

∂k4
=

∫

d̄ ω ωn
4

ω2[(k − ω)2 +m2]~ω2

{

−2
k4(k4 − ω4)

(k − ω)2 +m2

}

, (3.33)

kk
∂In

∂kk
=

∫

d̄ ω ωn
4

ω2[(k − ω)2 +m2]~ω2

{

−2
~k ·(~k − ~ω)

(k − ω)2 +m2

}

. (3.34)

2 The decomposition of the spatial two-point function ΓAAij is explained in detail in Ref. [29] .
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There are also two integration by parts identities:

0 =

∫

d̄ ω
∂

∂ω4

ωn+1
4

ω2[(k − ω)2 +m2]~ω2

=

∫

d̄ ω ωn
4

ω2[(k − ω)2 +m2]~ω2

{

n+ 1− 2
ω2
4

ω2
− 2

ω4(ω4 − k4)

(k − ω)2 +m2

}

, (3.35)

0 =

∫

d̄ ω
∂

∂ωi

ωiω
n
4

ω2[(k − ω)2 +m2]~ω2

=

∫

d̄ ω ωn
4

ω2[(k − ω)2 +m2]~ω2

{

d− 2− 2
~ω2

ω2
− 2

~ω·(~ω − ~k)

(k − ω)2 +m2

}

. (3.36)

Adding these two expressions gives

0 =

∫

d̄ ω ωn
4

ω2[(k − ω)2 +m2]~ω2

{

d+ n− 3− 2
ω · (ω − k)

(k − ω)2 +m2

}

. (3.37)

Expanding the numerator factor, we can rewrite Eq. (3.37) as

0 =

∫

d̄ ω ωn
4

ω2[(k − ω)2 +m2]~ω2

{

d+ n− 4 +
k2 − ω2 +m2

(k − ω)2 +m2

}

. (3.38)

Combining this with Eq. (3.35) then yields:

∫

d̄ ω ωn
4

ω2[(k − ω)2 +m2]~ω2

{

−2
k4(k4 − ω4)

(k − ω)2 +m2

}

=

∫

d̄ ω ωn
4

ω2[(k − ω)2 +m2]~ω2

[

2k24
k2 +m2

(n+ d− 4)− n+ 1

]

+
~k2 +m2

k2 +m2

∫

d̄ ω ωn
4

[(k − ω)2 +m2]2~ω2

−2

∫

d̄ ω ωn
4

ω4[(k − ω)2 +m2]
− 2

∫

d̄ ω ωn
4

ω2[(k − ω)2 +m2]2
. (3.39)

This leads to the temporal differential equations for Am and A4
m:

k4
∂Am

∂k4
=

[

1 + 2
(d − 4)k24
k2 +m2

]

Am + 2
~k2 +m2

k2 +m2

∫

d̄ ω

[(k − ω)2 +m2]2~ω2

− 2

∫

d̄ ω

ω4[(k − ω)2 +m2]
− 2

∫

d̄ ω

ω2[(k − ω)2 +m2]2
, (3.40)

k4
∂A4

m

∂k4
= 2

(d− 3)k24
k2 +m2

A4
m + 2

~k2 +m2

k2 +m2

∫

d̄ ω ω4

[(k − ω)2 +m2]2~ω2

− 2

∫

d̄ ω ω4

ω4[(k − ω)2 +m2]
− 2

∫

d̄ ω ω4

ω2[(k − ω)2 +m2]2
. (3.41)
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In the same manner, we derive the differential equations involving the spatial components:

ki
∂Am

∂ki
=

[

2− d+ 2
(d − 4)~k2

k2 +m2

]

Am − 2~k2

k2 +m2

∫

d̄ ω

[(k − ω)2 +m2]2~ω2

+ 2

∫

d̄ ω

ω4[(k − ω)2 +m2]
+ 2

∫

d̄ ω

ω2[(k − ω)2 +m2]2
, (3.42)

ki
∂A4

m

∂ki
=

[

2− d+ 2
(d − 3)~k2

k2 +m2

]

A4
m − 2~k2

k2 +m2

∫

d̄ ω ω4

[(k − ω)2 +m2]2~ω2

+ 2

∫

d̄ ω ω4

ω4[(k − ω)2 +m2]
+ 2

∫

d̄ ω ω4

ω2[(k − ω)2 +m2]2
. (3.43)

It is in fact possible to write down a mass differential equation, but in the light of the
method presented here this would not bring any new information. However, this third dif-
ferential equation will turn to be useful in checking our solutions – the detailed derivation
will be presented in the Appendix C.

At this point, it is instructive to show how the differential equations for the massless
integrals considered in Ref. [30] are regained. In the massless limit, there are potential
ambiguities arising in the integrals appearing in Eqs. (3.40 -3.43), because in part, the
limits m → 0 and ε → 0 do not interchange. Let us start by considering the following
integral given by Eq. (B.16) (similar arguments apply to all the integrals appearing in the
differential equations):

I =

∫

d̄ ω

~ω2[(k − ω)2 +m2]2
=

[m2]−1−ε

(4π)2−ε

Γ(12 − ε)Γ(1 + ε)

Γ(3/2− ε)
2F1

(

1, 1 + ε; 3/2 − ε;−
~k2

m2

)

.

(3.44)
It is useful here to invert the argument of the hypergeometric with the help of the formula
(see, for instance, Ref. [65]):

2F1(a, b; c; t) =
Γ(c)Γ(b− a)

Γ(b)Γ(c− a)
(−t)−a

2F1

(

a, 1− c+ a; 1− b+ a;
1

t

)

+
Γ(c)Γ(a− b)

Γ(a)Γ(c− b)
(−t)−b

2F1

(

b, 1− c+ b; 1− a+ b;
1

t

)

. (3.45)

Then we have:

I =
1

~k2

[m2]−εΓ(ε)

(4π)2−ε 2F1

(

1,
1

2
+ ε; 1 − ε;−m2

~k2

)

+
[~k2]−1−ε

(4π)2−ε

Γ
(

1
2 − ε

)

Γ(−ε)Γ(1 + ε)

Γ
(

1
2 − 2ε

) 2F1

(

1 + ε,
1

2
+ 2ε; 1 + ε;−m2

~k2

)

. (3.46)

In the expression above, the problem of the non-interchangeable limits is seen explicitly
in the first term. However, when all the integrals occurring in the various differential
equations are put together, such terms explicitly cancel and only the second term of
Eq. (3.46) (which leads to the correct massless limit) contributes.

Returning to the differential equations, we evaluate the standard integrals in terms of
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ε (see Appendix B) and with the notation x = k24 , y = ~k2 we obtain for Am:

2x
∂Am

∂x
=

[

1− 2(1 + 2ε)
x

x+ y +m2

]

Am

+2
[m2]−1−ε

(4π)2−ε

{

y +m2

x+ y +m2
X2F1

(

1, 1 + ε; 3/2 − ε;− y

m2

)

− Γ(−ε)Γ(1 + ε)

Γ(2− ε)
2F1

(

2, 1 + ε; 2 − ε;−x+ y

m2

)

− Y 2F1

(

1, 1 + ε; 2− ε;−x+ y

m2

)}

,

(3.47)

2y
∂Am

∂y
=

[

−1 + 2ε− 2(1 + 2ε)
y

x+ y +m2

]

Am

−2
[m2]−1−ε

(4π)2−ε

{

y

x+ y +m2
X2F1

(

1, 1 + ε; 3/2 − ε;− y

m2

)

− Γ(−ε)Γ(1 + ε)

Γ(2− ε)
2F1

(

2, 1 + ε; 2 − ε;−x+ y

m2

)

− Y 2F1

(

1, 1 + ε; 2− ε;−x+ y

m2

)}

(3.48)

and for the integral A4 = k4Am:

2x
∂Am

∂x
=

[

−1− 4ε
x

x+ y +m2

]

Am

+2
[m2]−1−ε

(4π)2−ε

{

y +m2

x+ y +m2
X2F1

(

1, 1 + ε; 3/2 − ε;− y

m2

)

− Y

2− ε

[

2F1

(

2, 1 + ε; 3 − ε;−x+ y

m2

)

+ (1− ε)2F1

(

1, 1 + ε; 3− ε;−x+ y

m2

)]}

,

(3.49)

2y
∂Am

∂y
=

[

−1 + 2ε− 4ε
y

x+ y +m2

]

Am

−2
[m2]−1−ε

(4π)2−ε

{

y

x+ y +m2
X2F1

(

1, 1 + ε; 3/2 − ε;− y

m2

)

− Y

2− ε

[

2F1

(

2, 1 + ε; 3 − ε;−x+ y

m2

)

+ (1− ε)2F1

(

1, 1 + ε; 3− ε;−x+ y

m2

)]}

,

(3.50)

where

X =
Γ(1/2 − ε)Γ(1 + ε)

Γ(3/2− ε)
, Y =

Γ(1− ε)Γ(1 + ε)

Γ(2− ε)
. (3.51)

3.2.3.2. Solving the differential equations

Let us first consider the integral Am. By the same method as in Ref. [30], we make the
following ansatz:

Am(x, y) = FAm(x, y)GAm(x, y) (3.52)
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such that

2x
∂FAm

∂x
=

[

1− (2 + 4ε)
x

x+ y +m2

]

FAm, (3.53)

2y
∂FAm

∂y
=

[

−1 + 2ε− (2 + 4ε)
y

x + y +m2

]

FAm, (3.54)

FAm2x
∂GAm

∂x
= 2

[m2]−1−ε

(4π)2−ε

{

y +m2

x+ y +m2
X2F1

(

1, 1 + ε; 3/2 − ε;− y

m2

)

−Γ(−ε)Γ(1 + ε)

Γ(2− ε)
2F1

(

2, 1 + ε; 2− ε;−x+ y

m2

)

.

+ Y 2F1

(

1, 1 + ε; 2− ε;−x+ y

m2

)}

, (3.55)

FAm2y
∂GAm

∂y
= 2

[m2]−1−ε

(4π)2−ε

{

− y

x+ y +m2
X2F1

(

1, 1 + ε; 3/2 − ε;− y

m2

)

+
Γ(−ε)Γ(1 + ε)

Γ(2− ε)
2F1

(

2, 1 + ε; 2− ε;−x+ y

m2

)

+ Y 2F1

(

1, 1 + ε; 2− ε;−x+ y

m2

)}

. (3.56)

By inspection, it is simple to determine the solution for the two homogeneous equations,
Eq. (3.53) and Eq. (3.54):

FAm(x, y) = x1/2y−1/2+ε(x+ y +m2)−1−2ε. (3.57)

Since the mass m is treated as a parameter, the (dimensionful) solution, Eq. (3.57), may
have an integration constant proportional to [m2]−1−ε. However, returning to the original
equations, Eq. (3.53) and Eq. (3.54), we see that the only consistent solution is the one
for which this constant vanishes.

Let us now make the following ansatz for the function GAm, which will be verified below
(z = x/y):

GAm(x, y) = G0
Am(x, y) + G̃Am(z). (3.58)

The component G0
Am(x, y) can be found by adding the differential equations Eq. (3.55)

and Eq. (3.56), which lead to:

x
∂G0

Am

∂x
+ y

∂G0
Am

∂y
=

1

(4π)2−ε







m2

√

x(y +m2)
ln





√

1 + m2

y + 1
√

1 + m2

y − 1



+O(ε)







.(3.59)

Because the function G0
Am is multiplied by the function FAm (which does not have an ε

pole), the term of order O(ε) will not contribute. The solution of this equation is:

G0
Am(x, y) = − 2

(4π)2−ε







1√
z





√

1 +
m2

y
ln





√

1 + m2

y + 1
√

1 + m2

y − 1



− ln y



+O(ε)







+ C1.

(3.60)
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Before we proceed to determine G̃Am, we justify the ansatz for GAm, given by Eq. (3.58).
First we observe that:

2xFAm
∂GAm

∂x
= 2zFAm

∂G̃Am

∂z
+ 2xFAm

∂G0
Am

∂x
. (3.61)

Then we subtract the above equation, Eq. (3.61), from Eq. (3.55). This gives:

z
∂G̃Am

∂z
= −x

∂G0
Am

∂x
+

1

FAm

[m2]−1−ε

(4π)2−ε

{

y +m2

x+ y +m2
X2F1

(

1, 1 + ε; 3/2 − ε;− y

m2

)

+ Y 2F1

(

1, 1 + ε; 2− ε;−x+ y

m2

)

− Γ(−ε)Γ(1 + ε)

Γ(2− ε)
2F1

(

2, 1 + ε; 2 − ε;−x+ y

m2

)}

.

(3.62)

Evaluation to the first order in ε is straightforward and we see that the right hand side
of the above expression is only a function of the variable z. This allows us to write down
a differential equation for G̃Am(z) in the form:

z
∂G̃Am

∂z
=

1

(4π)2−ε

1√
z

{

1

ε
− γ + lnm2 +O(ε)

}

, (3.63)

from which we get immediately

G̃Am(z) = − 2

(4π)2−ε

1√
z

{

1

ε
− γ + lnm2 +O(ε)

}

+ C2. (3.64)

Returning to the original differential equations (3.53 - 3.56) with the function G(x, y) =
G0

Am(x, y) + G̃Am(z), we see that the only consistent solution is the one for which the
overall constant C1 + C2 vanishes.

We may now put together the solutions Eqs. (3.57), (3.60) and (3.64) and write for the
function Am:

Am(x, y) =
(x+ y +m2)−1−ε

(4π)2−ε

{

− 2

ε
+ 2γ + 2 ln

(

x+ y +m2

m2

)

−2

√

1 +
m2

y
ln





√

1 + m2

y + 1
√

1 + m2

y − 1



+O(ε)

}

. (3.65)

We see that for m2 = 0 we regain the result from Ref. [30] and that the singularities
are located at x + y +m2 = 0 (with m2, y ≥ 0). Two more useful checks arise from the
study of the power expansion around x = 0 and the mass differential equation (this will
be explained in detail in Appendix C).

We now proceed in the same fashion to determine the function Am(x, y) = FAm(x, y)GAm(x, y).
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The resulting partial differential equations are in this case:

2x
∂FAm

∂x
=

[

−1− 4ε
x

x+ y +m2

]

FAm, (3.66)

2y
∂FAm

∂y
=

[

−1 + 2ε − 4ε
y

x+ y +m2

]

FAm, (3.67)

FAm2x
∂GAm

∂x
= 2

[m2]−1−ε

(4π)2−ε

{

y +m2

x+ y +m2
X2F1

(

1, 1 + ε; 3/2 − ε;− y

m2

)

− Y

2− ε

[

2F1

(

2, 1 + ε; 3− ε;−x+ y

m2

)

+ (1− ε)2F1

(

1, 1 + ε; 3− ε;−x+ y

m2

)]}

, (3.68)

FAm2y
∂GAm

∂y
= 2

[m2]−1−ε

(4π)2−ε

{

− y

x+ y +m2
X2F1

(

1, 1 + ε; 3/2 − ε;− y

m2

)

+
Y

2− ε

[

2F1

(

2, 1 + ε; 3− ε;−x+ y

m2

)

+ (1− ε)2F1

(

1, 1 + ε; 3− ε;−x+ y

m2

)]}

,(3.69)

with X,Y defined previously. The solution to the first pair is

FAm(x, y) = x−1/2y−1/2+ε(x+ y +m2)−2ε. (3.70)

For brevity, in the above expression and also in the derivation of the function GAm =
G0

Am
+ G̃Am (the analogue of GAm) we omit the constants of integration – they vanish as

in the case of the functions FAm and GAm.

As before, for GAm(x, y) we make the ansatz:

GAm(x, y) = G0
Am

(x, y) + G̃Am(z). (3.71)

In the limit ε → 0, the component G0
Am

(x, y) is determined from the differential equation:

x
∂G0

Am

∂x
+ y

∂G0
Am

∂y
=

1

(4π)2−ε







√
x

x+ y +m2

m2

√

y +m2
ln





√

1 + m2

y + 1
√

1 + m2

y − 1



+O(ε)







.

The solution of this equation is:

G0
Am

(x, y) =
1

(4π)2−ε







i ln





√

1 + m2

y − i
√
z

√

1 + m2

y + i
√
z



 ln

(

i
√
z + 1

i
√
z − 1

)

−iLi2





1− i
√
z

1 + i
√
z
·

√

1 + m2

y − i
√
z

√

1 + m2

y + i
√
z



+ iLi2





1 + i
√
z

1− i
√
z
·

√

1 + m2

y − i
√
z

√

1 + m2

y + i
√
z



+O(ε)







,

(3.72)
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where Li2(z) is the dilogarithmic function [66]:

Li2(z) = −
∫ z

0

ln(1− t)

t
dt. (3.73)

As before, we check that the ansatz for GAm(x, y) given in Eq. (3.71) is correct and
derive the differential equation for the function G̃Am, in the limit ε → 0:

z
∂G̃Am

∂z
=

1

(4π)2−ε

{ √
z

z + 1
[ln(1 + z)− ln z − 2 ln 2] +O(ε)

}

. (3.74)

The result we leave for the moment in the form:

G̃Am(z) =
1

(4π)2−ε
{ − 4 ln 2 arctan(

√
z) +

∫ z

0

dt√
t(1 + t)

ln (1 + t)

−
∫ z

0

dt√
t(1 + t)

ln t+O(ε) } . (3.75)

With the solutions, Eqs. (3.70), (3.72) and (3.75), after some further manipulation we can
write down the following simplified expression for the integral A4

m:

A4
m(x, y) = k4

(x+ y +m2)−1−ε

(4π)2−ε

(1 + z + m2

y )
√
z

{

−
∫ z

0

dt√
t(1 + t)

ln

(

1 + t+
m2

y

)

+2 ln





√

1 + m2

y + 1
√

1 + m2

y − 1



 arctan





√
z

√

m2

y + 1



+ 2 ln

(

m2

y

)

arctan (
√
z) +O(ε)

}

,(3.76)

with the integral
∫ z

0

dt√
t(1 + t)

ln

(

1 + t+
m2

y

)

= π ln 2− i ln

(

1− i
√
z

1 + i
√
z

)

2 ln 2

+i ln





1− i
√
z

1 + i
√
z

√

1 + m2

y − i
√
z

√

1 + m2

y + i
√
z



 ln

(
√

1 +
m2

y
+ 1

)

+i ln





1− i
√
z

1 + i
√
z

√

1 + m2

y + i
√
z

√

1 + m2

y − i
√
z



 ln

(
√

1 +
m2

y
− 1

)

−i ln (
√
z − i)

[

ln 2 + ln (1 + z +
m2

y
)− ln (1− i

√
z)− 1

2
ln (

√
z − i)

]

−iLi2

(

1

2
− i

2

√
z

)

+ iLi2

(

1

2
+

i

2

√
z

)

− iLi2

(

i +
√
z

−i +
√
z

)

+ iLi2

(−i +
√
z

i +
√
z

)

+i ln (
√
z + i)

[

ln 2 + ln (1 + z +
m2

y
)− ln (1 + i

√
z)− 1

2
ln (

√
z + i)

]

+iLi2





i
√

1 + m2

y +
√
z

−i +
√
z



− iLi2





−i
√

1 + m2

y +
√
z

i +
√
z





+iLi2





−i
√

1 + m2

y +
√
z

−i +
√
z



+ iLi2





i
√

1 + m2

y +
√
z

i +
√
z



 . (3.77)
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We see that for m2 = 0 we get the correct limit for the function A4
m. We also mention

that the singularities are located at x + y + m2 = 0 and the apparent singularities at
z = −1 (i.e., x+ y = 0) in the expression Eq. (3.76) are canceling out. This can be easily
seen by making a series expansion of Eq. (3.76) around z = −1:

A4
m

z→−1
=

1√
z

[

y

m2
− z + 1

2

( y

m2

)2
+O

(

(z + 1)3
)

]

−

√

1 + m2

y
√
z(z + 1 + m2

y )
ln





√

1 + m2

y + 1
√

1 + m2

y − 1



+O(ε). (3.78)

Again, the result Eq. (3.76) has been checked by performing an expansion around x = 0
and by studying the mass differential equation (see Appendix C).

3.2.4. Results in the limit ε → 0

Having derived the noncovariant massive loop integrals in the previous section, and col-
lecting the results for the standard massive integrals from Appendix B, we are now in the
position to write down the perturbative results for the dressing functions under consid-
eration. For the temporal, spatial and massive components of the quark gap equation,
Eqs. (3.22), (3.24) and (3.26), we find in the limit ε → 0:

At(k) = 1 +
CF g

2

(4π)2−ε

{

1

ε
− γ − ln

m2

µ

+1− m2

k2
+

(

m4

k4
− 1

)

ln

(

1 +
k2

m2

)

+O(ε)

}

, (3.79)

As(k) = 1 +
CF g

2

(4π)2−ε

{

1

ε
− γ − ln

m2

µ

+1 + 8
k2

~k2
+ 4

m2

~k2
− m2

k2
+

(

1 +
m2

k2

)(

4
k2

~k2
− 1 +

m2

k2

)

ln

(

1 +
k2

m2

)

−
(

4
k2

~k2
+ 2

m2

~k2

)

√

1 +
m2

~k2
ln





√

1 + m2

~k2
+ 1

√

1 + m2

~k2
− 1



− 2
k24
~k4

(k2 +m2)fm

(

k24,
~k2
)

+O(ε)

}

,

(3.80)

Bm(k) = m+m
CF g

2

(4π)2−ε

{

4

ε
− 4γ − 4 ln

m2

µ

+10− 2

√

1 +
m2

~k2
ln





√

1 + m2

~k2
+ 1

√

1 + m2

~k2
− 1



− 2

(

1 +
m2

k2

)

ln

(

1 +
k2

m2

)

+O(ε)

}

, (3.81)

where the function fm(x, y) is given by (x = k24, y = ~k2, z = x/y):

fm(x, y) =
2√
z
ln

(

m2

y

)

arctan (
√
z) +

2√
z
ln





√

1 + m2

y + 1
√

1 + m2

y − 1



 arctan





√
z

√

m2

y + 1





−
∫ 1

0

dt√
t(1 + zt)

ln

(

1 + zt+
m2

y

)

. (3.82)
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The last integral has been rewritten using the identity:

1√
z

∫ z

0

dt√
t(1 + t)

ln

(

1 + t+
m2

y

)

=

∫ 1

0

dt√
t(1 + zt)

ln

(

1 + zt+
m2

y

)

. (3.83)

As a useful check, we can set m = 0 and show that the results for the temporal and
spatial components are in agreement with the calculation performed independently using
the one-loop massless integrals derived in Ref. [30].

Another important point is related to the singularity structure of the above dressing
functions. As has been shown in the previous section, in the noncovariant integrals the
singularities appear at x + y + m2 = 0. Further, it is easy to see that the standard
integrals have the same singularity structure. As promised, since the singularities in both
the Euclidean and spacelike Minkowski regions are absent, we find that the validity of the
Wick rotation is justified. In addition, the results for At,As and Bm can be compared
(allowing for the color factors) and agree with those of Quantum Electrodynamics [67, 68].

Having calculated the dressing functions for the quark proper two-point Green’s func-
tion, we are now able to discuss the structure of the quark propagator. In Eq. (3.17) we
first analyze the denominator factor. Let us denote (in Euclidean space):

D(k) = k24A
2
t (k) +

~k2A2
s(k) +B2

m(k). (3.84)

Inserting the expressions from Eqs. (3.79), (3.81) and (3.81) into the above equation, we
have:

D(k) = k2 +m2

{

1 + 6
g2CF

(4π)2−ε

[

1

ε
− γ − ln

m2

µ
+

4

3

]}

+(k2 +m2)
2CF g

2

(4π)2−ε

{

1

ε
− γ − ln

m2

µ
+ 9

+

(

3− m2

k2

)

ln

(

1 +
k2

m2

)

− 4

√

1 +
m2

~k2
ln





√

1 + m2

~k2
+ 1

√

1 + m2

~k2
− 1



− 2
k24
~k2

fm(k24 ,
~k2)

}

.

(3.85)

Defining the renormalized mass, mR, via:

m2 = Z2
mm2

R with Z2
m = 1− 6

g2CF

(4π)2−ε

{

1

ε
− γ − ln

m2

µ
+

4

3

}

, (3.86)

we see that the expression for D(k), Eq. (3.85), then contains explicitly the overall factor
k2 + m2

R. This means that the simple pole mass of the quark emerges, just as it does
in covariant gauges. For the remaining part, the singularity structure is such that non-
analytic structures do not appear for spacelike or Euclidean momenta. Moreover, we see
that the renormalization factor, Zm, which defines the physical perturbative pole mass and
hence should be a gauge invariant quantity, agrees with the result obtained in covariant
gauges [3].

Because of the Dirac structure, it is more convenient to write the quark propagator
in Minkowski space, i.e. to analytically continue k24 → −k20 . We have shown that the
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analytic continuation of the functions At, As, Bm (and implicitly, of the function D(k))
back into the Minkowski space is allowed and this enables us simply to write:

Wq̄qαβ(k) = iδαβ
{

γ0k0At(k)− γikiAs(k) +Bm(k)
}

D−1(k). (3.87)

Inserting the denominator factor, Eq. (3.85), in the limit ε → 0 and replacing the mass
with its renormalized counterpart, the above expression gives:

Wq̄qαβ(k) = −δαβ
i

k20 − ~k2 −m2
R

{

(k/+mR)

[

1− CF
g2

(4π)2−ε

(

1

ε
− γ

)]

+ finite terms

}

.

(3.88)
We can thus write down for the quark propagator:

Wq̄qαβ(k) = (−i)δαβ
k/+mR

k20 − ~k2 −m2
R

Z2 + finite terms (3.89)

and identify the renormalization constant (omitting the prescription dependent constants)

Z2 = 1− g2CF

(4π)2−ε

(

1

ε
− γ

)

. (3.90)

Turning to the quark loop contributions to the gluon two-point proper functions, in
evaluating the integral structure of Eqs. (3.27), (3.28) and (3.29) we observe the following
relations (in Euclidean space):

Γ
(1)
σσ(q)(k) = Γ

(1)
σA(q)(k) = −

~k2

k2
Γ
(1)
AA(q)(k) = −

~k2

k24
Γ̄
(1)
AA,q(k) = I(k24 ,

~k2), (3.91)

where the integral I(k24 ,
~k2) reads (using the results of Appendix B), as ε → 0:

I(k24 ,
~k2) =

Nf

(4π)2−ε

{

−2

3

[

1

ε
− γ − ln

k2

µ

]

− 10

9
+

2

3

(

4
m2

k2
+ ln

m2

k2

)

+
2

3

√

1 +
4m2

k2

(

1− 2
m2

k2

)

ln





√

1 + 4m2

k2
+ 1

√

1 + 4m2

k2 − 1



+O(ε)







. (3.92)

The relations Eq. (3.91) are similar to the Slavnov–Taylor identities for the Yang–Mills
part of the theory, derived in [28]. Also, the above integral Eq. (3.92) agrees with the
results obtained in covariant gauges (see for instance [3]). This was in fact expected, since
at one-loop level the quark loop as a whole is identical with its covariant counterpart —
the only difference is that the various degrees of freedom (temporal and spatial) are being
separated into the corresponding proper two-point functions, i.e., ΓAA, ΓAσ and Γσσ.

Let us now consider the one-loop gluon propagator dressing functions, in connection to
the first coefficient of the perturbative β-function. Analogously to the two-point proper
functions, these are constructed by writing D = D(0) + g2D(1). As mentioned previously,
in the first order formalism we have to account for the presence of the additional ~π, φ and
ghost fields, and implicitly the corresponding propagators (for example DAπ). We have
already seen that at one-loop the quarks only contribute to three of the gluon proper two-
point functions (ΓAA,ΓAσ and Γσσ). But since these gluon two-point functions are related
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3.3 Quark-gluon vertices

to the various connected (propagator) two-point functions arising from the first order
formalism, there will be (quark loop) contributions to many more of these propagators.
The relationship between the connected and proper gluon two-point functions in the first
order formalism is derived in Ref. [30] and will not be reproduced here. The full set of
quark contributions to these gluonic type propagators is given by:

D
(1)
AA(q)(k) = D

(1)
σσ(q)(k) = Γ

(1)
σσ(q)(k) = I(k24 ,

~k2), (3.93)

D
(1)
Aπ(q)(k) = −

~k2

k24
D

(1)
ππ(q)(k) = D

(1)
σφ(q)(k) = −D

(1)
φφ(q)(k) = I(k24 ,

~k2). (3.94)

We are now able to identify the first coefficient of the β-function. As is well known in
Landau gauge, a renormalization group invariant running coupling can be defined through
the following perturbative combination of gluon and ghost propagator dressing functions
[43]:

g2DAAD
2
c ∼ g2

[

1 +
g2

16π2

1

ε

(

11Nc

3
− 2Nf

3

)]

. (3.95)

At one-loop in perturbation theory, the coefficient of the 1/ε pole above is simply minus
the first coefficient of the β-function (β0 = −11Nc/3+2Nf/3). By inspecting the relations
Eq. (3.93), containing the quark contribution to the propagator DAA , and those obtained
in Ref. [30] for the Yang–Mills part of the propagator DAA and the propagator Dc, we
see that the same result is achieved in Coulomb gauge. Moreover, in Coulomb gauge, a
second renormalization group invariant combination of propagators appears and is given
by g2Dσσ [12]. Again, combining our results Eq. (3.93) and those obtained in Ref. [30]
we see that indeed the coefficient of 1/ε agrees with this.

3.3. Quark-gluon vertices

We now evaluate the divergent components of the quark-gluon vertex functions at one
loop perturbative level. Just as for the two-point functions discussed in the preceding
section, we write the the perturbative expansion of the vertex function as

Γ = Γ(0) + g3Γ(1) (3.96)

such that the new coupling and Γ(1) are dimensionless.

We first consider the temporal part of the quark-gluon vertex, Eq. (2.41). By the same
method as for the two-point functions, we insert the appropriate tree-level vertices and
propagators from Eq. (3.4), Eq. (3.7), Eq. (3.12), Eq. (3.10) and Eq. (3.11) and solve the
color algebra. For the one-loop expansion of the temporal part of the quark-gluon vertex
we find, in Minkowski space (the factor CF −Nc/2 arising from the color algebra is derived
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Chapter 3. One-loop perturbative results

in the Appendix A):

Γ
(1)d
q̄qσαβ(k1, k2, k3) =

(

CF − Nc

2

)

T d
αβ

∫

d̄ ω

{

−γk
[

γ0(k1 − ω)0 − γi(k1 − ω)i +m
]

(k1 − ω)2 −m2
γ0
[

−γ0(k2 + ω)0 + γi(k2 + ω)i +m
]

(k2 + ω)2 −m2
γj

tjk(~ω)

ω2

−γ0
[

γ0(k1 − ω)0 − γi(k1 − ω)i +m
]

(k1 − ω)2 −m2
γ0
[

−γ0(k2 + ω)0 + γi(k2 + ω)i +m
]

(k2 + ω)2 −m2
γ0

1

~ω2

}

−1

2
NcT

d

∫

d̄ ω

{

γk
[

γ0(k1 − ω)0 − γi(k1 − ω)i +m
]

(k1 − ω)2 −m2
γ0

(2k3 + ω)j

(~ω + ~k3)3

tjk(~ω)

ω2

+γ0
[

γ0(ω − k2)0 − γi(ω − k2)i +m
]

(k2 − ω)2 −m2
γk

(−2k3 − ω)j

(~ω + ~k3)3

tjk(~ω)

ω2

+γl
[

γ0(k1 − ω)0 − γi(k1 − ω)i +m
]

(k1 − ω)2 −m2
γk(k3 + 2ω)0

tjk(~ω + ~k3)

(ω + k3)2
tjl(~ω)

ω2

}

(3.97)

Since we are only interested in the divergent part of the above expression, we first
make use of the identity Eq. (3.25) to simplify the non-abelian terms containing two
noncovariant denominator factors, and then we employ a simple power analysis to separate
the convergent and divergent integrals (at leading order in perturbation theory). After
eliminating the convergent terms and using the expression Eq. (3.8) for the transversal
projector tij(~k), we are left with the following divergent part of the temporal quark-gluon
vertex:

Γ
(1)d
q̄qσ,div(k1, k2, k3) =

(

− i

2
T dNc + iT dCF

)

∫

d̄ ω

{

γk(γ0ω2
0 + γiγ0γlωiωl)γ

j

ω2[(k1 − ω)2 −m2][(k2 + ω)2 −m2]

(

δjk −
ωjωk

~ω2

)

+
γ0(γ0ω2

0 + γiγ0γlωiωl)γ
0

~ω2[(k1 − ω)2 −m2][(k2 + ω)2 −m2]

}

−iT dNc

∫

d̄ ω
γlγ0γkω2

0

[(k1 − ω)2 −m2](ω + k3)2ω2

[

δkl −
ωkωl

2~ω2
− (ω + k3)kωl

2(~ω + ~k3)2

]

(3.98)

Collecting the results for the divergent factors of the three-point loop integrals listed
in the Appendix D, it is straightforward to calculate the divergent part of the temporal
quark gluon vertex, in the limit ε → 0. It is given by (in Minkowski space):

Γ
(1)d
q̄qσ,div = T dγ0

CF

(4π)2
1

ε
+ finite terms. (3.99)

Repeating this calculation for the spatial component of the quark-gluon vertex, Eq. (2.40),
we obtain:

Γ
(1)d
q̄qAi,div = −T dγi

(

CF +
4

3
Nc

)

1

(4π)2
1

ε
+ finite terms. (3.100)

The results Eq. (3.99), Eq. (3.100) will then provide a useful check for the Slavnov–
Taylor identity for the quark-gluon vertices. We will return to this subject at the end of
the next chapter, when we analyze the divergent structure of the Slavnov–Taylor identity.
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Chapter 4.

Slavnov–Taylor identity for the quark-gluon

vertices

The Slavnov–Taylor identities relate Green’s functions with a different number of external
legs, analogous to the Ward–Takahashi identities in QED. They play an important role in
connection to nonperturbative Dyson–Schwinger studies, since they provide constraints
for the higher n-point functions that enter the Dyson–Schwinger equations.

In order to derive these identities, we start with the observation that the BRST invari-
ance is an unbroken symmetry of the gauge fixed theory, at the level of the Lagrangian.
The BRST symmetry (and its variation in Coulomb gauge) will be presented in detail
in the first Section of this chapter. Next, we will present the formal derivation of the
Slavnov–Taylor identities for the quark-gluon vertex functions, based on the BRST in-
variance of the QCD Green’s functions, and in particular, we will examine the so-called
quark-ghost scattering kernels. We will then demonstrate that these identities are satis-
fied at one-loop perturbative level. The proof is based on the translational invariance of
the loop integrals and it does not require the explicit evaluation of the loop integrals.

This chapter concerns the Slavnov–Taylor for the quark-gluon vertices, but similar
identities can be derived for Green’s functions of arbitrary order. Some of the higher
order identities will be explored in the second part of this thesis, in the limit of heavy
quark mass. Moreover, their implications for the Dyson–Schwinger equations will also be
discussed.

4.1. Gauss–BRST symmetry

Regardless of the specific gauge, the gauge fixing term in the QCD action violates the
invariance under the local gauge transformation Eq. (A.3). Except for the axial gauge, the
invariance of the full (gauge-fixed) action can be recovered by performing a local gauge
transformation similar to Eq. (A.3), but with the following ansatz [69, 70]

θa(x) = ca(x)λ (4.1)

where both c and λ are Grassman-valued quantities and λ is a constant. By demanding
that the gluon, quark and ghost fields transform as

δAa =
1

g
D̂acccδλ,

δqα = −i [T a]αβ c
aδλqβ

δca =
1

g
λaδλ
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δca = −1

2
fabccbccδλ (4.2)

(c and c̄ are independent Grassmann fields, and thus we have independent transforma-
tions), we find that the gauge-fixing term remains also invariant. This new symmetry is
called BRST (Becchi-Rouet-Stora-Tyutin) and is the basis for deriving the generalized
Ward–Takahashi identities (also called Slavnov–Taylor identities).

While the “standard” BRST symmetry is independent of the gauge considered, in
Coulomb gauge the time derivatives are absent and hence one can further define a time-
dependent — so-called Gauss–BRST symmetry [12]. As before, the spacetime-dependent
paramether θa is factorized into two Grassmann components

θa(x) = ca(x)δλt, (4.3)

but in this case δλt (not to be confused with the colored Lagrange multiplier λa) is a time
dependent infinitesimal variation. Within the standard, second order formalism, the fields
transform as:

δσa = −1

g
∂0θ

a − fabcσbθc, δ ~Aa =
1

g
~∇θa − fabc ~Abθc,

δqα = −iθa [T a]αβ qβ, δqα = iθaqβ [T
a]βα ,

δca =
1

g
λaδλt, δca = −1

2
fabccbccδλt, δλa = 0. (4.4)

The Gauss-BRST transform, Eq. (4.3), is the starting point for the derivation of the
Slavnov–Taylor identities in Coulomb gauge. These identities, together with the peculiar
features introduced by the time dependent transformation, will be discussed in the next
section.

4.2. Formal derivation

As discussed in the previous section, the full (gauge fixed) QCD action in the stand-
ard, second order formalism, Eq. (1.21), is invariant under a Gauss–BRST transform,
Eq. (4.3). The Coulomb gauge Slavnov–Taylor identities arise from regarding the Gauss–
BRST transform as a change of integration variables under which the generating functional
Eq. (2.1) (together with the source terms Eq. (2.2)) is invariant. Since the Jacobian factor
is trivial [29] and only the source term varies, we deduce that

0 =

∫

DΦ
δ

δ [iδλt]
exp {iSQCD + iSFP + iSs + iδSs}

∣

∣

∣

∣

δλt=0

=

∫

DΦexp {iSQCD + iSFP + iSs}
∫

d4xδ(t− x0)

{

−1

g

(

∂0
xρ

a
x

)

cax + fabcρaxσ
b
xc

c
x

− 1

g
Ja
ix∇ixc

a
x + fabcJa

ixA
b
ixc

c
x − iχαxc

a
xT

a
αβqβx − icaxqβxT

a
βαχαx +

1

g
λa
xη

a
x +

1

2
fabcηaxc

b
xc

c
x

}

.

(4.5)

Notice the δ(t−x0) constraint, which arises because the time-dependent variation δλt and
is characteristic to the Gauss-BRST transform. It leads eventually to a non-trivial energy
injection in the Slavnov–Taylor identities which is not present in the covariant gauge case.
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4.2 Formal derivation

The above identity is best expressed in terms of proper functions. Using the definitions
Eq. (2.17) for the derivatives of W with respect to the sources and of Γ with respect to
the classical fields, we arrive at the identity

0 =

∫

d4xδ(t− x0)

×
{

1

g

(

∂0
x <iσa

x>
)

cax − fabc <iσa
x>
[

<iρbxiη
c
x> +σb

xc
c
x

]

− 1

g

[ ∇ix

(−∇2
x)

<iAa
ix>

]

<icax>

−fabc<iAa
ix> tij(~x)

[

<iJb
jxiη

c
x> +Ab

jxc
c
x

]

− 1

g
λa
x <cax> +

1

2
fabc <icax>

[

<iηbxiη
c
x> +cbxc

c
x

]

+iT a
αβ <iqαx>

[

<iχβxiη
a
x> −caxqβx

]

+ iT a
βα

[

<iχβxiη
a
x> +caxqβx

]

<iqαx>

}

. (4.6)

Note that functional derivatives involving the Lagrange multiplier result merely in a trivial
identity such that the classical field λa

x can be set to zero [27]. Further, to derive the quark
Slavnov–Taylor identities, one functional derivative with respect to icdz is needed and then
the ghost fields/sources can be set to zero. Implementing this then gives

0 =

∫

d4xδ(t− x0)

×
{

− i

g

(

∂0
x <iσd

x>
)

δ(z − x)− fabc <iσa
x>

[

δ

δicdz
<iρbxiη

c
x> −iσb

xδ
dcδ(z − x)

]

+
1

g

[ ∇ix

(−∇2
x)

<iAa
ix>

]

<icaxic
d
z> −fabc <iAa

ix> tij(~x)

[

δ

δicdz
<iJb

jxiη
c
x> −iAb

jxδ
dcδ(z − x)

]

−iT a
αβ <iqαx>

[

δ

δicdz
<iχβxiη

a
x> +δdaδ(z − x)iqβx

]

+iT a
βα

[

δ

δicdz
<iχβxiη

a
x> −δdaδ(z − x)iqβx

]

<iqαx>

}

. (4.7)

Two further functional derivatives with respect to iqγω and iqδv are taken and all remaining
fields/sources set to zero. Now we use the following relation, derived in Ref. [27]

δ

δicdz
<iρbxiη

c
x>

∣

∣

∣

∣

J=0

= tij(~x)
δ

δicdz
<iJb

jxiη
c
x>

∣

∣

∣

∣

J=0

= 0, (4.8)

and obtain the Slavnov–Taylor identity for the quark-gluon vertices in configuration space:

0 =

∫

d4xδ(t− x0)

×
{

− i

g

(

∂0
x <iqδv iqγωiσ

d
x>
)

δ(z − x) +
1

g

[ ∇ix

(−∇2
x)

<iqδv iqγωiA
a
ix>

]

<icaxic
d
z>

+iT a
αβ <iqδv iqαx>

[

δ2

δiqγωδicdz
<iχβxiη

a
x>

∣

∣

∣

∣

J=0

+ δdaδ(z − x)δγβδ(ω − x)

]

+iT a
βα

[

δ2

δiqδvδic
d
z

<iχβxiη
a
x>

∣

∣

∣

∣

J=0

− δdaδ(z − x)δδβδ(v − x)

]

<iqαxiqγω>

}

. (4.9)
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We now introduce the following definitions:

Γ̃d
q;ccqαγ(x, z, ω) ≡ igT a

αβ

δ2

δiqγωδicdz
<iχβxiη

a
x>

∣

∣

∣

∣

J=0

= igT a
αβ

{

− <iχβxiχε><iqεiqγωiΦλ><JλiJκ><ηaxiητ><icτ ic
d
z iΦκ>

+ <iχβxiχκ><iqκiqγωicτ ic
d
z><iηaxiητ>

}

,

Γ̃d
q;ccqδα(x, z, v) ≡ δ2

δiqδvδic
d
z

<iχβxiη
a
x>

∣

∣

∣

∣

J=0

igT a
βα

=
{

<ηaxiητ><icτ ic
d
z iΦκ><iJκiJλ><iqδv iqεiΦλ><iχεiχβx>

− <iηaxiητ><icτ ic
d
z iqδv iqκ><iχκiχβx>

}

igT a
βα. (4.10)

In the above, the sources/fields J and Φ refer to either ~A or σ, and the internal indices
refer to all attributes of the object in question (summed or integrated over). A few more
comments concerning the above definitions and notations are in order. Recall that in
the “standard” Dyson–Schwinger equations, the loop expressions contain a propagator
(< iχαziχβx > or any other propagator) and an associated tee-level vertex, stemming
directly from the interaction terms in the Lagrangian. However, as seen in Eq. (4.10), in
the case of the (nonabelian) Slavnov–Taylor identities one has a different structure which
arises from the Gauss-BRST transform (or generally from the BRST transform): namely,
one has to functionally differentiate objects such as <iχβxiη

a
x>, but in this case the vertex

arising from a direct interaction is missing. The resulting expressions still have a (partial)
meaning as loop integrals, even though the tree-level vertex is absent. These types of
would-be loop expressions, denoted with a tilde, are called quark-ghost scattering kernels
and are common to the Slavnov–Taylor identities of nonabelian theories.1

With these definitions, we return to the configuration space Slavnov–Taylor identity
Eq. (4.9), and rewritte it as

0 =

∫

d4xδ(t − x0)

×
{

−
(

i∂0
x <iqδv iqγωiσ

d
x>
)

δ(z − x) +

[ ∇ix

(−∇2
x)

<iqδv iqγωiA
a
ix>

]

<icaxic
d
z>

+ <iqδviqαx>
[

Γ̃d
q;ccqαγ(x, z, ω) + igT d

αγδ(z − x)δ(ω − x)
]

+
[

Γ̃d
q;ccqδα(x, z, v) − igT d

δαδ(z − x)δ(v − x)
]

<iqαxiqγω>
}

. (4.11)

Using the formula Eq. (2.39) for the Fourier transform of the vertex functions, one
can write the Slavnov–Taylor identity in momentum space (momentum conservation is

1In Coulomb gauge Yang–Mills theory these objects have been studied in detail in [27], and in linear
covariant gauges, some well-known examples are the ghost-gluon and quark-ghost scattering-like kernels,
appearing in the identities for the three-gluon and quark-gluon vertices (a nice presentation of this
subject can be found in Ref. [71]).
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Figure 4.1.: Quark-ghost scattering-like kernels. Solid lines denote quarks, dashed lines denote
ghosts and spring lines denote gluons. All internal propagators are dressed. The cross
indicates the absence of a tree-level vertex (see text for details).

assumed)

k03Γ
d
qqσαβ(k1, k2, k3) = i

k3i
~k23

Γa
qqAαβi(k1, k2, k3)Γ

ad
cc (−k3)

+Γqqαδ(k1)
[

Γ̃d
q;ccq(k1 + q0, k3 − q0; k2) + igT d

]

δβ

+
[

Γ̃d
q;ccq(k2 + q0, k3 − q0; k1)− igT d

]

αδ
Γqqδβ(−k2) (4.12)

In the above, Γcc is the proper ghost two-point function and q0 is the (arbitrary) energy
injection scale that arises from the time-dependence of the Gauss-BRST transform. This
expression is very similar to the one derived in Ref. [27] for the Yang–Mills case.

We now write the quark-ghost kernels Eq. (4.10) in momentum space. After performing
the Fourier transform, we arrive at the following expressions (represented diagrammatic-
ally in Fig. 4.1):

Γ̃d
q;ccq(p1, p2, p3) = igT a

∫

d̄ ω W ab
cc (ω)Wqq(p1 − ω)

[

Γbd
ccqq(ω, p2, p1 − ω, p3)

−Γbdc
ccκ(ω, p2,−p2 − ω)W ce

κλ(p2 + ω)Γe
qqλ(p1 − ω, p3, p2 + ω)

]

,

Γ̃d
q;ccq(p1, p2, p3) =

∫

d̄ ω

[

Γbdc
ccκ(ω, p2,−p2 − ω)W ce

κλ(p2 + ω)Γe
qqλ(p3, p1 − ω, p2 + ω)

−Γbd
ccqq(ω, p2, p3, p1 − ω)

]

W ab
cc (ω)Wqq(ω − p1)igT

a, (4.13)

where the indices κ, λ, refer to the gluonic field types σ or ~A (with the associated spatial
index).

Just as in the Yang–Mills case, the above Slavnov–Taylor identity, Eq. (4.12) is used
as a constraint, i.e. it helps to find meaningful truncations for the vertex functions of
the theory, which are then used to solve the Dyson–Schwinger equations. In particular,
in the limit of the heavy quark mass, this equation will be used to write the temporal
quark-gluon vertex Γqqσ in terms of purely spatial, ghost or quark propagators and proper
functions. This will then be used to obtain an exact solution of the quark gap equation
and of the Bethe–Salpeter equation for quark-antiquark bound states.

Using the Feynman rules presented in chapter 3, it is easy to show that the identity
Eq. (4.12) is trivially satisfied at tree-level. Also, it can be verified that this identity is
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fulfilled at one-loop perturbatively. In the next section, we will present this derivation in
detail.

4.3. Perturbative analysis

Let us now briefly show that the Slavnov-Taylor identity is fulfilled at one-loop perturbat-
ive level. The proof is based on the translational invariance of the loop-integrals, without
explicitly evaluating them. At one-loop perturbative level, Eq. (4.12) reads:

k03Γ
(1)d
q̄qσ (k1, k2, k3) + ki3Γ

(1)d
q̄qAi(k1, k2, k3) + igT aγi

k3i
~k23

Γ
(1)ad
c̄c (−~k3)

= ig
[

Γ
(1)
q̄q (k1)T

d − T dΓ
(1)
q̄q (−k2)

]

+Γ
(0)
q̄q (k1)Γ̃

d
q̄;c̄cq(k1 + q0, k3 − q0, k2) + Γ̃d

q;c̄cq̄(k2 + q0, k3 − q0, k1)Γ
(0)
q̄q (−k2).

(4.14)

In the above, we have inserted the tree-level spatial quark-gluon vertex, Eq. (3.11), and
the tree-level ghost two-point function from Ref. [28]

Γ
ad(0)
c̄c (k) = δadi~k2. (4.15)

Using the expressions Eq. (2.40), Eq. (2.41) for the quark-gluon vertices, we obtain for
the (nonperturbative) combination of quark-gluon vertex functions, on the left-hand side
of Eq. (4.14):

k03Γ
(1)d
q̄qσ (k1, k2, k3) + ki3Γ

(1)d
q̄qAi(k1, k2, k3)

= −
∫

d̄ ω

{

× Γc
q̄qAk(−k1 + ω, k1,−ω)Wq̄q(ω)

[

k03Γ
(0)d
q̄qσ (k3, ω,−k3 − ω) + k3iΓ

(0)d
q̄qAi(k3, ω,−k3 − ω)

]

×Wq̄q(k3 + ω)Γb
q̄qAj(k3 + ω, k2, k1 − ω)W bc

AAjk(k1 − ω)

−Γc
q̄qσ(−k1 + ω, k1,−ω)Wq̄q(ω)

[

k03Γ
(0)d
q̄qσ (k3, ω,−k3 − ω) + k3iΓ

(0)d
q̄qAi(k3, ω,−k3 − ω)

]

×Wq̄q(k3 + ω)Γb
q̄qσ(k3 + ω, k2, k1 − ω)W bc

σσ(k1 − ω)

−Γa
q̄qAk(−k1 + ω, k1,−ω)Wq̄q(ω)Γ

e
q̄qσ(ω, k2,−k2 − ω)W ec

σσ(k2 + ω)W ba
AAjk(−k1 + ω)

×
[

k03Γ
(0)dbc
σAσj (k2 + ω, k3, k1 − ω) + k3iΓ

(0)dbc
σAAij(k2 + ω, k3, k1 − ω)

]

−Γa
q̄qσ(−k1 + ω, k1,−ω)Wq̄q(ω)Γ

e
q̄qAk(ω, k2,−k2 − ω)W ec

AAjk(k2 + ω)W ba
σσ(−k1 + ω)

×
[

k03Γ
(0)dbc
σAσj (k2 + ω, k3, k1 − ω) + k3iΓ

(0)dbc
σAAij(k2 + ω, k3, k1 − ω)

]

−Γa
q̄qAl(−k1 + ω, k1,−ω)Wq̄q(ω)Γ

e
q̄qAm(ω, k2,−k2 − ω)W ec

AAmk(k2 + ω)W ba
AAjl(−k1 + ω)

×
[

k03Γ
(0)dbc
σAAjk(k2 + ω, k3, k1 − ω) + k3iΓ

(0)dbc
3Aijk(k2 + ω, k3, k1 − ω)

]

−Γa
q̄qσ(−k1 + ω, k1,−ω)Wq̄q(ω)Γ

e
q̄qσ(ω, k2,−k2 − ω)W ec

σσ(k2 + ω)W ba
σσ(−k1 + ω)

×k3iΓ
(0)dbc
Aσσi (k2 + ω, k3, k1 − ω)

}

(4.16)
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4.3 Perturbative analysis

The lengthy expression above can be simplified if we make use of the tree-level Yang-Mills
Slavnov-Taylor identities derived in Ref. [27].2 For completeness we list them all here
(together with the tree-level quark Slavnov-Taylor identity, which is trivial):

k03Γ
fed(0)
σAσk (k1, k2, k3) + k3iΓ

fed(0)
σAAki = −gfadeΓ

fa(0)
σAk (k1)− gfadfΓ

ea(0)
σAk (k2)

k03Γ
abc(0)
AAσjk(k1, k2, k3) + k3iΓ

abc
3Aijk(0) = −gfdcbΓ

ad(0)
AAjk(k2)− gfdeaΓ

bd(0)
AAjk(k1)

k3iΓ
abc(0)
σσAi (k1, k2, k3) = −gfdcbΓad(0)

σσ (k2)− gfdcaΓbd(0)
σσ (k1)

k03Γ
(0)d
q̄qσ (k1, k2, k3) + k3iΓ

(0)d
q̄qAi(k1, k2, k3) = Γ

(0)
q̄q (k1)igT

d − igT dΓ
(0)
q̄q (−k2) (4.17)

Further, in order to derive the one-loop expression, in the full nonperturbative equation
Eq. (4.16) we insert the tree-level vertices and propagators given by Eq. (3.4), Eq. (3.7),
Eq. (3.10), Eq. (3.11). Putting all these together, we arrive at the following simplified
expression:

k03Γ
(1)d
q̄qσ (k1, k2, k3) + ki3Γ

(1)d
q̄qAi(k1, k2, k3)

= −ig3T aT aT d

∫

d̄ ω

{

γkWq̄q(k3 + ω)γjWAAjk(k1 − ω)− γkWq̄q(ω)γ
jWAAjk(k1 − ω)

+γ0Wq̄q(k3 + ω)γ0Wσσ(k1 − ω)− γ0Wq̄q(ω)γ
0Wσσ(k1 − ω)

}

=
i

2
T dNcg

3

∫

d̄ ω
k3jtij(~ω)

ω2(~k3 − ~ω)2

×
{

[

γ0(k3 − ω)0 − γk(k3 − ω)k

]

[

γ0(ω + k2)0 − γk(ω + k2)k −m
]

(ω + k2)2 −m2
γi

+γi
[

γ0(ω + k1)0 − γk(ω + k1)k +m
]

(ω + k1)2 −m2

[

γ0(k3 − ω)0 − γk(k3 − ω)k

]

}

(4.18)

We first compare the first integral of Eq. (4.18) with the combination of one-loop quark
two-point functions (without ghost factors) on the r.h.s. of Eq. (4.14). Using the expres-
sion Eq. (2.34) for the gap equation and recalling that the ~π and φ fields do not give a
contribution at one-loop order in perturbation theory, we deduce that these terms are
equal and hence they cancel in the Slavnov–Taylor identity. For the rest of the terms (the
combination of quark- ghost kernels on the r.h.s. and the remaining ghost term on the
l.h.s. of Eq. (4.14)) we get:

Γ
(0)
q̄q (k1)Γ̃

d
q̄;c̄cq(k1 + q0, k3 − q0, k2) + Γ̃d

q;c̄cq̄(k2 + q0, k3 − q0, k1)Γ
(0)
q̄q (−k2)

−igT aγi
k3i
~k23

Γ(1)ad
c (−~k3) =

i

2
T dNcg

3

∫

d̄ ω
k3jtij(~ω)

ω2(~k3 − ~ω)2
{

−(γ0k10 − γkk1k −m)

[

γ0(ω + k2)0 − γk(ω + k2)k −m
]

(ω + k2)2 −m2
γi

+ γi
[

γ0(ω + k1)0 − γk(ω + k1)k +m
]

(ω + k1)2 −m2
(−γ0k20 + γkk2k −m)− 2k3i

γkk3k
~k23

}

(4.19)

2In principle, the Yang–Mills identities also contain ghost-gluon scattering-like kernels, but at tree-level
these factors do not give a contribution.
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Chapter 4. Slavnov–Taylor identity for the quark-gluon vertices

After rearranging the terms, we find that the second integral in the formula Eq. (4.18)
equals the above combination of quark-ghost kernels and the ghost term. Collecting
all the results, we deduce that the l.h.s. of Eq. (4.14) equals the r.h.s., and hence the
Slavnov–Taylor identity for the quark-gluon vertex is satisfied at one-loop perturbative
level.

As a useful check, we can also show that the divergent parts of the quantities entering
the formula Eq. (4.14) combine such that the Slavnov–Taylor identity is again satisfied.
For this we use the results derived in Chapter 3, i.e. the divergent part of the quark
gluon vertices Eq. (3.99), Eq. (3.100), and the divergent part of the quark gap equation,
obtained by inverting the result Eq. (3.89) for the quark propagator

Γq̄q(k) = i
CF

(4π)2
1

ε
(γ0k0 − γiki − 4m) + finite terms, (4.20)

together with the ghost two-point function (previously calculated in [30])

Γab
c (k) = −iδab~k2

4

3

Nc

(4π)2
1

ε
+ finite terms. (4.21)

Further, writing out the explicit form of the quark-ghost kernels Eq. (4.13) and making a
simple power analysis, we notice that these factors do not contain divergences.3 Collecting
the divergent factors Eq. (3.99), Eq. (3.100), Eq. (4.20) and Eq. (4.21), it is straightforward
to verify that that the Slavnov–Taylor identity is again satisfied.

3The convergence of the quark-ghost kernels has been also shown in Ref. [72], in the framework of split
dimensional regularization.
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Chapter 5.

Heavy quarks

So far, we have investigated the Dyson–Schwinger equations (along with the Slavnov–
Taylor identities) for two- and three-point Green’s functions at one-loop perturbative
level, where the coupling between quarks and gluons is small. In the second part of this
thesis, we are concerned with the nonperturbative (i.e., strong coupling) region of the
theory, with the aim to describe bound states of quarks, and interpret them in relation
to the linearly rising potential which confines them.

Traditionally, most of the nonperturbative studies are performed in covariant gauges.
They concentrate on the light quark sector, where one is concerned with dynamical chiral
symmetry breaking (a review of this subject can be found in Ref. [73], see also Ref. [74]
for the phenomenological implications for meson and baryon states). So far, the Landau
gauge studies of the heavy quark sector are unfortunately not conclusive, since the heavy
quark propagator contains spurious poles which prevent a solution of the bound state
Bethe–Salpeter equation [75]. The difficulty arises from the fact that nonperturbative
Dyson–Schwinger equations and heavy quark limit are not automatically compatible, i.e.,
both the heavy quark mass and the ultraviolet-cutoff scale of the loop integrals (supposing
that a ultraviolet-cutoff regularization is employed) tend to be the largest scale in the
problem.

An alternative approach is to reformulate the heavy quark sector of QCD as an effective
theory – the Heavy Quark Effective Theory [HQET]1. In this approach, the main sim-
plification stems from the fact that the effective quark Lagrange function is rewritten as
an expansion in powers of 1/m, where m is the heavy quark mass. Naturally, when the
quarks are very heavy one can keep only the first few terms in the mass expansion. The
effective Lagrange function also enjoys two additional symmetries, which turn to be very
useful for practical applications [77]: the heavy flavor symmetry2 and the so called spin
symmetry, which arises because in the heavy quark limit the spin degrees of freedom do
not couple to the gluon field. Moreover, the apparent incompatibility of the heavy quark
mass and the ultraviolet cutoff has been recognized. To handle this problem, the so-called
matching procedure has been developed [81]: QCD operators are written as series in 1/m
via HQET operators and the coefficients in these series are determined by matching on-
shell matrix elements in both theories. These calculations have been performed up to
three loops in perturbation theory [84–86].

In the present chapter, the aim is to explore the heavy quark sector of the theory
by combining nonperturbative Dyson–Schwinger equations with the heavy quark mass
expansion [87]. We will employ the full nonperturbative QCD functional formalism, in-

1 In [76–80] we collected the original papers; extended reviews can be found, among others, in Refs. [81, 82]
and in the textbook [83].

2 However, as we consider identical quarks, this is not of particular interest for the present work.



Chapter 5. Heavy quarks

volving the complete quark fields, rather than HQET expressions that refer to the heavy
quark degrees of freedom. The effect will be that, due to the complexity of the equations,
we will be obliged to restrict ourselves to leading order in the mass expansion, and this
means that we will not be able to describe real quarks (which are not infinitely heavy).
However, this does not alter our goal to study the confining potential, since all quarks
should be confined, regardless of their mass.

5.1. Heavy quark mass expansion

Let us start by writing out the explicit quark contribution to the full QCD generating
functional, Eq. (2.1),

Z[χ, χ] =

∫

DΦexp

{

i

∫

d4xqα(x)
[

iγ0D0 + i~γ · ~D −m
]

αβ
qβ(x)

}

× exp

{

i

∫

d4x [χα(x)qα(x) + qα(x)χα(x)] + iSYM

}

, (5.1)

with the temporal and spatial components of the covariant derivative (in the fundamental
color representation) given by Eq. (1.23). The Yang–Mills contribution to the generating
functional is in the standard, second order formalism [27, 28], where the auxiliary fields
~π and φ do not appear.

Now consider the following decomposition of the quark and antiquark fields:

qα(x) = e−imx0 [h(x) +H(x)]α ,

qα(x) = eimx0

[

h(x) +H(x)
]

α
, (5.2)

such that

hα(x) = eimx0 [P+q(x)]α , Hα(x) = eimx0 [P−q(x)]α
hα(x) = e−imx0 [q(x)P+]α , Hα(x) = e−imx0 [q(x)P−]α . (5.3)

In the above, the (spinor) projection operators are given by3

P± =
1

2
(1± γ0), P+ + P− = 1, P+P− = 0, P 2

± = P±. (5.4)

This decomposition is a particular case of the heavy quark transform underlying HQET
[81]. There, the starting point is the observation that a heavy quark within a hadron is
almost on-shell and moves with the hadron velocity v. Its 4-momentum can be written

pµ = mvµ + kµ (5.5)

where |k| ≪ m|v| and v2 = 1 (such that when |k| = 0, p2 = m2). One then uses the
general projectors P± = (1 ± /v)/2 and the exponential terms are generalized to e±imv·x.
The case used here corresponds to the rest frame of the quark, vµ = (1,~0). Intuitively, this
corresponds to a shift in the position of the “zero energy” level, such that the energy of the

3Recall that in the free Dirac theory the operators P± project on the positive and negative energy
eigenstates (they select the upper and lower components of the quark spinor).
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5.1 Heavy quark mass expansion

state m (the heavy quark at rest) is the new zero level. In other words, instead of the true
energy p0 = m+k0 of the heavy quark, the residual energy k0 is used. However, within the
context of the generating functional Eq. (5.1), the decomposition Eq. (5.2) can be initially
regarded simply as and arbitrary decomposition, which will later on prove to be useful in
Coulomb gauge. In fact, this choice will result in an important simplification: the spatial
components of the Yang–Mills Green’s functions are absent at leading order in the mass
expansion and they apear only in next-to-leading order. The projection operators satisfy
the following further relations

P+γ
0P+ = P+P+, P+γ

0P− = 0, P+γ
iP+ = 0 (5.6)

such that the following relations hold for the components of the quark field:

hγ0h = hh, Hγ0H = −HH, hγ0H = Hγ0h = hγih = HγiH = 0. (5.7)

Inserting the decomposition of the quark fields given by Eq. (5.2) into the generating
functional Eq. (5.1) and using these relationships one obtains

Z[χ, χ] =

∫

DΦexp

{

i

∫

d4x
[

hα(x) [iD0]αβ hβ(x)

+hα(x)
[

i~γ · ~D
]

αβ
Hβ(x) +Hα(x)

[

i~γ · ~D
]

αβ
hβ(x) +Hα(x) [−2m− iD0]αβ Hβ(x)

]}

× exp

{

i

∫

d4x
[

e−imx0χα(x) [h(x) +H(x)]α + eimx0

[

h(x) +H(x)
]

α
χα(x)

]

+ iSYM

}

.

(5.8)

At this point, it is illuminating to discuss the difference between the mass expansion (as
used here) and HQET. As already emphasized in the introduction of this chapter, in this
approach we work with the full quark fields, i.e. we retain the source terms for the quark
fields q, q̄ in order to derive the full gap, Bethe–Salpeter and Faddeev equations from
Z[χ, χ] (see below). Hence, the source term expression in the above is slightly modified
by the appearance of the exponential factors. Since the Jacobian of the transformation is
field independent (and thus trivial), our generating functional has not been altered, but
merely rewritten in terms of different integration variables. This is in contrast to HQET
where the quark sources are replaced with sources for the projected fields h and H. In
principle, differentiation with respect to the sources of the generating functional Eq. (5.8)
would then lead to the Green’s functions of the projections h,H of the spinor q. In order
to derive a Green’s function with an external heavy quark, the components H (multiplied
with twice the quark mass) are integrated out (as below) and in addition their sources
are set to zero [82].

Noticing that for the h-field (‘large’) components, the quark mass parameter m does
not appear directly, we integrate out the H-fields and get the following expression

Z[χ, χ] =

∫

DΦDet [iD0 + 2m] exp

{

i

∫

d4x
[

hα(x) [iD0]αβ hβ(x)

+
[

h(x)i~γ · ~D + e−imx0χ(x)
]

α
[iD0 + 2m]−1

αβ

[

i~γ · ~Dh(x) + eimx0χ(x)
]

β

]}

× exp

{

i

∫

d4x
[

e−imx0χα(x)hα(x) + eimx0hα(x)χα(x)
]

+ iSYM

}

. (5.9)
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Chapter 5. Heavy quarks

Obviously, since we have integrated out a nontrivial component of the original quark
field, our expression is nonlocal and this is where the heavy mass expansion is necessary.
The determinant arising from the fermion functional integration depends on the temporal
component of the gauge field and it can be written in the following way:

Det [iD0 + 2m] = exp ln [iD0 + 2m] = N expTr ln

[

1 + gT aσa 1

i∂0 + 2m

]

∼ N +O
(

1/m2
)

(5.10)

where N is a (noninteracting) constant. If we expand the logarithm in power series we
see that the first term, of O(1/m), vanishes due to the fact that the generators T a are
traceless matrices, and the term at O(1/m2) is proportional to Tr(T aT b) = Nf (but,
since we restrict to leading order in the mass expansion, this term will not appear in our
calculations).

Leaving the e±imx0 factors as they are, we can thus write

Z[χ, χ] =

∫

DΦexp

{

i

∫

d4x [ hα(x) [iD0]αβ hβ(x)

+
1

2m

[

h(x)i~γ · ~D + e−imx0χ(x)
]

α

[

i~γ · ~Dh(x) + eimx0χ(x) ]α

]

}

× exp

{

i

∫

d4x
[

e−imx0χα(x)hα(x) + eimx0hα(x)χα(x)
]

+ iSYM

}

+O
(

1/m2
)

.(5.11)

Our generating functional is now local in the fields and arranged in an expansion in the
parameter 1/m (this will be referred to as the mass expansion although strictly speaking,
it is an expansion in the inverse mass). However, locality does not mean that the above
expression can be directly applied. Let us consider the classical (full) quark field in the
presence of sources:

1

Z

∫

DΦqα(x) exp {iS} =
1

Z

δZ

δiχα(x)

=
1

Z

∫

DΦ

{

e−imx0hα(x) +
e−imx0

2m

[

i~γ · ~Dh(x) + eimx0χ(x)
]

α

}

exp {iS}+O
(

1/m2
)

.

(5.12)

One sees immediately that even at O(1/m), the classical quark field has components that
involve interaction type terms ( ~Dh ∼ ~Ah) brought about by the truncation of the nonloc-
ality. Of course, this is nothing more than the statement that the h-field is nontrivially
(and dynamically) related to the full q-field. It also means that if we want to use the
nonperturbative gap and Bethe–Salpeter equations (i.e., those equations derived from the
action for the full quark fields q and their sources χ and which are the equations of QCD
as opposed to HQET) then we cannot expect that the mass expansion can realistically
be extended far beyond the leading order in order to do practical calculations. As stated
previously though, the aim is to investigate the connection between the Yang–Mills sector
and the physical world made of quarks; the string tension that represents our goal is not
dependent on the quark mass (both light and heavy quarks are confined in the same way,
as far as we know). Therefore, we restrict our attention to the leading order in the mass
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5.1 Heavy quark mass expansion

expansion as follows (and writing D0 explicitly):

Z[χ, χ] =

∫

DΦexp

{

i

∫

d4xhα(x) [i∂0x + gT aσa(x)]αβ hβ(x)

}

× exp

{

i

∫

d4x
[

e−imx0χα(x)hα(x) + eimx0hα(x)χα(x)
]

+ iSYM

}

+O (1/m) .

(5.13)

The standard machinery of functional methods is now employed. Just as for the usual
QCD gap equation derived in Chapter 2, we start with the observation that up to boundary
terms (which are assumed to vanish) the integral of a total derivative vanishes, and obtain
for the quark field equation of motion:

0 =

∫

DΦ
δ

δihα(x)
exp {iS}

=

∫

DΦ
{

[i∂0x + gT aσa(x)]αβ hβ(x) + eimx0χα(x)
}

exp {iS}+O (1/m). (5.14)

The field equation of motion for the antiquark gives equivalent results and can be neg-
lected. From the generating functional of connected Green’s functions W [χ, χ], Eq. (2.7),
and using the bracket notation, Eq. (2.9), for the derivatives of W with respect to sources,
we obtain the classical quark fields, Eq. (2.14).

Using the equation Eq. (2.11) and noticing that from Eq. (5.13), the following relations
hold:

δZ[χ, χ]

δiχα(x)
=

∫

DΦe−imx0hα(x) exp {iS}+O (1/m) ,

δZ[χ, χ]

δiχα(x)
= −

∫

DΦeimx0hα(x) exp {iS}+O (1/m) (5.15)

(recalling the earlier discussion of neglecting the O (1/m) terms), the field equation of
motion, Eq. (5.14), can be written in terms of derivatives of W :

0 = [i∂0x]αβ e
imx0 <iχβ(x)> + [gT a]αβ e

imx0

[

<iρa(x)iχβ(x)> + <iρa(x)><iχβ(x)>
]

+eimx0χα(x) +O (1/m) . (5.16)

Factoring out the exponential terms gives then

0 = [i∂0x −m]αβ <iχβ(x)> + [gT a]αβ
[

<iρa(x)iχβ(x)> + <iρa(x)><iχβ(x)>
]

+χα(x) +O (1/m) . (5.17)

To continue, we employ the Legendre transform Eq. (2.15) in order to construct the
effective action for the full quark fields (with the notations and conventions introduced in
Chapter 2). The field equation of motion can then be rewritten in terms of derivatives of
the effective action (which are the proper Green’s functions when sources are set to zero):

<iqα(x)>= [i∂0x −m]αβ qβ(x) + [gT a]αβ
[

<iρa(x)iχβ(x)> +σa(x)qβ(x)
]

+O (1/m) .
(5.18)
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Chapter 5. Heavy quarks

With the field equation of motion written in the above forms, we can now derive the
Feynman rules for the quark components of the theory (the Yang–Mills parts are already
known [28]). Following the derivation presented in Chapter 3, we functionally differen-
tiate Eq. (5.17), ignoring the interaction terms, and we get the tree-level propagator in
configuration space

0 = [i∂0x −m]αβ <iχγ(z)iχβ(x)>
(0) −iδγαδ(z − x) +O (1/m) . (5.19)

Naively, one would write the solutions as

W
(0)
qqβα(k) =

−iδβα
[k0 −m]

+O (1/m) , W
(0)
qqγβ(k) =

−iδγβ
[k0 +m]

+O (1/m) . (5.20)

These propagators will turn to have a couple of striking features, which will be extensively
discussed after deriving the nonperturbative solution for the gap equation. At this stage,
we only emphasize that the quark and antiquark propagators must be treated separately,
and this will turn to have important consequences for the bound state equations. Due to
the mass expansion, we only have a single pole in the complex k0-plane, as opposed to the
conventional quark propagator, which possesses a pair of simple poles. Hence, in order to
define the Fourier transform, one must first define the Feynman prescription for handling
the poles in the energy integral. For the quark propagator, we write

W
(0)
qqβα(k) =

−iδβα
[k0 −m+ iε]

+O (1/m) . (5.21)

Let us state for the moment that for the antiquark propagator, the following Feynman pre-
scription is assigned (this will be explained in the context of the Bethe–Salpeter equation
for bound states, see below):

W
(0)
qqγβ(k) =

−iδγβ
[k0 +m+ iε]

+O (1/m) . (5.22)

For the proper two-point function, we use functional derivatives of Eq. (5.18) and we
get directly in momentum space

Γ
(0)
qqαβ(k) = i [k0 −m] δαβ +O (1/m) ,

Γ
(0)
qqαβ(k) = i [k0 +m] δαβ +O (1/m) , (5.23)

Since the two-point function requires no Feynman prescription and is diagonal in the outer
product of the fundamental color, flavor and spinor spaces, we have the following relation
between the quark and antiquark two-point functions:

Γ
(0)
qqαβ(k) = −Γ

(0)
qqαβ(−k) (5.24)

In addition, WqqΓqq = 1 as usual. For the three-point functions we obtain

Γ
(0)a
qqσαβ(k1, k2, k3) = [gT a]αβ +O (1/m) ,

Γ
(0)a
qqσαβ(k1, k2, k3) = − [gT a]βα +O (1/m) . (5.25)
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5.2 Truncation scheme

Notice the ordering of the indices for the Γqqσ vertex. Importantly, the tree-level spatial
quark-gluon vertex does not appear at leading order in the mass expansion:

Γ
(0)a
qqAαβi = Γ

(0)a
qqAαβi ∼ O (1/m) . (5.26)

Let us again stress that, because of our insistence of using the full quark sources, all
the nonperturbative equations involving the quarks (the Dyson–Schwinger equations for
two-point and three-point functions, the Slavnov–Taylor identities, the Bethe–Salpeter
equation and the Faddeev equation) will not alter their form at leading order in the mass
expansion, the only alterations being at the level of the tree-level factors.

5.2. Truncation scheme

In order to solve the nonperturbative system we must further specify our truncation
scheme. In the context of the heavy mass expansion, we propose to consider only the
dressed two-point functions of the Yang–Mills sector (i.e., the nonperturbative gluon
propagators) and to set all the pure Yang–Mills vertices and higher n-point functions
occurring in the quark equations to zero.

Since the tree-level spatial quark-gluon vertex is suppressed by the mass expansion,
in our approximation any diagram containing this vertex will not contribute at one-
loop order in perturbation theory. Further, the fully temporal gluon Green’s functions
Γσσσ ,Γσσσσ , . . . are zero at tree-level [28], and this means that the leading order perturb-
ative corrections containing this vertices again vanish. This implies that that the number
of loop diagrams arising because of the Yang–Mills vertices is heavily restricted and they
first contribute to the next to leading order in perturbation theory. Physically, the most
important point that will emerge is that when we set the Yang–Mills vertices to zero, we
exclude the non-Abelian part of the charge screening mechanism of the quark color charge
and any potential glueball states. On the other hand, the charge screening mechanism
and glueball contributions of the gluon field (i.e., the color string) is implicitly encoded
in the nonperturbative form of the temporal gluon propagator. We will come back to the
physical implications of this truncation after deriving the confining potential between a
quark and an antiquark from the Bethe–Salpeter equation.

With the truncation scheme as outlined above, the Yang–Mills sector reduces to the
inclusion of a single object: the temporal gluon propagator which is written as [28]

W ab
σσ(k) = δab

i

~k2
Dσσ(~k

2). (5.27)

There are three important features to this propagator. Firstly, there are indications on
the lattice that the dressing function Dσσ is largely independent of energy [49], justifying
the energy independence of the above form. As we already emphasized in the first chapter,
within the first order formalism one can justify that the temporal gluon propagator must
have some part that is constant in the energy in order to cancel closed ghost loops and
resolve the Coulomb gauge energy divergences4. Second, the lattice analysis indicates
that the dressing function Dσσ is infrared divergent and is likely to behave as 1/~k2 for
vanishing ~k2. Since we are interested mainly in the relationship between Dσσ (as the input

4See also the more formal considerations of Ref. [34].
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of the Yang–Mills sector) and the string tension, we will not need the specific form until
towards the end. Third, the product g2Dσσ is a renormalization group invariant quantity
and thus a good candidate for being related to the physical string tension [12, 27].

5.3. Gap equation

5.3.1. Nonperturbative treatment

Let us begin by considering the Dyson–Schwinger equation for the quark two-point proper
function. In full, second order formalism, QCD it is given by5:

Γqqαδ(k) = Γ
(0)
qqαδ(k)

+

∫

d̄ ω
{

Γ
(0)a
qqσαβ(k,−ω, ω − k)Wqqβγ(ω)Γ

b
qqσγδ(ω,−k, k − ω)W ab

σσ(k − ω)

+Γ
(0)a
qqAαβi(k,−ω, ω − k)Wqqβγ(ω)Γ

b
qqAγδj(ω,−k, k − ω)W ab

AAij(k − ω)
}

(5.28)

(the spatial gluon propagator WAA will be unimportant here because of the suppression
Eq. (5.26) of the spatial quark-gluon vertex). The gap equation is supplemented by the
Slavnov–Taylor identity, Eq. (4.12), derived in Chapter 4 .

In order to use the Slavnov–Taylor identity as input for solving the gap equation, we
first apply our truncation scheme in the context of the heavy mass expansion at leading
order. Starting with the dressed spatial quark-gluon vertex, consider the terms that
contribute to the Dyson–Schwinger equation shown schematically in Fig. 2.3. According
to the truncation scheme, we set all Yang–Mills vertices to zero, meaning that diagrams
(c) and (e-i) are excluded. This then leaves us with the tree-level term (a) and the quark
contributions (b), (d). However, all of these involve at least one tree-level spatial quark-
gluon vertex, which is not present at leading order in the mass expansion. Thus, we obtain
the nonperturbative result that

Γa
qqAαβi(k1, k2, k3) ∼ O (1/m) . (5.29)

Similarly, the ghost-quark kernels of the Slavnov–Taylor identity, given their definition,
Eq. (4.13), involve Yang–Mills vertices and can be neglected. Thus, in our truncation
scheme and at leading order in the mass expansion, the Slavnov–Taylor identity reduces
to

k03Γ
d
qqσαβ(k1, k2, k3) = Γqqαδ(k1)

[

igT d
]

δβ
−
[

igT d
]

αδ
Γqqδβ(−k2) +O (1/m) . (5.30)

Clearly, the Slavnov–Taylor identity under truncations results in an Abelian type Ward
identity. Moreover, since the temporal quark-gluon vertex is simply multiplied by the
temporal gluon energy (an essential feature of Coulomb gauge Slavnov–Taylor identities,
as opposed to covariant gauges) and the quark proper two-point function is color diagonal,
we can immediately write the solution:

Γd
qqσαβ(k1, k2, k3) =

ig

k03

{

T d [Γqq(k1)− Γqq(−k2)]
}

αβ
+O (1/m) . (5.31)

5This can be directly inferred from the expression Eq. (2.34), in the first order formalism, by setting the
auxiliary fields ~π, φ to zero.
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5.3 Gap equation

The above solution is trivially satisfied at tree-level. The apparent singularity arising
for vanishing gluon energy (k03 = 0, but ~k3 6= 0) must somehow be canceled by the
difference of proper quark two-point functions. Since the spatial momentum configuration
is arbitrary, this leads to the requirement that Γqq(k) → Γqq(k0) +O (1/m). Later on we
shall see that our solution does indeed satisfy this condition. The demand that the
nonperturbative vertex solution to the Coulomb gauge Slavnov–Taylor identity be free of
kinematic divergences (here, simply the 1/k03 factor) is a variation of the familiar covariant
gauge situation considered in Ref. [88].

Inserting the results, Eq. (5.31) and Eq. (5.29), for the vertices, using the Feynman rules
given by Eq. (5.23), Eq. (5.25), and the temporal gluon propagator given by Eq. (5.27)
and resolving the color structure, the nonperturbative gap equation, Eq. (5.28), under
truncation and at leading order in the mass expansion thus reads

Γqqαδ(k0) = i [k0 −m] δαδ − g2CF

∫

d̄ ω Dσσ(~k − ~ω)

(k0 − ω0)(~k − ~ω)2
Wqqαβ(ω0) [Γqq(ω0)− Γqq(k0)]βδ

+O (1/m) . (5.32)

There exists one particularly simple solution to this equation, given by

Γqqαβ(k) = iδαβ [k0 −m− Ir] +O (1/m) (5.33)

Wqqαβ(k0) =
−iδαβ

[k0 −m− Ir + iε]
+O (1/m) , (5.34)

with the constant [ d̄ ~ω = d3~ω/(2π)3]

Ir =
1

2
g2CF

∫

r

d̄ ~ω Dσσ(~ω)

~ω2
+O (1/m) . (5.35)

A short comment regarding the ordering of the limits in the spatial and temporal integ-
rals and the potential divergences in the constant Ir is in order. Here, we state that
the temporal integral is performed first under the condition that the spatial integral is
somehow regularized, i.e. finite (the implicit regularization is signaled by the subscript
“r”)6. Extracting the expression for the constant Ir from the gap equation under trun-
cation, Eq. (5.32), we insert the solution given by Eq. (5.33), Eq. (5.34) (assuming that
the spatial integral is regularized), and obtain

Ir = g2CF

∫

r

d̄ ~ω Dσσ(~k − ~ω)

(~k − ~ω)2

i

2π
lim

R→∞

∫ R

−R

dω0

[ω0 −m− Ir + iε]
+O (1/m)

=
1

2
g2CF

∫

r

d̄ ~ω Dσσ(~k − ~ω)

(~k − ~ω)2
+O (1/m) . (5.36)

Clearly, the effect of performing the temporal integral first is that the regularized constant
Ir in the denominator factor can be shifted away and hence becomes irrelevant. Further,
by shifting the integration variable in the spatial integral we find that this integral involves
no external scale, and thus we arrive at our above result, Eq. (5.35).

6This regularization will be assumed throughout the rest of this work.
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Chapter 5. Heavy quarks

Inserting the solution Eq. (5.33) into the Slavnov–Taylor identity, we also have that for
the vertex

Γd
qqσαβ(k1, k2, k3) =

[

gT d
]

αβ
+O (1/m) , (5.37)

and this means that the dressed temporal quark-gluon vertex is trivial and the gap equa-
tion reduces to the rainbow truncation.

Let us now briefly discuss the physical interpretation of these results. Firstly, it might
be the case that there exist other solutions to the truncated gap equation. However, as
will be shown in the next section, the above solution can also be derived from a semi-
perturbative type of expansion. One has to bear in mind that in principle the fully
nonperturbative solution might not be the same as the resummed perturbative solution.

Secondly, as already outlined when defining the Feynman prescription, the quark propag-
ator has a single pole, so cannot represent physical propagation (which requires a covariant
double pole) and this arises obviously from the truncation of the mass expansion. From
Eq. (5.34) it then follows that the closed quark loops (virtual quark-antiquark pairs) van-
ish due to the energy integration, which implies that the theory is quenched in the heavy
mass limit (see also Ref. [81] for an alternate discussion on this topic):

∫

dk0
[k0 −m− Ir + iε] [k0 + p0 −m− Ir + iε]

= 0. (5.38)

The above result can be interpreted as being a consequence of the breaking of time reversal
symmetry of the full Dirac equation (quark and antiquark moving either forwards or
backwards in time according to causality), as a result of the mass expansion. Time
reversal symmetry breaking means that there is only the quark (or only the antiquark)
moving forward in time, corresponding to the above Feynman prescription, and, in this
sense, the corresponding antiquark (or quark) is not present. On the other hand, the
closed quark loop involves a quark going backwards in time (similarly for an antiquark
loop), which is prohibited according to our argumentation, so that such closed quark loop
integrals vanish at leading order. Clearly, the breaking of the time reversal symmetry is
also reflected in the presence of only a single pole in the heavy quark propagator.

Thirdly, the quark propagator Eq. (5.34) is diagonal in the outer product of the funda-
mental color, flavor and spinor spaces as a consequence of the mass expansion – physically

this corresponds to the decoupling of the spin from the heavy quark system. In fact, W
(0)
qq

is identical to the heavy quark tree-level propagator [81] up to the appearance of the mass
term, and this is due to the fact that in HQET one uses the sources for the large h-fields
directly, while we retain the sources of the full quark fields. Also, note that the kinetic
term of the (tree-level) propagator would read −~k2/2m in the denominator factor and
hence appears at higher order in the mass expansion. Such terms are obviously important
to the UV properties of the loop integrals but do not play any role in the infrared limit
considered here.

Finally, the fact that the solution involves potentially divergent constants is not a
comfortable situation but does not necessarily contradict the physics, since the position
of the pole has no physical meaning (the quark can never be on-shell). The poles in the
quark propagator are situated at infinity (thanks to Ir as the regularization is removed)
meaning that either one requires infinite energy to create a quark from the vacuum or,
if a a hadronic system is considered, only the relative energy is important. Indeed, it
was shown some time ago [89] that the divergence of the absolute energy has no physical
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5.3 Gap equation

meaning and only the relative energy (derived from the Bethe–Salpeter equation, see
below) must be considered. Further, the divergences appearing in the quark propagator
have no interpretation with regards to renormalization, at least within the context of the
mass expansion to leading order. The mass parameter cannot be renormalized simply
because one cannot construct an appropriate counterterm in the action. Also, the quark
field renormalization is trivial at leading order, as one sees from the explicit form of the
temporal quark-gluon vertex, Eq. (5.37).

Having discussed the quark propagator, let us now discuss the antiquark propagator.
Recall that at tree-level, we used a different Feynman prescription for the two denominator
factors and this gives rise to some rather interesting physical consequences. As previously
discussed, the heavy mass expansion employed here breaks the charge conjugation sym-
metry relating particle and antiparticle, so we cannot expect that the two propagators are
necessarily equivalent. Starting with the gap equation for full QCD, Eq. (5.28), we reverse
the ordering of the quark and antiquark functional derivatives that form the quark Green’s
functions (still within the context of the full quark fields and sources) and rearrange the
ordering to get the gap equation for the antiquark propagator:

−Γqqδα(−k) = −Γ
(0)
qqδα(−k)

−
∫

d̄ ω
{

Γb
qqσδγ(−k, ω, k − ω)Wqqγβ(−ω)Γ

(0)a
qqσβα(−ω, k, ω − k)W ab

σσ(k − ω)

+Γb
qqAδγj(−k, ω, k − ω)Wqqγβ(−ω)Γ

(0)a
qqAβαi(−ω, k, ω − k)W ab

AAij(k − ω) } . (5.39)

Applying our truncation scheme reduces the above to

Γqqδα(−k) = Γ
(0)
qqδα(−k)

+

∫

d̄ ω Γb
qqσδγ(−k, ω, k − ω)Wqqγβ(−ω)Γ

(0)a
qqσβα(−ω, k, ω − k)W ab

σσ(k − ω) +O (1/m) .

(5.40)

In similar fashion, we have the Slavnov–Taylor identity for the antiquark-gluon vertex:

− k03Γ
d
qqσβα(k2, k1, k3) = +Γqqβδ(k2)

[

igT d
]T

δα
−
[

igT d
]T

βδ
Γqqδα(−k1) +O (1/m) . (5.41)

Before we give the solution to Eq. (5.40), let us remark that in order to construct a quark-
antiquark pair in the Bethe–Salpeter equation (which has a physical interpretation of a
bound state equation), one is not considering a virtual quark-antiquark pair but rather
a system composed of two separate unphysical particles.7 Since the quark and antiquark
lines of the Bethe–Salpeter equation are never connected by a primitive vertex (unlike
the closed quark loop discussed above), we are allowed to assign the following Feynman
prescription for the antiquark propagator:

Wqqαβ(k) =
−iδαβ

[k0 +m− Ir + iε]
+O (1/m) , (5.42)

Γqqαβ(k) = iδαβ [k0 +m− Ir] +O (1/m) (5.43)

7It is known that in Coulomb gauge, Gauss’ law forbids the creation of a colored state in isolation (the
total color charge is conserved and vanishing [90]) and so, the Feynman prescription for the quark (or
the antiquark) propagator has no physical meaning in isolation.
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Figure 5.1.: Diagrams that contribute under our truncation scheme to the Dyson–Schwinger equa-
tion for the temporal quark-gluon vertex (without prefactors or signs). Internal
propagators are fully dressed and blobs represent dressed proper vertex and (re-
ducible) kernels. Internal propagators represented by solid lines represent the quark
propagator.

with the corresponding solution for the vertex

Γd
qqσαβ(k1, k2, k3) = −

[

gT d
]

βα
+O (1/m) . (5.44)

In the above, notice that the sign of the loop correction has changed and this will result (in
the context of the bound state studies for mesons and diquarks) in a physical interpretation
for the quark-antiquark Bethe–Salpeter equation as a whole.

5.3.2. Semiperturbative treatment

After solving the gap (and anti-gap) equation, we have seen that the solutions for the
proper two-point function leads to a (nonperturbatively) bare temporal quark-gluon (and
antiquark-gluon) vertex. In this section, we will reconsider this vertex within the context
of a semiperturbative analysis. This will then introduce a technical feature crucial for
considering the Bethe–Salpeter equation nonperturbatively.

Under our truncation scheme, the nonperturbative Dyson–Schwinger equation for the
temporal quark-gluon vertex involves the diagrams shown in Fig. 5.1. Semiperturbative
expansion means in this case that in the loop expansion all internal propagators are taken
to be dressed, but all internal vertices are tree-level. Clearly, the goal is to show that all
the loop corrections (contained in diagram (b) of Fig. 5.1) vanish. For this, it suffices to
consider two types of diagram, given in Figs. 5.2 and 5.3.

The easiest to start with is Fig. 5.2, where a single ladder exchange correction to the
temporal quark-gluon vertex is considered. This diagram (neglecting the overall color and
prefactors) gives rise to the following scalar integral:

∫

r

d̄ ~ω Dσσ(~k − ~ω)

(~k − ~ω)2

1

2π

∫ ∞

−∞

dω0

[ω0 −m− Ir + iε] [ω0 + q0 −m− Ir + iε]
. (5.45)

Now we apply the following identity (for finite, real a, b; the case a = b is trivial):

∫ ∞

−∞

dz

[z − a+ iε] [z − b+ iε]
=

1

(a− b)

∫ ∞

−∞

dz

{

1

[z − a+ iε]
− 1

[z − b+ iε]

}

= 0. (5.46)
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Figure 5.2.: Ladder type loop correction to the temporal quark-gluon vertex. Internal propagators
are fully dressed: solid lines represent the quark propagator and springs denote the
temporal gluon propagator.

Figure 5.3.: Generic crossed box type loop correction to the temporal quark-gluon vertex. In-
ternal propagators are fully dressed: solid lines represent the quark propagator and
springs denote the temporal gluon propagator. The box represents any combination
of interactions allowed under our truncation.

Thus we see that where the spatial integral is regularized, the temporal integral vanishes.
It is simple to see that the planar one-loop diagrams with two or more external temporal
gluon legs (which under the truncation scheme considered here connect only to the internal
quark line) and one internal temporal gluon will also vanish.

Now let us consider a generic crossed box (nonplanar) type of diagram, illustrated in
Fig. 5.3. Considering only the temporal double integral components of the explicit internal
quark propagators, we have the following form

∫ ∞

−∞

dω0 dv0
[v0 − a1 + iε] [ω0 − a2 + iε] [ω0 + q0 − a3 + iε] [ω0 − v0 − p0 − a4 + iε]

=

∫ ∞

−∞

dω0

[ω0 − a2 + iε] [ω0 + q0 − a3 + iε] [ω0 − p0 − a1 − a4 + 2iε]

×
∫ ∞

−∞

dv0

{

1

[v0 − a1 + iε]
− 1

[v0 − ω0 + p0 + a4 − iε]

}

= −2πi

∫ ∞

−∞

dω0

[ω0 − a2 + iε] [ω0 + q0 − a3 + iε] [ω0 − p0 − a1 − a4 + 2iε]

= 0 (5.47)

where in the last line, we have used a variation of the identity Eq. (5.46). Thus we have
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the result that the generic crossed box type of diagram shown in Fig. 5.3 also vanishes.
With the result that both the single ladder type exchange diagram and the generic

crossed box diagrams considered so far vanish, it is easy to see that any vertex dressing
diagram will vanish (including all subdiagrams such as internal vertex corrections and
so on), since all associated diagrams are merely variations or combinations of these two
under our truncation scheme. We stress that this result is a consequence of the fact that
the energy and Feynman prescription of the denominator factors follow the quark line
through the diagram so that eventually the identity, Eq. (5.46), can be used. It is also
precisely the reason why all closed quark loops vanish, according to the relation Eq. (5.38).

Thus, the semiperturbative expansion confirms our previous result that the temporal
quark-gluon vertex remains bare to all orders. Clearly, the result also applies to the
antiquark-gluon vertex. With the corresponding simple forms for the self-energy integrals
of the gap and anti-gap equations (which as we recall, reduce to the rainbow truncation),
the results for the quark propagator functions are also confirmed. Notice though that
whilst the all orders semiperturbative result must match the nonperturbative result, the
converse is not necessarily true. It remains the case that there may exist further solutions,
but these must be purely nonperturbative in character if they exist.

To summarize, in this section we have introduced a set of valuable identities for the
energy integrals, which confirm the nonperturbative case previously studied. This is very
useful for further investigations, since we are allowed to apply them with confidence to
study the bound state equations in the next section.

5.4. Bound state equations

Bound states of quarks appear as free-particle poles in their respective n-point Green’s
functions. For example, the quark-antiquark, and three-quark Green’s functions exhibit
meson and baryon poles, respectively. In this section, we will consider the correspond-
ing bound state equations in the limit of the heavy quark mass – named Bethe–Salpeter
equation for mesons and Faddeev equation for baryons – and interpret them in connection
with the linearly rising potential which confines the quarks. As has been emphasized, due
to the fact that we include the full quark sources and fields in our generating functional,
we are allowed to use the full functional (nonperturbative) equations as a starting point
and then subsequently apply our mass expansion and truncation scheme. In this con-
text, we will also seek for a relationship between Yang–Mills sector of the theory and
nonperturbative external physical scale (i.e., the string tension).

5.4.1. Bethe–Salpeter equation for mesons and diquarks

Let us now consider the homogeneous Bethe–Salpeter equation for quark-antiquark bound
states. In full QCD this equation reads

Γαβ(p;P ) = −
∫

d̄ k Kαβ;δγ(p, k;P ) [Wqq(k+)Γ(k;P )Wqq(k−)]γδ (5.48)

In the above, the minus sign arises from the definitions of the Legendre transform and
Green’s functions in Coulomb gauge. This will be shown in Chapter 6, where the 4-
point Green’s function (which includes the homogeneous Bethe–Salpeter equation) will be
explicitly derived. The momenta of the quarks are given by k+ = k+ξP , k− = k+(ξ−1)P
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5.4 Bound state equations

Figure 5.4.: Homogeneous Bethe–Salpeter equation for quark-antiquark bound states. Internal
propagators are fully dressed and solid lines represent the quark propagator. The
box represents the Bethe–Salpeter kernel K and filled blobs represent the Bethe–
Salpeter vertex function Γ with the (external) bound state leg given by a dashed line.
See text for details.

(similarly for p±), P is the pole 4-momentum of the bound state (assuming that a solution
exists), ξ = [0, 1] is the so-called momentum sharing fraction that dictates how much of
the total meson momentum is carried by each quark constituent. K represents the Bethe–
Salpeter kernel and Γ is the Bethe–Salpeter vertex function for the particular bound state
that one is considering and whose indices explicitly denote only its quark content. Later
on, we will explicitly investigate what color, flavor and spin structure the solutions may
have. We also mention that physically, the results should be independent of ξ and this has
been numerically observed in phenomenological studies [91]. The Bethe–Salpeter equation
is shown pictorially in Fig. 5.4.

To solve the Bethe–Salpeter equation, we firstly address the problem of constructing
the kernel K. For technical reasons the most widely studied system is based on the ladder
kernel which is either constructed via the interchange of a single gluon (for example [92])
or as a phenomenological potential (see for example Ref. [89]). However, there has been
much recent attention focused on the construction of more sophisticated kernels. One
key element of the construction is the axialvector Ward–Takahashi identity [AXWTI],
which relates the gap equation to the Bethe–Salpeter kernel and which ensures that chiral
symmetry and its spontaneous breaking are consistently implemented (e.g., Refs. [89, 93,
94]). Here, we shall show that the ladder Bethe–Salpeter kernel is exact at leading order
in the heavy mass expansion and under our truncation scheme.

To construct the kernel K, we follow the semiperturbative analysis of the previous sec-
tion. As before, at leading order in the mass expansion and under our truncation scheme
we only have the temporal quark-gluon and antiquark-gluon vertices, both of which have
been shown to be given by their tree-level forms. Consider now the generic semiperturbat-
ive crossed box contribution, which contains all possible nontrivial contributions allowed
within our truncation scheme. This diagram is depicted in Fig. 5.5. Such a diagram
has at least the following terms in the temporal integral (as before, we assume that the
spatial integral is regularized and finite so that we are able to firstly perform the temporal
integral without complication)

∫

dω0
[

ω0 + p0+ −m− Ir + iε
]

. . .
[

ω0 − k0− +m− Ir + iε
] . (5.49)

The first factor corresponds to the explicit quark (upper) propagator, the last factor
to the explicit antiquark (lower) propagator. The dots represent the multiple internal
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Figure 5.5.: Generic crossed box type of diagram that contributes to the Bethe–Salpeter ker-
nel. Internal propagators are fully dressed, whereas vertices are tree-level. The
upper (lower) solid line denotes the quark (antiquark) propagator; springs denote
the temporal gluon propagator and the box represents any combination of nontrivial
interactions allowed under our truncation scheme. See text for details.

propagator factors which carry the same dependence on the integration energy ω0 and
have the same relative sign for the Feynman prescription term, i.e., ω0 + iε, regardless
of whether they originate from internal quark or antiquark propagators. Therefore, this
type of integral can always be reduced to the difference of integrals over a simple pole
and with the same sign for carrying out the analytic integration, just as in Eq. (5.46).
Thus, all generic crossed box diagrams in the Bethe–Salpeter kernel are zero and one is
left with simply the ladder contribution to the kernel. In fact, this result can also be
inferred from the AXWTI: this identity connects the self-energy term of the gap equation
and the Bethe–Salpeter kernel and since it has been shown explicitly that the self-energy
integral reduces to the rainbow truncation, the corresponding Bethe–Salpeter kernel is
simply given by ladder exchange.

Having analyzed the kernel K, let us now inspect the quark and antiquark pieces of
the Bethe–Salpeter equation. Recalling that the antiquark propagator must be treated
as distinct from the quark propagator, in Fig. 5.4 we must explicitly specify which line is
assigned to the quark propagator and which one, to the antiquark propagator. For the
quark-antiquark system under consideration (later on we will analyze the quark-quark, or
diquark system), the Bethe–Salpeter equation more properly reads

Γαβ(p;P ) = −
∫

d̄ k Kαβ;δγ(p, k;P )
[

Wqq(k+)Γ(k;P )(−)W T
qq(−k−)

]

γδ
(5.50)

where we have explicitly identified the antiquark propagator contribution (it corresponds
to the lower line of Fig. 5.4) by reordering the functional derivatives, i.e. Wqq(k−) =
−W T

qq(−k−). The above equation is still valid in full QCD. Further, we explicitly replace
the tree-level form for the kernel, and we arrive at the following expression Bethe–Salpeter
equation for the quark-antiquark system, at leading order in the mass expansion and
within our truncation scheme:

Γαβ(p;P ) = −
∫

d̄ k
[

Γa
qqσ(p+,−k+, k − p)Wqq(k+)

]

αλ

×
[

(−)W T
qq(−k−)(−)Γb

qqσ(−p−, k−, p − k)
]

βκ
W ab

σσ(p − k)Γλκ(k;P ) +O (1/m).

(5.51)
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Notice the antiquark contribution within the kernel which absorbs the explicit minus sign
from Eq. (5.50). Also, recall that we are implicitly considering only the flavor non-singlet
case. The above equation can be trivially rewritten as:

Γαβ(p;P ) = −
∫

d̄ k Γa
qqσαγ(p+,−k+, k − p)W ab

σσ(p− k)ΓbT
qqσβδ(−p−, k−, p− k)

×Wqqγλ(k+)W
T
qqδκ(−k−)Γλκ(k;P ) +O (1/m) . (5.52)

Inserting the nonperturbative results for the propagators and vertices so far, Eqs. (5.34),
(5.43), (5.37), (5.44) and taking the form, Eq. (5.27), for the temporal gluon propagator,
we obtain the equation

Γαβ(p;P ) = g2
∫

r

d̄ ~k Dσσ(~p− ~k)

(~p− ~k)2

× i

2π

∫ ∞

−∞

dk0
[

k0+ −m− Cr + iε
] [

k0− −m+ Ir − iε
] [T aΓ(k;P )T a]αβ +O (1/m) . (5.53)

We see immediately that the flavor and spin structure of the meson decouples from the
problem — this is well a known property of the heavy mass expansion. The color structure
will be discussed shortly. Since the external energy p0 does not enter the right-hand side
of the above equation, we further have that the Bethe–Salpeter vertex Γαβ(p;P ) must
be independent of the quark energy (and only implicitly dependent on the bound state
energy P0). Thus we can write

Γαβ(~p;P ) = g2
∫

r

d̄ ~k Dσσ(~p − ~k)

(~p− ~k)2

[

T aΓ(~k;P )T a
]

αβ

× i

2π

∫ ∞

−∞

dk0
[

k0+ −m− Ir + iε
] [

k0− −m+ Ir − iε
] +O (1/m)

= −g2
∫

r

d̄ ~k Dσσ(~p− ~k)

(~p − ~k)2

[

T aΓ(~k;P )T a
]

αβ

[P0 − 2Ir + 2iε]
+O (1/m) . (5.54)

Thus, at leading order in the mass expansion, inserting the expression Eq. (5.35) for Ir,
it is now clear that
[

P0 − g2CF

∫

r

d̄ ~ω Dσσ(~ω)

~ω2

]

Γαβ(~p;P ) = −g2
∫

r

d̄ ~k Dσσ(~p − ~k)

(~p− ~k)2

[

T aΓ(~k;P )T a
]

αβ

+O (1/m) . (5.55)

We notice that the explicit quark mass contributions of the self-energy expressions cancel.
This is a feature of the quark-antiquark Bethe–Salpeter equation — it does not make any
reference to the origins of its constituents (this explains, for example, why the pion can
be a massless bound state of massive constituents). Physically, one can visualize that the
quark and antiquark are moving with equal and opposite velocities such that the center
of mass is stationary. This is related explicitly to the choice of Feynman prescription for
the constituent quark and antiquark. Were the Feynman prescription for the antiquark
chosen to coincide with that of the quark, the right-hand side of Eq. (5.54) would simply
vanish and there would be certainly no physical quark-antiquark state. The Feynman
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prescription for the antiquark corresponds precisely to a particle moving with the opposite
velocity. Also, at leading order in the mass expansion, the momentum sharing parameter,
ξ, has dropped out, and therefore the results are independent of ξ. Shifting the integration
momenta, we can write

P0Γαβ(~p;P ) = g2
∫

r

d̄ ~ω Dσσ(~ω)

~ω2

{

CFΓαβ(~p;P )− [T aΓ(~p− ~ω;P )T a]αβ

}

+O (1/m) .

(5.56)
To see the physical meaning of this equation, we rewrite the Bethe–Salpeter vertex func-
tion as a Fourier transform:

Γαβ(~p;P ) =

∫

d~ye−i~p·~yΓαβ(~y) (5.57)

(in the homogeneous Bethe–Salpeter equation, the total momentum P denotes the solution
and is not a variable). We also assign the following color structure

[T aΓ(~y)T a]αβ = CMΓαβ(~y) (5.58)

where CM is yet to be identified. Then, the Bethe–Salpeter equation reduces to

∫

d~ye−i~p·~yP0Γαβ(~y) =

∫

d~ye−i~p·~yg2
∫

r

d̄ ~ω Dσσ(~ω)

~ω2

{

CFΓαβ(~y)− ei~ω·~yCMΓαβ(~y)
}

+O (1/m) (5.59)

with the simple solution

P0 = g2
∫

r

d̄ ~ω Dσσ(~ω)

~ω2

{

CF − ei~ω·~yCM

}

+O (1/m) . (5.60)

As already mentioned, because the total color charge of the system is conserved and
vanishing [90], neither the quark or antiquark can exist as an independent asymptotic
physical state. Thus, the q̄q system is either confined, such that the bound state energy
P0 increases linearly as the separation between the quark and antiquark increases, or
the system cannot be physically created, such that the energy P0 is infinite when the
hypothetical regularization is removed. Whether the system is confining or disallowed
can only depend on the color structure, since the temporal gluon propagator dressing
function would be common to both situations.

An infrared confining solution is characterized in configuration space by the solution

P0 = σ|~y| for large |~y|, (5.61)

where σ ∼ 1GeV/fm is called the string tension, such that as the separation between the
quark and antiquark increases, the energy of the system should increase linearly without
bound and infinite energy input is required to fully separate them8 (at least in the absence
of unquenching). The Fourier transform integral needed to obtain the above form of the
solution is

∫

d̄ ~ω

~ω4

[

1− ei~ω·~y
]

=
|~y|
8π

. (5.62)

8The small |~y| (and large |~ω|) properties are of no concern here.
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This implies that the temporal gluon propagator dressing function diverges like 1/~ω2 and
in addition the condition

CF = CM (5.63)

must be satisfied. Moreover, with the these conditions, the spatial integral in Eq. (5.60)
becomes automatically convergent and hence the energy of the system is well-defined, as
the regularization is removed (since we are interested in the low |~ω| regime, it becomes
clear that the regularization here would be infrared in character). Using the Fierz identity
for the generators, Eq. (A.12), we get the condition

CFΓαγ(~y) ≡ CMΓαγ(~y) =
1

2
δαγΓββ(~y)−

1

2Nc
Γαγ(~y), (5.64)

or with the definition Eq. (A.11),

Γαγ(~y) = δαγΓ(~y). (5.65)

In other words, the quark-antiquark Bethe–Salpeter equation can only have a finite solu-
tion for color singlet states where the divergent constant integral coming from the un-
physical quark self-energy cancels; otherwise the energy of the system is divergent.

Assuming that in the infrared (as is indicated by the lattice data [49] or by the above
argument about the non-existence of asymptotic quark states), Dσσ = X/~ω2 where X is
some combination of constants (and further knowing that g2X is a renormalization group
invariant [12, 27]), then

P0 ≡ σ|~y| = g2CFX

8π
|~y|+O (1/m) . (5.66)

The above result shows that there exists a direct connection between the string tension
and the nonperturbative Yang–Mills sector of QCD (i.e., the temporal gluon propagator)
at least under the truncation scheme considered here.

Let us now shortly discuss what are the possible consequences of including the pure
Yang–Mills vertices in our approach. Recall that the confining potential follows from the
rainbow-ladder Bethe–Salpeter kernel (i.e., dressed temporal gluon propagator and tree-
level quark-gluon vertices). This suggests that the dressing function Dσσ does implicitly
contain all nonperturbative effects associated with the dynamical dressing of the color
charge (including, for example, potential glueball states), whereas the quark-gluon vertices
correspond to the naked quark color charge. Pictorially, one can visualize this as a dressed
color string confining two naked color sources. Consequently, we anticipate that the effect
of including the non-Abelian corrections to the formalism presented here would not result
in the removal of the linearly rising bound state energy (this would correspond to the
cancellation of the ladder exchange). Instead, one expects a lowering of the string tension
σ by shifting the pole position by some finite amount. Physically, this corresponds to the
screening of the quark color charge — this statement has been phrased by Zwanziger as
“no confinement without Coulomb confinement”.

Let us now turn to the diquark Bethe–Salpeter equation. From a technical point of
view, the difference between this and the previously considered quark-antiquark system is
rather simple, but as we shall see it leads to a completely different physical result. Since
the quark and the antiquark propagators share the same Feynman prescription relative
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Chapter 5. Heavy quarks

to their energy, the result that the crossed box contributions to the Bethe–Salpeter kernel
vanish extends to the diquark case. This means that we can immediately write down the
Bethe–Salpeter equation for diquarks, at leading order in the mass expansion and within
our truncation scheme:

Γαβ(p;P ) = −
∫

d̄ k Γa
qqσαγ(p+,−k+, k − p)W ab

σσ(p− k)Γb
qqσβδ(−p−, k−, p− k)

×Wqqγλ(k+)Wqqδκ(−k−)Γλκ(k;P ) +O (1/m) . (5.67)

Again, the indices of the Bethe–Salpeter vertex function correspond to the quark content
of the diquark and since the flavor and spin content decouple from the system, we shall
only be interested in the color content of the diquark. Expanding this out as before, we
get the analogous result

[

P0 − 2m− g2CF

∫

r

d̄ ~ω Dσσ(~ω)

~ω2

]

Γαβ(~p;P ) = g2
∫

r

d̄ ~ω Dσσ(~ω)

~ω2
[T a]αλ[T

a]βκ Γλκ(~p − ~ω;P )

+O (1/m) . (5.68)

Fourier transforming as previously, and writing

[T a]αλ [T
a]βκ Γλκ(~y) = CDΓαβ(~y) (5.69)

gives the solution

P0 = 2m+ g2
∫

r

d̄ ~ω Dσσ(~ω)

~ω2

{

CF + ei~ω·~yCD

}

+O (1/m) . (5.70)

The dependence of the solution on the quark mass simply indicates that in contrast to
the quark-antiquark system, there are now two co-moving quarks. For the anti-diquark
system the solution is identical to the above, but with minus twice the mass – their
velocities are simply reversed. The diquark is antisymmetric under interchange of the two
quark legs and this means that the color structure must be antisymmetric. Similar to the
quark-antiquark system, the system can only have a confining (finite) energy solution,
i.e., if CD = −CF , or no finite solution at all. Using the Fierz identity Eq. (A.12), the
color condition then reads

− CFΓαβ(~y) ≡ CDΓαβ(~y) =
1

2
Γβα(~y)−

1

2Nc
Γαβ(~y). (5.71)

Demanding the diquark color antisymmetry and with the definition Eq. (A.11) this be-
comes

N2
c −Nc − 2 = 0 ⇒ Nc = −1, 2. (5.72)

This means that in SU(Nc = 2) there exists a confined, antisymmetric bound state of
two quarks – the SU(2) baryon – and otherwise no physical states are allowed. In the
next section, we will consider the SU(3) baryon, and explicitly demonstrate how the
confinement potential is obtained in this case.
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Figure 5.6.: Faddeev equation for three quark bound states. Solid lines represent the quark
propagator, the box represents the diquark kernel K and the ellipse represents the
Faddeev vertex function with the bound state leg depicted by a triple-line. See text
for details.

5.4.2. Faddeev equation for baryons

Baryons appear as three-quark bound-states in the Faddeev equation, which generally can
be written as:

Γ = K(3)Γ (5.73)

where Γ is the quark-baryon vertex and K(3) is the three-body kernel, containing an

irreducible term K
(3)
ir and the sum of permuted diquark kernels:

K(3) = K
(3)
ir +

3
∑

i=1

K
(2)
i (5.74)

The Faddeev equation [95] and its subsequent developments [96, 97] (for an extended
review see [98] and the textbook [99]) provide a general formulation of the relativistic
three-body problem. It is a bound state equation (the direct analogue of the homogen-
eous two-body Bethe–Salpeter equation) and it has been efficiently applied in QCD to
study baryon states, via the Green’s functions of the theory. Typically, these studies are
performed in Landau gauge and, due to the complexity of the equations, they have been
mainly restricted to rainbow-ladder truncation, where the kernel is reduced to the single
exchange of a dressed gluon. Within this approximation and by employing phenomeno-
logical ansätze for the Yang–Mills part of the theory, the nucleon and ∆ properties have
been studied [100–103]. Other simplifications include the three-body spectator formal-
ism [98], a Salpeter-type equation with instantaneous interaction [104] or the diquark
correlations [105].

In the following, we investigate the Faddeev equation for three-quark bound states,

by employing only the permuted two quark kernels K
(2)
i (which coincide with kernel

appearing in the Bethe–Salpeter equation for diquark states) and neglecting the three-
quark irreducible diagrams, i.e., genuine three-body forces [106]. This approximation is
also motivated by the fact that in the quark-diquark model the binding energy is assumed
to be mainly provided by the two-quark correlations [107]. In this truncation, the Faddeev
equation reads (see also Fig. 5.6):

Γαβγ(p1, p2, p3;P ) =

−
∫

d̄ k
{

Kβα;α′β′ (k)Wq̄qα′α′′ (p1 + k)Wq̄qβ′β′′ (p2 − k)Γα′′β′′γ(p1 + k, p2 − k, p3;P )

+Kγβ;β′γ′ (k)Wq̄qβ′β′′ (p2 + k)Wq̄qγ′γ′′ (p3 − k)Γαβ′′γ′′ (p1, p2 + k, p3 − k;P )

+ Kαγ;γ′α′ (k)Wq̄qγ′γ′′ (p3 + k)Wq̄qα′α′′ (p1 − k)Γαβ′′γ′′ (p1 − k, p2, p3 + k;P )
}

(5.75)
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where p1, p2, p3 are the momenta of the quarks, P = p1+ p2+ p3 is the pole 4-momentum
of the bound baryon state and Γ is the so-called quark-baryon Faddeev vertex for the
particular bound state under consideration and whose indices denote explicitly only its
quark content. Due to the fact that in the heavy mass limit the spin degrees of freedom
decouple from the system, at leading order in the mass expansion the Faddeev baryon
amplitude Γαβγ becomes a Dirac scalar, similar to the heavy quark propagator Eq. (5.34).
The explicit momentum dependence of the kernels K is abbreviated for notational con-
venience. As in the homogeneous Bethe–Salpeter equation, the integral equation depends
only parametrically on the total four momentum P .

As discussed in the case of the Bethe–Salpeter equation, the kernel K reduces to the
ladder approximation (constructed via gluon exchange) and it reads

Kβα;α
′
β
′ (k) = Γa

q̄qσαα′W ab
σσ(

~k)Γb
q̄qσββ′ = g2T a

αα′W ab
σσ(

~k)T b
ββ′ (5.76)

with the temporal quark-gluon vertex and the temporal gluon propagator given by Eq. (5.27)
and Eq. (5.23), respectively. Similar to the Bethe–Salpeter equation for meson bound
states, the energy independence of this propagator will turn to be crucial in the deriva-
tion of the confining potential.

Let us now investigate the energy dependence of the equation Eq. (5.75). As shown in
the previous section, the Bethe–Salpeter kernel was energy independent, and thus it was
straightforward to show that the Bethe–Salpeter vertex itself did not contain an energy
dependent part. This observation was then used to calculate the confining potential from
the Bethe–Salpeter equation, via a simple analytical integration over the relative energy
variable. Unfortunately this approach cannot be extended to baryon states: despite the
instantaneous kernel, a relative energy dependence still remains and thus one cannot
assume an energy-independent Faddeev vertex. Therefore, in order to proceed, we make
the following separable ansatz for the Faddeev vertex:

Γαβγ(p1, p2, p3;P ) = ΨαβγΓt(p
0
1, p

0
2, p

0
3;P )Γs(~p1, ~p2, ~p3;P ) (5.77)

where we have introduced a purely antisymmetric (in the quark legs) color factor Ψ (the
possible baryon color index is omitted) and the symmetric (Dirac scalar) temporal and
spatial components Γt and Γs, respectively.

Inserting the explicit form of the kernel Eq. (5.76) and the quark-baryon vertex ansatz
Eq. (5.77), the Faddeev equation Eq. (5.75) can be explicitly written as (for simplicity we
drop the label P in the arguments of the vertex functions):

Γαβγ(p1, p2, p3) = −g2T a
ατT

a
βκΨτκγ

∫

d̄ k Wσσ(~k)

×Wq̄q(p1 + k)Wq̄q(p2 − k)Γt(p
0
1 + k0, p

0
2 − k0, p

0
3)Γs(~p1 + ~k, ~p2 − ~k, ~p3) + c.p., (5.78)

where the explicit color structure has been extracted (W ab
σσ = δabWσσ,Wq̄qαβ = δαβWq̄q).

Analogous to the Bethe–Salpeter equation, we use the Fierz identity for the generators,
Eq. (A.12), to write the color structure as

T a
αα′T a

ββ′Ψα′β′γ = −CBΨαβγ (5.79)

with CB = (Nc + 1)/2Nc, where Nc is the number of colors, yet to be identified (i.e., the
baryon is not assumed to be a color singlet).
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In the next step we perform the Fourier transform for the spatial part of the equation,
recalling that the heavy quark propagator is only a function of energy. We define the
coordinate space vertex function via its Fourier transform

Γs(~p1, ~p2, ~p3) =

∫

d~x1d~x2d~x3e
−i~p1·~x1−i~p2·~x2−i~p3·~x3Γs(~x1, ~x2, ~x3) (5.80)

such that
∫

d̄ ~kWσσ(~k)Γs(~p1 + ~k, ~p2 − ~k, ~p3) =
∫

d̄ ~x1 d̄ ~x2 d̄ ~x3 e
−i~p1·~x1−i~p2·~x2−i~p3·~x3Wσσ(~x2 − ~x1)Γs(~x1, ~x2, ~x3). (5.81)

Clearly, the component Γs trivially simplifies (as before, we have separated the temporal
and spatial integrals, under the assumption the spatial integral is regularized and finite)
and the equation Eq. (5.78) reduces to [ d̄ k0 = dk0/(2π)]:

Γt(p
0
1, p

0
2, p

0
3)=g2CBWσσ(~x2 − ~x1)

∫

d̄ k0 Wq̄q(p
0
1 + k0)Wq̄q(p

0
2 − k0)Γt(p

0
1 + k0, p

0
2 − k0, p

0
3)

+ c.p.. (5.82)

At this point we make a further simplification, motivated by the symmetry of the three-
quark system: we restrict to a particular geometry, namely to equal quark separations,
i.e. |~r| = |~x2 − ~x1| = |~x3 − ~x2| = |~x1 − ~x3|. By inserting the explicit form of the quark
propagators, Eq. (5.34), we have

Γt(p
0
1, p

0
2, p

0
3) = −g2CBWσσ(|~r|)

∫

d̄ k0
Γt(p

0
1 + k0, p

0
2 − k0, p

0
3)

[

p01 + k0 −m− Ir + iε
] [

p02 − k0 −m− Ir + iε
]

+ c.p.. (5.83)

With the assumption that the vertex Γt is symmetric under permutation of quark legs,
an ansatz that satisfies this equation is:

Γt(p
0
1, p

0
2, p

0
3) =

∑

i=1,2,3

1

2P0 − 3(p0i +m+ Ir) + iε
. (5.84)

Since the explicit derivation is rather technical, we only give here the solution and defer
the details to the Appendix E.

Notice that in the expression Eq. (5.84) there are simple poles (in the energy) present.
These poles however do not occur for finite energies and cannot be physical. As discussed,
this is also the case for the quark propagator. Intuitively, when a single heavy quark is
pulled apart from the system, the qqq state becomes equivalent (i.e., it has the same
color quantum numbers) to the q̄q system in the sense that the remaining two quarks
form a diquark which for Nc = 3 would be a color antitriplet configuration, and hence
the physical interpretation of the vertex Eq. (5.84) can be directly related to the heavy
quark propagator Eq. (5.34): the presence of the single pole in Eq. (5.84) simply means
that this cannot have the meaning of physical propagation (this would require a covariant
double pole). Moreover, the divergent constant Ir appearing in the absolute energy does
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not contradict the physics – the only relevant quantity is the relative energy of the three
quark system.

With this ansatz at hand, we return to the formula Eq. (5.83), insert the definitions
Eq. (5.27) and Eq. (5.35) for Wσσ(~x) and Ir, and arrive at the following solution for the
bound state energy P0, in the case of equal quark separations:

P0 = 3m+
3

2
g2
∫

d̄ ~ω
Dσσ(~ω)

~ω2

[

CF − 2CBe
i~ω·~r
]

. (5.85)

The following reasoning is similar to our discussion from the case of the bound states of a
meson or diquark system. Since the quarks can not be prepared as isolated states, the only
possibilities for the qqq state are either that the system is confined (i.e., the bound state
energy P0 increases with the separation), or the system is physically not allowed (i.e., the
energy P0 is infinite). From the formula Eq. (5.85) and knowing that Dσσ(~ω) is infrared
enhanced, it is clear that in order to have an infrared confining solution (corresponding
to a convergent three-momentum integral), the condition

CB =
CF

2
(5.86)

must be satisfied. This is fulfilled for Nc = 3 colors, implying that Ψαβγ = εαβγ and that
the baryon is a color singlet (confined) bound state of three quarks; otherwise, for Nc 6= 3
the energy of the the system is infinite for any separation |~r|.

As in the preceding section, with the assumption that in the infrared Dσσ(~ω) = X/~ω2

(as indicated by the lattice data [47–49, 108, 109] and by the variational calculations in
the continuum [41]), where X is some combination of constants, it is straightforward to
perform the integration on the right hand side of Eq. (5.85), with the result that for large
separation |~r|:

P0 = 3m+
3

2

g2CFX

8π
|~r|. (5.87)

This mimics the previous findings for q̄q and qq systems, namely that there exists a
direct connection between the string tension and the nonperturbative Yang–Mills Green’s
functions (at least under truncation). In this case, the standard term “string tension”
refers to the coefficient of the three-body linear confinement term σ3q|~r|. Also, comparing
with the result of the previous section, we find that the string tension corresponding to the
qqq system is 3/2 times that of the q̄q. To our knowledge, no direct comparison between
the string tensions of the two systems has been made and hence this relation would be
interesting to investigate on the lattice. The appearance of three times the quark mass
stems from the presence of the mass term in the heavy quark propagator Eq. (5.34) which
enters the Faddeev equation.
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Chapter 6.

Higher order Green’s functions

We have seen that in general, the underlying equation for the description of meson bound
states is the two-body homogeneous Bethe–Salpeter equation. In the rainbow-ladder
approximation, this equation has been successfully used to describe the properties of
light mesons (see, for example [91, 92] and for a recent review [43]), where the driving
mechanism is the chiral symmetry breaking. Beyond this approximation, models with
dressed vertex contributions [93, 94, 110–113] and unquenching effects [114–116] have been
considered, and more sophisticated numerical methods to solve both the homogeneous and
the inhomogeneous Bethe–Salpeter equation have been recently developed [117]. In spite
of this success, an exact derivation of the meson or diquark bound state energies via
Green’s functions techniques has not been yet reported. The difficulty stems from the
fact that the (irreducible) interaction kernel contains higher order vertex functions which
in general can not be calculated exactly.

In this chapter, we continue our investigations of the quark-antiquark and diquark
states by using Green’s functions techniques. As before, our study is based on the heavy
mass expansion underlining HQET and with the truncation of the Yang–Mills sector to
include only dressed two-point functions. By means of functional methods, we explicitly
derive the (fully amputated) quark 4-point Green’s functions and give an exact, analytical
solution. This will enable us to verify that bound states are related to the occurrence of
the poles in the Green’s functions and hence we will be able to provide a direct connection
between the homogeneous Bethe–Salpeter equation considered in the previous chapter and
the singularities of the Green’s function, at least within the scheme considered here.

6.1. 4-point Green’s functions for quark-antiquark systems

In this section we derive the Dyson–Schwinger equations for the one-particle irreducible
and for the fully amputated 4-point quark-antiquark Green’s functions (from which later
on the bound state energy for the heavy quark system will be extracted).

Let us start by deriving the Dyson–Schwinger equation for the one-particle irreducible
(1PI) 4-point function. As an illustration of the functional differentiation techniques, we
present the explicit derivation of the first term in this function and notice that the rest
of the terms follow from an identical calculation. Just as for the gap equation, we first
take the functional derivative of the quark Eq. (2.19) with respect to iqγz, and obtain the
result Eq. (2.29); further, we functionally differentiate with respect to iq̄τw and, using the
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Figure 6.1.: Diagrammatic representation of the one particle irreducible 4-point quark-antiquark
Green’s function. Blobs represent dressed proper (1PI) 4-point vertex, solid lines rep-

resent the quark propagator, springs denote either spatial ( ~A) or temporal (σ) gluon
propagator and cross denotes the tree level quark-gluon vertex. Internal propagators
are fully dressed.

product rule, we obtain:

δ2

δiq̄τwδiqγz
<iρayiχ̄βx> = −S[λ, κ]

{[

δ

δiq̄τw
<iρayiJλ>

]

<iΦλiqγziΦκ><iJκiχ̄βx>

+ <iρayiJλ><iΦλiq̄τwiqγziΦκ><iJκiχ̄βx>

+ <iρayiJλ><iΦλiqγziΦκ>

[

δ

δiq̄τw
<iJκiχ̄βx>

]}

(6.1)

As explained above, we only retain the first term in the product (and denote the rest with
dots). Again, we make use of the formula Eq. (2.27) and obtain:

δ2

δiq̄τwδiqγz
<iρayiχ̄βx> = S[λ, κ, µ, ν]

× <iρayiJµ><iΦµiq̄τwiΦν><iJa
ν iJλ><iΦλiqγziΦκ><iJκiχ̄βx> + . . . . (6.2)

A last functional derivative with respect to the quark field qηt gives

δ3

δiq̄τwδiqγzδiqηt
<iρayiχ̄βx>= S[λ, κ, µ, ν]

×
{[

δ

δiqηt
<iρayiJµ>

]

<iΦµiq̄τwiΦν><iJa
ν iJλ><iΦλiqγziΦκ><iJκiχ̄βx>

+ <iρayiJµ><iΦµiqηtiq̄τwiΦν><iJa
ν iJλ><iΦλiqγziΦκ><iJκiχ̄βx>

+ <iρayiJµ><iΦµiq̄τwiΦν>

[

δ

δiqηt
<iJa

ν iJλ>

]

<iΦλiqγziΦκ><iJκiχ̄βx>

+ <iρayiJµ><iΦµiq̄τwiΦν><iJa
ν iJλ><iΦλiqηtiqγziΦκ><iJκiχ̄βx>

+ <iρayiJµ><iΦµiq̄τwiΦν><iJa
ν iJλ><iΦλiqγziΦκ>

[

δ

δiqηt
<iJκiχ̄βx>

]}

+. . . . (6.3)
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Again, we take only the first term from the above sum and as before we use the formula
Eq. (2.27). We obtain:

δ3

δiq̄τwδiqγzδiqηt
<iρayiχ̄βx> = −S[λ, κ, µ, ν, ε, δ] <iρayiJε><iΦεiq̄ηtiΦδ><iJa

δ iJµ>

× <iΦµiq̄τwiΦν><iJa
ν iJλ><iΦλiqγziΦκ><iJκiχ̄βx> + . . . . (6.4)

Identifying the various fields and sources, we arrive at the the first term in the expres-
sion below for the 4-point Green’s function (all the other terms are derived by a similar
calculation and we omit the terms which will vanish when the sources are set to zero):

<iqαiqγ iqτ iqη>= [gγ0T a]αβ

∫

dy δ(x − y)

×
{[

<iχβiχκ><iqκiqγ iσ
c
λ><iρcλiρ

d
ν>
] [

<iqτ iqµiσ
d
ν><iχµiχδ><iqδiqηiσ

b
ε><iρbεiρ

a
y>
]

−
[

<iχβiχκ><iqκiqγ iσ
c
λ><iρcλiρ

d
ν><qτ iqηiσ

d
ν iσ

b
µ><iρbµiρ

a
y>
]

+
[

<iχβiχκ><iqκiqγ iσ
c
λ><iρcλiρ

d
δ>
] [

<iqτ iqν iσ
b
µ><iχν iχε><iqεiqηiσ

d
δ><iρbµiρ

a
y>
]

−
[

<iχβiχκ><iqκiqγ iqλiqη><iqτ iqν iσ
b
µ><iχν iχλ><iρbµiρ

a
y>
]

−
[

<iχβiχδ><iqδiqηiσ
c
ε><iρcεiρ

d
κ>
] [

<iqτ iqν iσ
b
µ><iχν iχλ><iqλiqγ iσ

d
κ><iρbµiρ

a
y>
]

−
[

<iχβiχκ><iqκiqγ iqτ iqλ><iχλiχδ><iqδiqηiσ
b
ε><iρbεiρ

a
y>
]

+
[

<iχβiχκ><iqκiqγ iqτ iqησ
b
λ><iρbλiρ

a
y>
]

+
[

<iχβiχδ><iqδiqηiσ
c
ε><iρcεiρ

d
κ><iqτ iqγ iσ

d
κiσ

b
λ><iρbλiρ

a
y>
]

−
[

<iχβiχν><iqν iqµiqτ iqη><iχµiχκ><iqκiqγ iσ
b
λ><iρbλiρ

a
y>
]

−
[

<iχβiχδ><iqδiqηiσ
c
ε><iρcεiρ

d
ν>
][

<iqτ iqµiσ
d
ν><iχµiχκ><iqκiqγ iσ

d
λ><iρdλiρ

a
y>
]}

+ . . . (6.5)

where the dots represent the ~A vertex terms which are not considered here and we have
already replaced the tree-level temporal quark-gluon vertex with its expression Eq. (3.10).
Also, notice the minus sign in the fourth term, which corresponds to the minus sign arising
in the Bethe–Salpeter equation considered in Chapter 5. This equation is diagrammatic-
ally represented in Fig. 6.1.

The next step is to derive the Dyson–Schwinger equation for the connected 4-point
quark-antiquark Green’s function, which is related to the 1PI Green’s function via Le-
gendre transform. Starting with the identity

<iqβiqγ><iχγ iχα>= δβα, (6.6)

we first take a functional derivative with respect to the source iJδ and, with the help of
the formula Eq. (2.22b), we derive the relation:

0 =<iqβiqρ><iχρiχαiJδ> +iS[κ] <iJδiJκ><iΦκiqβiq̄γ><iχγiχα> . (6.7)
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+ −

Figure 6.2.: Relation between the one particle irreducible (filled blob) and amputated (dashed
blob) 4-point Greens function for the quark-antiquark system. Internal propagators
are fully dressed.

Identifying Jδ with a gluon source, we have that

<iχαiχρiJδ>= (−i) <iχαiχγ><iqγ iqβiφκ><iχβiχρ><iJκiJδ> . (6.8)

Taking a further functional derivative of Eq. (6.7) with respect to the quark source iχλ

(in this case, Jδ is identified as quark source), we arrive at the following expression

<iχαiχδiχλiχη> = −i <iχαiχδiJρ><iqεiqβiφρ><iχλiχε><iχβ iχη>

+i <iχαiχγ><iqγ iqβiφκ><iχλiχδiJκ><iχβiχη>

− <iχαiχγ><iqγ iqκiqεiqβ><iχλiχε><iχκiχδ><iχβiχη> . (6.9)

We now replace the the quark-gluon vertices with the expressions Eq. (6.8) and obtain for
the 4-point quark-antiquark connected Green’s functions, written in terms of 1PI Green’s
functions:

<iχαiχδiχλiχη>=

−
[

<iχαiχτ><iqτ iqµiφν><iχµiχδ>
] [

<iχλiχε><iqεiqβiφρ><iχβiχη>
]

<iJρiJν>

+
[

<iχαiχγ><iqγ iqβiφκ><iχβiχη>
] [

<iχλiχτ><iqτ iqµiφν><iχµiχδ>
]

<iJκiJν>

+
[

<iχαiχγ><iχλiχε><iqγ iqκiqεiqβ><iχκiχδ><iχβ iχη>
]

. (6.10)

The relation Eq. (6.10) can be further simplified by introducing the fully amputated
Green’s function, i.e. dividing by the quark propagators (cut the quark legs), as shown
in Fig. 6.2. The resulting expression for the 1PI Green’s function (as function of the
amputated Green’s function), is then replaced in Eq. (6.5).

6.2. Solution in the heavy mass limit

In the heavy mass limit and under our truncation, introduced at the beginning of the
previous chapter, Eqs. (6.5, 6.10) simplify dramatically, allowing us to derive exact solu-
tions for both the 1PI and the fully amputated 4-point quark Green’s functions. In this
section, the consecutive steps required to arrive at the simplified form of these equations
will be discussed in detail. Furthermore, the physical implications of the corresponding
solutions will be discussed.

6.2.1. One Particle Irreducible Green’s Function

Let us start with the 1PI Green’s function, Eq. (6.5), and the corresponding diagrammatic
representation, Fig. 6.1, and apply our truncation scheme in the heavy quark limit, at
leading order in the mass expansion.
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p
1

3

p
1
+p

4

Figure 6.3.: Crossed ladder diagram that contributes to the 1PI 4-point Green’s function. The
upper line denotes the quark propagator, the lower one, the antiquark propagator
and springs denote the temporal gluon propagator.

For the quark-antiquark system, we consider the flavor non-singlet Green’s function in
the s-channel, recalling that the quark and the antiquark are regarded as two distinct
flavors. Hence, the diagrams (a), (c) and (i) are excluded. The diagram (b) (crossed
ladder type exchange diagram) explicitly reads (see also Fig. 6.3):

∫

d̄ ω
[

Γ
(0)a
q̄qσαδ(p1,−p1 − ω, ω)Wq̄qδφ(p1 + ω)Γb

q̄qσφη(p1 + ω, p4,−p1 − p4 − ω)
]

×
[

Γc
qq̄στµ(p3, ω − p3,−ω)Wq̄qµλ(p3 − ω)Γd

qq̄σλγ(p3 − ω, p2, p1 + p4 + ω)
]

×W ac
σσ(−~ω)W bd

σσ(~p1 + ~p4 + ~ω) (6.11)

Isolating the energy integral over the quark propagators and using the fact that Wq̄q(k) =
−W T

qq̄(−k) (before the truncation), we find that the energy integral vanishes, due to the
fact that both quark and antiquark propagators have the same Feynman prescription, just
as the crossed box contributions from the kernel of the Bethe–Salpeter equation discussed
in Section 5.4 of Chapter 5:
∫

d̄ ω0 Wq̄q(p1 + ω)Wqq̄(ω − p3) =

1

−(p01 + p03) + 2m

∫

d̄ ω0

{

1

ω0 + p01 −m− Ir + iε
− 1

ω0 − p03 +m− Ir + iε

}

= 0.

(6.12)

In the above, the first factor corresponds to the explicit quark propagator, and the second
factor, to the explicit antiquark propagator (upper and lower line in the diagram Fig. 6.3,
respectively).

Let us now analyze the diagram (d), containing a quark-2 gluon vertex. This vertex
can be obtained as a solution of the corresponding Slavnov–Taylor identity. The deriv-
ation is identical to the Slavnov–Taylor identity for the quark-gluon vertex presented in
Chapter 4. Starting with Eq. (4.7), we functionally differentiate with respect to the quark,
antiquark and gluon fields. In principle, the resulting equation contains a large number
of terms, however most of them simplify in the heavy mass limit and under truncation.
To be specific, after taking the functional derivatives there are four categories of terms
entering the equation. Firstly, the terms multiplied by a spatial quark-gluon vertex do
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not contribute, since this vertex is suppressed at leading order in the mass expansion,
according to Eq. (5.29) (see also the related discussion). Secondly, the terms containing
a 4-point function Γq̄qAσ are also of O(1/m), due to the fact that in the corresponding
Dyson–Schwinger equation at least one vertex must be at tree-level, and we are at liberty
to chose this to be Γq̄qA, which is truncated out by the mass expansion. Thirdly, the
ghost kernels arising from the functional derivatives also vanish, since they only interact
with the spatial Yang–Mills sector of the theory. Hence, under truncation and in the
heavy mass limit, only the terms that involve a temporal quark-gluon vertex will survive.
Explicitly, the equation Eq. (4.7), from which the Slavnov–Taylor identity for the quark-2
gluon vertex is derived, reduces to:

0 =

∫

d4xδ(t− x0)

×
{

− i

g

(

∂0
x <iσd

x>
)

δ(z − x) + fabd <iσa
x> iσb

xδ(z − x)

−iT d
αβ <iqαx> iqβxδ(z − x)− iT d

βαiqβx <iqαx> δ(z − x)
}

.

(6.13)

We now functionally differentiate with respect to iqεy, iq̄ρt and iσe
w and arrive at the

following expression:

0 =

∫

dx0δ(t− x0)

×
{

−1

g
∂0
z <iq̄ρtiqεyiσ

d
xiσ

e
w> δ(z − x)− ifaed <iq̄ρtiqεyiσ

a
w> δ(z − x)δ(x− w)

+T d
αε <iq̄ρtiqαyiσ

e
w> δ(z − x)δ(x − y)− T d

ρα <iq̄αziqεyiσ
e
w> δ(z − x)δ(x− t)

}

(6.14)

Replacing the temporal quark-gluon vertex with the expression Eq. (5.23), and using the
identity Eq. (A.4) for the generators, it is straightforward to see that the color structure
cancels and hence Γq̄qσσ is zero (and correspondingly, the diagram (d) vanishes).

Let us for the moment discard the diagrams (f) and (g), which include the 1PI 4-point
quark Green’s function, and the diagram (e), containing a 4 quark-gluon vertex. Then we
are only left with the diagram (h) and the rainbow-ladder term (j). This simplification
enables us to derive a solution for the corresponding (truncated) equation for the 1PI
4-point quark Green’s function. With this result at hand, we will then return to the
diagrams (f), (g) and (e), and explicitly show that they cancel (and hence our assumption
is justified). With these observations, Eq. (6.5) reduces to:

<iqαiqγ iqτ iqη>= −
[

gT aγ0
]

αβ

{

<iχβiχν><iqν iqµiqτ iqη><iχµiχκ><iqκiqγ iσ
b
λ><iρbλiρ

a>

+
[

<iχβiχδ><iqδiqηiσ
c
ε><iρcεiρ

d
κ>
] [

<iqτ iqν iσ
b
µ><iχν iχλ><iqλiqγ iσ

d
κ><iρbµiρ

a>
]}

.

(6.15)

It is convenient to express the resulting equation in momentum space. We define the
momentum space Green’s functions via their respective Fourier transform (in order to

82



6.2 Solution in the heavy mass limit

= −

p
1

p
2 p

3

p
4

1
+p

4

1

2

−

Figure 6.4.: Dyson-Schwinger equation for the 1PI 4-point Green’s function in the s-channel.
Same conventions as in Fig. 6.1 apply.

avoid proliferation of indices, we introduce the convention that x1, k1 correspond to the
index α etc.)

<iqαiqγ iqτ iqη>=

∫

d̄ k1 d̄ k2 d̄ k3 d̄ k4 e
−ik1x1−ik2x2−ik3x3−ik4x4Γ(4)

αγτη(k1, k2, k3, k4)

(6.16)
and arrive at the following Dyson–Schwinger equation for the 1PI 4-point quark Green’s
function in the s-channel (shown diagrammatically in Fig. 6.4):

Γ(4)
αγτη(p1, p2, p3, p4) =

−
∫

d̄ ω
[

Γ
(0)a
q̄qσαδ(p1,−p1 − ω, ω)Wq̄qδφ(p1 + ω)Γb

q̄qσφη(p1 + ω, p4,−p1 − p4 − ω)
]

×
[

Γc
q̄qστµ(p3, p2 − ω, p1 + p4 + ω)Wq̄qµλ(ω − p2)Γ

d
q̄qσλγ(ω − p2, p2,−ω)

]

×W ad
σσ(−~ω)W bc

σσ(~p1 + ~p4 + ~ω)

−
∫

d̄ ω Γ
(0)a
q̄qσαδ(p1,−p1 − ω, ω)Wq̄qδφ(p1 + ω)Wq̄qµλ(ω − p2)Γ

b
q̄qσλγ(ω − p2, p2,−ω)

×W ab
σσ(−~ω)Γ

(4)
φµτη(p1 + ω, p2 − ω, p3, p4). (6.17)

In order to proceed, we make the following assumption for the function Γ(4):

Γ(4)(p1, p2, p3, p4) = Γ(4)(P0; ~p1 + ~p4), (6.18)

with P0 = p01+p02. This implies that in the above equation the 4-point function Γ
(4)
φµτη(p1+

ω, p2−ω, p3, p4) does not depend on the integration variable ω0, and hence we can separate
the energy and three-momentum integrals and perform the energy integration over the
quark propagators. Moreover, with this ansatz we are allowed to Fourier transform the
resulting spatial integral back to coordinate space, as shall be explained shortly below.

After inserting the expressions Eq. (5.34), Eq. (5.43), for the quark and antiquark
propagators and completing the energy integration, Eq. (6.17) simplifies to :

[

p01 + p02 − 2Ir + 2iε
]

Γ(4)
αγτη(P0; ~p1 + ~p4)

= i
g4

4

[(

Nc −
2

Nc

)

δαγδτη +
1

N2
c

δαηδγτ

]
∫

d̄ ~ωWσσ(~ω)Wσσ(~k + ~ω)

+i
g2

2

[

δαγδµφ − 1

Nc
δαφδµγ

] ∫

d̄ ~ωWσσ(~ω)Γ
(4)
φµτη(P0; ~p1 + ~p4 + ~ω). (6.19)
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Figure 6.5.: Momentum routing for the diagram (g). See text for details.

Let us now make the following color decomposition for the function Γ(4):

Γ(4)
αγτη = δαγδτηΓ1 + δαηδγτΓ2. (6.20)

where (for a given flavor structure) Γ
(4)
1 and Γ

(4)
2 are Dirac scalar functions.

At this point, it is convenient to Fourier transform back to coordinate space. In general,
since Eq. (6.17) might in principle contain momentum-dependent vertex functions, as
well as mixing of energy and three-momentum variables, this transformation could not be
carried out. However, in our case momentum-dependent vertices are absent and moreover,
with the ansatz Eq. (6.18), the energy and tree-momentum integrals have separated such
that the spatial integral is performed only over two functions (spatial gluon propagator
and the spatial component of the quark 4-point function). Hence the Fourier transform
simplifies to the usual convolution product:

∫

d̄ ~ωWσσ(~ω)Γ
(4)(~q + ~ω) =

∫

d~xe−i~q·~xWσσ(~x)Γ
(4)(−~x), (6.21)

Using the Fierz identity for the generators, Eq. (A.12), and sorting out the color factors,

it is straightforward to obtain for the components Γ
(4)
1 , Γ

(4)
2 :

Γ
(4)
1 (P0;−~x) = i

(

g2

2Nc

)2
Wσσ(~x)Wσσ(−~x)

P0 − 2Ir + i g2

2Nc
Wσσ(~x) + 2iε

×Nc

[

(P0 − 2Ir)(N2
c − 2) + ig2CFWσσ(~x)

]

P0 − 2Ir − ig2CFWσσ(~x) + 2iε

Γ
(4)
2 (P0;−~x) = i

(

g2

2Nc

)2
Wσσ(~x)Wσσ(−~x)

P0 − 2Ir + i g2

2Nc
Wσσ(~x) + 2iε

, (6.22)

where ~x is the separation associated with the momentum ~p1 + ~p4. Inserting the above
results into the decomposition Eq. (6.20), we find the final formula for the 1PI quark
Green’s function:

Γ(4)
αγτη(P0;−~x) = i

(

g2

2Nc

)2
Wσσ(~x)

2

P0 − 2Ir + i g2

2Nc
Wσσ(~x) + 2iε

×
{

δαγδτη
(P0 − 2Ir)Nc(N

2
c − 2) + ig2NcCFWσσ(~x)

P0 − 2Ir − ig2CFWσσ(~x) + 2iε
+ δαηδγτ

}

.(6.23)

where we recall that P0 = p01 + p02.
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~
m n m n

Figure 6.6.: Perturbative expansion of the diagram (e). Boxes comprise m and n gluon legs,
respectively, with m,n ≥ 1. See text for details.

Having derived the solution Eq. (6.23) for the 1PI Green’s function, we return to the
diagrams (f), (g) and (e) and show that they do not contribute to the final result. To see
this, we use our usual trick and consider the energy integral. In the case of the diagram
(g), this reads (with the momentum routing from Fig. 6.5):

∫

d̄ ω0 Wq̄q(p1 + ω)Wq̄q(ω − p4)Γ
(4)
E (p1 + ω, p2, p3, ω − p4)

∼
∫

d̄ ω0
1

[

p01 + ω0 +m− Ir + iε
] [

ω0 − p04 +m− Ir + iε
]Γ

(4)
E (ω0 + P0)

=

∫

d̄ ω0
1

[

p01 + ω0 +m− Ir + iε
] [

ω0 − p04 +m− Ir + iε
]

× P0 + ω0 + α

[P0 + ω0 + C1 + 2iε] [P0 + ω0 + C2 + 2iε]
(6.24)

where α, C1 and C2 are energy independent constants that appear in the expression
Eq. (6.23) for the 1PI Green’s function. The above formula can be trivially rewritten as

∫

d̄ ω0
1

[

p01 + ω0 +m− Ir + iε
] [

ω0 − p04 +m− Ir + iε
]

×
{

1

P0 + ω0 +C1 + 2iε
+

α−C1

[P0 + ω0 + C1 + 2iε] [P0 + ω0 + C2 + 2iε]

}

. (6.25)

Clearly, both terms in the above sum (having the same Feynman prescription) can be
reduced to differences of integrals over a simple pole, and with the same sign for performing
the integration in the complex plane and this vanishes (same as for the kernel of the
Bethe–Salpeter equation and the diagram (b) from above). An identical calculation for
the integral (f) leads us to the fact that this integral is also vanishing.

Finally, we are now in the position to show that the diagram (e), containing the 4 quark-
gluon vertex, is also vanishing. The argumentation is based on our previous findings,
namely that the diagrams (f) and (g), containing the 1PI quark Green’s functions, are
zero. We first observe that the diagram (e) can be written as a combination of diagrams
of the form shown in Fig. 6.6, where the boxes contain an arbitrary number of gluon legs
(ladder resummation).1 On the other hand, as a result of the Dyson–Schwinger equation
for the 1PI quark Green’s functions, the diagrams (f) and (g) can also be written as a
ladder resummation, which exactly coincide with the two terms in the diagram Fig. 6.6.

1To see this, it is enough to analyze the first few terms in perturbation theory of the 4 quark-gluon
vertex, which are then included into the diagram (e).
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= −

Figure 6.7.: Dyson-Schwinger equation for the fully amputated quark-antiquark 4-point Green’s
function in the s-channel.

Hence, the perturbative series of diagram (e) has been reorganized such that although
the function Γq̄qq̄qσ itself does not vanish, this 5-point interaction vertex and and the
gluon line on top of it provide the cancellation at every order perturbatively. In turn,
this implies that our original assumption is correct and the solution Eq. (6.23) is valid
nonperturbatively.

6.2.2. Amputated Green’s function

In the following, we return to the Dyson–Schwinger equation for the fully amputated
4-point quark-antiquark Green’s function in the s-channel and, with the simplifications
outlined in the previous section, we will derive a solution to this equation. We will verify
that this is consistent with the 1PI Green’s function obtained in the previous section and
moreover, we will analyze the position of the poles and compare them with the Bethe–
Salpeter equation for physical states.

The Dyson–Schwinger equation for the fully amputated 4-point quark-antiquark Green’s
function is obtained from the formula Eq. (6.15), by replacing the 1PI Green’s function
with the expression Eq. (6.10) and cutting the legs. Thus this equation (shown diagram-
matically in Fig. 6.7) is equivalent to the Dyson–Schwinger equation Eq. (6.17), derived
for 1PI Green’s functions. It is given by:

G
(4)
αβ;δγ(p+, p−; k+, k−) = W ab

σσ(~p − ~k)
[

Γa
q̄qσ

]

αγ

[

Γb
q̄qσ

]

δβ

−
∫

d̄ q
[

Γa
q̄qσWq̄q(q+)

]

ακ

[

W T
qq̄(−q−)Γ

Tb
qq̄σ

]

βτ
W ab

σσ(~p − ~q)G
(4)
κτ ;δγ(q+, q−; k+, k−).

(6.26)

In the above, the momenta of the quarks are given by p+ = p + ξP , p− = p − (1 − ξ)P
(similarly for k and q), and ξ is the momentum sharing fraction. P indicates the depend-
ence on the total four momentum, which will become important for the investigation of
the bound-state contributions to the Green’s function. Eq. (6.17) is an inhomogeneous
integral equation which – unlike the Bethe–Salpeter equation – contains both a resonant
component (later on used to reproduce the bound state confining energy of the q̄q system),
and a nonresonant term.

The right hand side of equation Eq. (6.17) does not depend on the external energy p0,
implying that the 4-point function G(4) has to be independent on the relative energy q0,
and we further assume that G(4) depends only on the relative momentum ~p− ~k. Accord-
ingly, we replace the quark and antiquark propagators with the expressions Eq. (5.34),
Eq. (5.43), and as before we perform the energy integration. We arrive at the following
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6.2 Solution in the heavy mass limit

expression:

G
(4)
αβ;δγ(P0; ~p− ~k) = g2T a

αγT
b
δβW

ab
σσ(~p− ~k)

+g2T a
ακT

a
τβ

i

P0 − 2Ir + 2iε

∫

d̄ ~qWσσ(~p− ~q)G
(4)
κτ ;δγ(P0; ~q − ~k).

(6.27)

In the above, we have also replaced the vertex functions with their tree-level expressions
Eq. (5.37), Eq. (5.44). Having integrated out the energy, it is convenient to rewrite the
above formula back into coordinate space. Using the definition Eq. (6.16) and the relation
Eq. (6.21), the equation Eq. (6.27) simplifies to:

G
(4)
αβ;δγ(P0; ~x) = g2T a

αγT
a
δβWσσ(~x) + g2T a

ακT
a
τβ

i

P0 − 2Ir + 2iε
Wσσ(~x)G

(4)
κτ ;δγ(P0; ~x). (6.28)

Again, we decompose the function G(4) :

G
(4)
αβ;δγ = δαβδγδG

(4)
1 + δαγδβδG

(4)
2 , (6.29)

(for a given flavor structure, G
(4)
1 and G

(4)
2 are Dirac scalar functions), use the Fierz

identity, Eq. (A.12), to sort out the color factors, and obtain the following results for the

components G
(4)
1 , G

(4)
2 :

G
(4)
1 (P0; ~x) =

(

g2

2

)

(P0 − 2Ir)Wσσ(~x)

P0 − 2Ir + i g2

2Nc
Wσσ(~x) + 2iε

(6.30)

× (P0 − 2Ir)
P0 − 2Ir − ig

2

2

(

Nc − 1
N c

)

Wσσ(~x) + 2iε

G
(4)
2 (P0; ~x) = −

(

g2

2Nc

)

(P0 − 2Ir)Wσσ(~x)

P0 − 2Ir + i g2

2Nc
Wσσ(~x) + 2iε

(6.31)

Replacing these results in the formula Eq. (6.29), we get the final result for the function
G(4):

G(4)(P0; ~x) =
g2

2

(P0 − 2Ir)Wσσ(~x)

P0 − 2Ir + i g2

2Nc
Wσσ(~x) + 2iε

×
[

δαβδγδ
(P0 − 2Ir)

P0 − 2Ir − ig
2

2 Wσσ(~x)CF + 2iε
− δαγδβδ

1

Nc

]

(6.32)

A few comments regarding the structure of the above equation are here in order. Firstly,
a direct calculation shows that our result for the amputated 4-point function is related
to the result Eq. (6.23) for the 1PI Green’s function, via the formula Eq. (6.10) (or
alternatively, Fig. 6.2).

Also, notice that despite the truncation, the poles in the 1PI and amputated Green’s
functions are identical. Moreover, in this approach the physical and nonphysical poles
disentangle automatically, as opposite to the “standard” QCD setting, where this separ-
ation does not occur. Using the form Eq. (5.27) for the temporal gluon propagator, we
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notice that the bound state (infrared confining) energy P0 = σ|~x| emerges as the pole of
the resonant component (first term in the bracket of Eq. (6.32)), for arbitrary number
of colors. Hence, this provides an explicit analytical dependence of the 4-point Green’s
function on the q̄q bound state energy, which results from the Bethe–Salpeter equation
presented in Chapter 5. The term multiplying the bracket has a pole for Nc = 0 and
hence this cannot represent a physical state. This (common) pole in the nonresonant
term can be shifted to infinity (as the regularization of Ir is removed) and, as discussed in
the previous chapter, is nonphysical just like the poles in the quark propagator or in the
baryon vertex. In the case of the 4-point Green’s function, this can be simply absorbed
in the normalization. Also, the appearance of this spurious pole does not contradict the
physical results, since the bound state energy, stemming from the first pole of Eq. (6.32),
is the only relevant quantity.

6.3. 4-point Green’s functions for diquarks

Let us now consider the diquark 4-point Green’s function. This can be easily obtained
from the equation Eq. (6.5) for quark-antiquark systems, by interchanging the quark
legs and inserting the appropriate minus signs. We obtain (see also the diagrammatic
representation from Eq. (6.8)):

<iqαiqτ iqγ iqη>= [gγ0T a]αβ

∫

dy δ(x − y)

×
{[

<iχβiχκ><iqκiqγ iσ
c
λ><iρcλiρ

d
ν><qτ iqηiσ

d
ν iσ

b
µ><iρbµiρ

a
y>
]

−
[

<iχβiχκ><iqκiqγ iσ
c
λ><iρcλiρ

d
ν>
] [

<iqτ iqµiσ
d
ν><iχµiχδ><iqδiqηiσ

b
ε><iρbεiρ

a
y>
]

−
[

<iχβiχκ><iqκiqγ iσ
c
λ><iρcλiρ

d
δ>
] [

<iqτ iqν iσ
b
µ><iχν iχε><iqεiqηiσ

d
δ><iρbµiρ

a
y>
]

−
[

<iχβiχκ><iqκiqλiqγ iqη><iqτ iqν iσ
b
µ><iχν iχλ><iρbµiρ

a
y>
]

+
[

<iχβiχδ><iqδiqηiσ
c
ε><iρcεiρ

d
κ>
] [

<iqτ iqν iσ
b
µ><iχν iχλ><iqλiqγ iσ

d
κ><iρbµiρ

a
y>
]

−
[

<iχβiχκ><iqκiqτ iqγ iqλ><iχλiχδ><iqδiqηiσ
b
ε><iρbεiρ

a
y>
]

+
[

<iχβiχκ><iqκiqτ iqγ iqησ
b
λ><iρbλiρ

a
y>
]

−
[

<iχβiχδ><iqδiqηiσ
c
ε><iρcεiρ

d
κ><iqτ iqγ iσ

d
κiσ

b
λ><iρbλiρ

a
y>
]

−
[

<iχβiχν><iqν iqτ iqµiqη><iχµiχκ><iqκiqγ iσ
b
λ><iρbλiρ

a
y>
]

+
[

<iχβiχδ><iqδiqηiσ
c
ε><iρcεiρ

d
ν>
] [

<iqτ iqµiσ
d
ν><iχµiχκ><iqκiqγ iσ

d
λ><iρdλiρ

a
y>
]}

+ . . . . (6.33)

As in the q̄q case, the dots represent the ~A vertex terms which are not considered here and
the tree-level temporal quark-gluon vertex has been replaced with its expression Eq. (3.10).
Also, notice that the diquark is antisymmetric under the exchange of two quark legs. In
this case we explicitly take into account the flavor structure, i.e. we consider equal (heavy)
mass quarks but with different flavors.
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− − − +
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Figure 6.8.: Diagramatic representation of the one particle irreducible 4-point diquark. Green’s
function. Same conventions as in Fig. 6.1 apply.

p
1
+p

3

p
1

p
4

Figure 6.9.: Crossed ladder diagram that contributes to the 1PI 4-point Green’s function in the
diquark channel.

As before, we analyze the diagrammatic representation from Fig. 6.8 and show that the
same type of cancellations occur. Starting with the diagram (a), we notice that this is a
crossed ladder type exchange diagram (see also Fig. 6.9):

∫

d̄ ω
[

Γ
(0)a
q̄qσαβ(p1, ω − p1,−ω)Wq̄qβκ(p1 − ω)Γd

q̄qσκγ(p1 − ω, p3, ω − p1 − p3)
]

×
[

Γc
qq̄στµ(p2, p4 + ω, p1 + p3 − ω)Wq̄qµδ(−p4 − ω)Γb

qq̄σδη(−p4 − ω, p4, ω)
]

×W ab
σσ(~ω)W

dc
σσ(~p1 + ~p3 − ~ω). (6.34)

It has been already shown that the integral over the quark propagators (with the same
Feynman prescription) vanishes and thus the diagram (a) is zero. A similar type of
integral arises in the diagram (j), and hence this term is also not giving a contribution.
Further, the diagrams (b) and (h) are zero, since the corresponding quark-2 gluon vertex
vanishes according to the Slavnov–Taylor identity, Eq. (6.14). As in the case of the q̄q
system, let us for the moment assume that the integrals (f), (i), containing the diquark
4-point vertex, and (g), containing the 5-point functions Γq̄q̄qqσ are also zero, and solve
the Dyson–Schwinger equation with the remaining terms. Having derived the solution,
we will then return to the diagrams (f),(i) and (g) and show that they vanish.

Putting all these together, the Dyson–Schwinger equation for the diquark 4-point func-
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tion with the remaining diagrams, i.e. diagrams (c), (d) and (e) explicitly reads:

Γq̄qq̄qσατγη(p1, p2, p3, p4) =

−
∫

d̄ ω
[

Γ
(0)a
q̄qσαβ(p1,−ω − p1, ω)Wq̄qβκ(p1 + ω)Γc

q̄qσκγ(p1 + ω, p3,−ω − p1 − p3)
]

×
[

Γb
qq̄στν(p2, ω − p2,−ω)Wq̄qνε(p2 − ω)Γd

qq̄σεη(p2 − ω, p4, p1 + p3 + ω)
]

×W ab
σσ(−~ω)W dc

σσ(~p1 + ~p3 + ~ω)

+

∫

d̄ ω
[

Γ
(0)a
q̄qσαβ(p1,−ω − p1, ω)Wq̄qβδ(p1 + ω)Γd

q̄qσδη(p1 + ω, p4,−ω − p1 − p4)
]

×
[

Γb
qq̄στν(p2, ω − p2,−ω)Wq̄qνλ(p2 − ω)Γc

qq̄σλγ(p2 − ω, p3, p1 + p4 + ω)
]

×W ab
σσ(−~ω)W dc

σσ(~p1 + ~p4 + ~ω)

−
∫

d̄ ω
[

Γ
(0)a
q̄qσαβ(p1,−ω − p1, ω)Wq̄qβκ(p1 + ω)

]

×
[

Γb
q̄qστν(p2, ω − p2,−ω)Wq̄qνλ(p2 − ω)

]

Γq̄qq̄qσκλγη(p1 + ω, p2 − ω, p3, p4)W
ab
σσ(~ω)

(6.35)

After sorting out the color factors and applying the usual separation of the energy and
three-momentum integrals, we arrive at the following formula:

Γ(4)
ατγη(p1, p2, p3, p4) =

1

P 0 − 2m− 2Ir + 2iε
{

−i

(

g2

2Nc

)2

δfαγδ
f
τη

[(

N2
c + 1

)

δαγδτη − 2Ncδαηδτγ
]

∫

d̄ ~ωWσσ(~ω)Wσσ(~p1 + ~p3 + ~ω)

+i

(

g2

2Nc

)2

δfαηδ
f
τγ

[(

N2
c + 1

)

δαηδτγ − 2Ncδαγδτη
]

∫

d̄ ~ωWσσ(~ω)Wσσ(~p1 + ~p4 + ~ω)

+
g2

2Nc
δfαλδ

f
τκ [Ncδακδτλ − δαλδτκ]

×
∫

d̄ ω0

[

1

ω0 + p01 −m− Ir + iε
− 1

ω0 − p02 +m+ Ir − iε

]

×
∫

d̄ ~ωWσσ(~ω)Γ
(4)
λκγη(p1 + ω, p2 − ω, p3, p4)

}

(6.36)

Since the diquarks we are not restricted to flavor singlet, we make the following flavor
decomposition:

Γ(4)
ατγη = δfαγδ

f
τηΓ

(c)
ατγη + δfαηδ

f
γτΓ

(p)
ατγη (6.37)

(the superscripts c and p stand for crossed and parallel configurations, respectively). As
before, in order to carry on the energy integration, and in the view of Fourier transforming
to coordinate space the resulting spatial integral, we make the following ansatz for the
components Γ(c) and Γ(p):

Γ(c)(p1 + ω, p2 − ω, p3, p4) = Γ(c)(P0; ~p1 + ~p3 + ~ω) (6.38)

Γ(p)(p1 + ω, p2 − ω, p3, p4) = Γ(c)(P0; ~p1 + ~p4 + ~ω), (6.39)

with P0 = p01 + p02.

90
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With these notations, Eq. (6.36) decouples to:

Γ(c)
ατγη(P0; ~p1 + ~p3) = (−i)

g2

2Nc

1

P 0 − 2m− 2Ir + 2iε

×
{

g2

2Nc

[(

N2
c + 1

)

δαγδτη − 2Ncδαηδγτ
]

∫

d̄ ~ωWσσ(~ω)Wσσ(~p1 + ~p3 + ~ω)

+ [Ncδαλδτκ − δακδτλ]

∫

d̄ ~ωWσσ(~ω)Γ
(c)
κλγη(P0; ~p1 + ~p3 + ~ω)

}

(6.40)

Γ(p)
ατγη(P0; ~p1 + ~p4) = i

g2

2Nc

1

P 0 − 2m− 2Ir + 2iε

×
{

g2

2Nc

[(

N2
c + 1

)

δαηδτγ − 2Ncδαγδτη
]

∫

d̄ ~ωWσσ(~ω)Wσσ(~p1 + ~p4 + ~ω)

− [Ncδαλδτκ − δακδτλ]

∫

d̄ ~ωWσσ(~ω)Γ
(p)
κλγη(P0; ~p1 + ~p4 + ~ω)

}

(6.41)

Further, we make the color decomposition:

Γ(c,p)
ατγη = δαγδτηΓ

(c,p1) + δαηδτγΓ
(c,p2), (6.42)

where Γ(c,p1), Γ(c,p2) are Dirac scalar functions. Inserting this into Eqs. (6.40, 6.41), we
obtain the following set of equations:

Γ(c1)(P0; ~p1 + ~p3) = (−i)
g2

2Nc

1

P 0 − 2m− 2Ir + 2iε

×
{

g2

2Nc

(

N2
c + 1

)

∫

d̄ ~ωWσσ(~ω)Wσσ(~p1 + ~p3 + ~ω)

+

∫

d̄ ~ωWσσ(~ω)
[

NcΓ
(c2)(P0; ~p1 + ~p3 + ~ω)− Γ(c1)(P0; ~p1 + ~p3 + ~ω)

]

}

(6.43)

Γ(p1)(P0; ~p1 + ~p4) = (−i)
g2

2Nc

1

P 0 − 2m− 2Ir + 2iε

×
{

g2
∫

d̄ ~ωWσσ(~ω)Wσσ(~p1 + ~p4 + ~ω)

+

∫

d̄ ~ωWσσ(~ω)
[

NcΓ
(p2)(P0; ~p1 + ~p4 + ~ω)− Γ(p1)(P0; ~p1 + ~p4 + ~ω)

]

}

(6.44)

Γ(c2)(P0; ~p1 + ~p3) = i
g2

2Nc

1

P 0 − 2m− 2Ir + 2iε

×
{

g2
∫

d̄ ~ωWσσ(~ω)Wσσ(~p1 + ~p3 + ~ω)

−
∫

d̄ ~ωWσσ(~ω)
[

NcΓ
(c1)(P0; ~p1 + ~p3 + ~ω)− Γ(c2)(P0; ~p1 + ~p3 + ~ω)

]

}

(6.45)

Γ(p2)(P0; ~p1 + ~p4) = i
g2

2Nc

1

P 0 − 2m− 2Ir + 2iε

×
{

g2

2Nc

(

N2
c + 1

)

∫

d̄ ~ωWσσ(~ω)Wσσ(~p1 + ~p4 + ~ω)

−
∫

d̄ ~ωWσσ(~ω)
[

NcΓ
(p1)(P0; ~p1 + ~p4 + ~ω)− Γ(p2)(P0; ~p1 + ~p4 + ~ω)

]

}

(6.46)
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In the next step, we transform to coordinate space and rearrange the terms, such that
we obtain:

Γ(c1)(P0; ~y) + Γ(c2)(P0; ~y) = (−i)

(

g2

2Nc

)2
(Nc − 1)2 Wσσ(~y)

2

P0 − 2m− 2Ir − i g2

2Nc
(1−Nc)Wσσ(~y) + 2iε

(6.47)

Γ(c1)(P0; ~y)− Γ(c2)(P0; ~y) = (−i)

(

g2

2Nc

)2
(Nc + 1)2 Wσσ(~y)

2

P0 − 2m− 2Ir − i g2

2Nc
(1 +Nc)Wσσ(~y) + 2iε

(6.48)

Γ(p1)(P0; ~x) + Γ(p2)(P0; ~x) = (+i)

(

g2

2Nc

)2
(Nc − 1)2Wσσ(~x)

2

P0 − 2m− 2Ir − i g2

2Nc
(1−Nc)Wσσ(~x) + 2iε

(6.49)

Γ(p1)(P0; ~x)− Γ(p2)(P0; ~x) = (−i)

(

g2

2Nc

)2
(Nc + 1)2Wσσ(~x)

2

P0 − 2m− 2Ir − i g2

2Nc
(1 +Nc)Wσσ(~x) + 2iε

(6.50)

In the above, ~x and ~y represent the separations corresponding to the momentum ~p1 + ~p4
and ~p1 + ~p3, respectively. The final expression for the diquark 4-point Green’s function
reads:

Γατγη(P0; ~x, ~y) = δfαγδ
f
τη

{

1

2
(δαγδτη + δαηδτγ)

[

Γ(c1)(P0; ~y) + Γ(c2)(P0; ~y)
]

+
1

2
(δαγδτη − δαηδτγ)

[

Γ(c1)(P0; ~y)− Γ(c2)(P0; ~y)
]

}

+δfαηδ
f
τγ

{

1

2
(δαγδτη + δαηδτγ)

[

Γ(p1)(P0; ~x) + Γ(p2)(P0; ~x)
]

+
1

2
(δαγδτη − δαηδτγ)

[

Γ(p1)(P0; ~x)− Γ(p2)(P0; ~x)
]

}

(6.51)

with the components given by Eqs. (6.47 – 6.50).
As in the case of the q̄q systems, with this solution we return to the diagrams (f), (i)

and (g). Writing out the explicit form of the energy integrals we notice that their form is
identical to the quark-antiquark case, since the ε prescription is similar, regardless of the
internal quark (or antiquark) propagator. Thus, these diagrams are also vanishing.

The above equation can be rewritten such that the pole structure becomes manifest.
Introducing the notations

f+(~y) = (−i)

(

g2

2Nc

)2
(Nc − 1)2 Wσσ(~y)

2

P0 − 2m− 2Ir − i g2

2Nc
(1−Nc)Wσσ(~y) + 2iε

(6.52)

f−(~y) = (−i)

(

g2

2Nc

)2
(Nc + 1)2 Wσσ(~y)

2

P0 − 2m− 2Ir − i g2

2Nc
(1 +Nc)Wσσ(~y) + 2iε

, (6.53)

we have that

Γατγη(P0; ~x, ~y) =
1

2

{

(δαγδτη + δαηδτγ)
[

δfαγδ
f
τηf+(~y)− δfαηδ

f
τγf+(~x)

]

+ ( δαγδτη − δαηδτγ

)[

δfαγδ
f
τηf−(~y) + δfαηδ

f
τγf−(~x)

]}

(6.54)
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Analyzing the pole structure of the above equation we notice that, as in the case of the
q̄q systems, we have two different pole conditions:

P0 − 2m− 2Ir − i
g2

2Nc
(1±Nc)Wσσ(~x) = 0 (6.55)

From the first equation (corresponding to the color antisymmetric term in the above
formula), we find that Nc = 2,−1, and from the second equation, we obtain Nc = −2, 1.
Hence, the only physical solution, with Nc = 2, corresponds to color antisymmetric and
flavor symmetric configuration, in agreement with our findings from the previous chapter
that bound states exist only for color antisymmetric SU(2) baryons (in that case flavor
symmetry was implicit). Notice also that the poles in the case of the diquark system
disconnect, as opposite to the meson case, where they multiply.
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Chapter 7.

Summary and conclusions

This thesis has been constructed from three major building blocks: the general derivation
of the quark Dyson–Schwinger equations in Coulomb gauge first order formalism, the
perturbative studies at one-loop order, and the nonperturbative investigations in the limit
of the heavy quark mass. We will present our summary and conclusions separately for
each part.

7.1. Functional derivation of Dyson–Schwinger equations

Starting with the QCD Lagrangian, we have introduced the gauge fixing technique and
the Faddeev-Popov method in Coulomb gauge. Further, we have converted to first or-
der formalism. There are two reasons motivating this choice: firstly, the (unphysical)
ghost degrees of freedom can be formally eliminated and secondly, the system can be
reduced to the “would-be physical” degrees of freedom. Formal here refers to the fact
that the resulting equations are nonlocal and hence very difficult to approach in practical
calculations.

Using functional derivation techniques, in Chapter 2 we have explicitly derived the
quark field equations of motion. Based on these equations, we have obtained the Feyn-
man rules and the relevant tree-level proper two-point and vertex functions. We have also
discussed the general decomposition of the quark (proper and connected) two-point func-
tions. Based on the Lagrange transformation, we have derived exact relations between
the corresponding dressing functions. Given that at one-loop order in perturbation theory
the fourth Dirac structure γ0γi of the quark gap equation vanishes, the set of equations
relating these functions is significantly reduced. Starting with the quark field equation of
motion, we have derived the Dyson–Schwinger equations for the quark proper two-point
function, quark contributions to the gluon proper two-point functions and quark-gluon
vertex functions. Moreover, in Chapter 6 we have presented the explicit derivation of the
four-point Green’s function for quark-antiquark and diquark systems.

Since the Dyson–Schwinger equations build an infinite tower of coupled integral equa-
tions, they cannot be solved exactly, and hence approximation schemes have to be em-
ployed. These have to preserve the symmetries of the theory, which are reflected in the
Slavnov–Taylor identities. Thus, starting with the time-dependent BRST transform we
have explicitly derived the Slavnov–Taylor identities for the quark-gluon vertices and, in
the limit of heavy quark mass, for the four-quark-gluon vertex.



Chapter 7. Summary and conclusions

7.2. One-loop perturbative results

In the second part of this thesis, a one-loop perturbative analysis of the quark gap equa-
tion, quark contribution to the gluonic two-point functions and quark-gluon vertex func-
tions has been undertaken. The various propagator and two-point dressing functions have
been evaluated at this order. To this end, the (dimensionally regularized) results for the
required noncovariant massive integrals have been obtained, using differential equations
and integration by part techniques.

The results for the various two-point functions are rather illuminating. Since the sin-
gularities are absent in both Euclidean and spacelike Minkowski regions, the analytic
continuation between Euclidian and Minkowski is justified. The second important phys-
ical results is the renormalization of the quark mass and propagator. Namely, we have
verified that the one-loop renormalized quark mass agrees explicitly with the calculation
performed in linear covariant gauges. Also, up to color factors the results for the quark
propagator dressing function agree with the corresponding results obtained in Quantum
Electrodynamics. Finally, the correct one-loop coefficient of the perturbative β-function
has been obtained.

Turning to the quark-gluon vertex functions, we have explicitly evaluated their divergent
parts and considered them in conjunction with the corresponding Slavnov–Taylor identity.
This identity contains some peculiar objects, the quark-ghost scattering kernels (analogous
to ghost-gluon kernels known from Yang–Mills theory). In order to gain some more
information about them, it has been helpful to analyze the Slavnov–Taylor identity at
one-loop perturbative order. This has been done in two different ways: firstly by using
the translation invariance of the loop integrals, without explicitly evaluating them, and
secondly by considering only the divergent parts of the integrals entering the identity. In
this later investigation, we have employed the results for the divergent parts of the quark-
gluon vertex functions previously derived and have found that the equation is satisfied.
Also, the quark-ghost kernels appear not to contain divergences, in agreement with the
calculations performed using the method of split dimensional regularization.

7.3. Heavy quarks

In the third part of the thesis, we have considered the limit of the heavy quark mass. After
performing a heavy quark transform of the quark field (adapted for Coulomb gauge), we
have expanded the generating functional of the theory in the mass parameter and retained
only the leading order. In this case, the system has simplified dramatically: we have
found that only the temporal gluon propagator contributes at leading order, whereas the
spatial gluon is suppressed by the mass expansion. Further, we have truncated the Yang–
Mills sector to include only the non-perturbative (energy-independent) temporal gluon
propagator and neglect all the higher order Yang–Mills Green’s functions.

In this setting, we have used the full nonperturbative quark equations of QCD in order to
study the confinement properties. The gap equation, supplemented by the Slavnov–Taylor
identity, has been solved and we have shown that the rainbow-ladder approximation to the
quark (and antiquark) propagators is exact in this case. These equations have been used
along with the Bethe–Salpeter equation for mesons and Faddeev equation for baryons,
and we have demonstrated that the ladder approximation to the Bethe–Salpeter equation
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is also exact.
Using the assumption that the temporal gluon propagator is energy independent, it was

then straightforward to find solutions for these equations. In the meson case, from the
Bethe–Salpeter equation we have found that only color singlet mesons and SU(2) baryons
have finite energy that increases linearly with the distance, i.e. confining solution (and
otherwise the system is physically not allowed). Further, we have found that there exist a
direct connection between the temporal gluon propagator and the string tension (at least
within the approximation scheme considered here).

Turning to the baryon case, we have considered the Faddeev equation for three-quark
states in a symmetric configuration. As in the case of the q̄q systems, we have found that
the bound state energy between three quarks increases linearly with the separation and
we have provided a direct connection between the temporal gluon propagator and the
physical string tension. Furthermore, we predict that the string tension for three-quark
states is 3/2 times that of the q̄q system.

At this point, we make a short comment regarding our approximations. Firstly, we
have assumed that the temporal gluon propagator is energy independent. As explained
in the text, this assumption is supported by the lattice results and moreover, from formal
arguments it can be inferred that this propagator must have at least a part that is en-
ergy independent, in order to cancel the ghost loops in the Yang–Mills expressions and to
solve the energy divergence problem of Coulomb gauge. The second approximation was to
neglect the Yang–Mills vertices and, given that the spatial quark-gluon vertices are sup-
pressed by the mass, we have found that the temporal vertex remains nonperturbatively
bare. Since the temporal gluon propagator is dressed, we have the situation of a gluon
string connecting two naked color charges, and thus the inclusion the Yang–Mills vertices
would represent the dressing of these naked charges, i.e. the screening mechanism. Thus,
we anticipate that this would only lower the value of the string tension, and would not
alter the linear behavior of the confining potential. The fact that the three-gluon vertex is
irrelevant for the infrared properties of the theory has been also shown in the Hamiltonian
approach [36].

Finally, in the heavy mass limit and within the same truncation scheme, we have also
considered the 4-point quark Green’s functions, and in particular we have studied the role
of singularities of these functions. Firstly, we have found that both for q̄q and diquark
systems the poles (physical and unphysical) naturally separate — as is well-known, this
would not be the case in the usual QCD calculations. Also, we have found that the bound
state energies emerge as a pole of the resonant component, thus providing and explicit
connection between the (nonperturbative) 4-point Green’s function and the bound state
energy resulting from the Bethe–Salpeter equation.
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Appendix A.

Conventions and useful formulae for the

gauge group SU (Nc)

In this work, natural units are used:

~ = c = 1. (A.1)

Initially we work in Minkowski space, with the following metric:

gµν = diag(1,−~1). (A.2)

Where perturbative integrals are to be explicitly evaluated, we analytically continue to
Euclidean space, i.e. k0 → ik4, as explained in the text.

The group elements of SU(Nc) are unitary Nc×Nc matrices with determinant one and
can be written in the form

U(x) = exp{−iθa(x)T a} (A.3)

where θa(x) specify the angle of rotation in color space.
The N2

c − 1 (Hermitian) generators of SU(Nc) obey the Lie algebra

[T a, T b] = ifabcT c (A.4)

where the numbers fabc are the completely antisymmetric structure constants of the group.
From the relation

det U = exp {Tr lnU} = exp{−iθa(x)Tr T a} (A.5)

it follows that the generators are traceless matrices:

Tr T a = 0. (A.6)

In addition, we have the normalization condition

Tr(T aT b) =
1

2
δab. (A.7)

The sum rules used in the text are:

T aT a = CF1 (A.8)

T bT cfdbc =
i

2
T dNc (A.9)

T aT bT a =

(

CF − Nc

2

)

T a (A.10)
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where the Casimir invariant is given by

CF =
N2

c − 1

2Nc
. (A.11)

We note also the Fierz identity:

2 [T a]αβ [T
a]δγ = δαγδδβ − 1

Nc
δαβδδγ . (A.12)
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Appendix B.

Standard massive integrals

In this Appendix, we present the derivation of some standard Coulomb gauge massive
integrals used in Chapter 3. Consider the integral:

Jm(k2) =

∫

d̄ ω

[ω2 +m2]µ[(k − ω)2 +m2]ν
. (B.1)

In the case µ = ν = 1 this gives the scalar integral associated with, for example, the
fermion loop in quantum electrodynamics [3].

We present here a method to evaluate such integrals for arbitrary denominator powers
(developed originally in Ref. [118]) and generalize to the various additional noncovariant
integrals. We start by writing the Taylor expansion of the massive propagator in terms
of a hypergeometric function in the following way:

1

[ω2 +m2]µ
=

1

[ω2]µ
1F0

(

µ;−m2

ω2

)

. (B.2)

Now, the idea is to use the Mellin-Barnes representation of the hypergeometric function

1F0(µ; z):

1F0(µ; z) =
1

Γ(µ)

1

2πi

i∞
∫

−i∞

ds(−z)sΓ(−s)Γ(µ+ s), (B.3)

where the contour in the complex plane separates the left poles of the Γ functions from
the right poles. A first advantage of this representation is that the “mass term” gets
separated from the massless propagator and the remaining integrals can be calculated
with the Cauchy residue theorem, as we shall see below. Also, in order to study various
momentum regimes, the results can be written as a function of either k2/m2, or m2/k2.
This we do by using the standard formulas of analytic continuation of the hypergeometric
function (for an extended discussion, see [118]).

Applying Eq. (B.3) to the massive propagator we can rewrite the integral Jm(k2) as:

Jm(k2) =
1

(2πi)2
1

Γ(µ)Γ(ν)

∫

i∞
∫

−i∞

ds dt(m2)s+tΓ(−s)Γ(−t)Γ(µ+ s)Γ(ν + t)

×
∫

d̄ ω

(ω2)µ+s[(k − ω)2]ν+t
. (B.4)

Inserting the general result for the massless integral, derived in Ref. [30]:

∫

d̄ ω

[ω2]µ[(k − ω)2]ν
=

[k2]2−µ−ν−ε

(4π)2−ε

Γ(µ+ ν + ε− 2)

Γ(µ)Γ(ν)

Γ(2− µ− ε)Γ(2 − ν − ε)

Γ(4− µ− ν − 2ε)
, (B.5)
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we get for the integral Jm:

Jm(k2) =
[k2]2−ν−µ−ε

(4π)2−ε

1

(2πi)2
1

Γ(µ)Γ(ν)

∫

i∞
∫

−i∞

ds dt

(

m2

k2

)s+t

Γ(−s)Γ(−t)

×Γ(2− ε− µ− s)Γ(2− ε− ν − t)
Γ(µ+ ν + s+ t− 2 + ε)

Γ(4− 2ε− µ− ν − s− t)
. (B.6)

With the change of variable t = 2 − ε − µ − ν − u − s (for such a replacement, the left
and right poles of the Γ function are simply interchanged and therefore the condition of
separating the poles is not contradicted) we obtain:

Jm(k2) =
[m2]2−µ−ν−ε

(4π)2−ε

1

(2πi)

1

Γ(µ)Γ(ν)

i∞
∫

−i∞

du

(

m2

k2

)−u
Γ(−u)

Γ(2− ε+ u)

× 1

(2πi)

i∞
∫

−i∞

dsΓ(−s)Γ(2− ε− µ− s)Γ(−2 + ε+ ν + µ+ u+ s)Γ(µ+ u+ s).

(B.7)

To evaluate the integral over s we use the Barnes Lemma:

1

(2πi)

i∞
∫

−i∞

ds Γ(a+ s)Γ(b+ s)Γ(c− s)Γ(d− s) =
Γ(a+ c)Γ(a+ d)Γ(b+ c)Γ(b+ d)

Γ(a+ b+ c+ d)
(B.8)

and for the integral Eq. (B.7) it follows immediately that

Jm(k2) =
[m2]2−µ−ν−ε

(4π)2−ε

1

(2πi)

1

Γ(µ)Γ(ν)
i∞
∫

−i∞

du

(

m2

k2

)−u
Γ(−u)Γ(µ + u)Γ(ν + u)Γ(µ + ν − 2 + ε+ u)

Γ(µ+ ν + 2u)
. (B.9)

Closing the integration contour on the right we have:

Jm(k2) =
[m2]2−µ−ν−ε

(4π)2−ε

1

(2πi)

1

Γ(µ)Γ(ν)

(2πi)

∞
∑

j=0

(

−m2

k2

)−j
1

j!

Γ(µ+ j)Γ(ν + j)Γ(µ + ν − 2 + ε+ j)

Γ(µ+ ν + 2j)
. (B.10)

With the help of the duplication formula

Γ(2z) = 22z−1π−1/2Γ(z)Γ

(

z +
1

2

)

, (B.11)
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we can rewrite Jm as:

Jm(k2) =
[m2]2−µ−ν−ε

(4π)2−ε

Γ(µ+ ν − 2 + ε)

Γ(µ+ ν)
∞
∑

j=0

(

−m2

k2

)−j
1

22j
1

j!

Γ(µ+ j)

Γ(µ)

Γ(ν + j)

Γ(ν)

Γ(µ+ ν − 2 + ε+ j)

Γ(µ+ ν − 2 + ε)

Γ(µ+ν
2 )

Γ(µ+ν
2 + j)

Γ(µ+ν+1
2 )

Γ(µ+ν+1
2 + j)

.

(B.12)

The sum is clearly a representation of the hypergeometric 3F2(a, b, c; d, e; z) (see, for ex-
ample, Ref. [65]) and we finally obtain:

Jm(k2) =
[m2]2−µ−ν−ε

(4π)2−ε

Γ(µ+ ν − 2 + ε)

Γ(µ+ ν)

×3F2

(

µ, ν, µ+ ν − 2 + ε;
µ+ ν

2
,
µ+ ν + 1

2
;− k2

4m2

)

. (B.13)

A trivial computation shows that the result Eq. (B.13) is consistent with the known results
in the limit m = 0. All we have to do is to invert the argument of the hypergeometric
according to the formula (found, for example, in Ref. [119])

3F2(a1, a2, a3; b1, b2; z) =
Γ(b1)Γ(b2)

Γ(a1)Γ(a2)Γ(a3)

×
{

Γ(a1)Γ(a2 − a1)Γ(a3 − a1)

Γ(b1 − a1)Γ(b2 − a1)
(−z)−a1

×3F2

(

a1, a1 − b1 + 1, a1 − b2 + 1; a1 − a2 + 1, a1 − a3 + 1;
1

z

)

+
Γ(a2)Γ(a1 − a2)Γ(a3 − a2)

Γ(b1 − a2)Γ(b2 − a2)
(−z)−a2

×3F2

(

a2, a2 − b1 + 1, a2 − b2 + 1;−a1 + a2 + 1, a2 − a3 + 1;
1

z

)

+
Γ(a3)Γ(a1 − a3)Γ(a2 − a3)

Γ(b1 − a3)Γ(b2 − a3)
(−z)−a3

×3F2

(

a3, a3 − b1 + 1, a3 − b2 + 1;−a1 + a3 + 1,−a2 + a3 + 1;
1

z

)}

. (B.14)

The same method can be applied to the other noncovariant integrals with different de-
nominator structures that appear in the text and the general expressions for these read:

∫

d̄ ω

[ω2]µ[(k − ω)2 +m2]ν
=

[m2]2−µ−ν−ε

(4π)2−ε

Γ(2− µ− ε)Γ(µ + ν + ε− 2)

Γ(ν)Γ(2− ε)

×2F1

(

µ, µ+ ν + ε− 2; 2− ε;− k2

m2

)

, (B.15)

∫

d̄ ω

[~ω2]µ[(k − ω)2 +m2]ν
=

[m2]2−µ−ν−ε

(4π)2−ε

Γ(32 − µ− ε)Γ(µ + ν + ε− 2)

Γ(ν)Γ(3/2 − ε)

×2F1

(

µ, µ+ ν + ε− 2; 3/2 − ε;−
~k2

m2

)

. (B.16)
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Differentiation with respect to k4 or ki gives rise to expressions for integrals with more
complicated numerator structure. For completeness, we list here the first order ε expansion
of the integrals arising into the one-loop perturbative expressions considered in this work:

∫

d̄ ω

(ω2 +m2)[(k − ω)2 +m2]
=

[m2]−ε

(4π)2−ε

{

1

ε
− γ + 2

−
√

1 +
4m2

k2
ln





√

1 + 4m2

k2
+ 1

√

1 + 4m2

k2 − 1



+O(ε)







, (B.17)

∫

d̄ ω

ω2[(k − ω)2 +m2]
=

[m2]−ε

(4π)2−ε

{

1

ε
− γ + 2

−
(

1 +
m2

k2

)

ln

(

1 +
k2

m2

)

+O(ε)

}

, (B.18)

∫

d̄ ω ωi

ω2[(k − ω)2 +m2]
= ki

[m2]−ε

(4π)2−ε

{

1

2ε
− γ2 + 1

+
1

2

m2

k2
− 1

2

(

1 +
m2

k2

)2

ln

(

1 +
k2

m2

)

+O(ε)

}

,(B.19)

∫

d̄ ω

~ω2[(k − ω)2 +m2]
=

[m2]−ε

(4π)2−ε

{

2

ε
− 2γ + 8

−2

√

1 +
m2

~k2
ln





√

1 + m2

~k2
+ 1

√

1 + m2

~k2
− 1



+O(ε)







. (B.20)
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Appendix C.

Checking the nonstandard integrals

One way to check analytically the results for the nonstandard integrals introduced in
Chapter 3, Am and A4

m, Eq. (3.65) and Eq. (3.76), respectively, is to make an expansion
around k24 = 0 and evaluate the resulting integrals with the help of the Schwinger para-
metrization. Let us first consider the integral Am, Eq. (3.30). Using Schwinger parameters
[120] (see also [121]), we can rewrite the denominator factors as exponential functions to
give:

Am =

∫ ∞

0
dα dβ dγ

∫

d̄ ω exp
{

−(α+ β)ω2
4 + 2βk4ω4 − βk24 − (α+ β + γ)~ω2

+2β~k ·~ω − β~k2 − βm2
}

. (C.1)

Applying similar reasoning as in Ref. [30], we come to the following parametric form of
the integral (recall that x = k24, y = ~k2):

Am =
(x+ y +m2)−1−ε

(4π)2−ε
Γ(1 + ε)

×
∫ 1

0
dβ

∫ 1−β

0

dα

(α+ β)1/2

[

αβ

(α+ β)

x

(x+ y +m2)
+

β(1− β)y + βm2

x+ y +m2

]−1−ε

.(C.2)

For general values of x, the integral above cannot be solved because of the highly nontrivial
denominator factor. Since there can be no singularities at x = 0 (this would invalidate
the Wick rotation which, as discussed in Chapter 3, does hold in this case), we can safely
make an expansion around this point and then integrate. To first order in powers of x we
have:

Am
x→0
=

(x+ y +m2)−1−ε

(4π)2−ε
Γ(1 + ε)

∫ 1

0
dβ

∫ 1−β

0
dα (α+ β)−1/2

{

[

β
m2 + y(1− β)

m2 + y

]−1−ε

−
[

β
m2 + y(1− β)

m2 + y

]−2−ε [
αβ

(m2 + y)(α+ β)
− β

m2 + y(1− β)

(m2 + y)2

]

(1 + ε)x +O(x2)

}

.

(C.3)

After performing the integration we get:

Am(x, y)
x→0
=

(x+ y +m2)−1−ε

(4π)2−ε
(−2)

{

1

ε
Γ(1 + ε)2F1

(

−ε, 2 + ε; 1− ε;− y

m2 + y

)

− x

m2 + y
+

√

1 +
m2

y
ln





√

1 + m2

y + 1
√

1 + m2

y − 1



+O(x2) +O(ε)







. (C.4)



Appendix C. Checking the nonstandard integrals

In the above formula, we isolated the hypergeometric term in order to evaluate the ε
expansion separately. For this purpose, we differentiate the hypergeometric function with
respect to the parameters. In general, differentiation of 2F1(a, b; c; z) with respect to, e.g.
the parameter b, gives (similar expressions are obtained for differentiation with respect to
a, c):

2F
(0,1,0,0)
1 (a, b; c; z) =

∞
∑

k=0

(a)k(b)kΨ(b+ k)

(c)k

zk

k!
−Ψ(b)2F1 (a, b; c; z) , (C.5)

where Ψ(k) is the digamma function and (a)k is the so-called Pochhammer symbol
(defined, for instance, in the standard textbook [119]):

(a)k =
Γ(a+ k)

Γ(a)
. (C.6)

With the help of formula Eq. (C.5), we obtain:

2F1 (−ε, 2 + ε; 1− ε; z) = 1 + ε ln(1− z) +O(ε). (C.7)

Inserting this back into Eq. (C.4), we can write down the result for the integral Am (to
first order in powers of x):

Am(x, y)
x→0
=

(x+ y +m2)−1−ε

(4π)2−ε

{

−2

ε
+ 2γ + 2

[

− ln

(

m2

m2 + y

)

+
x

m2 + y

]

−2

√

1 +
m2

y
ln





√

1 + m2

y + 1
√

1 + m2

y − 1



+O(x2) +O(ε)







, (C.8)

which agrees explicitly with the corresponding expansion of the result given in Eq. (3.65).
We now turn to the integral A4

m, given by Eq. (3.31). The parametric form has the
expression:

A4
m = k4

(x+ y +m2)−1−εΓ(1 + ε)

(4π)2−ε

×
∫ 1

0
dβ

∫ 1−β

0
dα

β

(α+ β)3/2

[

αβ

(α+ β)

x

(x+ y +m2)
+

β(1− β)y + βm2

x+ y +m2

]−1−ε

.(C.9)

Calculations similar to the integral Am bring us to the following result (to first order in
x):

A4
m(x, y)

x→0
= k4

(x+ y +m2)−1−ε

(4π)2−ε







2

√

1 +
m2

y
ln





√

1 + m2

y + 1
√

1 + m2

y − 1





−2

3

x

y



1 +

(

m2

y
− 2

)

ln
m2

m2 + y
− 2
√

1 + m2

y

ln





√

1 + m2

y + 1
√

1 + m2

y − 1









+2

(

1 +
m2

y

)

ln

(

m2

m2 + y

)

+O(x2) +O(ε)

}

, (C.10)
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again in agreement with the expansion of the result given in Eq. (3.76).

Another useful check comes from the study of the mass differential equation, i.e., the
mass is in this case regarded as a variable.1

With In given by Eq. (3.32), the derivative with respect to the mass reads:

m
∂In

∂m
=

∫

d̄ ω ωn
4

ω2[(k − ω)2 +m2]~ω2

{

−2
m2

(k − ω)2 +m2

}

. (C.11)

From the relations Eq. (3.33), Eq. (3.34) and Eq. (C.11) we get the following relation:

k4
∂In

∂k4
+ kk

∂In

∂kk
+m

∂In

∂m
= (d+ n− 5)In. (C.12)

Using the same procedures as described in Chapter 3, we can then derive a differential
equation for the integral in terms of the mass:

m2 ∂I
n

∂m2
= (d+ n− 4)

m2

k2 +m2
In − m2

k2 +m2

∫

d̄ ω ωn
4

[(k − ω)2 +m2]2~ω2
. (C.13)

Starting with the case n = 0 where I0 ≡ Am, we see that by inserting the solution,
Eq. (3.65), we have that in the limit ε → 0

m2∂Am

∂m2
+ (1 + 2ε)

m2

k2 +m2
Am = −m2(x+ y +m2)−2−ε

(4π)2−ε

1

y
√

1 + m2

y

ln





√

1 + m2

y + 1
√

1 + m2

y − 1





+O(ε). (C.14)

In terms of Schwinger parameters, the explicit integral of Eq. (C.13) reads:

m2

k2 +m2

∫

d̄ ω

[(k − ω)2 +m2]2~ω2
=

m2

x+ y +m2

Γ(1 + ε)

(4π)2−ε

∫ 1

0
dα (1−α)−1/2−ε(m2+αy)−1−ε

(C.15)
and for m2 6= 0 indeed

m2

k2 +m2

∫

d̄ ω

[(k − ω)2 +m2]2~ω2
=

m2(x+ y +m2)−2−ε

(4π)2−ε

1

y
√

1 + m2

y

ln





√

1 + m2

y + 1
√

1 + m2

y − 1





+O(ε), (C.16)

showing that the mass differential equation is satisfied. In fact, in the differential equation
Eq. (C.13), there is a potential ambiguity arising from the ordering of the limits m2 → 0
and ε → 0. Namely, for m2 = 0, the right-hand side of Eq. (C.14) vanishes as m2 lnm2,
whereas the parametric form of the integral in Eq. (C.15) goes like m2/ε. However,
this problem is not manifest because of multiplication with the overall factor m2 in the
differential equation. Since the solution of the mass differential equation is in principle
formally derived as the integral over m2 and m2 = 0 is the only the limit of this integral,

1Recall that when deriving the differential equations presented in Chapter 3, the mass has been treated
as a parameter, and only the differentiation with respect to k4 and ki has been considered.
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the ambiguity encountered may be regarded as an integrable singularity and presents no
problem.

Turning now to the case n = 1 where I1 ≡ A4
m, we first extract the overall k4 factor as

before by defining A4 = k4Am such that the differential equation is

m2 ∂Am

∂m2
= −2ε

m2

k2 +m2
Am − m2

k2 +m2

∫

d̄ ω

[(k − ω)2 +m2]2~ω2
. (C.17)

Notice that in the integral term we have used the identities

∫

d̄ ω ω4

[(k − ω)2 +m2]2~ω2
=

∫

d̄ ω (k4 − ω4)

[ω2 +m2]2
(

~k − ~ω
)2 = k4

∫

d̄ ω

[(k − ω)2 +m2]2~ω2
. (C.18)

Now, for m2 6= 0, the integral term of Eq. (C.17) is finite as ε → 0; however, the m2 = 0
limit is again ambiguous but as above this can be regarded as an integrable singularity.
Also, when m2 = 0, A is known to be ε finite (it is the massless integral considered in
Ref. [30]). This means that as ε → 0 we have the simple integral expression

m2∂Am

∂m2
= − 1

x+ y +m2

1

(4π)2−ε

1

y
√

1 + m2

y

ln





√

1 + m2

y + 1
√

1 + m2

y − 1



 . (C.19)

Knowing the solution, Eq. (3.76), it is straightforward to show that when m2 = 0 the
original massless integral from Ref. [30] is reproduced and that the derivative of the
massive solution satisfies the above.
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Appendix D.

One-loop non-covariant vertex integrals

In order to extract the divergence of the non-covariant three-point integrals appearing in
the quark-gluon vertex functions presented in Chapter 3, we use a method based on the
Schwinger parametrization [120]. As an example, consider the divergent integral:

I =

∫

d̄ ω
ωiωj

ω2(~ω + ~k3)2(ω − k1)2
. (D.1)

In principle, one can also consider massive quark propagators. i.e. integrals of the form
1/ω2[(~ω + ~k3)

2][(ω − k1)
2 −m2]. However, as will shortly become clear, the mass factor

does not contribute to the divergent part and hence in the following we will set m = 0.
Using the Schwinger parametrization, the formula Eq. (D.1) can be rewritten as:

I =

∫ ∞

0
dα dβ dγ

∫

d̄ ω

[

1

2

δij
α+ β + γ

+
(βk3i − γk1i)(βk3j − γk1j)

(α+ β + γ)2

]

× exp
{

−(α+ γ)ω2
4 − (α + β + γ)~ω2 + 2γ ω4k4 − 2~ω · (β~k3 − γ~k1)− β ~k3

2 − γk21

}

.

(D.2)

We start by considering the first term (the factor δij/2 has been left aside):

I0 =

∫ ∞

0
dα dβ dγ

∫

d̄ ω
1

α+ β + γ
exp

{

−(α+ γ)ω2
4 − (α+ β + γ)~ω2 + 2γω4k4

−2~ω · (β~k3 − γ~k1)− β ~k3
2 − γk21

}

(D.3)

(in fact, it turn out that the second term in Eq. (D.2) is convergent and therefore not
interesting for our purpose). After making a shift

~ω → ~ω − β~k3 − γ~k1
α+ β + γ

, ω4 → ω4 +
γk14
α+ γ

(D.4)

and performing the momentum integration, we are left with the parametric integral

I0 =
1

(4π)2−ε

∫ ∞

0
dα dβ dγ

1

(α+ β + γ)5/2−ε

1

(α+ γ)1/2

× exp

{

(β~k3 − γ~k1)
2

α+ β + γ
+

γ2k214
α+ γ

− β~k23 − γk21

}

. (D.5)

Following the usual procedure (also used in the Appendix C to check the nonstandard
two-point integrals), we insert the identity 1 =

∫∞

0 dλ δ(λ−α−β−γ), make the rescaling
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α → αλ, β → βλ, γ → γλ and perform the integral over λ. After rearranging the terms,
we get:

I0 =
Γ(ε)

(4π)2−ε

∫ 1

0
dα dβ dγδ(1 − α− β − γ)

1

(α + γ)1/2

×
{

β(1− β)~k23 + γ(1− γ)~k21 + 2βγ~k1 · ~k3 +
αγk214
α+ γ

}−ε

. (D.6)

In the above equation, we see that the integrand is convergent in the limit ε → 0, and the
divergence of I0 is only given by the overall factor Γ(ε) and thus in the exponent we can
set ε = 0. It also becomes clear that the mass term (which would enter the argument of
the exponential) cannot not influence this result, and hence our initial setting with m = 0
is justified. The result is:

I0 =
1

(4π)2
2

3

1

ε
+ finite. (D.7)

By a similar calculation, one can show that the second term in Eq. (D.2) is convergent
and therefore the overall divergent structure of the original integral is

I =
1

(4π)2
δij
3ε

+ finite. (D.8)

A straightforward example is the covariant integral

I1 =

∫

d̄ ω ωiωl

ω2(k1 − ω)2(k2 + ω)2
. (D.9)

This can be calculated without explicitly writing out the parametric form, by using the
following simple relation:
∫

d̄ ω ωi(ω + k2)
2

ω2(k1 − ω)2(k2 + ω)2
= k22

∫

d̄ ω ωi

ω2(k1 − ω)2(k2 + ω)2
+ 2kµ

∫

d̄ ω ωiωµ

ω2(k1 − ω)2(k2 + ω)2

+

∫

d̄ ω ωi

(k1 − ω)2(k2 + ω)2
, (D.10)

where the first term and the temporal part of the second term on the right hand side are
convergent. Using the fact that the result has the form δilI

∗ (where I∗ includes the factor
1/d), it is simple to get the ε coefficient by combining the terms on the right hand side of
Eq. (D.10). We obtain:

I1 =
δil

(4π)2
1

4ε
+ finite. (D.11)

Finally, let us examine the integral

I2 =

∫

d̄ ω ωiωlωjωk

ω2(k1 − ω)2(k2 + ω)2~ω2
= I∗(δijδkl + δilδjk + δikδjl). (D.12)

As before, we rearrange the terms and obtain

2k2kI
∗(δijδkl + δilδjk + δikδjl) =

∫

d̄ ω ωiωjωl

ω2(k1 − ω)2~ω2
−
∫

d̄ ω ωiωjωl

ω2(k3 + ω)2(~k2 − ~ω)2

+

∫

d̄ ω
ωiωlk2j + ωiωjk2l + ωlωjk2l

ω2(k3 + ω)2(~k2 − ~ω)2
+ finite.(D.13)
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The last integral on the right hand side has been already evaluated and hence we only
need to consider the integral

J =

∫

d̄ ω
ωiωjωl

ω2(~k3 + ~ω)2(k1 − ω)2
. (D.14)

This we evaluate by differentiating the parametric form of the integral Eq. (D.2) (i.e., the
integral with the factor ωiωj in the numerator) with respect to k1l. The result is

J =

∫

d̄ ω {[γ(δijk1l + δilk1j + δjlk1i)− β(δijk3l + δilk3j + δjlk3i)]

+
(γk1j − βk3j)(γk1i − βk3i)(γk1l − βk3l)

(α+ β + γ)3

}

exp {. . . } (D.15)

(the argument of the exponential function is identical to the one of Eq. (D.2)). After
making the usual manipulations, we extract the ε coefficient from the parametric integral
and obtain:

I2 =
1

(4π)2
1

20ε
(δijδkl + δilδjk + δikδjl) + finite. (D.16)

We list here all the divergent (covariant and non-covariant) one-loop vertex functions
used in the evaluation the Coulomb gauge quark-gluon vertices:

∫

d̄ ω ωiωl

ω2(k1 − ω)2(k2 + ω)2
=

δil
(4π)2

1

4ε
+ finite (D.17)

∫

d̄ ω ω2
4

ω2(k1 − ω)2(k2 + ω)2
=

1

(4π)2
1

4ε
+ finite (D.18)

∫

d̄ ω ωiωl

(k1 − ω)2(k2 + ω)2~ω2
=

δil
(4π)2

1

3ε
+ finite (D.19)

∫

d̄ ω ω2
4

(k1 − ω)2(k2 + ω)2~ω2
=

1

(4π)2
1

ε
+ finite (D.20)

∫

d̄ ω ωiωlωjωk

ω2(k1 − ω)2(k2 + ω)2~ω2
=

1

(4π)2
1

20ε
(δijδkl + δilδjk + δikδjl) + finite (D.21)

∫

d̄ ω ω2
4ωjωk

ω2(k1 − ω)2(k2 + ω)2~ω2
=

δjk
(4π)2

1

12ε
+ finite. (D.22)
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Appendix E.

Temporal component of the quark-baryon

vertex

In this Appendix we present the explicit derivation of the energy-dependent part of the
Faddeev vertex, Eq. (5.84). We start with Eq. (5.83) and consider the first of the per-
mutations of the energy integral:

I = −
∫

d̄ k0
1

[

p01 + k0 −m− Ir + iε
] [

p02 − k0 −m− Ir + iε
]Γt(p

0
1 + k0, p

0
2 − k0, p

0
3).

(E.1)
Using

1

[z + a+ iε] [z + b+ iε]
=

1

(b− a)

{

1

z + a+ iε
− 1

z + b+ iε

}

(E.2)

and shifting the integration variables, we find that the integral I, Eq. (E.1), depends
only on the momentum p03 (and implicitly on the bound state energy of the system P0).
Explicitly, it reads (using the symmetry of Γt):

I = − 2
[

P0 − p03 − 2(m+ Ir)
]

∫

d̄ k0
Γt(P0 − p03 + k0,−k0, p

0
3)

[

k0 + P0 − p03 −m− Ir + iε
] (E.3)

Replacing this in the equation Eq. (5.83), we find:

Γt(p
0
1, p

0
2, p

0
3) = −2g2CBWσσ(|~r|)

∑

i=1,2,3

1
[

P0 − p0i − 2(m+ Ir)
]

×
∫

d̄ k0
Γt(P0 − p0i + k0,−k0, p

0
i )

[

P0 − p0i + k0 −m− Ir + iε
] (E.4)

The form of the equation Eq. (E.4) suggests that the function Γt can be expressed as a
symmetric sum

Γt(p
0
1, p

0
2, p

0
3) = f(p01) + f(p02) + f(p03), (E.5)

such that the integral equation for Γt (function of three variables) is reduced to an in-
tegral equation for the function f (of only one variable). The function f(p0i ) should be
chosen such that the integral on the right hand side of the equation Eq. (E.4) generates
a factor proportional to

[

P0 − p0i − 2(m+ Ir)
]

, to cancel the corresponding factor in the
denominator. To examine this possibility, we impose the following condition:

1
[

P0 − p0i − 2(m+ Ir)
]

∫

d̄ k0
f(P0 − p0i + k0) + f(−k0) + f(p0i )
[

P0 − p0i + k0 −m− Ir + iε
] = − α i

P0 − 3(m+ Ir)
f(p0i )

(E.6)
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where α is a (dimensionless) positive constant which remains to be determined. Rearran-
ging the terms to factorize the function f(k0), the above equation can be rewritten as

∫

d̄ k0 f(k0)

[

1

k0 −m− Ir + iε
+

1

P0 − p0i − k0 −m− Ir + iε

]

= (−i)
(2α − 1)P0 − 2αp0i + (3− 4α)(m+ Ir)

2[P0 − 3(m+ Ir)]
f(p0i ). (E.7)

Then the most obvious ansatz for the function f is

f(k0) =
1

(2α − 1)P0 − 2αk0 + (3− 4α)(m + Ir) + iε
(E.8)

such that on the right hand side of the equation Eq. (E.7) the numerator is cancelled by
f(pi). The next step is to complete the integration on the on the left hand side, which
gives (note that the ε prescription is chosen such that only the first term in the bracket
survives – the integration must not give rise to any new terms containing the energy p0i ):

∫

d̄ k0 f(k0)
1

k0 −m− Ir + iε
= − i

(2α− 1)P0 + (3− 6α)(m + Ir)
. (E.9)

It is then straightforward to compare Eq. (E.7) and Eq. (E.9) and find that the equality
is satisfied for α = 3/2, leading to the expression for the vertex Γt used in the text.
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