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Abstract: We apply the formalism developed earlier [1, 2] for studying transverse mo-

mentum dependent parton distribution functions (TMDs) at small Bjorken x to construct

the small-x asymptotics of the quark Sivers function. First, we explicitly construct the

complete fundamental “polarized Wilson line” operator to sub-sub-eikonal order: this ob-

ject can be used to study a variety of quark TMDs at small x. We then express the quark

Sivers function in terms of dipole scattering amplitudes containing various components of

the “polarized Wilson line” and show that the dominant (eikonal) term which contributes

to the quark Sivers function at small x is the spin-dependent odderon, confirming the re-

cent results of Dong, Zheng and Zhou [3]. Our conclusion is also similar to the case of the

gluon Sivers function derived by Boer, Echevarria, Mulders and Zhou [4] (see also [5]). We

also analyze the sub-eikonal corrections to the quark Sivers function using the constructed

“polarized Wilson line” operator. We derive new small-x evolution equations re-summing

double-logarithmic powers of αs ln2(1/x) with αs the strong coupling constant. We solve

the corresponding novel evolution equations in the large-Nc limit, obtaining a sub-eikonal

correction to the spin-dependent odderon contribution. We conclude that the quark Sivers

function at small x receives contributions from two terms and is given by

f⊥ q
1 T (x, k2

T ) = CO(x, k2
T )

1

x
+ C1(k2

T )

(

1

x

)0

+ . . .

with the function CO(x, k2
T ) varying slowly with x and the ellipsis denoting the sub-

asymptotic and sub-sub-eikonal (order-x) corrections.
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1 Introduction

The Sivers function [6, 7] is crucial for our understanding of the internal structure of

the proton (and other hadrons) in terms of its quark and gluon degrees of freedom. It

encodes the information about the orbital angular momentum of quarks and gluons in the

proton, including spin-orbit coupling effects which lead to an asymmetric distribution of

the partonic transverse momentum [8–13]. The quark Sivers function is one of the two

quark transverse momentum dependent parton distribution functions (TMDs) which is

odd under time reversal, the other being the Boer-Mulders function [14]. This leads to the

celebrated sign change between the quark Sivers function for semi-inclusive deep inelastic

scattering (SIDIS) and Drell-Yan (DY) lepton pair production [15–19]

f⊥q
1T SIDIS = −f⊥q

1T DY. (1.1)

This process dependence shows that while the intrinsic motion of the quarks inside the

proton is a universal property of the proton state in QCD and the Sivers function does probe
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this intrinsic motion, this function also depends on how the proton is probed. (See [20]

for a simple and intuitive illustration of this statement.) Thus, the Sivers function is a

process-dependent TMD, with the process dependence being under theoretical control in

SIDIS and DY.

The small-Bjorken x evolution of the Sivers function lies at the intersection of several

facets of QCD research. It probes the spin and angular momentum structure of protons in

the x-range where sea quarks and gluons are the dominant constituents of the proton. The

intersection of spin physics and small-x physics has received extensive attention lately [1, 2,

20–48] with small-x evolution equations constructed for the various quark and gluon TMDs,

partially in anticipation of the future Electron-Ion Collider (EIC) [8, 9, 12, 13] where many

of the TMDs will be measured at small x with high precision. The small-x asymptotics

of the Sivers function also intersect with research on the QCD odderon, the C-odd t-

channel gluon exchange which was originally proposed as a mechanism for generating the

asymmetry between pp and pp̄ cross sections at very high energies [49]. At leading order

in αs, the odderon is given by a three-gluon exchange in the t-channel with the gluons

in the symmetric dabc color configuration (dabc = 2 tr
[

ta{tb, tc}
]

with ta the fundamental

generators of SU(Nc) andNc the number of colors). The odderon has its own extensive body

of research at small-x [50–61], as well as an exciting recent announcement of the odderon

detection in pp and pp̄ collisions by the D0 and TOTEM collaborations [62] (see also [63–

67]). It was shown in [4] that the gluon Sivers function at small x is mainly generated

by the spin-dependent odderon, arising from a fundamental-representation Wilson loop in

the gauge link of the operator. One might expect a similar result in the case of the quark

(SIDIS or DY) Sivers function as it also comes in with a fundamental-representation gauge

link. Indeed, in [5] the odderon was shown to generate single transverse spin asymmetry

for the quark jet production in scattering of a quark on a transversely polarized nucleon,

further suggesting the odderon’s connection with the quark Sivers function. Moreover,

recently, in [3] it was shown that the spin-dependent odderon does contribute to the quark

Sivers function. In this work we study the intersection of these diverse areas of QCD by

constructing the small-x asymptotics of the quark Sivers function. Our approach is different

from [3, 4] since we do not limit our analysis to the eikonal contribution and study the

sub-eikonal corrections to the quark Sivers function as well.

Small-x evolution for the helicity TMD and quark transversity TMD were constructed

in [1, 24, 31] and in [2], respectively, using the saturation/color glass condensate (CGC)

framework [68–73] where the operator definitions of the TMDs can be rewritten in terms

of the so-called polarized dipole scattering amplitudes defined in terms of Wilson line

correlators. For the helicity TMDs, a new ‘longitudinally polarized Wilson line’ operator

had to be constructed in [1, 34], where a sub-eikonal operator (or two operators) were

inserted into the usual eikonal light-cone Wilson lines in order to couple the proton’s helicity

to the helicity of the quark or anti-quark in the dipole. (In our notation, sub-eikonal refers

to the object suppressed by one power of x compared to the eikonal scattering, sub-sub-

eikonal refers to suppression by x2, etc.) Similarly, for the quark transversity TMD a new

‘transversely polarized Wilson line’ operator was constructed in [2], containing sub-sub-

eikonal operators needed to couple the proton’s transverse spin to the transverse spin of the
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quarks in the dipole. In order to study the small-x asymptotics of the leading-twist quark

TMDs dependent on the proton’s spin, one needs to couple the proton’s spin to the quarks

in the dipole. To evaluate such coupling, one needs a priori to find all the other terms in

the scattering of a quark on a polarized proton, including all the eikonal, sub-eikonal, and

sub-sub-eikonal operators which were not included in the ‘polarized Wilson line’ operators

constructed in [1, 2, 34]. Here we will perform this construction, thus completing the

calculations started in [1, 2, 34]. The result of our calculation is a fundamental polarized

Wilson line operator up to and including the sub-sub-eikonal order: it is given in eq. (2.39)

below. This is our main formal result: it can be used for the future analyses of different

quark (and gluon) TMDs at small x. Here we apply this result to obtain the small-x

asymptotics of the quark Sivers function. We find two contributions: one coming directly

from the exchange of a spin-dependent odderon and a novel sub-eikonal one with the

double-logarithmic evolution.

The structure of this paper is as follows. In section 2 we construct the full ‘polarized

Wilson line’ operator in eq. (2.39) working to sub-sub-eikonal order. One can also think of

this object as the full quark S-matrix in the background field of a target calculated up to

(and including) the sub-sub-eikonal order and expressed in the transverse spin basis. (A

conversion to helicity basis can be easily accomplished using table 1 below).

In section 3 we take the operator definition of the quark Sivers TMD and rewrite it in

the small-x/saturation formalism in terms of dipoles containing different parts of the new

‘Wilson line’ operator. We separately investigate the eikonal and sub-eikonal contributions.

In section 3.1, working at the eikonal level, we show that the leading contribution to the

quark Sivers function comes from the eikonal odderon exchange which has a known small-

x evolution [50, 51, 56, 58] and asymptotics [54, 56]. The odderon intercept is known to

be exactly zero at the leading [54, 56] and next-to-leading [74] logarithmic approximation

in 1/x, and also at any order in the strong coupling αs in the large-Nc limit [75]. In

addition, the odderon intercept appears to be zero in the strong-coupling calculations

based on the anti-de Sitter/Conformal Field Theory (AdS/CFT) correspondence [76–78].

We thus conclude, with the perturbative and non-perturbative accuracy of the odderon

calculations [54, 56, 74–78], that the leading eikonal small-x asymptotics of the quark

Sivers function is f⊥q
1T (x, k2

T ) ∼ 1/x for both the SIDIS and DY cases.

In section 3.2 we explicitly calculate the odderon-generated quark Sivers function in

the scalar diquark model of the proton. This contribution dominates at small x as it is

proportional to 1/x (see eq. (3.24)) and receives no corrections to this power of x from

evolution, as described above. It can be compared to the lowest fixed-order (one-loop) con-

tribution to the quark Sivers function in the scalar diquark model of the proton, which, for

massless quarks, gives f⊥q
1T (x, k2

T ) ∼ x and, therefore, falls off rather rapidly at small x [79].

The sub-eikonal small-x asymptotics of the quark Sivers function is studied in sec-

tion 3.3. There we identify the sub-eikonal part of the polarized Wilson line operator (3.35a)

responsible for the Sivers function and construct a new evolution equations (3.58) (or, at

large Nc, eqs. (3.76) or (3.79)). These evolution equations re-sum powers of αs ln2(1/x):

we will refer to this as the double-logarithmic approximation (DLA) (cf., e.g., [1, 2, 24, 31]).

Solving these novel evolution equations in the large-Nc limit we arrive at the sub-eikonal
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small-x asymptotic term (3.87) for the quark Sivers function. Combining this with the

spin-dependent odderon we arrive at the eikonal and sub-eikonal small-x asymptotics of

the quark Sivers function given in the abstract, which we will repeat here for completeness,

f⊥ q
1 T (x, k2

T ) = CO(x, k2
T )

1

x
+ C1(k2

T )

(

1

x

)0

. (1.2)

This is the main physical result of this work. The function CO(x, k2
T ) is slowly-varying

with x and can be exactly determined by the odderon evolution equation (see [65]).

We conclude in section 4 by summarizing our results and by describing possible future

applications of our technique, such as the determination of the small-x asymptotics for

various other TMDs.

2 Quark S-matrix in the background field

At small x, the quark and gluon helicity TMD [1] and the quark transversity TMD [2] can

be expressed in terms of the ‘polarized dipole operators’ given by correlators of polarized

Wilson lines with the usual eikonal Wilson lines. These polarized dipole operators obey

small-x evolution equations, which differ for different TMDs as dictated by the structure of

the corresponding part of the polarized Wilson line operator. The polarized fundamental

Wilson line up to sub-sub-eikonal order was partially constructed in [2], where, for the

transversity calculation, the only contributing portion of the Wilson line operator was the

term which coupled the transverse spin of the proton to the transverse spin of a probed

quark. Here we want to construct the full polarized Wilson line (quark S-matrix) which ap-

plies for scattering of any-polarization quark on any-polarization nucleon, including terms

up to (and including) the sub-sub-eikonal order. The calculation will be carried out in the

transverse spin basis, with the conversion of our results into the helicity basis being easy

to accomplish with the help of table 1 below.

We consider high-energy scattering of a quark moving in the x− light-cone direction

with the large ‘minus’ momentum p−
2 on a proton moving in the x+ light-cone direction

with the large ‘plus’ momentum p+
1 . The light-cone coordinates are defined by

x+ = t+ z, x− = t− z, x = (x, y), (2.1)

such that a space-time 4-vector is written in terms of light-cone coordinates as xµ =

(x+, x−, x). The inner product of two 4-vectors is

aµb
µ =

a+b− + a−b+

2
− a · b. (2.2)

The transverse portion of 4-vectors is denoted by x = (x, y) while its magnitude we is

labeled by |x| = x⊥. We will make one exception for the transverse momentum k, whose

magnitude will be denoted by kT = |k|.
The fundamental Wilson line which sums up the eikonal scattering of the quark at

transverse position x moving in the x− direction on the gluon field of the proton is [80]

Vx[x−
f , x

−
i ] = P exp

[

ig

2

∫ x−

f

x−

i

dx−A+(0+, x−, x)

]

, (2.3)
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with P the path ordering operator, Aµ =
∑

aA
a µ ta the background gluon field, g the

strong coupling constant, and the integral running over the light-cone path of the quark.

In the case of an infinite path we will abbreviate the Wilson line as Vx ≡ Vx[∞,−∞].

We are interested in constructing the generalization of the Wilson line operator which

includes all possible sub-eikonal and sub-sub-eikonal interactions of a quark with the target

irrespective of the quark and the target polarizations. To this end, we define an S-matrix

for the quark-target scattering by

Vx,y;σ′,σ ≡
∫

d2pin

(2π)2

d2pout

(2π)2
eip

out
·x−ip

in
·y
[

δσ,σ′ (2π)2 δ2
(

p
out
− p

in

)

+ i Aσ′,σ(p
out
, p

in
)
]

,

(2.4)

where A(p
out
, p

in
) is the scattering amplitude for a quark on a target with p

in
and p

out

the incoming and outgoing quark transverse momenta, respectively, while σ′ and σ are the

outgoing and incoming quark polarizations in helicity basis. The amplitude A is normalized

such that A = M/(2s) [73], where M is the standard textbook scattering amplitude and s

is the center-of-mass energy squared. Extending the notation of [1, 2, 24], we will denote

by V pol
x,y;σ′,σ the entire non-eikonal part of the quark scattering S-matrix (2.4), independent

of whether the terms it contains depend on quark or target polarizations or not:

Vx,y;σ′,σ = Vx δ
2(x− y) δσ,σ′ + V pol

x,y;σ′,σ. (2.5)

From the earlier calculations [1, 2, 34, 35, 42] we know that sub-eikonal and sub-

sub-eikonal corrections come in as insertions of one or more sub- and/or sub-sub-eikonal

operators anywhere along the x− path of the quark. For an insertion of a local operator

we have

V pol
x,y;σ′,σ =

∫ ∞

−∞
dz− d2z Vx[∞, z−] δ2(x− z)Opol

σ′,σ(z−, z)Vy[z−,−∞] δ2(y − z), (2.6)

while for an insertion of a bi-local operator (cf. [1, 2]) we write

V pol
x,y;σ′,σ =

∫ ∞

−∞
dz−

1 d
2z1

∫ ∞

z−

1

dz−
2 d

2z2 Vx[∞, z−
2 ] δ2(x− z2)

×Opol
σ′,σ(z−

2 , z
−
1 ; z2, z1)Vy[z−

1 ,−∞] δ2(y − z1). (2.7)

Here and below, the two-dimensional integrals denote integration over transverse compo-

nents of the vector: for instance, d2z = dzx dzy. When space allows we will also refer to

such integration measure as d2z⊥. Note that, in general, the operators Opol
σ′,σ(z−, z) and

Opol
σ′,σ(z−

2 , z
−
1 ; z2, z1) may contain derivatives with respect to z and z1, z2, respectively, act-

ing on the delta-functions in eqs. (2.6) and (2.7). For the helicity and transversity ‘polarized

Wilson lines’ such derivatives were absent in [1, 2] and one also had Opol(z−
2 , z

−
1 ; z2, z1) =

δ2(z1− z2)Opol
σ′,σ(z−

2 , z
−
1 , z1), resulting in the simplification V pol

x,y;σ′,σ = V pol
x;σ′,σ δ

2(x− y) with

V pol
x =

∫ ∞

−∞
dx− Vx[∞, x−]Opol(x−, x)Vx[x−,−∞], (2.8)
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+

p2, χ p2 + k, χ′

A(k)

p1, SP

P2

Figure 1. The diagram representing the gluon field contribution to the non-eikonal operator.

The black circles on the vertices designate potentially spin-dependent sub- and sub-sub-eikonal

scattering.

and

V pol
x =

∫ ∞

−∞
dx−

1

∫ ∞

x−

1

dx−
2 Vx[∞, x−

2 ]Opol(x−
2 , x

−
1 , x)Vx[x−

1 ,−∞], (2.9)

for the local and bi-local operators, respectively. For brevity we have suppressed the

polarization indices in eqs. (2.8) and (2.9).

From the analysis in [1, 2, 41] we know that the local operator Opol
σ′,σ(z−, z) in eq. (2.6)

can be obtained by calculating the diagrams containing the sub-eikonal and/or sub-

sub-eikonal gluon field insertion shown in figure 1 below, while the non-local operator

Opol
σ′,σ(z−

2 , z
−
1 ; z2, z1) arises due to two quark field insertions with the adjoint Wilson line

connecting them, as illustrated diagrammatically in figure 2. Note that at the sub-sub-

eikonal level the term with two insertions of Opol
σ′,σ(z−, z) needs to be included as well. Below

we will explicitly calculate the non-eikonal operators Opol
σ′,σ(z−, z) and Opol

σ′,σ(z−
2 , z

−
1 ; z2, z1).

2.1 Gluon insertion operator

Here we calculate the gluon exchange operator Opol G in Feynman gauge (∂µA
µ = 0). The

non-eikonal scattering in figure 1 is shown by a gluon coupling to the quark line at the

top via a black-circle vertex, where the background field transfers a momentum k to the

x−-direction moving quark. Following the approach of [1, 2, 34], which involves replacing

the numerators of quark propagators by the polarization sums, we obtain the (potentially

non-eikonal) operator in momentum space

OG
χ′,χ(k) =

1

2
√

p−
2 (p−

2 + k−)
ig ūχ′(p2 + k) /A(k)uχ(p2). (2.10)

The normalizing factor of 1/
[

2
√

p−
2 (p−

2 + k−)
]

results from the square roots of the denom-

inators of the residues for the two quark propagators adjacent to the non-eikonal vertex

integrated over their light-cone ‘plus’ momentum components, see e.g. eq. (2.18) below.

The normalization for the operators in [1, 2, 34] was chosen to be 1/2p−
2 , with the dif-

ference between that and the normalization in eq. (2.10) not affecting the helicity and

transversity operators considered in those references.

We take the spinors here for the x− moving quark to be the ± reversed, transversely

polarized Brodsky-Lepage (BL) spinors [81] used in [2], with spin quantized along the

– 6 –
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x-direction. They are related to the helicity-basis ± reversed BL spinors by [21]

uχ ≡
1√
2

[u+ + χu−] , vχ ≡
1√
2

[v+ + χv−] , (2.11)

where χ = ±1 and the helicity-basis ±-reversed BL spinors are [1, 2]

uσ(p) =
1

√

p− [p− +mγ0 + γ0 γ · p] ρ(σ),

vσ(p) =
1

√

p− [p− −mγ0 + γ0 γ · p] ρ(−σ), (2.12)

with

pµ =

(

p2 +m2

p− , p−, p

)

and

ρ(+1) =
1√
2













1

0

−1

0













, ρ(−1) =
1√
2













0

1

0

1













. (2.13)

Employing the spinors from eq. (2.11) and performing a direct calculation, one can

show that the Dirac matrix elements in eq. (2.10) are

ūχ′(p2 + k)γ+uχ(p2) =
2

√

(p−
2 + k−)p−

2

(

δχ,χ′

[

(p
2

+ k) · p
2

+m2 + imχS × k
]

+ δχ,−χ′

[

i(k × p
2
)−mχS · k

] )

, (2.14a)

ūχ′(p2 + k)γ−uχ(p2) =
√

(p−
2 + k−)p−

2 2 δχ,χ′ , (2.14b)

ūχ′(p2 + k)γ1
⊥uχ(p2) =

√

(p−
2 + k−)p−

2

(

δχ,χ′

[

S · p
2

p−
2

+
S · (p

2
+ k)

p−
2 + k−

]

+ δχ,−χ′

[

i S × p
2
−mχ

p−
2

+
−i S × (p

2
+ k) +mχ

p−
2 + k−

])

, (2.14c)

ūχ′(p2 + k)γ2
⊥uχ(p2) =

√

(p−
2 + k−)p−

2

(

δχ,χ′

[

S × p
2

+ imχ

p−
2

+
S × (p

2
+ k)− imχ

p−
2 + k−

]

+ δχ,−χ′

[

−i S · p
2

p−
2

+
i S · (p

2
+ k)

p−
2 + k−

])

, (2.14d)

with S the unit vector in the direction of transverse spin quantization (for the proton

polarized along the x-axis we have S = x̂). The cross-product is defined by a× b = axby −
aybx = ǫijaibj with ǫij the 2-dimensional Levi-Civita symbol, ǫ12 = −ǫ21 = 1, ǫ11 = ǫ22 = 0.
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Plugging the matrix elements (2.14) into eq. (2.10) we find (for S = x̂)

OG
χ′,χ(k) =

ig

2

{

δχ,χ′

(

A+ +
(p

2
+ k) · p

2
+m2 + imχS × k

(p−
2 + k−)p−

2

A−
)

+ δχ,−χ′

i(k × p
2
)−mχS · k

(p−
2 + k−)p−

2

A−

− δχ,χ′

[(

S × p
2

+ imχ

p−
2

+
S × (p

2
+ k)− imχ

p−
2 + k−

)

S ×A

+

(

S · p
2

p−
2

+
S · (p

2
+ k)

p−
2 + k−

)

S ·A
]

(2.15)

− δχ,−χ′

[(

−iS · p
2

p−
2

+
iS · (p

2
+ k)

p−
2 + k−

)

S ×A

+

(

iS × p
2
−mχ

p−
2

+
−iS × (p

2
+ k) +mχ

p−
2 + k−

)

S ·A
]}

.

Since k− ∼ 1/p+
1 is small (with p+

1 the large light-cone momentum component of the parton

in the target generating the gluon field), k− ≪ p−
2 , we expand some of the terms in the

powers of k−/p−
2 , obtaining

OG
χ′,χ(k) =

ig

2

{

δχ,χ′

[

A+ +
(p

2
+ k) · p

2
+m2

(p−
2 )2

A−−
p

2
·A
p−

2

−
(p

2
+ k) ·A

p−
2 + k−

]

(2.16)

− δχ,−χ′

i

p−
2

[

k ×A− 1

p−
2

(

(k × p
2
)A− − k−A× (p

2
+ k)

)

]

+ χ δχ,χ′

im

(p−
2 )2

[

(S × k)A− − (S ×A) k−]

− χ δχ,−χ′

m

(p−
2 )2

[

(S · k)A− − (S ·A) k−]
}

+O
(

1

(p−
2 )3

)

.

Note that the “eikonality” of different terms in eq. (2.16) is manifest: there is the eikonal

A+ term, not suppressed by powers of p−
2 , there are the sub-eikonal O(1/p−

2 ) terms, and

the sub-sub-eikonal O(1/(p−
2 )2) terms.

There is one caveat about the momentum p−
2 in the sub-eikonal (order-1/p−

2 ) terms

in eq. (2.16): while in sub-eikonal calculations one does not need to distinguish the minus

momentum component of different quark propagators in figure 1, at the sub-sub-eikonal

order considered here one has to take into account that the interactions of the quark with

the background gluon field result in transfer of a small momentum q− to the quark. If we

label P−
2 the momentum of the incoming quark (see figure 1), before any interaction, then

we can write p−
2 = P−

2 +q−. The difference between 1/p−
2 and 1/P−

2 is of the sub-sub-eikonal

order. The difference between 1/(p−
2 )2 and 1/(P−

2 )2 is of the sub-sub-sub-eikonal order,

and is discarded in our calculation. In the coordinate space we replace q− → i∂− with the

derivative acting on everything to the right of (and, hence, earlier than) the insertion of the
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non-eikonal operator at hand, such that q− is really a total minus momentum transferred

to the quark by the target at the light-cone time x−. The order of the operators also

matters: we will replace 1/p−
2 → 1/(P−

2 + i∂−) with the operator placed to the right of

the non-eikonal gluon field, while a similar replacement 1/(p−
2 + k−) → 1/(P−

2 + i∂−)

is different from the former by the placement of the operator to the left of non-eikonal

field. Strictly-speaking, for consistency we need to expand 1/(P−
2 + i∂−) in the powers

of i∂−/P−
2 : we chose to keep the term as is, with the understanding that the overall

expression along with this term are correct only up to sub-sub-eikonal accuracy. While

the gluon field of the target is often taken to be a function of x− and x only, see e.g. [42],

below, in eqs. (3.41), we will see that the x+-dependence comes in through the phase of the

field, which usually constitutes a higher-order (in eikonality) correction to the leading-order

observables generated by the field. Hence, the partial derivative ∂− with respect to x+ is

non-trivial, even when applying to a regular light-cone Wilson line (2.3), if the sub-eikonal

x+-dependent phase is included in the otherwise eikonal gluon field A+.

To Fourier-transform the expression (2.16) into coordinate space we also replace k →
−i∇, k− → i∂− (both derivatives acting on the gluon field), p

2
→ −i ~∇, and (p

2
+k)→ i ~∇,

where the operator ~∇ acts only on the objects to the right of the operator OG
χ′,χ, while

~∇ acts only to the left, and neither of them acts directly on Aµ, somewhat similar to the

notation in [42]. This yields, with sub-sub-eikonal accuracy,

OG
χ′,χ(x) =

ig

2

{

δχ,χ′

[

A+ +
~∇i
A− ~∇i +m2A−

(P−
2 )2

+A · ~∇ i

P−
2 + i∂− −

i

P−
2 + i∂−

~∇ ·A
]

− δχ,−χ′

[

(∇×A)
1

P−
2 + i∂− +

i

(P−
2 )2

~∇× (∇A− + ∂−A)

]

(2.17)

+ χ δχ,χ′

m

(P−
2 )2

S × (∇A− + ∂−A) + χ δχ,−χ′

im

(P−
2 )2

S · (∇A− + ∂−A)

}

,

where now Aµ = Aµ(x+, x−, x). While the operator in eq. (2.17) is also a function of

xµ = (x+, x−, x), in the future, by analogy to the light-cone Wilson line (2.3), we will use

OG
χ′,χ(x−, x) ≡ OG

χ′,χ(x+ = 0, x−, x), that is, we will just put x+ = 0 in all expressions,

while implying that the ∂−-derivatives are applied before putting x+ to zero.

The δχ,−χ′ term in eq. (2.17) may appear left-right asymmetric at the sub-sub-eikonal

order. Note, however, that the order of (∇ × A) and 1/(P−
2 + i∂−) in the first term

multiplying δχ,−χ′ can be interchanged simultaneously with replacing ~∇ → −~∇ in the

second term multiplying δχ,−χ′ : taking a half-sum of the original and interchanged δχ,−χ′

terms one can left-right symmetrize the coefficient of δχ,−χ′ , if needed.

The expression (2.17), while including all the eikonal, sub-eikonal and sub-sub-eikonal

corrections to the quark scattering due to an insertion of the background gluon field, is

missing the non-eikonal corrections to the free quark propagator. Consider the propagator

of the p2 quark line in figure 1, concentrating on the denominator of the propagator. (The

numerators in our calculation are written as polarization sums plus the instantaneous

terms, just like in the light-cone perturbation theory (LCPT) [81, 82].) The integral over
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p+
2 yields (for p−

2 > 0)

∫ ∞

−∞

dp+
2

4π
e− i

2
p+

2
(x−−y−) i

p2
2 −m2 + iǫ

=
1

2p−
2

e
−i

p2
2

+m2

2p
−

2

(x−−y−)
(2.18)

=
1

2p−
2

exp

{

−i
p2

2
+m2

2p−
2

∫ x−

y−

dz−
}

=
1

2p−
2

[

1− i
p2

2
+m2

2p−
2

∫ x−

y−

dz− + . . .

]

where the ellipsis denote the higher-order (sub-sub-eikonal and beyond) corrections, which

are obtained by further expanding the exponential in the powers of the phase. Those

corrections correspond to multiple insertions of the sub-eikonal operator −i(p2
2
+m2)/(2p−

2 )

in eq. (2.18). The sub-eikonal phase corrections were employed two decades ago in the

medium jet quenching calculations for heavy ion collisions [83–87].

The above considerations for the sub-sub-eikonal minus momentum transfer apply here

as well: therefore, we need to replace 1/p−
2 → 1/(P−

2 + i∂−) in the phase operator from

eq. (2.18). Free quark propagation preserves the quark polarization, and hence the phase

operator −i(p2
2

+m2)/[2(P−
2 + i∂−)] enters eq. (2.17) with δχ,χ′ . Adding the −iδχ,χ′(p2

2
+

m2)/[2(P−
2 + i∂−)] operator into eq. (2.17) while replacing p2

2
→ ~∇ · ~∇ we obtain1

OG
χ′,χ(x−, x) = − i δχ,χ′

[

~D
i 1

2(P−
2 + iD−)

~Di +
m2

2(P−
2 + iD−)

]

(2.19)

+
ig

2

{

δχ,χ′ A+ + δχ,−χ′

[

F 12 1

P−
2 + iD− −

i

(P−
2 )2

ǫij ~∇i
F−j

]

+ χ δχ,χ′

m

(P−
2 )2

ǫijSiF−j + χ δχ,−χ′

im

(P−
2 )2

Si F−i

}

,

where ~Di = ∂i − igAi, ~D
i

= ~∂
i

+ igAi (cf. [42]). The ~D
i · ~Di term contains the AiAi

product, which diagrammatically arises from the insertion of two non-eikonal gluon fields,

with the instantaneous part of the quark propagator inserted between them [42]. Here we

have restored this term by simply requiring gauge-covariance of the operator OG
χ′,χ, which

would lead to gauge-invariance of the quark scattering amplitude. The same philosophy

allowed us to replace ∂− → D− in the denominators, with Dµ = ∂µ − igAµ the covariant

derivative. While the terms linear in the field Aµ and the terms independent of Aµ coming

from the first term on the right of eq. (2.19) are explicitly present in eq. (2.17) already, the

1The sub-eikonal phase in eq. (2.18) does not constitute an interaction with the target. Moreover, the

phase should not be included on the external (incoming and outgoing) quark legs. Therefore, strictly-

speaking, by including this phase into the amplitude Aσ′,σ from eq. (2.4), we are also including the con-

tributions where the phase originates on the external legs: such contributions have to be subtracted out if

the incoming and outgoing quark lines are truly the external lines of the scattering process at hand. If the

lines are internal, e.g., for small-x evolution step with the soft quark emission, then the phase can be kept.

For brevity, and due to these stated reasons, we will not include the external-line phase subtraction in our

expressions.
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remaining terms were again restored by requiring gauge-covariance of the expression. Note

that the AiA−Ai term appears to require a calculation of a diagram with two consecutive

insertions of the instantaneous term in the quark propagator.

In arriving at eq. (2.19) we have also completed ∇× A = −(∂xAy − ∂yAx) → −F 12,

with Fµν the full non-Abelian gluon field strength tensor (cf. [1, 34]). The F 12-terms

corresponds to the gluon helicity operator found in [1, 34], since the δχ,−χ′ structure in the

transverse spinor basis corresponds to σδσσ′ in the helicity spinor basis. Similarly, we have

completed S × (∇A− + ∂−A) → ǫijSiF−j for the transversity term ∼ χ δχ,χ′ [2], along

with replacing ∇iA− + ∂−Ai = −∂iA− + ∂−Ai → F−i elsewhere in eq. (2.19). The reason

we can make this replacement is due to the commutator [A−, Ai] being further energy-

suppressed, since the transverse components of the gluon field Ai are at most sub-eikonal,

while A− is sub-sub-eikonal. (This is the case only if the gluon field is emitted by a source,

and does not represent the incoming source gluon [41]. In the latter case one needs to

perform a calculation with two gluon field insertions and the instantaneous term in the

quark propagator we mentioned above, similar to [42]).

The A+-term in eq. (2.19) will just yield the usual eikonal Wilson line: we will remove

it from the operator OG
χ′,χ, labeling the remainder of the operator by Opol G

χ′,χ . Finally,

replacing all the remaining ~∇i → ~D
i

with the sub-sub-eikonal accuracy of our calculation,

we arrive at a completely gauge-covariant operator

Opol G
χ′,χ (x−, x) = − i δχ,χ′

[

~D
i 1

2(P−
2 + iD−)

~Di +
m2

2(P−
2 + iD−)

]

(2.20)

+
ig

2

{

δχ,−χ′

[

F 12 1

P−
2 + iD− −

i

(P−
2 )2

ǫij ~D
i
F−j

]

+ χ δχ,χ′

m

(P−
2 )2

ǫijSiF−j + χ δχ,−χ′

im

(P−
2 )2

Si F−i

}

.

Once again let us point out that the second-to-last term in the curly brackets of eq. (2.20)

corresponds to transversity [2], while the F 12-term corresponds to helicity [1, 34].

Equation (2.20) is our final general result for the sub- and sub-sub-eikonal gluon in-

sertion operator. The corresponding S-matrix from eq. (2.4) is2

V G
x,y;χ′,χ =Vx δ

2(x− y) δχ,χ′ (2.21)

+

∫ ∞

−∞
dz− d2z Vx[∞, z−] δ2(x− z)Opol G

χ′,χ (z−, z)Vy[z−,−∞] δ2(y − z)

+

∫ ∞

−∞
dz−

1 d
2z1

∫ ∞

z−

1

dz−
2 d

2z2

∑

χ′′=±1

Vx[∞, z−
2 ] δ2(x− z2)Opol G

χ′,χ′′ (z
−
2 , z2)

× Vz1
[z−

2 , z
−
1 ] δ2(z2 − z1)Opol G

χ′′,χ (z−
1 , z1)Vy[z−

1 ,−∞] δ2(y − z1),

whereOpol G
χ′,χ is given by eq. (2.20). While the second term on the right of eq. (2.21) contains

the entire Opol G
χ′,χ from eq. (2.20), only sub-eikonal terms in each Opol G

χ′,χ need to be kept

2Note, again, that subtraction of the sub-eikonal and sub-sub-eikonal phase corrections on the external

quark legs is implied, but not shown explicitly.
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Helicity basis Transverse basis

δσ,σ′ δχ,χ′

σ δσ,σ′ δχ,−χ′

δσ,−σ′ χ δχ,χ′

σ δσ,−σ′ −χ δχ,−χ′

Table 1. A conversion table between the helicity and transverse spinor bases.

in the last term on the right in eq. (2.21). Equation (2.21) contains the quark scattering

amplitude on any target up to the sub-sub-eikonal order in the gluon exchange channel.

The expression (2.21) is valid in the gauges where the transverse links at x− → ±∞ do

not contribute (e.g., to the dipole amplitude).

In the helicity basis for spinors the operator (2.20) can be re-written with the help of

the conversion table 1. This yields

Opol G
σ′,σ (x−, x) = − i δσ,σ′

[

~D
i 1

2(P−
2 + iD−)

~Di +
m2

2(P−
2 + iD−)

]

(2.22)

+
ig

2

{

σ δσ,σ′

[

F 12 1

P−
2 + iD− −

i

(P−
2 )2

ǫij ~D
i
F−j

]

+ δσ,−σ′

m

(P−
2 )2

ǫijSiF−j − σδσ,−σ′

im

(P−
2 )2

Si F−i

}

.

In the helicity basis eq. (2.21) becomes

V G
x,y;σ′,σ =Vx δ

2(x− y) δσ,σ′ (2.23)

+

∫ ∞

−∞
dz− d2z Vx[∞, z−] δ2(x− z)Opol G

σ′,σ (z−, z)Vy[z−,−∞] δ2(y − z)

+

∫ ∞

−∞
dz−

1 d
2z1

∫ ∞

z−

1

dz−
2 d

2z2

∑

σ′′=±1

Vx[∞, z−
2 ] δ2(x− z2)Opol G

σ′,σ′′ (z−
2 , z2)

× Vz1
[z−

2 , z
−
1 ] δ2(z2 − z1)Opol G

σ′′,σ (z−
1 , z1)Vy[z−

1 ,−∞] δ2(y − z1).

2.2 Quark insertion operator

Now we turn to the two quark exchanges shown in figure 2. The part of this operator

related to transversity at the sub-sub-eikonal order was calculated in [2]. Here we follow

similar steps, but this time retaining all the other terms at the sub-eikonal and sub-sub-

eikonal orders. We begin with the left quark exchange in figure 2, which, in the A− = 0

gauge, after expansion in k−/p−
2 in some of the terms, gives

1

2
√

p−
2 (p−

2 + k−)
ǫµ ∗
λ (p2 + k) (ig) ψ̄(k)taγµuχ(p2)

= − ig χ

2
√

p−
2 + k−

ψ̄(k) ta
[

δλ,−1 ρ(+1) + χ δλ,1 ρ(−1)
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χ′

z−
1

z−
2

Figure 2. The diagram representing the quark field contribution to the sub-eikonal and sub-sub-

eikonal operators.

− m

p−
2

[

χ δλ,1 γ
0 ρ(−1) + δλ,−1 γ

0 ρ(+1)
]

−
√

2
ǫ∗λ · k
p−

2

[

χγ0 ρ(+1) + γ0 ρ(−1)
]

−
√

2
ǫ∗λ · p2

p−
2

[

χ δλ,1 γ
0 ρ(+1) + δλ,−1 γ

0 ρ(−1)
]

+O
(

1

(p−
2 )2

)]

. (2.24)

The gluon polarization 4-vector in the A− = 0 gauge is

ǫµλ(p2 + k) =

(

2 ǫλ · (p2
+ k)

p−
2 + k− , 0, ǫλ

)

with ǫλ = (−1/
√

2) (λ, i) [81]. The expression (2.24) is consistent with eq. (12) in [2], if we

take into account that our definition of the light-cone coordinates (2.1) is different from

that in [2] and that now we do not put p
2

= 0, as was assumed in [2].

In the coordinate space eq. (2.24) gives

− ig

2
√

P−
2 + i∂−

ψ̄(z−
1 , z) t

a ~M(λ, χ)

≡ − ig χ

2
√

P−
2 + i∂−

z1

ψ̄(z−
1 , z1) ta

[

δλ,−1 ρ(+1) + χ δλ,1 ρ(−1)

− m

p−
2

[

χ δλ,1 γ
0 ρ(−1) + δλ,−1 γ

0 ρ(+1)
]

+ i
√

2
ǫ∗λ · ~∇z1

p−
2

[

χγ0 ρ(+1) + γ0 ρ(−1)
]

+ i
√

2
ǫ∗λ · ∇z1

p−
2

[

χ δλ,1 γ
0 ρ(+1) + δλ,−1 γ

0 ρ(−1)
]

+O
(

1

(p−
2 )2

)]

, (2.25)

where ~∇z1
acts only on ψ̄, while ∇z1

will act on the objects to the right of the operator

Opol qq
χ′,χ (that is, earlier in z−) when we assemble everything together. In eq. (2.25) we have

also defined a new object ~M(λ, χ). The two-quark exchange contribution to the polarized

Wilson line/quark S-matrix operator, as depicted in figure 2, can be calculated in terms

of ~M(λ, χ) as [2]

V pol qq
x,y;χ′,χ ⊃ −

g2 p+
1

4 s

∫ ∞

−∞
dz−

1 d
2z1

∫ ∞

z−

1

dz−
2 d

2z2

∑

λ

Vx[∞, z−
2 ] δ2(x− z2) tb (2.26)

×
[−→
M

†
(λ, χ′) γ0 ψ(z−

2 , z2)

]

1
√

1 + (i∂−
z2/P

−
2 )

U ba
z2

[z−
2 , z

−
1 ] δ2(z2 − z1)

× 1
√

1 + (i∂−
z1/P

−
2 )

[

ψ̄(z−
1 , z1)

←−
M(λ, χ)

]

ta Vy[z−
1 ,−∞] δ2(y − z1),
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where s = p+
1 P

−
2 with the quark in the target carrying large ‘plus’ momentum component

p+
1 . The adjoint light-cone Wilson line U is defined analogously to the fundamental one in

eq. (2.3),

Ux[x−
f , x

−
i ] = P exp

[

ig

2

∫ x−

f

x−

i

dx−A+(0+, x−, x)

]

, (2.27)

with Aµ =
∑

aA
a µ T a and with the adjoint SU(Nc) generators T a defined

by (T a)bc = −ifabc.

Employing eq. (2.25) in eq. (2.26) and comparing the result to eq. (2.7), yields, after

some algebra,

Opol qq
χ′,χ (z−

2 , z
−
1 ; z2, z1) (2.28)

= − g2 p+
1

8 s
tb ψβ(z−

2 , z2)

[

1− i p+
1 ∂

−
z2

2s

]

U ba
z2

[z−
2 , z

−
1 ] δ2(z2 − z1)

[

1− i p+
1 ∂

−
z1

2s

]

×
{

γ+ δχ,χ′ + γ+ γ5 δχ,−χ′ − 2mp+
1

s

[

δχ,χ′ + δχ,−χ′ i γ1 γ2
]

+
p+

1

2s

[

(1−γ5)
(

[iγ2 + γ1][iS · ∂z2
+ S × ∂z2

] + [iγ2 − γ1][iS · ∂z1
− S × ∂z1

]
)

− χχ′(1+γ5)
(

[iγ2 − γ1][iS · ∂z2
− S × ∂z2

] + [iγ2 + γ1][iS · ∂z1
+ S × ∂z1

]
)

− χ′ (1−γ5)
(

(1 + iγ1γ2)[iS · ~∂z2
+ S × ~∂z2

] + (1− iγ1γ2)[iS · ~∂z1
+ S × ~∂z1

]
)

+ χ (1+γ5)
(

(1− iγ1γ2)[iS · ~∂z2
− S × ~∂z2

] + (1 + iγ1γ2)[iS · ~∂z1
− S × ~∂z1

]
)]

}

αβ

× ψ̄α(z−
1 , z1) ta +O

(

1

s3

)

.

Here the partial derivatives ∂z1
and ∂z2

are acting on U ba
z2

[z−
2 , z

−
1 ] δ2(z2−z1) only, while the

partial derivatives with arrows, ~∂z1
and ~∂z2

, are only acting on ψ̄(z−
1 , z1) and ψ(z−

2 , z2),

respectively (as indicated by the direction of the arrows). Additionally, α, β = 1, 2, 3, 4 are

the Dirac spinor indices.

When comparing eq. (2.28) to eq. (16) in [2] one has to take into account a different

definition of the light-cone coordinates (2.1) used here and that now we do not put p
2

= 0:

even then, eq. (2.28) differs from eq. (16) in [2] by several minus signs. In addition,

eq. (16) in [2] was partially projected onto χ = χ′, with some transverse polarization-

independent terms discarded, as not contributing to transversity, calculating which was

the main goal of [2]. Hence it is difficult to fully compare eq. (2.28) to eq. (16) in [2].

However, the transverse spin-dependent parts (∼ χδχ,χ′) of the two expressions are the

same: we, therefore, confirm the polarized Wilson line operator used in the transversity

calculation of [2].

The next step is to rewrite the expression (2.28), derived in the A− = 0 gauge, in a

gauge-covariant form, similar to eq. (2.20). Following [2], this is easily accomplished by

“promoting” the partial derivatives into covariant derivatives, except now the derivatives

acting on U ba
z2

[z−
2 , z

−
1 ] δ2(z2 − z1) will become adjoint covariant derivatives. (In the A− =
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0 gauge, the Ai field of the target is energy-suppressed: therefore, replacing transverse

derivatives in eq. (2.28) by covariant derivatives constitutes adding sub-sub-sub-eikonal

corrections and is allowed by the accuracy of our sub-sub-eikonal approximation.) We

thus write

Opol qq
χ′,χ (z−

2 , z
−
1 ; z2, z1) = − g2 p+

1

8 s
tb ψβ(z−

2 , z2)

[

δb′b′′ − i p+
1 Db′b′′−

z2

2s

]

× U b′′a′′

z2
[z−

2 , z
−
1 ] δ2(z2 − z1)

[

δa′′a′ − i p+
1 Da′′a′−

z1

2s

]

×
{

γ+ δχ,χ′ δa′a δbb′

+ γ+ γ5 δχ,−χ′ δa′a δbb′

− 2mp+
1

s

[

δχ,χ′ + δχ,−χ′ i γ1 γ2
]

δa′a δbb′

+
p+

1

2s

[

(1− γ5)
(

[iγ2 + γ1][iS · ~D
bb′

z2
+ S × ~D

bb′

z2
] δa′a

+ [iγ2 − γ1][iS · D
a′a
z1
− S × D

a′a
z1

] δbb′
)

− χχ′(1 + γ5)
(

[iγ2 − γ1][iS · ~D
bb′

z2
− S × ~D

bb′

z2
] δa′a

+ [iγ2 + γ1][iS · D
a′a
z1

+ S × D
a′a
z1

]δbb′
)

− χ′ (1− γ5)
(

(1 + iγ1γ2)
[

iS · ~Dz2
+ S × ~Dz2

]

+ (1− iγ1γ2)
[

iS ·Dz1
+ S ×Dz1

]

)

δa′a δbb′

+ χ (1 + γ5)
(

(1− iγ1γ2)
[

iS · ~Dz2
− S × ~Dz2

]

+ (1 + iγ1γ2)
[

iS ·Dz1
− S ×Dz1

]

)

δa′a δbb′
]

}

αβ

× ψ̄α(z−
1 , z1) ta +O

(

1

s3

)

(2.29)

with Di
z1

= ∂i
z1

+ igAi(z−
1 , z1) and ~D

i

z2
= ~∂

i

z2
− igAi(z−

2 , z2) acting on spinors ψ̄ and ψ with

the color matrix in Ai inserted between ψ̄αt
a and between tb ψβ , respectively, while ~D

ab

z2
=

~∂z2
δab +gfacbAc(z−

2 , z2) and D
ab
z1

= ∂z1
δab−gfacbAc(z−

1 , z1) both act on U ba
z2

[z−
2 , z

−
1 ] δ2(z2−

z1). The adjoint covariant derivatives Db′b′′−
z2

and Da′′a′−
z1

act on everything to their right

(with Dab−
z = ∂−

z δ
ab − gfacbAc−).

Employing

1 = δχ,χ′ + δχ,−χ′ , χ χ′ = δχ,χ′ − δχ,−χ′ ,

χ = χδχ,χ′ + χδχ,−χ′ , χ′ = χδχ,χ′ − χδχ,−χ′ , (2.30)

we recast eq. (2.29) as

Opol qq
χ′,χ (z−

2 , z
−
1 ; z2, z1)

= − g2 p+
1

8 s
tb ψβ(z−

2 , z2)

[

δb′b′′ − i p+
1 Db′b′′−

z2

2s

]

U b′′a′′

z2
[z−

2 , z
−
1 ] δ2(z2 − z1) (2.31)
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×
[

δa′′a′ − i p+
1 Da′′a′−

z1

2s

]

{

δχ,χ′

[

γ+ δa′a δbb′ − 2mp+
1

s
δa′a δbb′

+
p+

1

s

(

(γ1 − iγ5γ2) [iS · ~D
bb′

z2
+ S × ~D

bb′

z2
] δa′a

− (γ1 + iγ5γ2) [iS · D
a′a
z1

+ S × D
a′a
z1

]δbb′
)

]

+ δχ,−χ′

[

γ+ γ5 δa′a δbb′ − 2mp+
1

s
i γ1 γ2 δa′a δbb′

+
p+

1

s

(

(iγ2 − γ5γ1) [iS · ~D
bb′

z2
+ S × ~D

bb′

z2
] δa′a

+ (iγ2 + γ5γ1) [iS · D
a′a
z1

+ S × D
a′a
z1

]δbb′
)

]

+ χδχ,χ′

p+
1

s
δa′a δbb′

[ [

iγ5S · ~Dz2
− S × ~Dz2

]

(1− iγ5γ1γ2)

+
[

iγ5S ·Dz1
− S ×Dz1

]

(1 + iγ5γ1γ2)
]

+ χδχ,−χ′

p+
1

s
δa′a δbb′

[ [

iS · ~Dz2
− γ5S × ~Dz2

]

(1− iγ5γ1γ2)

+
[

iS ·Dz1
− γ5S ×Dz1

]

(1 + iγ5γ1γ2)
]

}

αβ

× ψ̄α(z−
1 , z1) ta +O

(

1

s3

)

.

Once again let us stress that the transverse spin-dependent χδχ,χ′ term in eq. (2.31) is

identical to that in eq. (22) of [2], if one takes into account the difference between the light

cone coordinate definitions in that reference and here.

Inserting the operator Opol qq
χ′,χ once or twice into the quark S-matrix we obtain

V pol qq
x,y;χ′,χ =

∫ ∞

−∞
dz−

1 d
2z1

∫ ∞

z−

1

dz−
2 d

2z2 Vx[∞, z−
2 ] δ2(x− z2)

×Opol qq
χ′,χ (z−

2 , z
−
1 ; z2, z1)Vy[z−

1 ,−∞] δ2(y − z1) (2.32)

+

∫ ∞

−∞
dz−

1 d
2z1

∫ ∞

z−

1

dz−
2 d

2z2

∫ ∞

z−

2

dz−
3 d

2z3

∫ ∞

z−

3

dz−
4 d

2z4

×
∑

χ′′=±1

Vx[∞, z−
4 ] δ2(x− z4)Opol qq

χ′,χ′′ (z−
4 , z

−
3 ; z4, z3)

× Vz3
[z−

3 , z
−
2 ] δ2(z3 − z2)Opol qq

χ′′,χ (z−
2 , z

−
1 ; z2, z1)Vy[z−

1 ,−∞] δ2(y − z1),

up to and including the sub-sub-eikonal order. The corresponding expression in the helicity

basis can be constructed with the help of table 1.

Since all the derivatives in Opol qq
χ′,χ are acting only on the objects within that opera-

tor, and not on the functions multiplying it, we can integrate out most of the transverse
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Figure 3. The diagram representing the quark, anti-quark and sub-eikonal gluon field insertions

contributing to the quark S-matrix at the sub-sub-eikonal order.

coordinates in eq. (2.32), writing

V pol qq
x,y;χ′,χ =

∫ ∞

−∞
dz−

1

∫ ∞

z−

1

dz−
2 Vx[∞, z−

2 ]Opol qq
χ′,χ (z−

2 , z
−
1 ;x, y)Vy[z−

1 ,−∞] (2.33)

+

∫ ∞

−∞
dz−

1

∫ ∞

z−

1

dz−
2

∫ ∞

z−

2

dz−
3

∫ ∞

z−

3

dz−
4 d

2z
∑

χ′′=±1

Vx[∞, z−
4 ]Opol qq

χ′,χ′′ (z−
4 , z

−
3 ;x, z)

× Vz[z−
3 , z

−
2 ]Opol qq

χ′′,χ (z−
2 , z

−
1 ; z, y)Vy[z−

1 ,−∞].

2.3 Quark and gluon insertion operator

It is tempting, at this point, to assume that the full sub-sub-eikonal polarized Wilson line

is obtained by simply adding equations (2.20) and (2.31),

Opol G
χ′,χ +Opol qq

χ′,χ , (2.34)

and inserting the sum of the two operators once or twice into the Wilson lines, similar to

eqs. (2.21) and (2.33), keeping only the terms up to and including the sub-sub-eikonal order.

This is almost correct: the two contributions which would be missed by such a strategy

are depicted in figure 3 (see also diagram D in figure 7 of [2]) and figure 4. The first

operator, coming from figure 3, combines an exchange of the quark and anti-quark, with a

sub-eikonal gluon exchange: together this gives a sub-sub-eikonal contribution. The eikonal

gluon exchanges between two quark exchanges are already included in figure 2 and in the

corresponding operator (2.31) via the adjoint Wilson line U .

The quark exchanges have been found above in eq. (2.25). The sub-eikonal gluon

exchange with the quark projectile can be obtained from eq. (2.20) above. However, we

need the expression for the gluon projectile. A calculation along the above lines yields

the following sub-eikonal gluon insertion contribution, along with the sub-eikonal phase

(cf. [1, 39, 41]):

i

2p−
2

[

2g λ δλ,λ′

(

F12
)ba
− δλ,λ′

~D
bc ·Dca

]

. (2.35)

Here F12 =
∑

aFa 12 T a is the gluon field strength tensor in the adjoint representation,

while the adjoint covariant derivatives ~D
ab

= ~∇ δab + gfacbAc and D
ab = ∇ δab − gfacbAc

act on the operators to be added to the left and to the right of the operator (2.35).

Including the sub-eikonal quark exchange contributions we arrive at the following

gauge-covariant contribution of the diagrams like that shown in figure 3 to the quark
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Figure 4. The diagram for a double quark exchange following the double anti-quark exchange,

with two quark field operators or two anti-quark field operators inserted instead of a quark and

anti-quark field operator pair from figure 2 inserted twice.

S-matrix at the sub-sub-eikonal level:

V pol qGq
x,y;χ′,χ =

ig2(p+
1 )2

16s2

∫ ∞

−∞
dz−

1 d
2z1

∫ ∞

z−

1

dz−
2 d

2z2

∫ ∞

z−

2

dz−
3 d

2z3 Vx[∞, z−
3 ] δ2(x− z3)

× tb ψβ(z−
3 , z3)U b′b

z2
[z−

3 , z
−
2 ] δ2(z2 − z3)

×
{

δχ,χ′

[

γ+ ~D
bc

z2
·Dca

z2
+ γ+γ5 2g

(

F12(z2)
)ba
]

+ δχ,−χ′

[

γ+γ5 ~D
bc

z2
·Dca

z2
+ γ+ 2g

(

F12(z2)
)ba
]}

αβ

× Uaa′

z2
[z−

2 , z
−
1 ] δ2(z2 − z1) ψ̄α(z−

1 , z1) ta
′

Vy[z−
1 ,−∞] δ2(y − z1). (2.36)

Since the (covariant) derivatives in eq. (2.36) are only acting on z2, we can integrate out

z1 and z3, obtaining

V pol qGq
x,y;χ′,χ =

ig2(p+
1 )2

16s2

∫ ∞

−∞
dz−

1

∫ ∞

z−

1

dz−
2

∫ ∞

z−

2

dz−
3 d

2z2 Vx[∞, z−
3 ] tb ψβ(z−

3 , x) (2.37)

× U b′b
x [z−

3 , z
−
2 ] δ2(z2 − x)

{

δχ,χ′

[

γ+ ~D
bc

z2
·Dca

z2
+ γ+γ5 2g

(

F12(z2)
)ba ]

+ δχ,−χ′

[

γ+γ5 ~D
bc

z2
·Dca

z2
+ γ+ 2g

(

F12(z2)
)ba ]}

αβ

× Uaa′

y [z−
2 , z

−
1 ] δ2(z2 − y) ψ̄α(z−

1 , y) ta
′

Vy[z−
1 ,−∞]

≡
∫ ∞

−∞
dz−

1

∫ ∞

z−

1

dz−
2

∫ ∞

z−

2

dz−
3 d

2z2 Vx[∞, z−
3 ] δ2(z2 − x)

×Opol qGq
χ′,χ (z−

1 , z
−
2 , z

−
3 ;x, z2, y)δ2(z2 − y)Vy[z−

1 ,−∞],

where in the last line we have defined the operator Opol qGq
χ′,χ for the future use.

2.4 Double quark insertion operator

The second operator we need to add, shown in figure 4, is similar to a double insertion

of the sub-eikonal part of the quark-anti-quark exchange operator in eq. (2.31), as given

by the second line of eq. (2.33), but with the quark and anti-quark fields interchanged

in the middle. That is, instead of two quark-anti-quark field operator pairs (ψ̄ψ)2, in

figure 4 we have a pair of quark field operators inserted after a pair of anti-quark field

operators, ψψψ̄ψ̄, with the appropriate fundamental and adjoint light-cone Wilson lines
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inserted between the operators. Taking only the sub-eikonal contributions from each pair

of (anti-)quark exchanges, a similar calculation to that which yielded eq. (2.31) now gives

V pol qqq̄q̄
x,y;χ′,χ = − g4(p+

1 )2

64s2

∫ ∞

−∞
dz−

1

∫ ∞

z−

1

dz−
2

∫ ∞

z−

2

dz−
3

∫ ∞

z−

3

dz−
4 Vx[∞, z−

4 ]tdψδ(z−
4 , x)

× Udc
x [z−

4 , z
−
3 ]ψ̄β(z−

2 , x)tbV †
x [z−

3 , z
−
2 ] (2.38)

×
{

δχ,χ′

[ (

γ+
)

αδ

(

γ+
)

βγ
−
(

γ+ γ5
)

αδ

(

γ+ γ5
)

βγ

]

+ δχ,−χ′

[ (

γ+
)

αδ

(

γ+ γ5
)

βγ
−
(

γ+ γ5
)

αδ

(

γ+
)

βγ

]}

× tcψγ(z−
3 , x)U ba

x [z−
2 , z

−
1 ]ψ̄α(z−

1 , x)taVy[z−
1 ,−∞]δ2(x− y)

≡
∫ ∞

−∞
dz−

1

∫ ∞

z−

1

dz−
2

∫ ∞

z−

2

dz−
3

∫ ∞

z−

3

dz−
4 Vx[∞, z−

4 ]Opol qqq̄q̄
χ′,χ (z−

4 , z
−
3 , z

−
2 , z

−
1 ;x)

× Vy[z−
1 ,−∞]δ2(x− y).

Again, in the last line of eq. (2.38) we defined the new operator Opol qqq̄q̄
χ′,χ , for compactness

of the future notation.

2.5 Full sub-sub-eikonal fundamental polarized Wilson line

We can now assemble all the pieces of the quark S-matrix together to construct the

full fundamental polarized Wilson line to the sub-sub-eikonal order. We need to add

eqs. (2.21), (2.33), (2.37), and (2.38) along with the “interference terms” for the insertions

of the Opol G
χ′,χ and Opol qq

χ′,χ operators. We arrive at

Vx,y;χ′,χ =Vx δ
2(x− y) δχ,χ′ +

∫ ∞

−∞
dz− d2z Vx[∞, z−] δ2(x− z)Opol G

χ′,χ (z−, z)

× Vy[z−,−∞] δ2(y − z) (2.39)

+

∫ ∞

−∞
dz−

1 d
2z1

∫ ∞

z−

1

dz−
2 d

2z2

∑

χ′′=±1

Vx[∞, z−
2 ] δ2(x− z2)Opol G

χ′,χ′′ (z
−
2 , z2)

× Vz1
[z−

2 , z
−
1 ] δ2(z2 − z1)Opol G

χ′′,χ (z−
1 , z1)Vy[z−

1 ,−∞] δ2(y − z1)

+

∫ ∞

−∞
dz−

1

∫ ∞

z−

1

dz−
2 Vx[∞, z−

2 ]Opol qq
χ′,χ (z−

2 , z
−
1 ;x, y)Vy[z−

1 ,−∞]

+

∫ ∞

−∞
dz−

1

∫ ∞

z−

1

dz−
2

∫ ∞

z−

2

dz−
3

∫ ∞

z−

3

dz−
4 d

2z
∑

χ′′=±1

Vx[∞, z−
4 ]Opol qq

χ′,χ′′ (z−
4 , z

−
3 ;x, z)

× Vz[z−
3 , z

−
2 ]Opol qq

χ′′,χ (z−
2 , z

−
1 ; z, y)Vy[z−

1 ,−∞]

+

∫ ∞

−∞
dz−

1

∫ ∞

z−

1

dz−
2

∫ ∞

z−

2

dz−
3

∫ ∞

z−

3

dz−
4 Vx[∞, z−

4 ]Opol qqq̄q̄
χ′,χ (z−

4 , z
−
3 , z

−
2 , z

−
1 ;x)

× Vy[z−
1 ,−∞]δ2(x− y)
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+

∫ ∞

−∞
dz−

1

∫ ∞

z−

1

dz−
2

∫ ∞

z−

2

dz−
3 d

2z Vx[∞, z−
3 ] δ2(z − x)Opol qGq

χ′,χ (z−
1 , z

−
2 , z

−
3 ;x, z, y)

× δ2(z − y)Vy[z−
1 ,−∞]

+

∫ ∞

−∞
dz−

1

∫ ∞

z−

1

dz−
2

∫ ∞

z−

2

dz−
3 d

2z
∑

χ′′=±1

Vx[∞, z−
3 ]

× δ2(x− z)Opol G
χ′,χ′′ (z

−
3 ; z)Vz[z−

3 , z
−
2 ]Opol qq

χ′′,χ (z−
2 , z

−
1 ; z, y)Vy[z−

1 ,−∞]

+

∫ ∞

−∞
dz−

1

∫ ∞

z−

1

dz−
2

∫ ∞

z−

2

dz−
3 d

2z
∑

χ′′=±1

Vx[∞, z−
3 ]Opol qq

χ′,χ′′ (z−
3 , z

−
2 ;x, z)

× Vz[z−
2 , z

−
1 ]Opol G

χ′′,χ (z−
1 ; z)Vy[z−

1 ,−∞] δ2(y − z)

with the operators Opol G
χ′,χ and Opol qq

χ′,χ given by equations (2.20) and (2.31), respectively.

Note again, that the corresponding expression in the helicity basis can be constructed with

the help of table 1.

Equation (2.39) is the main formal result of this work. It gives the quark S-matrix

for the scattering on an arbitrary background quark and gluon fields up to and including

the sub-sub-eikonal order. This result can be used to construct small-x asymptotics of

all leading-twist quark TMDs, and, probably, of some higher-twist quark distributions as

well. Below we will apply (a part of) it to find the small-x asymptotics of the quark

Sivers function.

3 Quark Sivers function at the eikonal level

3.1 Quark Sivers function at small x: a general expression

Having constructed the full polarized Wilson line operator, we can now investigate the

small-x evolution of the quark Sivers function. The operator definition for the unpolarized

quark TMDs for quarks with longitudinal momentum fraction x and transverse momentum

k is (as in [79])

f q
1 (x, k2

T )− k × SP

MP
f⊥ q

1 T (x, k2
T ) =

∫

dr− d2r⊥
2 (2π)3

eik·r〈P, S|ψ̄(0)U [0, r]
γ+

2
ψ(r)|P, S〉, (3.1)

with f q
1 the unintegrated quark distribution, f⊥ q

1 T the quark Sivers function, MP the proton

mass, SP the proton spin, kT = |k|, and U [0, r] the ‘staple’ gauge link, which we will take

here to be the future pointing link used in SIDIS. We work in A− = 0 light cone gauge

of the projectile so that the gauge link is just a product of two light-cone Wilson lines,

U [0, r] = V0[0,∞]Vr[∞, r−].

We employ the standard definition of the quark Sivers TMD in eq. (3.1). Alternatively,

we could calculate the corresponding spin asymmetry ASivers
UT in the SIDIS process at small-

x and extract the Sivers TMD by matching that asymmetry onto the TMD factorization

expression. In the case of helicity TMDs, the matching on SIDIS was done in [24], leading

to the result equivalent to that obtained later in [1] by taking the standard TMD definition
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Figure 5. Diagram classes of [1] contributing to a calculation of a quark TMD. The double lines

represent the fundamental Wilson lines, the shaded rectangles represent the proton shockwave, the

black circles in B represent the sub-eikonal scattering which brings in transverse spin dependence,

and the thick vertical line represents the final state cut.

and simplifying it at small x. Since the steps in the calculations performed in [24] and [1]

are rather general (see also [23]), here we assume that they apply to all TMDs, including

the Sivers function, such that the TMD defined in eq. (3.1) would appear in the physical

processes, such as SIDIS, even at small x.

Using the saturation/CGC formalism, we can rewrite the operator using semi-classical

averaging in the proton’s wave function as (see [1] and appendix A of [37])

f q
1 (x, k2

T )− k × SP

MP
f⊥ q

1 T (x, k2
T ) =

2p+
1

2(2π)3

∑

X

∫

dξ− d2ξ⊥ dζ− d2ζ⊥ e
ik·(ζ−ξ)

[γ+

2

]

αβ

×
〈

ψ̄α(ξ)Vξ[ξ−,∞]|X〉〈X|Vζ [∞, ζ−]ψβ(ζ)
〉

, (3.2)

where we sum over a complete set of partonic states |X〉, the large angle brackets denote

averaging over the proton’s wave function [37, 88–93], and we have semi-infinite Wilson

lines connecting the positions of the quark field operators to infinity.

We can take the sum over the intermediate states to be a final state cut, and represent

the possible contributions diagrammatically in figure 5 as in [1] at the lowest perturbative

order (order-αs). The contributions are organized by whether ζ− and ξ− are positive,

negative, or zero, with x− = 0 being the position of the shock wave (assumed to be very

thin in the x− direction). For the left-right asymmetric diagrams B, E, and F, their mirror

images need to be added: those are not shown in figure 5. Each diagram class is represented

only by one diagram in figure 5. Note that the diagrams in class C also include interactions
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with the gluons coming from the shock wave and a long-lived anti-quark produced in the

final state (see figure 6 below): such diagrams are also not shown for brevity in figure 5.

At the eikonal order, only the diagrams B, C and D contribute both to the unpolarized

quark TMD and to the Sivers function (see e.g. the unpolarized quark TMD f q
1 (x, k2

T )

calculations in [23, 94]). The diagram D does not include any interaction with the target:

hence it does not depend on the spin of the target, and cannot contribute to the Sivers

function. We are left with the diagrams B and C at the eikonal level, which are shown in

figure 6 in more detail below.

At the sub-eikonal order, the contributing diagrams for helicity TMD was found in [1]

to be the class B diagrams, which is shown in more detail in figure 8 below. At that

order the diagrams of classes C, D, and F do not contribute to the TMDs dependent on

the target proton polarizations, such as helicity, transversity, and the Sivers function at

hand, as argued in [1]: for class C the sub-eikonal target interactions with the anti-quark

line cancel when the quark (or gluon) exchanges are taken across the final state cut, the

diagram D has no spin-dependent contributions since it contains no interaction with the

target shockwave, and the diagrams in class F are further energy suppressed since the

gluon emission and absorption take place inside the shockwave. The usual leading-order

diagram calculation for the Sivers function [15, 16, 19, 79, 95, 96] comes from diagrams of

class A, taking the interference between a re-scattering inside the shockwave and a purely

tree level scattering to generate the phase needed to make the transverse spin dependence

real. The resulting lowest-order Sivers function is sub-sub-eikonal, f⊥ q
1 T (x, k2

T ) ∼ x [79],

and will not be considered in our calculations below, which are done at the eikonal and

sub-eikonal orders. Such a lowest-order diagram can be evolved by adding soft gluon

emissions to both class A diagrams and class E diagrams, as depicted in figure 5. However,

in appendix A of [1] it was shown that the contributions of graphs A and E to the double

logarithmic approximation (DLA) evolution cancel at the sub-eikonal order. (The double

logarithmic approximation is defined as the re-summation of the parameter αs ln2(1/x) at

small x.) We conclude that the sub-sub-eikonal x-dependence of the lowest-order quark

Sivers function, f⊥ q
1 T (x, k2

T ) ∼ x, is unaffected by the evolution in the DLA, and persists

down to small x for the contributions to the Sivers function coming from the diagrams A

and E. However, such a sub-sub-eikonal contribution is much smaller than the eikonal and

sub-eikonal contributions of interest to us here and will not be considered further.

To summarize, in the eikonal calculations of the quark Sivers function we only need to

consider diagrams B and C, while for the sub-eikonal calculations we only need the diagram

B. We begin with the eikonal calculations of the diagrams B and C, depicted in figure 6 in

more detail.

We begin with the class B diagram in figure 6, where the light-cone Wilson line crosses

the shockwave from ζ to the final state to the left of the cut, but connects ξ to the final

state on the right side of the cut without crossing the shock wave, and is, hence, an identity

on the right of the cut. An antiquark with momentum k1 propagates from ζ through the

shockwave, undergoing an interaction at transverse position w, then propagating with

momentum k2 to the final state and connecting on the other side of the cut to ξ. Taking

the shockwave to be at light cone time x− = 0, the class B diagrams have ζ− < 0, ξ− > 0
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Figure 6. Diagrams of classes B and C with kinematics specified. In the diagram B the antiquark

propagates from ζ with momentum k1, undergoes a transverse spin-dependent interaction with the

proton target at the transverse position w, then propagates to ξ with momentum k2. In the diagram

C the anti-quark interacts with the shock wave again to the right of the cut, before arriving at the

point ξ with momentum k2.

(as in figure 6) or ζ− > 0, ξ− < 0 (in the conjugate diagrams of those like B from figure 6).

For the B-class diagrams the quark field operator at ζ is before the shockwave and the

anti-quark operator at ξ is after the shockwave on the other side of the cut, allowing us

to write the scattering as a dipole composed of a fully infinite Wilson lines connecting the

quark field operators at ξ and at ζ. To evaluate the diagram B we will need the quark

propagator through the shock wave [1],

ψ̄i
α(ξ) ψj

β(ζ) =

∫

d2w
d2k1 dk

−
1

(2π)3

d2k2

(2π)2
e

i
k2

1

2k
−

1

ζ−−i
k2

2

2k
−

1

ξ−+ik1·(w−ζ)+ik2·(ξ−w)
θ(k−

1 )

×
{[

/k1

2k−
1

]

[

(

V̂ †
w

)ji
]

[

/k2

2k−
1

]}

βα

∣

∣

∣

∣

∣

k−

2
=k−

1
,k2

1
=0,k2

2
=0

, (3.3)

where the interaction of the anti-quark with the shock wave is denoted by the Dirac and

color matrix
(

V̂ †
w

)ji
. Here α, β are the Dirac spinor indices, while i, j are the quark color

indices. For simplicity we assume that the anti-quark is massless, m = 0, since the light

quark mass is usually negligible in the Sivers function calculations.

Using the propagator (3.3) in eq. (3.2), putting Vξ[ξ−,∞] = 1, replacing Vζ [∞, ζ−]→
Vζ [∞,−∞] = Vζ , integrating over ξ, k2, ζ− and ξ−, and inserting spinor polarization

sums [1], we see that the diagram B and its complex conjugate give

B + c.c. =
2p+

1

2(2π)3

∑

q̄

∫ 0

−∞
dζ−

∫ ∞

0
dξ−

∫

d2ζ⊥ d2ξ⊥ e
ik·(ζ−ξ)

[

γ+

2

]

αβ

×
〈

ψ̄α(ξ)Vξ[ξ−,∞]|q̄〉〈q̄|Vζ [∞, ζ−]ψβ(ζ)
〉

+ c.c.

= − 2p+
1

2(2π)3

∫

d2ζ⊥d2w⊥
d2k1⊥ dk−

1

(2π)3
ei(k1+k)·(w−ζ)θ(k−

1 )
1

(xp+
1 k

−
1 +k2

1)(xp+
1 k

−
1 +k2)

×
∑

χ1,χ2

v̄χ2
(k2)

γ+

2
vχ1

(k1)
〈

T V ij
ζ v̄χ1

(k1)
(

V̂ †
w

)ji
vχ2

(k2)
〉

∣

∣

∣

∣

∣

k−

2
=k−

1
,k2

1
=0,k2

2
=0,k2=−k

+ c.c., (3.4)
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where c.c. denotes the complex conjugate terms and the intermediate state |X〉 became

an anti-quark state |q̄〉 as only an anti-quark is produced in the final state.

Using the ± reversed transverse Brodsky-Lepage spinors eq. (2.12) we evaluate the

matrix element for massless anti-quarks as

v̄χ2
(k2)

γ+

2
vχ1

(k1) ≈ 1
√

k−
1 k

−
2

[

δχ1,χ2
k1 · k2 − i δχ1,−χ2

k2 × k1

]

. (3.5)

For the eikonal calculation at hand we only need the Wilson line contribution to the

interaction of the anti-quark with the target. We, therefore, write

v̄χ1
(k1)

(

V̂ †
w

)

vχ2
(k2) = 2

√

k−
1 k

−
2 δχ1,χ2

V †
w + . . . (3.6)

with the ellipsis denoting the sub-eikonal terms and beyond. Note that the Sivers function

couples an unpolarized quark to the transverse polarization of the proton: hence we only

need the unpolarized quark interaction with the shock wave. This means we will only need

the δχ1,χ2
term on the right of eq. (3.6), even at the sub-eikonal order we consider below.

Employing eqs. (3.5) and (3.6) in eq. (3.4) and summing over transverse polarizations

χ1, χ2 we arrive at

B + c.c. =
4p+

1

(2π)3

∫

d2ζ⊥ d2w⊥
d2k1⊥ dk−

1

(2π)3
ei(k1+k)·(w−ζ)θ(k−

1 )

× k · k1

(xp+
1 k

−
1 + k2

1)(xp+
1 k

−
1 + k2)

〈

T tr
[

Vζ V
†

w

]

+ T̄ tr
[

Vζ V
†

w

] 〉

, (3.7)

where we have explicitly added in the complex conjugate term.

Diagram C from figure 6 can be calculated similarly, except all the interactions with

the anti-quark cancel to the left and to the right of the cut, such that one needs to use the

free anti-quark propagator, which can be obtained from eq. (3.3) by using
(

V̂ †
w

)ji
= γ− δij

in it. In the end one obtains

C =
4p+

1

(2π)3

∫

d2ζ⊥ d2ξ⊥
d2k1⊥ dk−

1

(2π)3
ei(k1+k)·(ξ−ζ)θ(k−

1 )
k2

1

(xp+
1 k

−
1 + k2

1)2

〈

tr
[

Vζ V
†

ξ

] 〉

. (3.8)

Combining eqs. (3.7) and (3.8), replacing ξ → w in the latter, we arrive at

[

f q
1 (x, k2

T )− k × SP

MP
f⊥ q

1 T (x, k2
T )

]

eikonal

=
4p+

1

(2π)3

∫

d2ζ⊥ d2w⊥
d2k1⊥ dk−

1

(2π)3
ei(k1+k)·(w−ζ)θ(k−

1 ) (3.9)

×
{

k · k1

(xp+
1 k

−
1 + k2

1)(xp+
1 k

−
1 + k2)

〈

T tr
[

Vζ V
†

w

]

+ T̄ tr
[

Vζ V
†

w

] 〉

+
k2

1

(xp+
1 k

−
1 + k2

1)2

〈

T tr
[

Vζ V
†

w

] 〉

}

.

We have also inserted a time-ordering sign into the last correlator, as justified in [1] (see

also [97]).
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To extract the Sivers function, which is odd under time reversal, from eq. (3.9) we

need the part of its right-hand side which changes sign under k → −k. A quick inspection,

along with taking k1 → −k1, ζ ↔ w on the right-hand side of the expression, shows that

the part of the correlators in eq. (3.9) contributing to the Sivers function is an odd function

under ζ ↔ w. One can write [56, 58]

1

Nc

〈

T tr
[

VζV
†

w

]〉

= Sζw + iOζw, (3.10)

with Sζw the ζ ↔ w-symmetric, C-even Pomeron exchange operator and Oζw the ζ ↔ w-

antisymmetric, C-odd odderon. The combination we have in eq. (3.9) is

〈

T tr
[

VζV
†

w

]

+ T̄ tr
[

VζV
†

w

]〉

= 2Nc

(

Sζw + iOζw

)

. (3.11)

The odderon amplitudes being antisymmetric under the ζ ↔ w exchange, Oζw = −Owζ ,

are the only ones contributing to the Sivers function. We thus write

−k × SP

MP
f⊥ q

1 T (x, k2
T )
∣

∣

∣

eikonal
=

4iNc p
+
1

(2π)3

∫

d2ζ⊥ d2w⊥
d2k1⊥ dk−

1

(2π)3
ei(k1+k)·(w−ζ)θ(k−

1 ) (3.12)

×
[

2 k · k1

(xp+
1 k

−
1 + k2

1)(xp+
1 k

−
1 + k2)

+
k2

1

(xp+
1 k

−
1 + k2

1)2

]

Oζw.

This is our main result for the eikonal-order quark Sivers function at small x.

The odderon is a correlator of eikonal Wilson lines, so the small-x Sivers function we

have found is proportional to 1/x, and should actually grow as we decrease x. Moreover,

small-x evolution likely leaves this growth unchanged, as the odderon is known to have an

intercept equal to zero at the leading [54, 56, 58] and next-to-leading [74] orders in αs (see

also [53] for an earlier solution with a smaller intercept), at all orders in αs in the large Nc

limit [75, 98], and at strong coupling in N = 4 supersymmetric Yang-Mills theory [76–78].

Similar conclusion of the odderon dominance in the small-x quark Sivers function was

reached in [3] using the expression for the small-x unpolarized quark TMD (unintegrated

quark distribution) from [94, 99] (see also [23, 100]). While qualitatively our result and

that in [3] agree on the odderon-driven quark Sivers TMD, a more detailed comparison

between the two calculations is left for future work. The importance of C-odd correlators

in the Sivers asymmetry was also pointed out in [101, 102].

3.2 Quark Sivers function at the eikonal level: the spin-dependent odderon

contribution

We have shown that the eikonal small-x evolution for the Sivers function in the operator

treatment comes from the spin-dependent odderon. But we have not established that the

odderon contribution is nonzero. In [5] it was shown that the odderon survives phase

space integration if the proton has an asymmetric parton distribution using a diquark

model calculation. Here we will show that the odderon is able to generate a nonzero Sivers

function in the same diquark model of the proton. The Lagrangian for this model has a

spinor field ψP for the (point-like) proton, the usual spinor fields for the quarks ψq, and
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Figure 7. Diagram for the odderon exchange amplitude with the quark-diquark model of the

proton, where all possible connections of the three gluons to the quark (solid line at the very

bottom) and diquark (dashed line) and to the ζ, w dipole at the top should be summed over and

the gluons are in the symmetric dabc color configuration.

a complex scalar diquark field ϕ which has mass M roughly equal to the proton mass

M ≈MP and the color quantum numbers of an antiquark. The interaction term between

these fields is a Yukawa coupling Lint = Gϕ∗ i ψ̄i
q ψP +c.c., with effective coupling constant

G for the splitting of the proton into a quark and a diquark.

We begin by constructing the odderon amplitude Oζw to be used in eq. (3.12). At the

lowest order it is illustrated in figure 7, with the proton target splitting into a quark (solid

line) and diquark (dashed line) in order to interact with the odderon (the 3-gluon exchange

at the lowest order). The odderon comes from summing over all possible connections of the

three gluons in figure 7, where the polarized ‘target’ proton (thicker solid line) splits into

a dipole consisting of a quark and diquark, which exchanges three gluons in the symmetric

color configuration dabc = 2Tr[ta, {tb, tc}] with the ‘projectile’ quark-antiquark dipole. We

take the ‘target’ quark to be at transverse position 0 and the diquark at r, as shown in

figure 7. We want the coupling of the odderon to the transverse spin of the proton, so we

need to insert the odderon exchange between the light-cone wave functions of the proton

splitting into the quark-diquark pair, and the same wave function, but complex conjugate,

describing the merger of the pair back into the proton. The light-cone wave function in the

transverse spin basis for a proton at transverse position u and with transverse polarization

X, with the quark carrying the fraction γ of the proton p+
1 momentum and the transverse

polarization X ′ (as labeled in figure 7), is [43]

ψX,X′(r, 0, u, γ) =
Gm̃γ

√
γ(1− γ)

2π
δ(2) (r − u− γ r) (3.13)

×
[

δX,X′K0(m̃γr⊥)− iXri

r⊥
K1(m̃γr⊥)(iδX,X′δi2 − δX,−X′δi1)

]

,

where m̃2
γ = (1− γ)m+ γM2 − γ(1− γ)M2

P ≈ γ2M2
P in the limit of massless light quarks

(cf., e.g., [79]). The odderon exchange amplitude in the dipole-dipole scattering depicted

in figure 7 is [21, 56]

Ôζ,w = c0 α
3
s ln3

(

|ζ − 0| |w − r|
|w − 0| |ζ − r|

)

(3.14)
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with [21, 58–60]

c0 = −(N2
c − 4)(N2

c − 1)

4N3
c

, (3.15)

One obtains the spin-dependent odderon amplitude Oζw by convoluting a square of

the wave function (3.13) with the three-gluon exchange amplitude (3.14). Since the am-

plitude (3.14) is odd under the r ↔ 0 interchange, only the ∼ r part of the wave function

squared contributes: this is exactly the part of the wave function dependent on the proton

polarization X [43]. Putting the wave function squared and the amplitude (3.14) together

we have

Oζw =

∫ 1

0

dγ

4π γ (1− γ)

∫

d2u⊥ d2v⊥ d2r⊥
∑

X′

ψX,X′(r, 0, u, γ) Ôζ,w ψ
∗
X,X′(r, 0, v, γ)

=

∫ 1

0
dγ

G2 m̃2
γ (1− γ)

(2π)3

∫

d2r⊥
X S × r

r⊥
K0(m̃γr⊥)K1(m̃γr⊥) c0 α

3
s ln3

(

ζ⊥|w − r|
w⊥|ζ − r|

)

.

(3.16)

Substituting the odderon amplitude (3.16) into eq. (3.12) we get

− k × SP

MP
f⊥ q

1 T (x, k2
T )
∣

∣

∣

eikonal

=

∫ 1

0
dγ

4iNcp
+
1 G

2(1− γ)m̃2
γc0α

3
s

(2π)6

∫

d2r⊥
SP × r

r⊥
K0(m̃γr⊥)K1(m̃γr⊥)

×
∫

d2ζ⊥ d2w⊥

∫

d2k1⊥ dk−
1

(2π)3
θ(k−

1 )ei(k1+k)·(w−ζ) ln3

(

ζ⊥|w − r|
w⊥|ζ − r|

)

×
[

2 k · k1

(xp+
1 k

−
1 + k2

1)(xp+
1 k

−
1 + k2)

+
k2

1

(xp+
1 k

−
1 + k2

1)2

]

, (3.17)

where the factor of SP comes from the spin quantization axis S multiplied by the proton

polarization X. For simplicity we assume that the r-integral is dominated by the perturba-

tively short distances, m̃γr⊥ ≪ 1, such that we can expand the modified Bessel functions

to the lowest non-trivial order and obtain

− k × SP

MP
f⊥ q

1 T (x, k2
T )
∣

∣

∣

eikonal
(3.18)

=
1

x

∫ 1

0
dγ

4iNcG
2(1− γ)m̃γc0α

3
s

(2π)7

∫

d2r⊥
SP × r

r2
ln

(

1

r⊥m̃γ

)∫

d2(ζ − w)⊥

×
∫

d2k1⊥
(2π)2

ei(k1+k)·(w−ζ)

[

2 k · k1

k2 − k2
1

ln
k2

k2
1

+ 1

]

∫

d2
(

ζ + w

2

)

ln3

(

ζ⊥|w − r|
w⊥|ζ − r|

)

.

In arriving at eq. (3.18) we have also integrated over k−
1 .
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The integral over the impact parameter (ζ + w)/2 can be rewritten as a momentum-

space integral,

∫

d2
(

ζ + w

2

)

ln3

(

ζ⊥|w − r|
w⊥|ζ − r|

)

= − 1

2π

∫

d2l1⊥ d2l2⊥
l21 l

2
2 (l1 + l2)2

×
[

eil1·x − e−il1·x + eil2·x − e−il2·x − ei(l1+l2)·x + e−i(l1+l2)·x
]

×
[

eil1·r − e−il1·r + eil2·r − e−il2·r − ei(l1+l2)·r + e−i(l1+l2)·r
]

, (3.19)

where we have defined x ≡ ζ − w. Using eq. (3.19) in eq. (3.18) yields

− k × SP

MP
f⊥ q

1 T (x, k2
T )
∣

∣

∣

eikonal
(3.20)

= − 1

x

∫ 1

0
dγ

4iNcG
2(1− γ)m̃γc0α

3
s

(2π)8

∫

d2r⊥
SP × r

r2
ln

(

1

r⊥m̃γ

)∫

d2x⊥

×
∫

d2k1⊥
(2π)2

ei(k1+k)·x

[

2 k · k1

k2 − k2
1

ln
k2

k2
1

+ 1

]

∫

d2l1⊥ d2l2⊥
l21 l

2
2 (l1 + l2)2

×
[

eil1·x − e−il1·x + eil2·x − e−il2·x − ei(l1+l2)·x + e−i(l1+l2)·x
]

×
[

eil1·r − e−il1·r + eil2·r − e−il2·r − ei(l1+l2)·r + e−i(l1+l2)·r
]

.

Next we argue that ln(1/|r|m̃γ) is a slowly-varying function compared to powers and

exponentials of r⊥ present in the integrand and approximate this logarithm by one,

ln(1/|r|m̃γ) ≈ 1. The integral over r then becomes straightforward: performing it and

the integral over x we find

− k × SP

MP
f⊥ q

1 T (x, k2
T )
∣

∣

∣

eikonal

=
1

x

∫ 1

0
dγ

8NcG
2(1− γ)m̃γc0α

3
s

(2π)5

∫

d2k1⊥
(2π)2

[

2 k · k1

k2 − k2
1

ln
k2

k2
1

+ 1

]

(3.21)

×
∫

d2l1⊥ d2l2⊥
l21 l

2
2 (l1 + l2)2

SP ×
[

l1
l21

+
l2
l22
− l1 + l2

(l1 + l2)2

]

×
[

δ2(l1 + k1 + k)− δ2(l1 − k1 − k) + δ2(l2 + k1 + k)

− δ2(l2 − k1 − k)− δ2(l1 + l2 + k1 + k) + δ2(l1 + l2 − k1 − k)
]

.

Next we integrate over l1 and l2 while regulating the singularities by the infrared (IR)

cutoff Λ. We get

− k × SP

MP
f⊥ q

1 T (x, k2
T )
∣

∣

∣

eikonal

=
1

x

∫ 1

0
dγ

48NcG
2(1− γ)m̃γc0α

3
s

(2π)4
(3.22)

×
∫

d2k1⊥
(2π)2

[

2 k · k1

k2 − k2
1

ln
k2

k2
1

+ 1

]

SP × (k + k1)

|k + k1|6
ln

(k + k1)2

Λ2
.
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To integrate over k1 analytically we, again, have to neglect a logarithm, by putting

ln[(k+k1)2/Λ2] ≈ 1. The remaining k1-integral is dominated by the singularity at k1 = −k,

which we regulate by the IR cutoff Λ. Keeping only the most singular part in the expansion

in 1/Λ we obtain

−k × SP

MP
f⊥ q

1 T (x, k2
T )
∣

∣

∣

eikonal
=

1

x

∫ 1

0
dγ

3NcG
2(1− γ)m̃γc0α

3
s

(2π)5

SP × k

k2Λ2
. (3.23)

The IR cutoff Λ can, in principle, depend on γ since the natural mass scale for an IR

cutoff would be m̃γ . However, at sufficiently small γ one must replace this cutoff with the

QCD confinement scale ΛQCD, since, formally, in the quark-diquark model the transverse

distances are bound by r . 1/mγ and may get much larger than the confinement scale as

γ → 0. For simplicity we take the IR cutoff to be some momentum scale independent of γ,

as this will only change an overall numerical factor. Taking m̃γ = γMP , and integrating

over γ we have the Sivers function due to the odderon exchange in the quark-diquark model

f⊥ q
1 T (x, k2

T )
∣

∣

∣

eikonal
=

1

x

NcG
2 c0α

3
s

2(2π)5

M2
P

k2Λ2
. (3.24)

We have obtained a nonzero, eikonal contribution to the Sivers function corresponding

to the same spin-dependent odderon as studied in [5]. Both the eikonality and the depen-

dence on k and MP in eq. (3.24) are different from the Born-level results calculated in the

same diquark model (see eq. (A8) in [79]). In particular, the Sivers function in eq. (3.24)

has a very interesting behavior in the ΛQCD,MP → 0 limit. Since the IR cutoff Λ must

be proportional to ΛQCD, we conclude that Λ ∼ ΛQCD ∼ MP . Therefore, M2
P /Λ

2 ratio

will remain constant in the ΛQCD,MP → 0 limit and the Sivers function eq. (3.24) will not

vanish in the limit of zero proton mass. This may be a feature unique to the quark-diquark

model of the proton, but it calls for further analysis.

3.3 Sivers function at the sub-eikonal level: a new evolution

In this section we will construct a sub-eikonal correction to eq. (3.24). Part of the motiva-

tion for this is that the effects of the odderon have been historically hard to find in the data.

The recent announcement of the odderon discovery [62] was many years in the making and

required very careful measurements and extrapolation in energy. It is, therefore, important

to understand the background for the odderon contribution (3.24) in order to discover the

latter in the future measurements of the Sivers function. In addition, the existing data

on the hadronic single transverse spin asymmetry (STSA) AN measured in p↑ + p colli-

sions [103–106] exhibits no evidence for the odderon (with the possible exception of the

AnDY Collaboration data [107]): assuming that the x-dependence of the Sivers function

is related to that in AN , that is, that AN ∼ x f⊥
1 T , we see that the odderon contribu-

tion (3.24) would predict an x-independent AN . However, most of the data [103–106] show

AN which falls off with decreasing x of the transversely polarized proton. This behavior of

the data can be roughly approximated as AN ∼ x, which translates into the Sivers function

f⊥
1 T being independent of x. Since f⊥

1 T ∼ x0 is the sub-eikonal scaling, it is clear that a

sub-eikonal study of the Sivers function is in order.
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3.3.1 Sub-eikonal Sivers function

The analysis of section 3.1 also applies at the sub-eikonal level [1]. At the sub-eikonal level

only the diagram B from figure 8 contributes [1]. One essential difference we have here as

compared to, say, the helicity calculation in [1], is that the sub-eikonal and sub-sub-eikonal

terms in the quark S-matrix operator (2.39) are non-local in the transverse plane. Thus,

the calculation in section 3.1 has to be augmented by introducing two different coordinates

of the anti-quark to the left and to the right of the shock wave, w and z, as shown in

figure 8. This is taken into account by replacing

V †
w →

∫

d2z⊥ V
†

z,w (3.25)

along with eik·(w−ζ) → eik·(z−ζ) in eq. (3.7). We arrive at the Sivers function given by the

diagram B and its complex conjugate,

− k × SP

MP
f⊥ q

1 T (x, k2
T )
∣

∣

∣

sub-eikonal

⊂ 4p+
1

(2π)3

∫

d2ζ⊥ d2w⊥ d2z⊥
d2k1⊥ dk−

1

(2π)3
θ(k−

1 ) eik1·(w−ζ)+ik·(z−ζ)
〈

T tr
[

VζV
pol †

z,w

] 〉

× k1 · k
[

xp+
1 k

−
1 + k2

1

] [

xp+
1 k

−
1 + k2

] + c.c.

≈ 4i

(2π)5

∫

d2ζ⊥ d2w⊥ d2z⊥

∫ p−

2

Λ2

p
+
1

dk−
1

k−
1

eik·(z−ζ) w − ζ
|w − ζ|2 ·

k

k2
T

×
〈〈

T tr
[

VζV
pol †

z,w

] 〉〉

+ c.c., (3.26)

where, in the last step, we have extracted the DLA contribution only, and defined

〈〈

. . .
〉〉

= zs 〈. . .〉 = p+
1 k

−
1 〈. . .〉 (3.27)

with z = k−
1 /p

−
2 .

At the sub-eikonal order, the polarized Wilson line in eq. (3.26) contains only the ∼
δχ,χ′ contribution, since the Sivers function couples an unpolarized quark to the proton spin.

We thus write, neglecting the quark mass (m = 0) and employing eqs. (2.20) and (2.31) in

eq. (2.39), truncated to the sub-eikonal order, keeping the δχ,χ′ term only, and neglecting

the eikonal contribution already accounted for above,

V pol
x,y = − i p+

1

2 s

∫ ∞

−∞
dz− d2z Vx[∞, z−] δ2(x− z) ~D

i

z
~Di

z Vy[z−,−∞] δ2(y − z) (3.28)

− g2 p+
1

4 s
δ2(x− y)

∫ ∞

−∞
dz−

1

∫ ∞

z−

1

dz−
2 Vx[∞, z−

2 ] tb ψβ(z−
2 , x)U ba

x [z−
2 , z

−
1 ]

×
[

γ+

2

]

αβ

ψ̄α(z−
1 , x) ta Vx[z−

1 ,−∞].
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Figure 8. Diagram of class B with kinematics specified. The antiquark propagates from ζ with

momentum k1, undergoes a transverse spin dependent interaction with the proton at transverse

positions w and z before and after scattering, respectively, then propagates to ξ with momentum

k2. The sub-eikonal interaction with the proton shock wave is denoted by the white box.

In the A− = 0 gauge we are working in, the transverse components of the gluon field, A,

are sub-eikonal. Using this to simplify the gluon part of eq. (3.28), while keeping only

sub-eikonal terms dependent on the target transverse polarization, we get

V pol
x,y = − g p+

1

2 s

∫ ∞

−∞
dz− d2z Vx[∞, z−] δ2(x− z)

[

A(z−, z) · ~∇z − ~∇z ·A(z−, z)
]

× Vy[z−,−∞] δ2(y − z)

− g2 p+
1

4 s
δ2(x− y)

∫ ∞

−∞
dz−

1

∫ ∞

z−

1

dz−
2 Vx[∞, z−

2 ] tb ψβ(z−
2 , x)U ba

x [z−
2 , z

−
1 ]

×
[

γ+

2

]

αβ

ψ̄α(z−
1 , x) ta Vx[z−

1 ,−∞]. (3.29)

Further, integrating over z yields

V pol
x,y = − g p+

1

2 s

[

∇xδ
2(x− y)

]

·
∫ ∞

−∞
dz− Vx[∞, z−]

[

A(z−, x) +A(z−, y)
]

Vy[z−,−∞]

− g2 p+
1

4 s
δ2(x− y)

∫ ∞

−∞
dz−

1

∫ ∞

z−

1

dz−
2 Vx[∞, z−

2 ] tb ψβ(z−
2 , x)U ba

x [z−
2 , z

−
1 ]

×
[

γ+

2

]

αβ

ψ̄α(z−
1 , x) ta Vx[z−

1 ,−∞]. (3.30)

We see that while the quark sector operator in eq. (3.30) is local in the transverse plane,

the gluon sector operator is non-local due to the derivative of the δ-function. Substituting

the gluon part of eq. (3.30) into the first line of eq. (3.26) we arrive at, after multiple

integrations by parts,

− 4

(2π)3

g p+
1

2

∫

d2ζ⊥ d2w⊥ d2z⊥
d2k1⊥ dk−

1

(2π)3 k−
1

θ(k−
1 ) eik1·(w−ζ)+ik·(z−ζ) k1 · k

k2
1 k

2

∫ ∞

−∞
dz−

×
[

∇zδ
2(z − w)

]

·
〈

T tr
[

Vζ Vw[−∞, z−]
[

A(z−, z) +A(z−, w)
]

Vz[z−,∞]
] 〉

+ c.c.
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= − 4

(2π)3

g p+
1

2

∫

d2ζ⊥ d2w⊥
d2k1⊥ dk−

1

(2π)3 k−
1

θ(k−
1 ) ei(k+k1)·(w−ζ) k1 · k

k2
1 k

2

×
∫ ∞

−∞
dz−

〈

tr
[

Vζ

{

i(k1 − k) · Vw[−∞, z−]A(z−, w)Vw[z−,∞]

+
(∇wVw[−∞, z−]

) ·A(z−, w)Vw[z−,∞]

− Vw[−∞, z−]A(z−, w) · (∇wVw[z−,∞]
)

}]〉

+ c.c.

= − 4

(2π)3

g p+
1

2

∫

d2ζ⊥ d2w⊥
d2k1⊥ dk−

1

(2π)3 k−
1

θ(k−
1 ) ei(k+k1)·(w−ζ) k1 · k

k2
1 k

2

×
∫ ∞

−∞
dz−

〈

tr
[

Vζ

{

(

(∇w + ik1)Vw[−∞, z−]
) ·A(z−, w)Vw[z−,∞]

− Vw[−∞, z−]A(z−, w) · ((∇w + ik)Vw[z−,∞]
)

}]〉

+ c.c.. (3.31)

It appears that the non-locality of the gluon operator in eq. (3.30) translates into the

factors of k1 and k in eq. (3.31).

We conclude that the sub-eikonal contribution to the quark Sivers function is

−k × SP

MP
f⊥ q

1 T (x, k2
T )
∣

∣

∣

sub-eikonal
⊂ 4

(2π)3

∫

d2ζ⊥ d2w⊥
d2k1⊥ dk−

1

(2π)3 k−
1

θ(k−
1 ) ei(k+k1)·(w−ζ) k1 · k

k2
1 k

2

×
〈〈

T tr
[

VζV
pol †

w;k,k1

]

+ T̄ tr
[

V pol
ζ;k,k1

V †
w

] 〉〉

(3.32)

with

V pol
w;k,k1

= − g p+
1

2 s

∫ ∞

−∞
dz−

{

Vw[∞, z−]A(z−, w) · ((∇w − ik1)Vw[z−,−∞]
)

(3.33)

− ((∇w − ik)Vw[∞, z−]
) ·A(z−, w)Vw[z−,−∞]

}

− g2 p+
1

4 s

∫ ∞

−∞
dz−

1

∫ ∞

z−

1

dz−
2 Vw[∞, z−

2 ] tb ψβ(z−
2 , x)U ba

w [z−
2 , z

−
1 ]

×
[

γ+

2

]

αβ

ψ̄α(z−
1 , w) ta Vw[z−

1 ,−∞].

The part of the expression on the right-hand side of eq. (3.32) that contributes to

the Sivers function should change sign after k → −k. Hence, to make (3.32) an equality,

we need to anti-symmetrize its right-hand side under k → −k. Simultaneously changing

k1 → −k1 and w ↔ ζ we arrive at

− k × SP

MP
f⊥ q

1 T (x, k2
T )
∣

∣

∣

sub-eikonal

=
2

(2π)3

∫

d2ζ⊥ d2w⊥
d2k1⊥ dk−

1

(2π)3 k−
1

θ(k−
1 ) ei(k+k1)·(w−ζ) k1 · k

k2
1 k

2 (3.34)

×
〈〈

T tr
[

VζV
pol †

w;k,k1

]

−T tr
[

VwV
pol †

ζ;−k,−k1

]

+T̄ tr
[

V pol
ζ;k,k1

V †
w

]

−T̄ tr
[

V pol
w;−k,−k1

V †
ζ

] 〉〉

.

Further, define

V i pol
w ≡ ig p

+
1

2 s

∫ ∞

−∞
dz− Vw[∞, z−]Ai(z−, w)Vw[z−,−∞], (3.35a)
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V [2] pol
w = − g p+

1

2 s

∫ ∞

−∞
dz−

{

Vw[∞, z−]A(z−, w) · (∇w Vw[z−,−∞]
)

− (∇wVw[∞, z−]
) ·A(z−, w)Vw[z−,−∞]

}

− g2 p+
1

4 s

∫ ∞

−∞
dz−

1

∫ ∞

z−

1

dz−
2 Vw[∞, z−

2 ] tb ψβ(z−
2 , w)U ba

w [z−
2 , z

−
1 ]

×
[

γ+

2

]

αβ

ψ̄α(z−
1 , w) ta Vw[z−

1 ,−∞], (3.35b)

such that

V pol
w;k,k1

= (k1 − k)i V i pol
w + V [2] pol

w . (3.36)

Equation (3.34) becomes

− k × SP

MP
f⊥ q

1 T (x, k2
T )
∣

∣

∣

sub-eikonal

=
2

(2π)3

∫

d2ζ⊥ d2w⊥
d2k1⊥ dk−

1

(2π)3 k−
1

θ(k−
1 ) ei(k+k1)·(w−ζ) k1 · k

k2
1 k

2 (3.37)

×
{

(k1−k)i
〈〈

T tr
[

VζV
i pol †

w

]

+T tr
[

VwV
i pol †

ζ

]

+T̄ tr
[

V i pol
ζ V †

w

]

+T̄ tr
[

V i pol
w V †

ζ

] 〉〉

+
〈〈

T tr
[

VζV
[2] pol †

w

]

− T tr
[

VwV
[2] pol †

ζ

]

+ T̄ tr
[

V
[2] pol

ζ V †
w

]

− T̄ tr
[

V [2] pol
w V †

ζ

] 〉〉}

.

Next we define two polarized dipole amplitudes

F i
w,ζ(z) ≡ 1

2Nc
Re
〈〈

T tr
[

VζV
i pol †

w

]

+ T tr
[

VwV
i pol †

ζ

] 〉〉

(z), (3.38a)

F
[2]
w,ζ(z) ≡ 1

2Nc
Im
〈〈

T tr
[

VζV
[2] pol †

w

]

− T tr
[

VwV
[2] pol †

ζ

] 〉〉

(z). (3.38b)

Apart from the transverse positions of the Wilson lines, the amplitudes depend on the

longitudinal momentum fraction z, which can be roughly thought of as the smallest of

the momentum fractions of the quark and anti-quark lines (see [24, 46] for a more precise

definition of the argument z). Note that

F i
w,ζ(z) = F i

ζ,w(z), F
[2]
w,ζ(z) = −F [2]

ζ,w(z). (3.39)

Employing the definitions (3.38) along with eq. (3.39) we rewrite eq. (3.37) as

−k × SP

MP
f⊥ q

1 T (x, k2
T )
∣

∣

∣

sub-eikonal
=

4Nc

(2π)3

∫

d2ζ⊥ d2w⊥
d2k1⊥
(2π)3

ei(k+k1)·(w−ζ) (3.40)

× k1 · k
k2

1 k
2

∫ 1

Λ2

s

dz

z

[

(k1 − k)i F i
w,ζ(z) + i F

[2]
w,ζ(z)

]

.

The DLA small-x evolution of a sub-eikonal operator only couples it to sub-eikonal opera-

tors at the next step, otherwise the evolution would not generate longitudinal logarithms of

energy. Hence, the small-x evolution of the operator(s) in eqs. (3.33) and (3.35) (or, equiv-

alently, the evolution for the polarized dipole amplitudes in eqs. (3.38)) will only couple to

the same operators.
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3.3.2 Initial conditions

For a single quark target, the lowest-order gluon field dependent on the transverse polar-

ization of the quark at b = 0, b− = 0 and an arbitrary b+ position in A− = 0 gauge is

Aa+(x) = i
g ta

4π

MP

p+
1

XδX,X′

[

1 +
i

2p+
1

∂+

]

∂+δ(x−)

× e
−i(x+−b+)

∇
2
⊥

2p
+
1 S × x

[

2 ln

(

1

x⊥Λ

)

− 1

]

, (3.41a)

Aai(x) = i
g ta

2π

MP

p+
1

[

δ(x−) +
i

2p+
1

∂+δ(x−)

]

XδX,X′

× ǫkjSk e
−i(x+−b+)

∇
2
⊥

2p
+
1

[

xixj

x2
⊥
− δij ln

(

1

x⊥Λ

)

]

− g ta

2π

MP

(p+
1 )2

XδX,X′ ǫijSj ln

(

1

x⊥Λ

)

∂+δ(x−), (3.41b)

where X and X ′ are the quark’s polarizations before and after the gluon field emission,

respectively, and MP is the “quark” mass. This field is indeed sub-eikonal (∼ 1/p+
1 )

at the leading order and may contribute to the operators in eqs. (3.35). Note that it

does not contribute to the F 12 sub-eikonal term in eq. (2.20). Hence, the transverse spin

dependence at the sub-eikonal level only contributes to the gluon operator in eq. (3.28),

and, consequently, the operators in eqs. (3.33) and (3.35).

Note that the field (3.41) depends on x+ and on the rapidly varying b+ (with b+

even not specified for a quasi-classical target [88–90]). However, this dependence only

appears at the sub-sub-eikonal order, and, even at that order, it does not affect the field

strength tensor F−i needed for the transversity operator in eq. (2.20). The x+-dependence

may appear in any gluon field if we take into account the energy-suppressed phase, as in

eq. (3.41). However, at the leading orders in eikonality in each channel, in the operators

entering eq. (2.20), the x+-dependence does not appear.

Another puzzling feature of the field in eqs. (3.41) is that the sub-eikonal (∼ 1/p+
1 )

terms in it appear to come in with a factor of i, that is, they are imaginary. This feature,

while requiring further interpretation in the future, can be attributed to the conventional

wisdom that the transverse spin dependence, XδX,X′ , usually comes in with a factor of i

associated with it. This is the well-known i which needs a complex phase to give a real

contribution to the Sivers function [15, 16, 19, 108]. Here it comes in through the transverse

spin-dependent part of the gluon field.

To construct the initial conditions for our evolution, we will work with the single quark

target. Substituting the field from eq. (3.41b) along with the polarization-independent

eikonal field

Aa+(x) = −g t
a

π
δ(x−) ln

(

1

x⊥Λ

)

(3.42)
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into eq. (3.38a) we immediately see that the two-gluon exchange contribution vanishes, and

the first non-trivial polarized dipole amplitudes arise at the three-gluon level. We obtain,

after integrating over the impact parameters b between the dipole and the target quark,

∫

d2b⊥ F
i (0)
w,ζ = −α3

s c0Nc (2π)2MP ǫ
ijSj

P (w − ζ)2 ln

(

1

|w − ζ|Λ

)

, (3.43)

with c0 given by eq. (3.15) above. Note that the three gluons have to be in the dabc color

state, similar to the odderon. One may, therefore, think of eq. (3.43) as of the lowest-order

contribution to the sub-eikonal spin-dependent odderon.

Similar calculation of the initial condition for F
[2]
w,ζ from eq. (3.38b) due to the fields in

eqs. (3.41b) and (3.42) of a single quark target readily gives zero in the gluon sector to any

order in the gluon exchanges. There is also a quark sector, as one can see from eq. (3.35b).

However, the quark part of the operator in eq. (3.35b) contains only the γ+ Dirac matrix

and, like other operators in eqs. (3.35), is local in the transverse plane: therefore, this

operator is similar to that in the unpolarized quark parton distribution function (PDF),

and cannot couple to the transverse spin of the target proton. Therefore, it appears that

one can discard the quark part of the operator (3.35b), both in the initial conditions and

in evolution.

This can also be seen by the order-by-order evaluation of the quark part of F
[2]
w,ζ . At the

lowest order, the quark operator in eq. (3.35b) comes in with a two-quark exchange in the t-

channel: this contribution to F
[2]
w,ζ in eq. (3.38b) is zero, since, after averaging over the quark

impact parameters, each trace in eq. (3.38b) will become transverse coordinate independent

and the difference of the two traces will be zero. Adding eikonal gluon exchanges will

make each trace in eq. (3.38b) a function of w − ζ. However, since the quark operator in

eq. (3.35b) is local in the transverse plane and comes in with γ+ only, it will not generate

any dependence on the transverse spin, such that each trace in eq. (3.38b) will be a function

of |w − ζ|, and their difference will again cancel.

We thus conclude that the initial condition for the second polarized dipole amplitude

is zero,

F
[2](0)
w,ζ = 0. (3.44)

Below we will show that the DLA evolution of F
[2]
w,ζ is closed in the gluon sector, it does

not mix with F i
w,ζ : therefore, the zero initial conditions (3.44) imply that F

[2]
w,ζ = 0 even

after evolution.

3.3.3 Small-x evolution: general expression

The small-x evolution of the polarized dipoles in eqs. (3.38) will ultimately be calculated

in the large-Nc limit. We will, therefore, assume that the evolution is gluon-driven and

neglect the quark field insertion operator in the second line of eq. (3.35b). (The same

approximation was done for the large-Nc limit of the small-x helicity evolution in [24]: see

also a discussion of this approximation in [40].) Above we have argued that the initial
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condition for the entire F
[2]
w,ζ is zero: the only way it may become non-zero is by mixing

with F i
w,ζ through evolution. The mixing of the quark part of (3.35b) in F

[2]
w,ζ with F i

w,ζ ,

even if non-zero, has to include an (eikonal) interaction of the unpolarized (anti-)quark in

the dipole with the target, otherwise the contribution to the dipole amplitude F
[2]
w,ζ from

eq. (3.38b) will be zero, since the latter has to be an odd function under w ↔ ζ interchange,

and, therefore, has to be a function of both transverse positions w and ζ. An interaction of

the unpolarized (anti-)quark in the original parent dipole with the target would make the

quark operator evolution sub-leading in Nc and can be discarded. Therefore, we will neglect

the quark operator from the second line of eq. (3.35b) in our evolution analysis below.

To construct the small-x evolution of the operators in eqs. (3.35) we follow [80] and

rewrite the gluon field as a sum of the background field Bµ and the quantum field aµ,

Aµ = Bµ + aµ, (3.45)

and integrate out the quantum fields aµ. To do so, we will need the propagator

∫ 0

−∞
dx−

1

∫ ∞

0
dx−

2 a
i a
⊥ (x−

1 , x1) a+ b(x−
2 , x0)

=
i

2π3

∫

dk− θ(k−)

∫

d2x2 d
2x2′ ln

(

1

x21Λ

)

xi
2′0

x2
2′0

Upol ba
2′,2 (3.46)

with the sub-eikonal polarized gluon Wilson line operator (cf. eqs. (2.35) and (3.30))

Upol ba
x,y = − ip+

1

2s

∫ ∞

−∞
dz− d2z U bb′

x [∞, z−] δ2(x− z) ~D
b′c

z ·Dca′

z Ua′a
y [z−,−∞] δ2(y − z)

= − ip+
1 g

2s
f b′da′

∫ ∞

−∞
dz− d2z U bb′

x [∞, z−] δ2(x− z)

×
[

Ad(z−, z) · ~∇z − ~∇z ·Ad(z−, z)
]

Ua′a
y [z−,−∞] δ2(y − z)

= − ip+
1 g

2s
f b′da′

[

∇xδ
2(x− y)

]

·
∫ ∞

−∞
dz− U bb′

x [∞, z−]

×
[

Ad(z−, x) +Ad(z−, y)
]

Ua′a
y [z−,−∞]. (3.47)

The propagator is obtained by the technique outlined in [34], employing the δλ,λ′ part of

the operator in eq. (2.35) to describe the interaction with the shock wave. While, strictly

speaking, the gluon field on the right-hand side of eq. (3.47) should be Bµ, we denote it

Aµ since at the next step of evolution it will again be separated into the background and

quantum fields.

Substituting eq. (3.47) with s = p+
1 k

− into eq. (3.46) and integrating over x2′ yields

∫ 0

−∞
dx−

1

∫ ∞

0
dx−

2 a
i a
⊥ (x−

1 , x1) a+ b(x−
2 , x0)

=
g

4π3
f b′da′

∫

dk−

k−

∫

d2x2 d
2x2′ ln

(

1

x21Λ

)

xi
2′0

x2
2′0

(3.48)

×
∫ ∞

−∞
dz− U bb′

x2′
[∞, z−]

[

−
[

∇2δ
2(x22′)

]

·Ad(z−, x2′)

+
[

∇2′δ2(x22′)
]

·Ad(z−, x2)
]

Ua′a
x2

[z−,−∞]
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=
g

4π3
f b′da′

∫ p−

2

0

dk−

k−

∫

d2x2

∫ ∞

−∞
dz−

×
{

ln

(

1

x21Λ

)

xi
20

x2
20

[

U bb′

x2
[∞, z−]Ad(z−, x2) ·

(

∇2U
a′a
x2

[z−,−∞]
)

−
(

∇2U
bb′

x2
[∞, z−]

)

·Ad(z−, x2)Ua′a
x2

[z−,−∞]
]

− U bb′

x2
[∞, z−]Aj d(z−, x2)Ua′a

x2
[z−,−∞]

×
[

ln

(

1

x21Λ

)

δij x2
20 − 2xi

20x
j
20

x4
20

+
xi

20

x2
20

xj
21

x2
21

]}

.

One will also need the standard eikonal propagator a+ a+, which is the same as for the

unpolarized evolution,

∫ 0

−∞
dx−

1

∫ ∞

0
dx−

2 a
+ a(x−

1 , x1) a+ b(x−
2 , x0) = − 1

π3

∫

dk−

k−

∫

d2x2
x21

x2
21

· x20

x2
20

U ba
2 . (3.49)

We begin with the gluon part of the V
[2] pol

w from eq. (3.35b), which we rewrite as

V [2] pol
w = − g p+

1

2 s

ig

2

∫ ∞

−∞
dz−

∫ ∞

z−

dw−

×
{

Vw[∞, w−]Ai(w−, w)Vw[w−, z−]
[

∇i
w A

+(z−, w)
]

Vw[z−,−∞] (3.50)

− Vw[∞, w−]
[

∇i
w A

+(w−, w)
]

Vw[w−, z−]Ai(z−, w)Vw[z−,−∞]
}

.

Substituting eq. (3.50) into eq. (3.38b) and employing the decomposition (3.45) we obtain

a number of contractions. They are diagrammatically represented in figure 9, where only

representative graphs from most diagram classes are shown and only for the first term in

eq. (3.50), for brevity.

Since the initial condition for F
[2]
w,ζ is zero, per eq. (3.44), to get a non-zero F

[2]
w,ζ we

need to find evolution steps mixing it with F i
w,ζ . To this end we note that in the regime

opposite to that in eq. (3.48), that is, for x−
1 > 0 > x−

2 , one has

∫ ∞

0
dx−

1

∫ 0

−∞
dx−

2 a
i b
⊥ (x−

1 , x1) a+ a(x−
2 , x0) (3.51)

=
g

4π3
f b′da′

∫

dk−

k−

∫

d2x2

∫ ∞

−∞
dz−

×
{

− ln

(

1

x21Λ

)

xi
20

x2
20

[

U bb′

x2
[∞, z−]Ad(z−, x2) ·

(

∇2U
a′a
x2

[z−,−∞]
)

−
(

∇2U
bb′

x2
[∞, z−]

)

·Ad(z−, x2)Ua′a
x2

[z−,−∞]
]

− U bb′

x2
[∞, z−]Aj d(z−, x2)Ua′a

x2
[z−,−∞]

×
[

ln

(

1

x21Λ

)

δij x2
20 − 2xi

20x
j
20

x4
20

+
xi

20

x2
20

xj
21

x2
21

]}

.
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ai∂ia+ ai∂iB+ai

I II III

IV V VI

VII VIII

w

ζ

∂iB+

∂ia+ai∂iB+ ∂iB+ Ai Bi

∂iB+ Bi ∂iB+ Bi

Figure 9. Diagrams illustrating the main types of contractions in the small-x evolution of the

polarized dipole amplitude F
[2]
w,ζ from (3.38b). Solid straight lines represent the fundamental Wilson

lines, the boxes with ai, ∂ia+, Bi, and ∂iB+ represent the operator insertions in eq. (3.50), while

the box on the gluon line in the shock wave represents an insertion of the entire operator from

eq. (3.48).

The first term in the curly brackets of eq. (3.51) has a different sign compared to that in

eq. (3.48). The second terms are the same in both equations. Since we are interested in

evolution mixing F
[2]
w,ζ with F i

w,ζ , below, when discussing the evolution of F
[2]
w,ζ , we will only

talk about the second term in eqs. (3.48) and (3.51), which is the same in both expressions.

To give a longitudinal logarithmic integral dk−/k−, the ⊥ + gluon propagator, like

those in eqs. (3.48) and (3.51), has to cross the shock wave [24]: hence, only the diagrams

with the gluon crossing the shock wave are shown in figure 9 for the ⊥ + propagator. The

quantum field aµ can only be involved in contractions (see, e.g., diagram I in figure 9),

as it is integrated out. The Bµ-field outside the shock wave is put to zero. This way the

diagrams II, III and V, along with other similar diagrams where we have a factor of the

gluon field “outside” the shock wave and of the gluon propagator, are all zero. One can

further argue that the diagrams I, IV, and VI cancel between the two terms in eq. (3.50).

Once again we are talking about the term in the ⊥ + gluon propagator which is the same in

eqs. (3.48) and (3.51): the other terms do not cancel, but do not mix F
[2]
w,ζ with F i

w,ζ . This

leaves us with the diagrams VII and VIII, where the gluon emission is of the eikonal type,
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inhomogeneous

term

α

ai

β

ai

γ δ

aiai

x1

x0

ai

x0

x1

x0

x1

x0

x1

x0

x1

x0 x0

x1 x1

x2

ǫ ζ

other

eikonal

diagrams

x2x2 x2

x2x2

Bi Bi

Figure 10. Diagrams illustrating the main types of contractions in the small-x evolution of the

polarized dipole amplitude F i
w,ζ from (3.38a). Solid straight lines represent the fundamental Wilson

lines, the boxes with ai and Bi represent the operator insertions in eq. (3.35a), while the box on

the gluon line in the shock wave represents an insertion of the entire operator (3.35a).

similar to the unpolarized small-x evolution [80, 93, 109–113]. These diagrams represent

all possible eikonal gluon emissions and absorptions. Eikonal gluons do not have to cross

the shock wave to generate longitudinal logarithms: hence, diagram VIII is allowed, along

with other virtual diagrams. The eikonal evolution leaves the operator (3.50) intact in

the shock wave, as denoted by the two adjacent boxes inside the shock wave shown in the

diagrams VII and VIII: again, no mixing with F i
w,ζ is generated. Summarizing the analysis

we have just made, we see that the DLA evolution for the dipole amplitude F
[2]
w,ζ in the

large-Nc limit couples only to the same amplitudes F
[2]
w,ζ and does not mix with F i

w,ζ . That

is, the evolution is of the following type,

F
[2]
w,ζ = F

[2](0)
w,ζ +K ⊗ F [2]

w,ζ , (3.52)

with K some integral kernel. Since, by eq. (3.44), the initial condition (the inhomogeneous

term in eq. (3.52)) for this evolution is zero, F
[2](0)
w,ζ = 0, this means that

F
[2]
w,ζ = 0 (3.53)

with the DLA and large-Nc accuracy. We thus discard the dipole amplitude F
[2]
w,ζ and

proceed by constructing the evolution for F i
w,ζ .

The diagrams contributing to the evolution of the polarized dipole amplitude F i
w,ζ

from (3.38a) are shown in figure 10. Again, we do not show all the eikonal diagrams
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explicitly. For brevity, we also depict the diagrams contributing only to one of the traces

in eq. (3.38a). We begin by calculating the sub-eikonal diagrams α, β, γ, and δ in figure 10.

By analogy to eq. (3.35a), we define an adjoint polarized Wilson line of the same

type by

U i pol
w ≡ ig p+

1

2 s

∫ ∞

−∞
dz− Uw[∞, z−]Ai(z−, w)Uw[z−,−∞]. (3.54)

With the help of this definition, repeating the steps outlines in more detail in [1, 34], we

arrive at the following contributions of the diagrams α and β

α+ β = − αsNc

2π2

∫ z

Λ2

s

dz′

z′

∫

d2x2

[

ln

(

1

x21Λ

)

δij x2
21 − 2xi

21x
j
21

x4
21

+
xi

21

x2
21

xj
21

x2
21

]

(3.55)

× Re
〈〈 1

N2
c

T tr
[

V0t
aV †

1 t
b
] (

U j pol
2

)ba 〉〉

(z′) + (1↔ 0).

Similarly, diagrams γ and δ give

γ + δ =
αsNc

2π2

∫ z

Λ2

s

dz′

z′

∫

d2x2

[

ln

(

1

x21Λ

)

δij x2
20 − 2xi

20x
j
20

x4
20

+
xi

20

x2
20

xj
21

x2
21

]

(3.56)

× Re
〈〈 1

N2
c

T tr
[

V0t
aV †

1 t
b
] (

U j pol
2

)ba 〉〉

(z′)− (1↔ 0).

In obtaining eqs. (3.55) and (3.56) we have defined z′ = k−/p−
2 with the upper cutoff

on the z′ integral given by z, the minus momentum fraction at the previous step of the

evolution. The lower limit of the z′ integral, Λ2/s, involves an IR cutoff Λ for the transverse

momenta. We have also been using an abbreviated notation for the light-cone Wilson lines

V1 = Vx1
, U2 = Ux2

, etc. Transverse vectors are defined by xij = xi − xj with xij = |xij |.
Most importantly, in deriving eqs. (3.55) and (3.56) we have neglected the first term in the

propagator (3.48) as being the gluon analogue of the (gluon part of the) operator (3.35b),

which we have established to be zero, per eq. (3.53).

The eikonal diagrams contribution is well-known. The diagrams ǫ, ζ, etc., yield [1, 34,

80, 93, 109–113]

ǫ+ ζ + . . . =
αsNc

2π2

∫ z

Λ2

s

dz′

z′

∫

d2x2
x2

10

x2
21 x

2
20

(3.57)

× Re
〈〈 1

N2
c

T tr
[

V0t
aV i pol †

1 tb
]

(

U2
)ba−CF

N2
c

T tr
[

V0 V
i pol †

1

] 〉〉

(z′) +(1↔ 0).

Combining equations (3.55), (3.56) and (3.40) we arrive at the evolution equation for

the dipole amplitude F i
10 in the operator form,

F i
10(z) =F

i (0)
10 (z) +

αsNc

2π2

∫ z

Λ2

s

dz′

z′

∫

d2x2
x2

10

x2
21 x

2
20

× Re
〈〈 1

N2
c

tr
[

V0t
aV i pol †

1 tb
]

(

U2
)ba − CF

N2
c

tr
[

V0 V
i pol †

1

] 〉〉

(z′)
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− αsNc

2π2

∫ z

Λ2

s

dz′

z′

∫

d2x2

[

ln

(

1

x21Λ

)

(

δij x2
21 − 2xi

21x
j
21

x4
21

− δij x2
20 − 2xi

20x
j
20

x4
20

)

+

(

xi
21

x2
21

− xi
20

x2
20

)

xj
21

x2
21

]

Re
〈〈 1

N2
c

tr
[

V0t
aV †

1 t
b
] (

U j pol
2

)ba 〉〉

(z′) + (1↔ 0), (3.58)

with the inhomogeneous term given by eq. (3.43) (for the impact-parameter integrated

version of eq. (3.58)). Here +(1 ↔ 0) applies to everything on the right, except for the

inhomogeneous term. We have also dropped the time-ordering signs for brevity: they are

still implied in all correlation functions.

Combining eqs. (3.58) and (3.53) with eq. (3.40) we write the sub-eikonal contribution

to the Sivers function as

− k × SP

MP
f⊥ q

1 T (x, k2
T )
∣

∣

∣

sub-eikonal

=
4Nc

(2π)3

∫

d2ζ⊥ d2w⊥
d2k1⊥
(2π)3

ei(k+k1)·(w−ζ) k1 · k
k2

1 k
2 (k1 − k)i

∫ 1

Λ2

s

dz

z
F i

w,ζ(z). (3.59)

3.3.4 Small-x evolution in the large-Nc limit

Similar to the unpolarized evolution [80, 93, 112–119] the evolution equation (3.58) is not

closed: not all the operators on its right-hand side are the same as the dipole operator on

its left-hand side (see also (3.38a)). To obtain a closed evolution equation we will take the

large-Nc limit. Employing

U ba
x = 2 tr

[

tbVxt
aV †

x

]

, (3.60)

along with the Fierz identity, one can readily show that (cf. [1])

U i pol ba
x = 2 tr

[

tbV i pol
x taV †

x

]

+ 2 tr
[

tbVxt
aV i pol †

x

]

. (3.61)

Using eqs. (3.60) and (3.61) in eq. (3.58) we obtain

F i
10(z) =F

i (0)
10 (z) +

αsNc

2π2

∫ z

Λ2

s

dz′

z′

∫

d2x2

×
{

x2
10

x2
21 x

2
20

Re
〈〈 1

2N2
c

tr
[

V2V
i pol †

1

]

tr
[

V0 V
†

2

]

− 1

2Nc
tr
[

V0 V
i pol †

1

] 〉〉

(z′)

−
[

ln

(

1

x21Λ

)

(

δij x2
21 − 2xi

21x
j
21

x4
21

− δij x2
20 − 2xi

20x
j
20

x4
20

)

+

(

xi
21

x2
21

− xi
20

x2
20

)

xj
21

x2
21

]

× Re
〈〈 1

2N2
c

tr
[

V0 V
†

2

]

tr
[

V j pol
2 V †

1

]

+
1

2N2
c

tr
[

V2 V
†

1

]

tr
[

V0 V
j pol †

2

]

+ . . .
〉〉

(z′)

}

+ (1↔ 0), (3.62)

where the ellipsis denote the Nc-suppressed terms. Taking the large-Nc limit yields

F i
10(z) =F

i (0)
10 (z) +

αsNc

2π2

∫ z

Λ2

s

dz′

z′

∫

d2x2

×
{

x2
10

x2
21 x

2
20

1

2
Re

[

〈〈 1

Nc
tr
[

V2V
i pol †

1

] 〉〉 〈〈 1

Nc
tr
[

V0 V
†

2

] 〉〉

−
〈〈 1

Nc
tr
[

V0 V
i pol †

1

] 〉〉

]
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−
[

ln

(

1

x21Λ

)

(

δij x2
21 − 2xi

21x
j
21

x4
21

− δij x2
20 − 2xi

20x
j
20

x4
20

)

+

(

xi
21

x2
21

− xi
20

x2
20

)

xj
21

x2
21

]

× 1

2
Re

[

〈〈 1

Nc
tr
[

V0 V
†

2

] 〉〉 〈〈 1

Nc
tr
[

V j pol
2 V †

1

] 〉〉

+
〈〈 1

Nc
tr
[

V2 V
†

1

] 〉〉 〈〈 1

Nc
tr
[

V0 V
j pol †

2

] 〉〉

]}

+ (1↔ 0), (3.63)

where all the correlators on the right are functions of z′, with this dependence not shown

explicitly.

We are interested in the solution of this equation outside the saturation region: there-

fore, we linearize it by replacing tr
[

V0 V
†

2

]

and tr
[

V2 V
†

1

]

by Nc. This gives the linearized

evolution

F i
10(z) =F

i (0)
10 (z) +

αsNc

2π2

∫ z

Λ2

s

dz′

z′

∫

d2x2

×
{

x2
10

x2
21 x

2
20

1

2
Re

[

〈〈 1

Nc
tr
[

V2V
i pol †

1

] 〉〉

−
〈〈 1

Nc
tr
[

V0 V
i pol †

1

] 〉〉

]

−
[

ln

(

1

x21Λ

)

(

δij x2
21 − 2xi

21x
j
21

x4
21

− δij x2
20 − 2xi

20x
j
20

x4
20

)

+

(

xi
21

x2
21

− xi
20

x2
20

)

xj
21

x2
21

]

× 1

2
Re

[

〈〈 1

Nc
tr
[

V j pol
2 V †

1

] 〉〉

+
〈〈 1

Nc
tr
[

V0 V
j pol †

2

] 〉〉

]}

+ (1↔ 0). (3.64)

We are interested in the double-logarithmic evolution, for which the transverse integrals

in the kernel reduce to logarithms [24]. Whether the transverse integrals are logarithmic

in the IR or in the ultraviolet (UV) depends, for most of the terms, on the transverse

distance dependence of the correlators on the right-hand side of eq. (3.64). Inspired by the

inhomogeneous term (3.43), we will assume that

∫

d2b⊥
〈〈 1

Nc
tr
[

V0 V
i pol †

1

] 〉〉

(z) = ǫij Sj
P x

2
10 F (x2

10, z), (3.65)

where the function F (x2
10, z) may include logarithms of x2

10 or perturbatively small powers

of x2
10 (e.g. x

const
√

αs

10 ), along with the z-dependence, but no order-one powers of x2
10. Note

that eq. (3.65) along with eq. (3.38a) imply that

∫

d2b⊥ F
i
10(z) = ǫij Sj

P x
2
10 F (x2

10, z). (3.66)

For the correlators scaling as shown in eq. (3.65) we can analyze different terms in the

kernel of eq. (3.64), extracting the logarithmic contribution.

• The eikonal kernel x2
10/(x

2
21 x

2
20) is logarithmic in the UV when x2 → x1 and in the

IR when x21 ≈ x20 ≫ x10. It is not logarithmic when x2 → x0, since the two terms in

the square brackets multiplying this kernel in eq. (3.64) cancel. We thus approximate,
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with the DLA accuracy and after integrating over the impact parameters,

∫

d2x2
x2

10

x2
21 x

2
20

∫

d2b⊥
1

2
Re

[

〈〈 1

Nc
tr
[

V2V
i pol †

1

] 〉〉

−
〈〈 1

Nc
tr
[

V0 V
i pol †

1

] 〉〉

]

≈ − π
∫ x2

10

1

z′s

dx2
21

x2
21

∫

d2b⊥
1

2
Re
〈〈 1

Nc
tr
[

V0 V
i pol †

1

] 〉〉

(3.67)

+ π

∫ z

z′ x2
10

x2
10

dx2
21

x2
10

x4
21

∫

d2b⊥
1

2
Re
〈〈 1

Nc
tr
[

V2V
i pol †

1

] 〉〉

,

where the last term on the right is logarithmic because we assume that the correlator

multiplying is scales ∼ x2
21, per eq. (3.65). The IR (upper) limit of the integral in the

second term comes from the light-cone (x−-) lifetime ordering condition [24, 39],

z x2
10 ≫ z′ x2

21, (3.68)

which is essential for the DLA. Similarly, the UV limit of the x2
21-integral in the first

term on the right of eq. (3.67) comes from requiring that the emitted gluon’s lifetime

is longer than the extent of the shock wave, z′ x2
21 > 1/s. One may also think of

1/(z′s) as the shortest transverse distance in the problem.

There is one important caveat left. Consider the first trace in the last line of eq. (3.67).

It describes the amplitude in the dipole 10. The subsequent emissions in that dipole

will have their lifetimes capped by z′ x2
21, with x21 being the size of the “neighbor”

dipole, not the one we continue the evolution in. We, therefore, define the “neighbor”

dipole amplitude Γ(x2
10, x

2
21, z) [24, 31, 39] by

ǫij Sj x2
10 Γ(x2

10, x
2
21, z) ≡

∫

d2b⊥Re
〈〈 1

Nc
tr
[

V0 V
i pol †

1

] 〉〉

(z; z x2
21), (3.69)

where the lifetime dependence is shown explicitly in the argument. Equation (3.67)

becomes

∫

d2x2
x2

10

x2
21 x

2
20

∫

d2b⊥
1

2
Re

[

〈〈 1

Nc
tr
[

V2V
i pol †

1

] 〉〉

−
〈〈 1

Nc
tr
[

V0 V
i pol †

1

] 〉〉

]

(3.70)

≈ ǫij Sj x2
10

[

−π
2

∫ x2
10

1

z′s

dx2
21

x2
21

Γ(x2
10, x

2
21, z

′) +
π

2

∫ z

z′ x2
10

x2
10

dx2
21

x2
21

F (x2
21, z

′)

]

.

• Next consider the first expression in the second term in the kernel of eq. (3.64),

that is,

−
∫

d2x2 ln

(

1

x21Λ

)

(

δij x2
21 − 2xi

21x
j
21

x4
21

− δij x2
20 − 2xi

20x
j
20

x4
20

)

(3.71)

× 1

2
Re

[

〈〈 1

Nc
tr
[

V j pol
2 V †

1

] 〉〉

+
〈〈 1

Nc
tr
[

V0 V
j pol †

2

] 〉〉

]

.

This kernel has no UV divergences at either x2 → x1 or x2 → x0, since the potentially

divergent terms vanish after angular averaging. (Strictly-speaking angular averaging
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would lead to delta-functions δ2(x21) and δ2(x20) in the kernel: however, zero-size

daughter dipoles generated this way would have zero lifetimes, or, more precisely, the

delta-functions would imply that z′ x2
21 = 1/s or z′ x2

20 = 1/s, not allowing for any

further DLA evolution due to impossibility of imposing lifetime ordering like (3.68)

beyond zero lifetime: such contribution may need to be added to the inhomogeneous

term, but is not included in the evolution.) Note that employing eq. (3.65) one

can show that ln(1/Λ) vanishes in eq. (3.71): hence the logarithm present in the

integrand does not necessarily make the result of the integration logarithmic. Lastly,

to determine the IR asymptotics, x21 ≈ x20 ≫ x10, one has to split eq. (3.71): in

each term we expand in x10/x21 or x10/x20 and average over the angles of x21 or x20,

depending on whether the impact-parameter integrated correlator depends on x2
21 or

x2
20, respectively. We thus get (after the impact parameter integration)

−
∫

d2x2 ln

(

1

x21Λ

)

(

δij x2
21 − 2xi

21x
j
21

x4
21

− δij x2
20 − 2xi

20x
j
20

x4
20

)

×
∫

d2b⊥
1

2
Re
〈〈 1

Nc
tr
[

V j pol
2 V †

1

] 〉〉

(3.72a)

= π

∫ z

z′ x2
10

x2
10

dx2
21 ln

(

1

x21Λ

)

x2
10

x2
21

ǫij Sj F (x2
21, z

′),

−
∫

d2x2 ln

(

1

x21Λ

)

(

δij x2
21 − 2xi

21x
j
21

x4
21

− δij x2
20 − 2xi

20x
j
20

x4
20

)

×
∫

d2b⊥
1

2
Re
〈〈 1

Nc
tr
[

V0 V
j pol †

2

] 〉〉

(3.72b)

= −π
∫ z

z′ x2
10

x2
10

dx2
20

[

ln

(

1

x20Λ

)

+ 1

]

x2
10

x2
20

ǫij Sj F (x2
20, z

′),

such that eq. (3.71) in DLA approximates to

−
∫

d2x2 ln

(

1

x21Λ

)

(

δij x2
21 − 2xi

21x
j
21

x4
21

− δij x2
20 − 2xi

20x
j
20

x4
20

)

(3.73)

×
∫

d2b⊥
1

2
Re

[

〈〈 1

Nc
tr
[

V j pol
2 V †

1

] 〉〉

+
〈〈 1

Nc
tr
[

V0 V
j pol †

2

] 〉〉

]

≈ −ǫij Sj x2
10 π

∫ z

z′ x2
10

x2
10

dx2
20

x2
20

F (x2
20, z

′).

• Finally, let us consider the last term in the kernel of eq. (3.64),

−
∫

d2x2

(

xi
21

x2
21

− xi
20

x2
20

)

xj
21

x2
21

1

2
Re

[

〈〈 1

Nc
tr
[

V j pol
2 V †

1

] 〉〉

+
〈〈 1

Nc
tr
[

V0 V
j pol †

2

] 〉〉

]

.

(3.74)

This term contains a UV divergence at x2 → x1, for the second term in the square

brackets. There is no UV divergence at x2 → x0. The contribution coming from the
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IR region, x21 ≈ x20 ≫ x10, can be evaluated using the above technique. In the end

we obtain

−
∫

d2x2

(

xi
21

x2
21

− xi
20

x2
20

)

xj
21

x2
21

∫

d2b⊥

× 1

2
Re

[

〈〈 1

Nc
tr
[

V j pol
2 V †

1

] 〉〉

+
〈〈 1

Nc
tr
[

V0 V
j pol †

2

] 〉〉

]

(3.75)

≈ −π
∫ x2

10

1

z′s

dx2
21

x2
21

∫

d2b⊥
1

4
Re
〈〈 1

Nc
tr
[

V0 V
i pol †

1

] 〉〉

+ π

∫ z

z′ x2
10

x2
10

dx2
21

x2
10

x4
21

∫

d2b⊥
1

4
Re
〈〈 1

Nc
tr
[

V2V
i pol †

1

] 〉〉

= −ǫij Sj x2
10

[

π

4

∫ x2
10

1

z′s

dx2
21

x2
21

Γ(x2
10, x

2
21, z

′)− π

4

∫ z

z′ x2
10

x2
10

dx2
21

x2
21

F (x2
21, z

′)

]

.

Substituting eqs. (3.70), (3.73), and (3.75), into eq. (3.64) integrated over all impact

parameters we arrive at

F (x2
10, z) =F (0)(x2

10, z) (3.76a)

− αsNc

4π

∫ z

Λ2

s

dz′

z′

{

∫ z

z′ x2
10

x2
10

dx2
21

x2
21

F (x2
21, z

′) + 3

∫ x2
10

1

z′s

dx2
21

x2
21

Γ(x2
10, x

2
21, z

′)

}

,

Γ(x2
10, x

2
21, z

′) =F (0)(x2
10, z

′)− αsNc

4π

∫ z′

Λ2

s

dz′′

z′′







∫ z′

z′′ x2
21

x2
10

dx2
32

x2
32

F (x2
32, z

′′) (3.76b)

+ 3

∫ min{x2
10

, z′

z′′ x2
21

}

1

z′′s

dx2
32

x2
32

Γ(x2
10, x

2
32, z

′′)







.

The second equation, for the “neighbor” dipole amplitude Γ, is derived by analogy to the

first one [24, 31]. Each integral is non-zero only when the upper integration limit is larger

than the lower one.

The initial condition (the inhomogeneous term) of eqs. (3.76) can be read off from

eqs. (3.43) and (3.65),

F (0)(x2
10, z) = −α3

s c0 (2π)2MP ln

(

1

x10Λ

)

. (3.77)

3.3.5 Small-x sub-eikonal asymptotics of the Sivers function

Solution of eqs. (3.76), while possible both analytically and numerically, appears to be

somewhat involved. Instead we will argue that the high-energy asymptotics should not

depend on the initial conditions. We therefore, replace equations (3.65) and (3.66) by
∫

d2b⊥ F
i
10(z) =

∫

d2b⊥
〈〈 1

Nc
tr
[

V0 V
i pol †

1

] 〉〉

(z) = ǫij Sj
P F (x2

10, z), (3.78)

where the function F (x2
10, z) again may include logarithms of x2

10 or perturbatively small

powers of x2
10 (e.g. x

const
√

αs

10 ); however, we assume that it cannot contain integer powers
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of x2
10. Indeed the initial condition (3.43) was derived for a quark target, that is, for a

hadron so large that the dipole interacts with a single quark in it. One can instead imagine

a situation where the target is perturbatively small, even smaller than the dipole in the

projectile: then the initial conditions may not be proportional to the dipole size squared,

like eq. (3.43), and the ansatz (3.78) would appear to be more appropriate for the initial

condition, and, therefore, for the evolved dipole amplitude as well.

With this new ansatz (3.78), the DLA regime of eq. (3.64) becomes much simpler,

with only the first and the last terms in the kernel contributing. We arrive at (cf. helicity

evolution in [24, 31])

F (x2
10, z) =F (0)(x2

10, z)

+
αsNc

4π

∫ z

1

s x2
10

dz′

z′

∫ x2
10

1

z′s

dx2
21

x2
21

[

F (x2
21, z

′)− 3 Γ(x2
10, x

2
21, z

′)
]

, (3.79a)

Γ(x2
10, x

2
21, z

′) =F (0)(x2
10, z

′)

+
αsNc

4π

∫ z′

1

s x2
10

dz′′

z′′

∫ min{x2
10

, z′

z′′ x2
21

}

1

z′′s

dx2
32

x2
32

[

F (x2
32, z

′′)− 3 Γ(x2
10, x

2
32, z

′′)
]

.

(3.79b)

Our aim now is to solve these equations, following [33].

Defining the new variables

η ≡
√

αsNc

4π
ln
zs

Λ2
, s10 ≡

√

αsNc

4π
ln

1

x2
10Λ2

(3.80a)

η′ ≡
√

αsNc

4π
ln
z′s
Λ2
, s21 ≡

√

αsNc

4π
ln

1

x2
12Λ2

(3.80b)

η′′ ≡
√

αsNc

4π
ln
z′′s
Λ2

, s32 ≡
√

αsNc

4π
ln

1

x2
32Λ2

(3.80c)

and putting, for simplicity, F (0)(x2
10, z) = 1, we rewrite eqs. (3.79) as

F (s10, η) = 1 +

∫ η

s10

dη′
∫ η′

s10

ds21
[

F (s21, η
′)− 3 Γ(s10, s21, η

′)
]

, (3.81a)

Γ(s10, s21, η
′) = 1 +

∫ η′

s10

dη′′
∫ η′′

max{s10,s21+η′′−η′}
ds32

[

F (s32, η
′′)− 3 Γ(s10, s32, η

′′)
]

.

(3.81b)

These equations have the same kernel as the large-Nc DLA helicity equations (3) from [33].

Therefore, the solution must have the same scaling property,

F (s10, η) = F (η − s10), Γ(s10, s21, η
′) = Γ(η′ − s10, η

′ − s21). (3.82)

Using (3.82) in eqs. (3.81) yields

F (ζ) = 1 +

∫ ζ

0
dξ

∫ ξ

0
dξ′ [F (ξ′)− 3 Γ(ξ, ξ′)

]

, (3.83a)

Γ(ζ, ζ ′) = F (ζ ′) +

∫ ζ

ζ′

dξ

∫ ζ′

0
dξ′ [F (ξ′)− 3 Γ(ξ, ξ′)

]

, (3.83b)
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confirming the scaling ansatz from eq. (3.82). The “neighbor” dipole amplitude is defined

only for x10 > x21, that is, ζ > ζ ′.
Repeating the steps from [33], as detailed in appendix A, one arrives at the solution

of eqs. (3.83) in the integral form,

F (ζ) =

∫

dω

2πi
e(ω− 3

ω )ζ ω2 + 3

ω (ω2 − 1)
, (3.84a)

Γ(ζ, ζ ′) =
2

3

∫

dω

2πi
eωζ′− 3 ζ

ω
ω2 + 3

ω (ω2 − 1)
+

1

3

∫

dω

2πi
e(ω− 3

ω )ζ′ ω2 + 3

ω (ω2 − 1)
. (3.84b)

The leading high-energy asymptotics of F (ζ) is given by the saddle points at ω = ±i
√

3 in

the exponent. This is illustrated in figure 11, which also shows the entire complex-plane

structure of the integrand of eq. (3.84a) (cf. [120]). In distorting the original integration

contour (the straight vertical line on the right of figure 11) to the steepest descent path

we pick up the pole at ω = 1. However, the contribution of this pole falls of exponentially

with ζ, that is, it scales as ∼ e−2 ζ , and can be safely discarded for ζ ≫ 1. We thus see that

the integral in eq. (3.84a) is indeed dominated by the contribution of the steepest descent

contour. (Note that this situation is the exact opposite of the helicity distribution in [33],

where the contribution of the right-most pole dominated over the steepest descent path.)

Distorting the integration contour to run along the steepest descent path, and in-

tegrating over the regions near the saddle points at ωs.p. = ±i
√

3 by expanding ω ≈
i
√

3 + ρ ei3π/4 − ρ2/(2
√

3) and ω ≈ −i
√

3 + ρ eiπ/4 − ρ2/(2
√

3), respectively, with some

small real parameter ρ (which is then integrated from −∞ to ∞), one arrives at

F (ζ) ≈ 31/4

8
√
π ζ3/2

sin

(

2
√

3 ζ − π

4

)

(3.85)

such that

F (s10, η) = F (ζ) ≈ 31/4

8
√
π ζ3/2

sin

(

2
√

3 ζ − π

4

)

=
31/4

8
√
π (η − s10)3/2

sin

(

2
√

3 (η − s10)− π

4

)

=
31/4

8
√
π

[

√

αsNc

4π ln
(

zsx2
10

)

]3/2
sin



2
√

3

√

αsNc

4π
ln
(

zsx2
10

)

− π

4



 . (3.86)

We see that the dipole amplitude F (s10, η) is an oscillating function of its arguments: such

oscillations are interesting and reminiscent of the oscillations found in [40] for quark helicity

in the large-Nc&Nf limit (with Nf the number of quark flavors).

We cross-checked the result (3.85) by solving eqs. (3.81) numerically and found a

very good agreement between the analytic and numerical solutions for ζ = η − s10 & 3.

Furthermore, to test our assumption that eqs. (3.76) and eqs. (3.79) give the same small-x

asymptotics for the Sivers function, we solved eqs. (3.76) numerically, obtaining the solution

which exhibited the oscillating behavior with the same period and similarly decreasing-

with-ζ amplitude of the oscillations as eq. (3.85).
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3
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3
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√

3
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√

3

original

contour

s.p.

s.p.

steepest

descent path

Figure 11. The complex plane structure of the ω-integral in eq. (3.84a). The singularities are

denoted by circled crosses: the poles at ω = ±1 and the essential singularity at ω = 0. The original

contour is denoted by the vertical solid straight line to the right of all the singularities. The saddle

points at ωs.p. = ±i
√

3 are marked by the thick dots, while the steepest descent path is sketched by

a curved solid line crossing the saddle points and going through the origin. The dashed horizontal

lines denote the asymptotics of the steepest descent contour.

Employing the result from eq. (3.86) in eqs. (3.78) and (3.59) we see that the z-integral

in the latter is dominated by its lower limit, which gives a contribution independent of the

center-of-mass energy squared s, and, consequently, of x. Therefore, we conclude that the

sub-eikonal small-x asymptotics of the quark Sivers function at large Nc and in DLA is

given by a constant,

f⊥ q
1 T (x, k2

T )
∣

∣

∣

sub-eikonal
∼
(

1

x

)0

= const(x). (3.87)

The approach to the constant asymptotics of eq. (3.87) should be oscillatory with decreasing

amplitude of such oscillations, due to the form of the amplitude in eq. (3.86). This way,

in principle, some residual effects of the oscillations from eq. (3.86) may be observable

experimentally.

Let us point out that the result (3.87) is, in a way, similar to the case of the odd-

eron: while, unlike the odderon case, the (DLA) evolution at the sub-eikonal order does

significantly affect the dipole amplitude F (x2
10, z), the x-dependence of the Sivers function

is almost unaffected by the evolution, just like it was for the eikonal odderon contribu-

tion. The same conclusion (3.87) can be obtained by using the initial amplitude (3.77) in

eqs. (3.78) and (3.59).
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3.4 Small-x asymptotics of the quark Sivers function: a summary

We conclude this section by summarizing the results of our calculations. The quark Sivers

function at small x receives contributions at the eikonal and sub-eikonal order. The eikonal

contribution is coming from the spin-dependent odderon and is given by f⊥ q
1 T ∼ 1/x with

an almost non-perturbative accuracy (see eqs. (3.12) and (3.24)), in agreement with [3, 4].

The sub-eikonal contribution to quark Sivers function is calculated in this work for the first

time. At large Nc and in DLA it is given by eq. (3.87). We, therefore, conclude that, at

small-x, one can describe the small-x asymptotics of the quark Sivers function as

f⊥ q
1 T (x, k2

T ) = CO(k2
T , x)

1

x
+ C1(k2

T )

(

1

x

)0

+ . . . (3.88)

with some functions CO(k2
T , x) and C1(k2

T ), which can be obtained from the above results.

The function CO(k2
T , x) also depends on x, but in a much slower way than the powers

explicitly shown in eq. (3.88) (see, e.g., eq. (26) in [65]). The ellipsis in eq. (3.88) denote

the order-x sub-sub-eikonal corrections along with the powers of ln(1/x)-suppressed pre-

asymptotic corrections to the saddle-point asymptotics shown in eq. (3.88).

The situation we have found is qualitatively similar to what was suggested for the h1

structure function in [121]: a sum of the odderon and DLA contributions. (Note, however,

that for a related quantity, the valence quark transversity TMD, only the DLA contribution

was found in [2].)

4 Conclusions and outlook

In this paper we have accomplished several results. In eq. (2.39) we have constructed

the full sub-sub-eikonal polarized Wilson line/quark S-matrix operator which can also be

used to obtain the small-x asymptotics of a number of quark TMDs which have not been

studied at small x yet. We employed this operator to study the Sivers function f⊥
1 T up

to the sub-eikonal order. In the future, one TMD that can be studied with the help of

this new operator is the Worm-Gear function g⊥
1T coupling the proton’s transverse spin

to the quark helicity: such coupling is given by the δχ,−χ′ terms which can be extracted

from eq. (2.39). One can also apply the same operator treatment to study the small-x

asymptotics of other leading-twist quark TMDs, such as the Boer-Mulders (h⊥
1 ) function,

by employing the quark polarization-independent ∼ δχ,χ′ sub-eikonal corrections from the

quark S-matrix operator constructed here. Similarly one can study Pretzelosity (h⊥
1T ) which

couples transversely polarized quarks (∼ χ δχ,−χ′) to the transverse spin of the proton, with

both spins orthogonal to each other. One can also study the other Worm-Gear function

h⊥
1L coupling the transversely-polarized quark (∼ χ δχ,χ′) to the longitudinal spin of the

proton. Then, together with the known results for the unpolarized quark TMD at small

x [23, 94, 99, 100], quark helicity [1, 24, 33] and transversity [2] one would have obtained

the small-x asymptotics for all the leading-twist quark TMDs. Leading-twist gluon TMDs

can also be analyzed in a similar way. This would allow one to make predictions for the

data of future small-x experiments studying the proton’s spin structure, such as those at

the upcoming EIC.
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The standard Collins-Soper-Sterman (CSS) [122, 123] equations usually applied to

TMDs evolve them in Q2 and not in x. As a consequence, the CSS evolution cannot

predict the x-dependence of TMDs, particularly at small x. Constructing small-x evolution

of TMDs, which is able to predict the x dependence of TMDs, like what was done in this

paper for the quark Sivers function, is thus vital for making predictions for the future TMD

measurements at the EIC and for completing our understanding of TMDs in the important

small-x region of phase space probed in high energy collisions. In addition, understanding

the small-x asymptotics of TMDs would provide a unique angle on the proton momentum

and spin structure in the regime dominated by sea quarks and gluons.

To illustrate our method we have constructed the small-x quark Sivers function us-

ing the operator formalism introduced in [1] to study the quark helicity TMD and used

again in [2] to construct the valence quark transversity TMD. We have reproduced the

conclusion of [3] that the spin-dependent odderon dominates in the small-x asymptotics

of the quark Sivers function. In addition, we have found the sub-eikonal correction to

this odderon-dominated asymptotics. Perhaps naturally, the sub-eikonal contribution to

the Sivers function comes from the gauge-covariant operator representing the sub-eikonal

phase (2.18), since existence of a phase is essential for the Sivers function. The two terms,

eikonal and sub-eikonal, are summarized in eq. (3.88). For the STSA AN observable, if we

conjecture that AN ∼ x f⊥
1 T as far as the x-dependence is concerned, our prediction (3.88)

implies AN ∼ CO + xC1. Since the data [103–106] appears to be closer to AN ∼ x scal-

ing than to AN ∼ const, we see that the sub-eikonal correction may turn out to be more

important for the description of the existing data on STSA. One could speculate that the

sub-eikonal correction somehow dominates over the spin-dependent odderon contribution

in the experimentally-probed x-region, possibly just numerically if C1 ≫ CO for some

(probably non-perturbative3) reason. Note that the lowest-order perturbative Sivers func-

tion scales as f⊥
1 T ∼ x at small x [79], leading to AN ∼ x2, which seems to disagree with the

data [103–106], though a more detailed analysis of the x-dependence of AN in the data is

needed to draw firm conclusions. The sub-eikonal correction we found, once better quanti-

fied, may also provide a background for the future spin-dependent odderon searches. These

results give an exciting possible new direction for such future experimental studies, partic-

ularly in light of the recent announcement by D0 and TOTEM collaborations of odderon

detection through the asymmetry between pp and pp̄ collisions [62]. Future experiments

such as those to be conducted at the EIC will be able to probe transverse spin asymmetries

at small-x and potentially observe both the spin-dependent odderon contribution and the

sub-eikonal correction derived in this work.

3In a purely perturbative approach, CO is not parametrically suppressed compared to C1 (both are

order-α3
s): while a definitive conclusion can be reached only by performing a detailed calculation, it appears

puzzling that only the C1 contribution is seen in the data so far (if our interpretation of the data on the

x-dependence of AN is correct). One can suspect that non-perturbative effects may alter this perturbative

conclusion of C1 and CO being comparable. Indeed, the historical difficulty of detecting odderon contribu-

tions to QCD processes might suggest that terms like CO are suppressed by a mechanism which cannot be

seen by perturbative calculations.
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A Solution of the large-Nc evolution equations

Here we solve eqs. (3.83) following the strategy presented in [33]. Differentiating eqs. (3.83)

yields

∂ζF (ζ) =

∫ ζ

0
dξ′ [F (ξ′)− 3 Γ(ζ, ξ′)

]

, (A.1a)

∂ζΓ(ζ, ζ ′) =

∫ ζ′

0
dξ′ [F (ξ′)− 3 Γ(ζ, ξ′)

]

. (A.1b)

Introducing the Laplace transforms

F (ζ) =

∫

dω

2πi
eωζ Fω, Γ(ζ, ζ ′) =

∫

dω

2πi
eωζ′

Γω(ζ) (A.2)

we reduce eq. (A.1b) to

∂ζΓω(ζ) =
1

ω
[Fω − 3 Γω(ζ)] . (A.3)

Solution of eq. (A.3) is

Γω(ζ)− 1

3
Fω = e− 3

ω
ζ
[

Γω(0)− 1

3
Fω

]

≡ e− 3

ω
ζ Hω. (A.4)

Employing it in eq. (A.2), along with the Γ(ζ, ζ) = F (ζ) condition, we arrive at

F (ζ) =
3

2

∫

dω

2πi
e(ω− 3

ω ) ζ Hω, (A.5a)

Γ(ζ, ζ ′) =

∫

dω

2πi
eωζ′− 3

ω
ζ Hω +

1

2

∫

dω

2πi
e(ω− 3

ω ) ζ′

Hω. (A.5b)

Substituting eqs. (A.5) into eqs. (A.1) results in two constraints,

∫

dω

2πi
e− 3

ω
ζ 1

ω
Hω = 0,

∫

dω

2πi
e(ω− 3

ω ) ζ
(

ω − 1

ω

)

Hω = 0. (A.6)

To satisfy these, we write

Hω =
ω

ω2 − 1
fω (A.7)

and look for the unknown function fω in the form

fω =
∞
∑

n=−∞
dn ω

n. (A.8)
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After a calculation similar to [33] and involving a series of Bessel functions Jn(2
√

3 ζ) we

arrive at

fω = d0

(

1 +
3

ω2

)

(A.9)

with some unknown constant d0. The constant can be fixed by requiring that F (0) = 1, as

follows from eq. (3.83a). This gives d0 = 2/3. We thus obtain

Hω =
2

3

ω2 + 3

ω (ω2 − 1)
. (A.10)

Using eq. (A.10) in eqs. (A.5) yields the solution (3.84) in the main text.
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