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Abstract

Dissociation of quarkonium in quark-gluon plasma (QGP) is a long standing topic in relativistic
heavy-ion collisions because it has been believed to signal one of the fundamental natures of the
QGP – Debye screening due to the liberation of color degrees of freedom. Among recent new
theoretical developments is the application of open quantum system framework to quarkonium in
the QGP. Open system approach enables us to describe how dynamical as well as static properties
of QGP influences the time evolution of quarkonium in a coherent way.

Currently, there are several master equations for quarkonium corresponding to various scale
assumptions, each derived in different theoretical frameworks. In this review, all of the existing
master equations are systematically rederived as Lindblad equations in a unified framework. Also,
as one of the most relevant descriptions in relativistic heavy-ion collisions, quantum Brownian
motion of heavy quark pair in the QGP is studied in detail. The quantum Brownian motion is
parametrized by a few fundamental quantities of QGP such as real and imaginary parts of heavy
quark potential (complex potential), heavy quark momentum diffusion constant, and thermal dipole
self-energy constant, which constitute in-medium self-energy of a static quarkonium. This indicates
that the yields of quarkonia such as J/ψ and Υ in the relativistic heavy-ion collisions have the
potential to determine these fundamental quantities.
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1 Introduction

Recently, theory of open quantum systems [1, 2, 3] is widely applied to subatomic physics and cosmology
as well as to the fields of condensed matter physics and atomic, molecular, and optical (AMO) physics.
For instance, the effects of quantum friction on nuclear collective dynamics are studied in nuclear fusion
and fission processes [4, 5], entanglement of valence partons with the rest of degrees of freedom in high-
energy hadronic wave function is studied by analyzing the rapidity evolution of their density matrix
[6, 7], and dissipation of inflaton due to coupling to environmental fields is found to suppress the power
spectrum of temperature anisotropy in the cosmic microwave background at large scales [8, 9]. Also, in
the condensed matter and AMO physics, non-Hermitian physics, which naturally arises in certain limit
of open system set up, is now developing very rapidly [10]. As is common to these examples, the open
quantum system refers to a quantum system of our interest that couples to the environmental degrees
of freedom, which is a ubiquitous situation in physics.

In this review paper, I re-examine recent applications of the open quantum system approach to a
particular subfield of high energy nuclear collisions – in-medium properties of quarkonia in quark-gluon
plasma (QGP). In particular, I show that all of the microscopic derivations of open system dynamics of
quarkonia to date [11, 12, 13, 14, 15, 16, 17, 18] can be reformulated in a unified framework on the basis
of a simple quantum mechanical picture of quarkonium coupled with QGP particles, which is somewhat
close to the method adopted in [14, 15]. I believe that putting the previous efforts in a unified framework
must provide a useful guide to this field because the descriptions used in the original derivations differ
from one another: influence functional in the path integral formalism [11, 12, 13], dynamical evolution
of density matrix in the operator formalism [14, 15, 18], and Dyson-Schwinger equation of correlation
functions on the closed-time path [16, 17].

In what follows, I will first briefly review the history of studies of quarkonium in the QGP. In 1980s, it
was not clear whether the QGP, an extremely hot matter in which quarks and gluons are liberated from
inside the hadrons, can be experimentally produced and identified if produced by colliding two large
nuclei at ultrarelativistic energies. Proposing signals for the QGP production is one of the important
theoretical works in the community of relativistic heavy-ion collisions. Among other proposals, it was
predicted by Matsui and Satz [19] that the yield of J/ψ, the ground state of charm quark pair cc̄
with JPC = 1−−, is suppressed if the QGP is created1. This scenario of J/ψ suppression is based on
a very simple but essential physics of the deconfined plasma – Debye screening. In the quark-gluon
plasma, liberated color degrees of freedom screen the local color charges and the color interaction gets
short ranged. The qualitative difference between the confining force in the vacuum and the screened
force in the deconfined phase results in a drastic change of the spectrum of J/ψ as the temperature
increases and eventually leads to its disappearance at high temperature. Extending this reasoning to
other charmonium states such as ψ(2S) and bottomonia Υ(nS) (bound states of bottom quark pair bb̄
with JPC = 1−−) is straightforward and different melting temperatures for each quarkonium will be
obtained. One may even conclude that the different melting temperatures can be used as a thermometer
of the QGP. Theoretically, however, there is no unambiguous definition of melting temperature and thus
the resolution of thermometer is not high at best.

There were two important developments that demonstrated and supplemented the idea of Matsui
and Satz in terms of real-time quantities with clear field theory definitions – quarkonium spectral
function and real-time heavy quark potential, which are closely related to each other. In short, the J/ψ
suppression scenario was based only on static nature of QGP. These two developments shed light on
dynamical nature of QGP that influences the in-medium quarkonium properties.

Spectral function of quarkonium at finite temperature provides us with a useful information on the

1More precisely, J/ψ yield is suppressed compared to that in proton-proton collisions multiplied by a proper scaling
factor Ncoll that estimates the number of binary nucleon-nucleon collisions in a heavy-ion collision. The latter is a
theoretical estimate for the case without QGP production.
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nature of a quarkonium bound state in the QGP and its interaction with the QGP constituents. It
was first calculated for J/ψ and ηc by Asakawa and Hatsuda [20] using the maximum entropy method
to reconstruct the spectral image from Euclidean lattice QCD data [21]. They found that the peak
structures of J/ψ and ηc survive up to T ' 1.6Tc and disappear below 1.9Tc, which signals the melting
of J/ψ. From this example, one can see that the definition of melting temperature inevitably contains
ambiguity because it must specify the conditions for existence and disappearance of the spectral peak.
The lattice QCD simulation of quarkonium spectral functions at finite temperatures is still developing.
Recent studies of charmonium and bottomonium spectral functions are found in [22, 23, 24, 25] and
[26, 27, 28, 29] respectively.

The other important quantity, real-time heavy quark potential, gives a precise definition of potential
for static heavy quarks at finite temperature. It is defined in terms of spectral decomposition of thermal
Wilson loop and was first calculated perturbatively by Laine et al. [30] and by others [31, 32]. It was
also computed from the Euclidean lattice QCD data and has been continually updated and improved
[33, 34, 35, 36, 37, 38]. The real-time heavy quark potential at finite temperatures is complex valued
and thus often called complex potential. In the potential model, the complex potential is the potential
that must be substituted in the time-dependent Schrödinger equation for in-medium wave function.
The Schrödinger equation with complex potential (and with finite heavy quark mass) is a useful tool
to calculate the quarkonium spectral function within the potential model [39, 40], relating these two
quantities. Indeed, the imaginary part of the potential causes the spectral broadening even if the real
part of the potential admits bound states, as observed in the lattice QCD simulations.

Although these two developments clarified to a large extent the real-time aspects of the J/ψ sup-
pression scenario, the notion of in-medium wave function limits the predictive power of the formalism2.
As is the case in non-equilibrium physics, it is the time evolution of the expectation values of physical
quantities that one is eager to know. For such purposes, the evolution of in-medium wave function is
not enough; one needs to know the evolution of density matrix, the central object for the theory of
open quantum systems. One of the first applications of open quantum system approach to quarkonium
physics in the QGP was the interpretation of the complex potential as statistical average of stochastic
evolutions with fluctuating real potential, namely the stochastic potential [42, 43, 44]. The stochastic
potential explains the physical origin of imaginary potential in terms of thermal fluctuations and thus
succeeds for the first time in describing both the static and dynamical effects of thermal fluctuations in
one potential picture. Moreover, it generates ensemble of wave functions from which one can reconstruct
the mixed state density matrix.

After the introduction of stochastic potential and a few earlier applications of open quantum system
approach [45, 46, 47], the development of this field is remarkable [11, 12, 13, 14, 15, 16, 17, 18, 48, 49,
50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60]. In particular, it has reached to a point where several Lindblad
equations for quarkonium in the QGP have been derived [12, 14, 15, 16, 17, 18]. On the other hand,
there are several differences in the obtained equations, such as the regimes of applicabilities, whether
or not the dissipation is included, and the treatments of singlet-octet transitions of quarkonium color
states, in addition to the formalisms used in the derivations. It is thus desirable at this moment that
there exists a review paper that summarizes all of the existing Lindblad equations for quarkonium in
the QGP in a unified theoretical framework, which is the main topic of this review. There are also
recent review papers [61, 62] that contain the same topic from different perspectives.

Finally, I list below the related topics, which however are not included in this review. It is partly
because I do not have enough knowledge and partly because there already exist nice review papers on
these topics. Interested readers should consult the references.

2If J/ψ decays in the hot medium and is in kinetic equilibrium in the relativistic heavy-ion collisions, the spectral
function may be observed through dilepton spectrum. J/ψ mass shift [41] was proposed as a signal for the QGP formation
around the same time with the J/ψ suppression [19]. In reality, J/ψ decays mostly in the vacuum outside the hot medium
after out-of-equilibrium evolution.
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• Quarkonium in the vacuum and its production in proton-proton collisions [63]

• Experimental data and phenomenological studies of quarkonium in relativistic heavy-ion collisions.
See [64] for a general review and [65] for recent theoretical developments. Popular descriptions in
the phenomenological studies are:

– Schrödinger equation with complex potential [66, 67, 68, 69, 70, 71]

– Kinetic equation with chemical reactions between quarkonium and heavy quarks [72, 73, 74,
75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85]

• Quarkonium in other environments such as QGP with viscous corrections [86, 87, 88, 89, 90, 91],
QGP with finite velocity [92, 93, 94], and QGP in an external magnetic field [95, 96, 97]

This review paper is organized as follows. In Section 2, basics of the open quantum system is
reviewed. After the introduction of the Lindblad equation as a general form of Markovian master
equation, weak coupling methods are explained for two different regimes of open quantum systems
– the quantum optical regime and the quantum Brownian motion. Formulas to obtain the Lindblad
equation from microscopic Hamiltonian are given when the system-environment coupling is weak. In
Section 3, Lindblad equations are obtained for single heavy quark and quarkonium in the QGP that
are described by non-relativistic QCD, an effective theory for heavy quarks. In Section 4, Lindblad
equations are obtained for quarkonium in the QGP that is described by potential non-relativistic QCD,
an effective theory for quarkonium as a color dipole. Section 5 is devoted for summary.
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2 Basics of open quantum systems

When a system of our interest is in contact with its surrounding environment, the former is called an
open system, or simply a system. Quantum mechanically, the total Hilbert space Htot = HS ⊗HE is a
direct product of the system Hilbert space HS and the environment Hilbert space HE. The information
of the total system is encoded as the total density matrix:

ρtot(t) ≡
∑
α

wα|α(t)〉〈α(t)|, |α〉 ∈ Htot, 〈α|α〉 = 1, (2.1)

where wα ≥ 0 is the probability to find a state α and satisfies
∑

αwα = 1. In the Schrödinger picture,
the time evolution of ρtot(t) is governed by the von-Neumann equation:

d

dt
ρtot(t) =

1

i~
[Htot, ρtot] , Htot = HS ⊗ IE + IS ⊗HE +

∑
i

V
(i)
S ⊗ V

(i)
E , (2.2)

where Htot is the total Hamiltonian, IE(S) is the identity operator in the environment (system) Hilbert
space and the last term is the interaction Hamiltonian between the system and the environment. Since
we are interested in the system part, we often need to evaluate the expectation value of a system
operator OS ⊗ IE that leaves the environment state unchanged:

〈OS(t)〉 = Trtot [ρtot(t)(OS ⊗ IE)] = TrS [OS (TrEρtot(t))] . (2.3)

Note that Trtot = TrSTrE = TrETrS. If we know the evolution of ρS(t) ≡ TrEρtot(t), we can calculate
the expectation value as if ρS is the density matrix of the system:

〈OS(t)〉 = TrS [ρS(t)OS] . (2.4)

Theory of open quantum system [1, 2, 3] describes the time evolution of reduced density matrix ρS(t) by a
differential equation, namely the master equation. In the section 2.1, I introduce a particular form of the
master equation, the Gorini-Kossakowski-Sudarshan-Lindblad equation [98, 99] or the Lindblad equation
in short, which ensures that the evolved reduced density matrix fulfills desired physical properties. In
the section 2.2, I summarize how and when the master equation can be obtained in the Lindblad form.
In particular, I will emphasize the necessity of time scale hierarchies and give their intuitive physical
interpretation. For advanced mathematics of open quantum systems, I will recommend an excellent
textbook [100].

2.1 Lindblad equation

2.1.1 Dynamical map

Evolution of the reduced density matrix ρS(t) is quite involved. Let us first observe basic properties of
ρS(t). We assume that the system and the environment are initially decoupled ρtot(0) = ρS(0)⊗ ρE(0).
Then the reduced density matrix at later time t is obtained as

ρS(t) = TrE
{
U(t, 0) [ρS(0)⊗ ρE(0)]U †(t, 0)

}
, U(t1, t2) ≡ e−iHtot(t1−t2). (2.5)

Clearly, the evolution from ρS(0) to ρS(t) is linear in ρS(0), which is called dynamical map and denoted
as

ρS(t) = Vdyn(t)ρS(0) (2.6)
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with a superoperator Vdyn(t). The environment density matrix ρE(0) is Hermitian, positive semi-definite,
and trace-normalized TrEρE(0) = 1, so that it can be decomposed by its orthonormal eigenvectors |ϕα〉
and non-negative eigenvalues λα as

ρE(0) =
∑
α

λα|ϕα〉〈ϕα|,
∑
α

λα = 1. (2.7)

With this basis, the superoperator Vdyn(t) is explicitly given as

Vdyn(t)ρS(0) =
∑
α,β

Wαβ(t)ρS(0)W †
αβ(t), Wαβ(t) ≡

√
λβ〈ϕα|U(t, 0)|ϕβ〉. (2.8)

Wαβ(t) labeled by α and β is an operator in the system Hilbert space HS. With this form, it is clear that
Vdyn(t) maps a positive operator ρS(0) to another positive operator ρS(t), namely Vdyn(t) is a positive

map. The operator Wαβ also possesses a property
∑

α,βW
†
αβ(t)Wαβ(t) =

∑
β λβ = IS, so that the trace

of ρS is preserved TrSρS(t) = TrSρS(0) = 1. Therefore, the dynamical map Vdyn(t) is a linear map that
preserves the positivity and trace of the reduced density matrix ρS.

To be precise, Vdyn(t) in Eq. (2.8) is not only positive but also completely positive. The latter
requires that in addition to the positivity of Vdyn(t), the superoperator Vdyn(t) ⊗ IA in an arbitrarily
enlarged Hilbert space HS⊗HA is also a positive map in the composite system. Here, IA is the identity
superoperator acting on the operators inHA. Here is the proof of complete positivity of Vdyn(t). Prepare
an enlarged system HS′ = HS ⊗HA such that the subsystem A does not interact with either S or E:

Htot′ = HS′ ⊗ IE + IS′ ⊗HE +
∑
i

V
(i)
S′ ⊗ V

(i)
E , (2.9a)

HS′ = HS ⊗ IA + IS ⊗HA, IS′ = IS ⊗ IA, V
(i)
S′ = V

(i)
S ⊗ IA. (2.9b)

Then, the dynamical map of the composite system S ′ is

V ′dyn(t)ρS′(0) =
∑
α,β

[
Wαβ(t)⊗ e−iHAt

]
ρS′(0)

[
Wαβ(t)⊗ e−iHAt

]†
= [Vdyn(t)⊗ UA] ρS′(0), (2.10a)

UA(t)ρA(0) = e−iHAtρA(0)eiHAt, (2.10b)

and thus the superoperator is given by

V ′dyn(t) = Vdyn(t)⊗ UA(t) = [Vdyn(t)⊗ IA] · [IS ⊗ UA(t)] . (2.11)

By repeating the same argument that lead to the positivity of Vdyn(t), we can show that V ′dyn(t) is

positive as well. Since IS ⊗ U−1
A (t) is a (reversed) unitary evolution and is a positive map, it follows

that Vdyn(t)⊗IA = V ′dyn(t) ·
[
IS ⊗ U−1

A (t)
]

is positive for any subsystem A and thus Vdyn(t) is completely
positive.

Mathematically, it is not the positivity but the complete positivity that fully characterizes the
dynamical map. For example, transposition ρS → ρTS is positive but not completely positive, therefore
positivity alone cannot exclude such class of operations. Indeed, it is proved by Kraus [101] that any
linear map which is completely positive can be written with a set of operators Kα as

ρS(0)→ ρS(t) =
∑
α

Kα(t, 0)ρS(0)K†α(t, 0), (2.12)

known as Kraus decomposition. Conversely, it is straightforward (as above) to show that any map given
by a Kraus decomposition is completely positive. Therefore, mathematically precise classification of the
dynamical map is a linear map which is Completely Positive and Trace-Preserving, or a CPTP map.
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So far, we have assumed that the initial condition takes the product form ρtot(0) = ρS(0) ⊗ ρE(0).
Here, let us discuss the effect of initial correlation between the system and the environment:

ρtot(0) = ρS(0)⊗ ρE(0) + ρcorr(0), TrSρcorr(0) = TrEρcorr(0) = 0. (2.13)

At time t, the reduced density matrix is

ρS(t) =
∑
α,β

Wαβ(t)ρS(0)W †
αβ(t) + TrE

[
U(t, 0)ρcorr(0)U †(t, 0)

]
, (2.14)

where Wαβ(t) is defined in Eq. (2.8). It is clear that the initial correlation does play a role. The first term
is in the form of the Kraus decomposition, which depends on ρE(0) (through Wαβ(t)) and linearly on
ρS(0). The second term does not directly depend on ρS(0). Therefore, when ρE(0) and ρcorr(0) are fixed,

the evolution of ρS(t) is inhomogeneous but is linear in ρS(0), i.e. if ρS(0) = wρ
(1)
S (0) + (1 − w)ρ

(2)
S (0)

with 0 ≤ w ≤ 1, it evolves to ρS(t) = wρ
(1)
S (t) + (1 − w)ρ

(2)
S (t). However, due to the presence of the

initial correlation ρcorr(0), not all the initial ρS(0)s can give a positive ρtot(0) by (2.13). In this sense,
the map (2.14) is not a positive map and thus cannot be written as the Kraus decomposition [102].

From the point of view of constructing a dynamical map from ρS(0) to ρS(t), the first step is to
assign an initial total density matrix

ρtot(0) = Φ[ρS(0)], (2.15)

where Φ is called assignment map. It seems natural to require the following three conditions on Φ: (a)
linear map of ρS(0), (b) consistent ρS(0) = TrEΦ[ρS(0)], and (c) Φ[ρS(0)] is positive for any positive
ρS(0). It is proved in [103] that if we demand all of these, the only possible assignment map is in the
form

Φ[ρS(0)] = ρS(0)⊗ ρE(0), (2.16)

with ρE(0) being a positive density matrix independent of ρS(0). When the system-environment cou-
pling is strong, the initial correlation is often non-negligible and Φ fails to meet at least one of the
conditions (a)-(c) [103, 104, 105]. The initial condition (2.13) with ρE(0) and ρcorr(0) independent of
ρS(0) corresponds to a Φ which satisfies (a) and (b) but fails to satisfy (c) as we see above. In some
cases, Φ satisfies (c) but fails (a) or (b). For example, the total initial state ρtot(0) is prepared from the
total equilibrium ρeq

tot by performing projective measurements on the system:

ρtot(0) =
∑
n

wnPn ⊗ TrS [Pnρ
eq
tot] /Trtot [Pnρ

eq
tot] , 0 < wn ≤ 1,

∑
n

wn = 1, (2.17)

where Pn = |n〉〈n| denotes a projective measurement and wn is an arbitrary weight factor to make a
mixed state ρS(0) =

∑
nwnPn. In this case, Φ is a nonlinear map of ρS(0) and fails to satisfy (a) unless

ρeq
tot is a product state [104].

2.1.2 Markovian limit

If the environment is static and loses its correlation in a finite short time, there is expected to be a
time scale in which the system dynamics becomes Markovian and the dynamical map Vdyn(t) satisfies
a semigroup property Vdyn(t1)Vdyn(t2) = Vdyn(t1 + t2) for t1, t2 ≥ 0. The semigroup property is slightly
puzzling because the system and the environment are not any more decoupled in ρtot(t2), but it can
be explained as follows. If the system evolution is Markovian, ρS(t1 + t2) can be expressed in two
ways, ρS(t1 + t2) = Ṽ(t1)ρS(t2) = Ṽ(t1)Vdyn(t2)ρS(0) = Vdyn(t1 + t2)ρS(0) for any ρS(0), and thus
Ṽ(t1)Vdyn(t2) = Vdyn(t1 + t2) holds. Here the Markovian evolution operator Ṽ(t1) depends only on the
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time difference t1 because we assume a static environment3. Choosing t2 = 0, we get Ṽ(t1) = Vdyn(t1)
and the semigroup property follows. In this time scale, Vdyn(t) describes a quantum Markov process and
we can define a generator L of the dynamical map Vdyn(t) = exp[Lt]. The generator must be written
in the Lindblad form [98, 99]

d

dt
ρS = LρS = −i [H, ρS] +

∑
k

(
LkρSL

†
k −

1

2
L†kLkρS −

1

2
ρSL

†
kLk

)
, (2.18)

where the second term in the right hand side is called the dissipator.

Here we provide a short derivation of this form in a finite dimensional Hilbert space HS following [1].
For a finite dimensional Hilbert space (dim HS = N), there is an operator basis Fi (i = 1, 2, · · · , N2)
by which any operator can be expanded. It is convenient to define an inner product of the operators by
(A,B) ≡ TrS(A†B). Since (Fi, Fj) = (Fj, Fi)

∗ is Hermitian, one can take a proper linear combination to
make an orthonormal basis (Fi, Fj) = δij. We can choose, for the later purpose, to define FN2 = 1√

N
IS

and then all the other basis operators are traceless TrSFi = 0 (i = 1, 2, · · · , N2 − 1). The dynamical
map Vdyn(t) can be expanded by this operator basis

ρS(t) = Vdyn(t)ρS(0) =
∑
α,β

Wαβ(t)ρS(0)W †
αβ(t) =

∑
i,j

cij(t)FiρS(0)F †j , (2.19a)

cij(t) ≡
∑
α,β

(Fi,Wαβ(t))(Fj,Wαβ(t))∗, (2.19b)

where the coefficient matrix cij(t) is positive semi-definite. The action of L is obtained by

LρS = lim
ε→0

1

ε
[Vdyn(ε)ρS − ρS] (2.20)

= lim
ε→0

[
1

ε

(
cN2N2(ε)

N
− 1

)
ρS +

1√
N

N2−1∑
i=1

(
ciN2(ε)

ε
FiρS +

cN2i(ε)

ε
ρSF

†
i

)
+

N2−1∑
i,j=1

cij(ε)

ε
FiρSF

†
j

]
.

If the Markovian description is available, the following limit for the coefficients must exist after coarse
graining in time

aN2N2 ≡ lim
ε→0

cN2N2(ε)−N
ε

, aiN2 = a∗N2i ≡ lim
ε→0

ciN2(ε)

ε
, aij ≡ lim

ε→0

cij(ε)

ε
, (i, j = 1, 2, · · · , N2 − 1),

(2.21)

by which we also define new operators and rewrite (2.20) as

F ≡ 1√
N

N2−1∑
i=1

aiN2Fi, H ≡ 1

2i
(F † − F ), G ≡ 1

2N
aN2N2IS +

1

2
(F † + F ), (2.22a)

LρS = −i[H, ρS] + {G, ρS}+
N2−1∑
i,j=1

aijFiρSF
†
j . (2.22b)

3One might think that the update from t2 to t1 + t2 still depends on both t2 and t1 + t2 even in the static case because
initial time is 0, i.e. Ṽ(t1 +t2−t0, t2−t0) if the initial time is t0. However the dependence on t0 contradicts the Markovian
assumption and we get the form Ṽ(t1).
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Furthermore, the dynamical map Vdyn(t) preserves the trace of ρS, so that L must satisfy

0 = TrS (LρS) = TrS

[(
2G+

N2−1∑
i,j=1

aijF
†
j Fi

)
ρS

]
, G = −1

2

N2−1∑
i,j=1

aijF
†
j Fi, (2.23a)

LρS = −i[H, ρS] +
N2−1∑
i,j=1

aij

(
FiρSF

†
j −

1

2

{
F †j Fi, ρS

})
. (2.23b)

Since aij (i, j = 1, 2, · · · , N2 − 1) is also positive semi-definite, we can diagonalize the quadratic forms

aijFiρSF
†
j and aijF

†
j Fi by a unitary transformation of the operator basis and then rescale the operators

to get

LρS = −i[H, ρS] +
∑
k

(
LkρSL

†
k −

1

2
L†kLkρS −

1

2
ρSL

†
kLk

)
. (2.24)

The operators Lk are called Lindblad operators and their number can be smaller than N2−1 because aij
may have zero eigenvalues. By this construction, TrSH = TrSLk = 0 and TrS(L†kLl) = (Lk, Ll) ∝ δkl.

A few remarks are in order here. First, note that H is not necessarily the system Hamiltonian
HS. There can be a new contribution by the coupling to the environment. Second, note also that
the Lindblad operators Lk are not unique. The Lindblad equation is invariant under transformations
(i) Lk → L′k =

∑
l uklLl with a unitary matrix

∑
l uklu

∗
ml = δkm and (ii) Lk → L′k = Lk + ak,

H → H ′ = H + 1
2i

∑
k(a
∗
kLk− akL

†
k) + b with ak ∈ C and b ∈ R. With these transformations taken into

consideration, the relations TrSH = TrSLk = 0 and TrS(L†kLl) = (Lk, Ll) ∝ δkl do not hold in general.
Original derivation of Eq. (2.18) by Gorini, Kossakowski, and Sudarshan [98] took a different ap-

proach. Here we briefly sketch their statement because it illustrates the importance of complete posi-
tivity and the connection to classical Markov processes. They started from a theorem by Kossakowski
[106] (proof can also be found in [100]), which states that, for L to be a generator of a positive dynamical
semigroup Vdyn(t) = exp [Lt], the necessary and sufficient condition is to satisfy

TrSPrL(Ps) ≥ 0 (r 6= s = 1, 2, · · · , N = dim HS), (2.25a)

N∑
r=1

TrSPrL(Ps) = 0 (s = 1, 2, · · · , N), (2.25b)

where Pr (r = 1, 2, · · · , N) is a set of complete and mutually orthogonal one-dimensional projection
operator of HS. These conditions are known as Kossakowski conditions. Furthermore, a superoperator
L is a generator of a completely positive dynamical semigroup if and only if L ⊗ IA satisfies the
Kossakowski conditions (2.25) for the extended Hilbert space HS ⊗ HA with dim HA = N so that
dim (HS ⊗ HA) = N2, which is a consequence of a theorem by Choi [107]4. Using these conditions,
they proved that L is a generator of a complete positive dynamical semigroup if and only if it is given
by (2.23b) with a positive coefficient matrix ars.

With the probability distribution pr(t) ≡ TrSPrρS(t), the connection to the classical Markov process
is obtained by an ansatz ρS(t) =

∑
r pr(t)Pr, where off-diagonal parts are neglected. In general, classical

Markov process is described by

dpr
dt

=
N∑
s=1

Γrsps, Γrs ≥ 0 (r 6= s = 1, 2, · · · , N),
N∑
r=1

Γrs = 0 (s = 1, 2, · · · , N). (2.26)

4It states that a linear map Γ of the operators in HS is completely positive if a map Γ⊗IA of the operators in HS⊗HA
with dim HS = dim HA is positive. The generator of Vdyn(t)⊗ IA is L ⊗ IA.
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The Kossakowski conditions are interpreted as quantum extension of the conditions on the transition
rates Γrs, by replacing Γrs with TrSPrL(Ps).

The above derivations are for finite dimensional Hilbert space HS while in general dim HS can be
infinite. Mathematically, it is proven in a general Hilbert space that if the Lindblad operators form
a countable set, any bounded generator L for a trace-preserving completely positive map Vdyn(t) can
be written in the form of Eq. (2.18) [99]. Although many physical examples of L are unbounded (e.g.
Hamiltonian) or the label k of Lk runs continuous variables (e.g. momentum), they are written in the
form (2.18) or can be slightly modified to take the form (2.18).

2.1.3 Steady states

Given a Lindblad equation (2.18), what is its steady state solution? Although its mathematical def-
inition is simple Lρss = 0 and can be formulated as a concrete problem in linear algebra in finite
dimensional case, not much is known about the steady states. If there is a unique steady state and
every initial reduced density matrix evolves into that steady state

∀ρS(0) : lim
t→∞

eLtρS(0) = ρss, (2.27)

such dynamical semigroup is called relaxing. Below, after giving general discussions, we list at the end
some of the known facts about the steady states when dim HS = N is finite.

As defined in Sec. 2.1.2, the inner product of the operators (A,B) ≡ TrS(A†B) is useful. Here
again we adopt the orthonormal operator basis Fi (i = 1, 2, · · · , N2) satisfying (Fi, Fj) = δij. Then, the
condition for the steady state Lρss = 0 can be written as the following linear algebraic problem:

[L]ij ≡ (Fi,LFj), [ρss]i ≡ (Fi, ρss),
N2∑
j=1

[L]ij[ρss]j = 0 (i = 1, 2, · · · , N2). (2.28)

In this section, we choose Hermitian operator basis Fi = F †i , by which [L]ij is a real matrix and [ρss]i
is a real vector. Note that real vectors correspond to Hermitian matrices but they are not necessarily
positive. A steady state is a zero mode of [L]ij corresponding to a positive Hermitian matrix5.

In general, [L]ij is not diagonalizable and is only similar to the Jordan normal form. In the language
of (super-)operators, it means that we can divide the N2-dimensional space of matrices into invariant
subspaces with respect to the action of L. Each invariant subspace, labeled by i, has an eigenvalue λi
and a dimension ki, and consists of operator basis satisfying

(L − λiIS)σ
(n)
i = σ

(n−1)
i (n = 2, 3, · · · , ki), (L − λiIS)σ

(1)
i = 0. (2.29)

Here the matrix σ
(n)
i is not necessarily Hermitian. For a real eigenvalue λi = λ∗i , one can take σ

(n)
i (n =

1, 2, · · · , ki) to be Hermitian. For a complex eigenvalue λj, its complex conjugate is also an eigenvalue

λj′ = λ∗j and the basis of these subspaces are related by σ
(n)
j = σ

(n)†
j′ (n = 1, 2, · · · , kj = kj′). The real

part of the eigenvalues never exceeds zero Reλi ≤ 0 because eLt is a contraction map6. Otherwise, we
can easily construct counterexamples. For a real eigenvalue λi > 0, norm of the eigenmode ‖eLtσ(1)

i ‖
increases. For a pair of complex eigenvalues λj = λ∗j′ = λRj + iλIj, a Hermitian operator σ

(1)
j + σ

(1)
j′ =

σ
(1)
j + σ

(1)†
j evolves as

eLt
(
σ

(1)
j + σ

(1)†
j

)
= eλRjt

(
σ

(1)
j eiλIjt + σ

(1)†
j e−iλIjt

)
, (2.30)

5“State” and “density matrix” imply a positive Hermitian matrix with unit trace.
6We adopt the trace norm defined as ‖A‖ ≡ Tr

√
A†A ≥ 0. In the context here, we consider a linear operation that

maps a Hermitian operator σ 6= 0 to another Hermitian operator. If the trace norm does not increase from the original
one for all the initial Hermitian operators, such map is a contraction. See [100] for the proof that a dynamical map is a
contraction.
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whose norm at t = 2π/λIj is larger than at t = 0. Furthermore, the subspace of a zero mode λo = 0 is
one dimensional ko = 1. If ko ≥ 2 for a zero mode, it follows that

Lσ(2)
o = σ(1)

o , Lσ(1)
o = 0, eLtσ(2)

o = σ(2)
o + tσ(1)

o . (2.31)

Since eLt is a trace preserving map, σ
(1)
o must be traceless. Even if σ

(1)
o is traceless, tσ

(1)
o dominates in

eLtσ
(2)
o at a large enough time t and the norm increases from the initial state and contradicts that eLt

is a contraction map.
Finally, let us quote two known facts about the steady states for a finite-dimensional case, with only

a few comments added.

• There is at least one steady state.

– One can construct it by taking the long-time average

ρ̄S ≡ lim
T→∞

1

T

∫ T

0

dteLtρS(0), L(ρ̄S) = 0. (2.32)

The long-time average is shown to converge because eLt is a contraction [100].

– For an infinite-dimensional case, the existence of a steady state is not necessarily ensured.

• The dynamical semigroup is relaxing if and only if the spectrum of [L]ij contains a non-degenerate
zero eigenvalue and no pure imaginary eigenvalues.

– If there are pure imaginary eigenvalues, oscillatory behavior is allowed and the dynamics is
not relaxing. Therefore, their non-existence is explicitly mentioned in the condition for the
spectrum. In [108], a stronger statement is proved without mentioning the absence of pure
imaginary eigenvalues, so one can omit “and no pure imaginary eigenvalues” in the above.

– The “if part” is trivial. Indeed, if the spectrum contains only one zero mode, it must be a
density matrix because its existence is ensured as above.

– The “only if part” is nontrivial. One needs to exclude the possibility that there exists another
zero mode σ

(1)
o,non-pos. corresponding to a non-positive Hermitian matrix. If this is the case,

one can construct two steady states by choosing an initial density matrix ρS(0) such that

CρS(0) + σ
(1)
o,non-pos. (C > 0) is positive. Then, there exist two different long-time averages ρ̄S

and Cρ̄S + σ
(1)
o,non-pos.. After normalization, both of them are steady states and the dynamics

turns out not relaxing.

2.2 Approximations for master equation

The Lindblad equation (2.18) is the general form of the Markovian master equation which preserves
trace and positivity of the reduced density matrix ρS. In this section, we derive from a microscopic
theory the Lindblad equation when the coupling between the system and the environment is small. As
is mentioned in the previous section, it is essential that the correlation time of the environment is short
to get a coarse grained description for the dynamical map Vdyn(t) = exp[Lt].

Let us first introduce the following three time scales: environment correlation time τE, system
intrinsic time scale τS, and system relaxation time τR. The environment correlation time τE is the
time scale by which the environment correlation function decays. The system intrinsic time scale τS is
estimated by the system Hamiltonian through the energy-time uncertainty relation ∆ε · τS ∼ 1, where
∆ε is typical energy gap between the system eigenstates. The system relaxation time τR is the resulting
time scale of the master equation. Corresponding to different time scale hierarchies in the Table 1, there
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Table 1: Two regimes of open quantum systems

Regimes Time scales Approximation schemes
Quantum optical limit τR � τE, τR � τS Born-Markov & Rotating wave approximations

Quantum Brownian motion τR � τE, τS � τE Born-Markov approximation & Gradient expansion

are two regimes in the open quantum systems; one is the quantum optical limit and the other is the
quantum Brownian motion. Below I will explicitly show in each regime how to coarse grain Vdyn(t) using
proper approximation schemes; namely rotating wave approximation for the former, gradient expansion
for the latter, and the Born-Markov approximation for the both.

2.2.1 Born-Markov approximation

First we derive the master equation in the Born-Markov approximation. Depending on the time scale
hierarchies, a further approximation, the rotating wave approximation or the gradient expansion, will
be later applied to this master equation in Sec. 2.2.2 and Secs. 2.2.3, 2.2.4 respectively.

Our starting point is the von-Neumann equation in the interaction picture:

d

dt
ρtot(t) = −i [V (t), ρtot(t)] , (2.33a)

V (t) =
∑
i

(
eiHStV

(i)
S e−iHSt

)
⊗
(
eiHEtV

(i)
E e−iHEt

)
=
∑
i

V
(i)
S (t)⊗ V (i)

E (t). (2.33b)

For simplicity, we omit I for ρ
(I)
tot or VI which denotes that the interaction picture is adopted. By

substituting a formal solution of the von-Neumann equation

ρtot(t) = ρtot(0)− i
∫ t

0

ds [V (s), ρtot(s)] , (2.34)

into its right hand side, we get

d

dt
ρtot(t) = −i [V (t), ρtot(0)]−

∫ t

0

ds [V (t), [V (s), ρtot(s)]] . (2.35)

Taking the trace in the environment, the reduced density matrix obeys

d

dt
ρS(t) = −

∫ t

0

dsTrE [V (t), [V (s), ρtot(s)]] . (2.36)

Here we assume TrE [V (t), ρtot(0)] = 0. When the initial total density matrix factorizes ρtot(0) =
ρS(0) ⊗ ρE(0), this assumption is made to hold true by subtracting the one-point functions from the

interaction V
(i)
E (t) → V

(i)
E (t) − TrE

(
ρE(0)V

(i)
E (t)

)
and adding the corresponding terms to the system

Hamiltonian HS. In particular, when ρE(0) is a function of HE such as the Boltzmann distribution in

the equilibrium, TrE

(
ρE(0)V

(i)
E (t)

)
is independent of time.

Equation (2.36) is exact but not yet obtained in a closed form of ρS. To obtain a master equation,
we need to make two approximations: the Born approximation and the Markov approximation. In the
Born approximation, we use an ansatz ρtot(s) ≈ ρS(s)⊗ρE(0). This is justified when the environment is
so large that it is not much affected by its weak coupling to the system. In the Markov approximation,
we can replace ρS(s) with ρS(t) because the error introduced in the evolution equation is of higher order
in the weak coupling expansion. Furthermore, since there is a time scale hierarchy τR � τE, at typical
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Quantum optical limit
At time scale 𝜏" ≫ 𝜏$

Quantum Brownian motion
At time scale 𝜏% ≪ 𝜏$

Figure 1: Physical picture of two regimes of open quantum systems. In the quantum optical limit, the
system eigenstates are the good basis. In the quantum Brownian motion, phase space variables provide
good descriptions.

time t ∼ τR the environmental correlation to the initial time (t = 0) is lost, so that we can extend the
domain of time integration to (−∞, t). After changing the integration variable, Eq. (2.36) becomes

d

dt
ρS(t) = −

∫ ∞
0

dsTrE [V (t), [V (t− s), ρS(t)⊗ ρE(0)]] , (2.37)

which is Markovian and is in the closed form of ρS(t).

2.2.2 Quantum optical limit

The master equation (2.37) in the Born-Markov approximation only assumes one of the time scale
hierarchies τR � τE. Another relation τR � τS will be used to make a further approximation to
Eq. (2.37), the rotating wave approximation, to get a Lindblad equation [109, 110]. Physical condition
corresponding to τR � τS is shown in Fig. 1. In Sec. 4.4, the quantum optical master equation is
applied to deeply bound quarkonia in quark-gluon plasma.

Let us define a projector to a system eigenstate Π(ε) ≡ |ε〉〈ε| with an eigenenergy ε. It will turn out

useful to decompose the system operator V
(i)
S by transition energies

V
(i)
S (ω) ≡

∑
ε′−ε=ω

Π(ε)V
(i)
S Π(ε′), V

(i)
S =

∑
ω

V
(i)
S (ω), V

(i)
S (t) =

∑
ω

e−iωtV
(i)
S (ω). (2.38)

The time scale of V
(i)
S (t) is governed by τS ∼ 1/∆ε, where ∆ε is a typical energy gap ω. The interaction

Hamiltonian V (t) in the interaction picture is then expanded as

V (t) =
∑
i,ω

e−iωtV
(i)
S (ω)⊗ V (i)

E (t) =
∑
i,ω

eiωtV
(i)†
S (ω)⊗ V (i)

E (t). (2.39)

Substituting this form into Eq. (2.37), we get

d

dt
ρS(t) =

∑
ω,ω′

∑
i,j

ei(ω
′−ω)t

∫ ∞
0

dseiωsTrE

(
ρE(0)V

(i)
E (t)V

(j)
E (t− s)

)
×
[
V

(j)
S (ω)ρS(t)V

(i)†
S (ω′)− V (i)†

S (ω′)V
(j)
S (ω)ρS(t)

]
+ h.c., (2.40)

where h.c. denotes the Hermitian conjugate of the former part. The phase factor ei(ω
′−ω)t is oscillating

with time scale τS, which is rapid compared to the system relaxation time τR. Therefore, in the time
scale of τR, the phase factor for ω′ 6= ω averages to 0 and only ω = ω′ remains in the summation. This
is the rotating wave approximation and the master equation is now

d

dt
ρS(t) =

∑
ω

∑
i,j

Γij(ω)
[
V

(j)
S (ω)ρS(t)V

(i)†
S (ω)− V (i)†

S (ω)V
(j)
S (ω)ρS(t)

]
+ h.c., (2.41a)

Γij(ω) ≡
∫ ∞

0

dseiωsTrE

(
ρE(0)V

(i)
E (s)V

(j)
E (0)

)
. (2.41b)
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Here we assume that the environment is invariant under the time translation. Although the system
time scale is previously estimated as τS ∼ 1/∆ε for simplicity, the derivation here makes it clear that
τS is the inverse of the typical gap of transition energies (not the energy gap).

Physical picture of rotating wave approximation is as follows. Consider a pure state ρS(0) = |ε〉〈ε|
as an initial state. The interaction with the environment induces a transition to another state |ε′〉 as

long as 〈ε′|V (i)
S |ε〉 6= 0. In general, simultaneous transition to yet another state |ε′′〉 is also allowed

if 〈ε′′|V (i)
S |ε〉 6= 0. Therefore, the system wave function is a superposition of many different system

eigenstates. The energy-time uncertainty principle tells that it takes at least τ & 1/|ε′ − ε′′| before
one can specify which energy eigenstate is realized. In other words, it takes τ & 1/|ε′ − ε′′| before
a quantum mechanical superposition state turns into a mixed state with classical probability. This
situation is typical of the quantum optics, where a few discrete atomic levels compose the system of
interest and the photon gas constitutes the environment. This is why open systems of this type are
called the quantum optical regime.

The coefficient matrix Γij(ω) is given by the environment correlation functions and is decomposed
into Hermitian and anti-Hermitian parts:

Γij(ω) =
1

2
γij(ω) + iSij(ω), γ∗ij(ω) = γji(ω), S∗ij(ω) = Sji(ω). (2.42)

Using this expression, the master equation (in the interaction picture) is obtained as

d

dt
ρS(t) = −i [∆HS, ρS(t)] +

∑
ω

∑
i,j

γij(ω)

[
V

(j)
S (ω)ρS(t)V

(i)†
S (ω)− 1

2

{
V

(i)†
S (ω)V

(j)
S (ω), ρS(t)

}]
,

(2.43a)

∆HS ≡
∑
ω

∑
i,j

Sij(ω)V
(i)†
S (ω)V

(j)
S (ω). (2.43b)

Here ∆HS is a modification to the system Hamiltonian HS due to the coupling to the environment.
They commute with each other [∆HS, HS] = 0 and ∆HS introduces renormalization of the energy
eigenvalues of the system and thus is called Lamb shift term. Getting back to the Schrödinger picture,
the master equation has a Hamiltonian term −i [HS + ∆HS, ρS(t)] and the dissipator is unchanged

because the extra phases cancel between V
(j)
S (ω) and V

(j)†
S (ω):

e−iHStV
(j)
S (ω)eiHSt = eiωtV

(j)
S (ω), e−iHStV

(i)†
S (ω)eiHSt = e−iωtV

(i)†
S (ω). (2.44)

If γij(ω) is positive semi-definite7, one can obtain the Lindblad equation (2.18) by taking an appropriate

linear combination of V
(i)
S (ω) that diagonalizes and rescales γij(ω) to δij.

Lastly, let us analyze the steady state solution of the Lindblad equation in the quantum opti-
cal regime when the environment is a thermal bath with temperature T = 1/β. In this case, the
Kubo-Martin-Schwinger (KMS) relation γij(ω) = eβωγji(−ω) is satisfied by the environment correlation
functions (see Appendix A for details). It is then reasonable to guess that ρS ∝ e−βHS is a steady state
solution. Indeed, by using similar properties as above

eβHSV
(j)
S (ω)e−βHS = e−βωV

(j)
S (ω), eβHSV

(i)†
S (ω)e−βHS = eβωV

(i)†
S (ω), (2.46)

7Without mathematical rigor, we can show that γij(ω) is positive semi-definite when ρE(0) is a function only of HE

such as the Boltzmann weight. Using the eigenstates of HE as the basis for the decomposition (2.7), we get for any ci∑
i,j

c∗i γij(ω)cj =
∑
E,E′

λE

∣∣∣〈E′|∑
i

ciV
(i)
E (0)|E〉

∣∣∣22πδ(ω + E − E′) ≥ 0. (2.45)
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and V
(i)†
S (ω) = V

(i)
S (−ω), we can show

V
(j)
S (ω)e−βHSV

(i)†
S (ω) = e−βωe−βHSV

(j)
S (ω)V

(i)†
S (ω) = e−βωe−βHSV

(j)†
S (−ω)V

(i)
S (−ω), (2.47a)

V
(i)†
S (ω)V

(j)
S (ω)e−βHS = e−βHSV

(i)†
S (ω)V

(j)
S (ω). (2.47b)

Putting all these together, the right hand side of the Lindblad equation is shown to vanish because∑
ω

∑
i,j

γij(ω)V
(j)
S (ω)e−βHSV

(i)†
S (ω) =

∑
ω

∑
i,j

γij(ω)e−βωe−βHSV
(j)†
S (−ω)V

(i)
S (−ω)

=
∑
ω

∑
i,j

γji(−ω)e−βHSV
(j)†
S (−ω)V

(i)
S (−ω)

=
∑
ω

∑
i,j

γij(ω)e−βHSV
(i)†
S (ω)V

(j)
S (ω), (2.48)

and ∆HS and HS commute. As is naturally expected, it is proven that the Boltzmann distribution
ρS ∝ e−βHS is a steady state solution of the Lindblad equation in the quantum optical regime.

2.2.3 Quantum Brownian motion

There is another interesting regime of the open quantum system, namely the quantum Brownian motion.
Most of the examples in Sections 3 and 4 are in this regime. The master equation in the Born-Markov
approximation (2.37) can be further approximated by using the fact that the system’s intrinsic time
scale is long compared to the environment correlation time τS � τE. See Fig. 1 for a physical picture
corresponding to this condition. The explicit form of (2.37) is

d

dt
ρS(t) =

∫ ∞
0

ds
∑
i,j

TrE

(
ρE(0)V

(i)
E (t)V

(j)
E (t− s)

)
×
[
V

(j)
S (t− s)ρS(t)V

(i)
S (t)− V (i)

S (t)V
(j)
S (t− s)ρS(t)

]
+ h.c.. (2.49)

The environment correlation function takes finite values only for short time τE � τS, so that the system
operators can be approximated by the gradient expansion:

V
(i)
S (t− s) ' V

(i)
S (t)− sV̇ (i)

S (t) + · · · = V
(i)
S (t)− is

[
HS, V

(i)
S (t)

]
+ · · · . (2.50)

Since this time scale hierarchy is typically realized in the Brownian motion, this regime of the open
quantum system is called the quantum Brownian motion. The master equation for the quantum Brow-
nian motion was first derived in the well-known paper by Caldeira and Leggett [111] using the influence
functional method [112], which is the path-integral formulation of the open quantum systems. In the
Caldeira-Leggett master equation, the gradient expansion terminates at the first order. As will be clear
in a specific example of quantum Brownian motion, the first-order gradient term represents quantum
dissipation by recoil of the Brownian particle during a collision. Therefore, truncating the gradient
expansion at leading order is called the recoilless limit.

Introducing the environment correlation functions with zero frequency:

Γij(ω = 0) =

∫ ∞
0

dsTrE

(
ρE(0)V

(i)
E (s)V

(j)
E (0)

)
≡ 1

2
γij + iSij, γ∗ij = γji, S∗ij = Sji, (2.51a)

−i d
dω

Γij(ω)
∣∣∣
ω=0

=

∫ ∞
0

ds s TrE

(
ρE(0)V

(i)
E (s)V

(j)
E (0)

)
≡ ηij, (2.51b)
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the master equation is

d

dt
ρS(t) =

∑
i,j



γij

(
V

(j)
S (t)ρS(t)V

(i)
S (t)− 1

2

{
V

(i)
S (t)V

(j)
S (t), ρS(t)

})
− iSij

(
V

(i)
S (t)V

(j)
S (t)ρS(t)− ρS(t)V

(i)
S (t)V

(j)
S (t)

)
− ηij

(
V̇

(j)
S (t)ρS(t)V

(i)
S (t)− V (i)

S (t)V̇
(j)
S (t)ρS(t)

)
− η∗ij

(
V

(i)
S (t)ρS(t)V̇

(j)
S (t)− ρS(t)V̇

(j)
S (t)V

(i)
S (t)

)


. (2.52)

Here again it is assumed that the environment is invariant under the time translation.
Let us assume γij is positive definite (not just semi-definite), so that it has an inverse matrix

γ−1
ij . Then, up to the first-order gradient expansion, the master equation is equivalent to the following

Lindblad equation:

d

dt
ρS(t) = −i [∆HS(t), ρS(t)] +

∑
i,j

γij

(
Ṽ

(j)
S (t)ρS(t)Ṽ

(i)†
S (t)− 1

2

{
Ṽ

(i)†
S (t)Ṽ

(j)
S (t), ρS(t)

})
, (2.53a)

∆HS(t) ≡
∑
i,j

SijV
(i)
S (t)V

(j)
S (t) +

i

2

∑
i,j

(
ηijV

(i)
S (t)V̇

(j)
S (t)− η∗ijV̇

(j)
S (t)V

(i)
S (t)

)
, (2.53b)

Ṽ
(i)
S (t) ≡ V

(i)
S (t)−

∑
jk

γ−1
ij ηjkV̇

(k)
S (t), Ṽ

(i)†
S (t) = V

(i)
S (t)−

∑
jk

(
η∗jkV̇

(k)
S (t)

)
γ−1
ji . (2.53c)

In the Schrödinger picture, all the operators in the above Lindblad equation becomes independent
of time and the Hamiltonian term receives modification −i [HS + ∆HS, ρS(t)] due to the coupling to

the environment. Note that V̇
(i)
S ≡ i

[
HS, V

(i)
S

]
is still well-defined and independent of time in the

Schrödinger picture. In the Lindblad equation (2.53), the gradient expansion is not strict in the sense
that only some of the second order terms are included in the master equation. The Caldeira-Leggett
master equation, which is obtained in the strict first-order gradient expansion, is not in the Lindblad
form as is clear from this argument. The Lindblad extension of the Caldeira-Leggett master equation
was obtained similarly by adding some of the second order terms [113, 114, 115, 116].

When the environment is a thermal bath ρE(0) = ρth
E and the V

(i)
E s have the same sign under the

time-reversal transformation, the spectral density

σij(ω) ≡
∫ ∞
−∞

dteiωtTrE

(
ρth
E

[
V

(i)
E (t), V

(j)
E (0)

])
(2.54)

is shown to be real, odd in ω, and symmetric in the indices. Then, the coefficient matrices γij, Sij, and
ηij are related to the spectral density as follows (see Appendix A for details):

γij = T
dσij
dω

∣∣∣
0
, Sij = −1

2

∫ ∞
−∞

dω

2π

σij(ω)

ω
, (2.55a)

ηij = −1

2

∫ ∞
−∞

dω

2π

1

ω

d

dω

[
coth

(
βω

2

)
σij(ω)

]
− i1

4

dσij
dω

∣∣∣
0
. (2.55b)

Let us emphasize here that γij and Imηij are given by a common transport coefficient dσij/dω|0.
Finally, let us make a remark on an approximation Reηij = 0 which is often used in the literature.

By the assumption that the environment correlation time is τE, the spectral density σij(ω) is cut off at
some frequency Ω ∼ τ−1

E , for example by the Lorentz-Drude cutoff

σij(ω) ' ω
dσij
dω

∣∣∣
0

Ω2

ω2 + Ω2
. (2.56)
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Then, Reηij is roughly evaluated as

−1

2

∫ ∞
−∞

dω

2π

1

ω

d

dω

[
coth

(
βω

2

)
σij(ω)

]
= −1

2

dσij
dω

∣∣∣
0

∫ ∞
−∞

dν

2π

1

ν

d

dν

[
coth

(
βΩν

2

)
ν

ν2 + 1

]
∼ γij

T
×

{
(βΩ)−1 (βΩ� 1)

1 (βΩ ∼ 1)

}
∼ γijτE (2.57)

by noting that the integrand is cutoff at |ν| ∼ 1. In Eq. (2.52), the terms containing Reηij appear only
in the combination of∑

j

(
γijV

(j)
S (t)− 2ReηijV̇

(j)
S (t)

)
∼
∑
j

γij

(
1− τE

τS

)
V

(j)
S (t). (2.58)

Since τE/τS � 1 by the assumption of quantum Brownian motion, Reηij only gives rise to Hermitian
correction to the system-environment coupling. Therefore we can neglect Reηij and substitute ηij ≈
− i

4T
γij in the master equation (2.52) and the Lindblad equation (2.53). The Lindblad operator in this

approximation is

Ṽ
(i)
S (t) ' V

(i)
S (t) +

i

4T
V̇

(i)
S (t), Ṽ

(i)†
S (t) ' V

(i)
S (t)− i

4T
V̇

(i)
S (t), (2.59)

where the gradient expansion introduces anti-Hermitian correction to the system-environment coupling,
which is Hermitian. Notice here that the ratio of the first two terms in (2.59) is V̇

(i)
S /TV

(i)
S ∼ 1/TτS and

is small because τS � 1/T holds typically. However, this ratio derives from the KMS relation and does
not reflect the smallness of τE/τS. Therefore, although it might sound slightly confusing, this is the
leading order result in the limit τE/τS � 1. There are corrections of order τE/τS to both Hermitian and

anti-Hermitian parts of Ṽ
(i)
S , which may come from Γij(ω) at finite ω and from higher order gradient

expansion of V
(i)
S (t− s).

2.2.4 Exceptional case for quantum Brownian motion

In the section 4.3, we encounter an exceptional example of spectral density with dσij/dω|0 = 0, which

is the spectral density of free gluons (V
(i)
E = ~Ea) at high temperatures. Since γij = Tdσij/dω|0 = 0 in

this case, the derivation of the Lindblad equation in the previous section 2.2 does not apply here.
We provide a general framework by which to derive the Lindblad equation in this class of excep-

tional cases. Therefore, we assume that the spectral density is real, odd in ω, and symmetric in the
indices (because ~Eas are Hermitian and time reversal even). By the assumption, the spectral density is
approximated by

σij(ω) ' 1

3!

d3σij
dω3

∣∣∣
0
ω3 +

1

5!

d5σij
dω5

∣∣∣
0
ω5 + · · · . (2.60)

for small ω. Then the real symmetric matrices γij(ω) and Sij(ω) are also expanded as

γij(ω) ' 1

2!
γ

(2)
ij ω

2 +
1

3!
γ

(3)
ij ω

3 + · · · ' T

3!

d3σij
dω3

∣∣∣
0
ω2
(

1 +
ω

2T

)
+O(ω4), (2.61a)

Sij(ω) ' S
(0)
ij + S

(1)
ij ω +

1

2!
S

(2)
ij ω

2 + · · · . (2.61b)

In the following analysis, we keep the expansion up to the second order in ω in order to accomodate
the leading term of γij(ω).
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Starting point is again the master equation in the Born-Markov approximation (2.49). Up to the

first order gradient expansion, the right hand side of (2.49) is obtained by setting γij = 0, Sij = S
(0)
ij ,

and ηij = S
(1)
ij in (2.52)

d

dt
ρS(t)

∣∣∣
∂0,∂1

=
∑
i,j


− iS(0)

ij

(
V

(i)
S (t)V

(j)
S (t)ρS(t)− ρS(t)V

(i)
S (t)V

(j)
S (t)

)
− S(1)

ij

(
V̇

(j)
S (t)ρS(t)V

(i)
S (t)− V (i)

S (t)V̇
(j)
S (t)ρS(t)

+ V
(i)
S (t)ρS(t)V̇

(j)
S (t)− ρS(t)V̇

(j)
S (t)V

(i)
S (t)

)
 . (2.62)

The second order expansion contains several new terms from γ
(2)
ij and S

(2)
ij

d

dt
ρS(t)

∣∣∣
∂2

=
∑
i,j

−
1

2

(
1

2
γ

(2)
ij + iS

(2)
ij

)(
V̈

(j)
S (t)ρS(t)V

(i)
S (t)− V (i)

S (t)V̈
(j)
S (t)ρS(t)

)
− 1

2

(
1

2
γ

(2)
ij − iS

(2)
ij

)(
V

(i)
S (t)ρS(t)V̈

(j)
S (t)− ρS(t)V̈

(j)
S (t)V

(i)
S (t)

)
 . (2.63)

It is not at all obvious that the above master equation is in the Lindblad form. Actually, we make it
a Lindblad equation by the following technique of integration by parts, which involves a redefinition of
the density matrix 8. Let us suppose that a master equation is derived perturbatively (in the interaction
picture) and contains a term such as

d

dt
ρS(t) = A(t)ρS(t)Ḃ(t) + · · ·+O(V 3

S ), A(t) ∼ B(t) ∼ O(VS). (2.64)

We then make a redefinition of the density matrix

ρ̄S(t) ≡ ρS(t)− A(t)ρS(t)B(t), ρS(t) ' ρ̄S(t) +O(V 2
S ). (2.65)

The master equation for the new density matrix ρ̄S(t) is obtained up to O(V 2
S ) accuracy,

d

dt
ρ̄S(t) = −Ȧ(t)ρ̄S(t)B(t) + · · ·+O(V 3

S ). (2.66)

In the same way, we can freely move the time derivatives on the right hand side of the master equation
to get A(t)Ḃ(t)ρS(t) → −Ȧ(t)B(t)ρ̄S(t) and so on. Using this transformation and renaming ρ̄S(t) as

ρS(t), the master equation (in the interaction picture) is rewritten in the Lindblad form if γ
(2)
ij is positive

semi-definite:

d

dt
ρS(t) = −i [∆HS(t), ρS(t)] +

∑
i,j

1

2
γ

(2)
ij

(
V̇

(j)
S (t)ρS(t)V̇

(i)
S (t)− 1

2

{
V̇

(i)
S (t)V̇

(j)
S (t), ρS(t)

})
, (2.67a)

∆HS(t) ≡
∑
i,j

(
S

(0)
ij V

(i)
S (t)V

(j)
S (t) +

i

2
S

(1)
ij

[
V

(i)
S (t), V̇

(j)
S (t)

]
+

1

2
S

(2)
ij V̇

(i)
S (t)V̇

(j)
S (t)

)
. (2.67b)

2.3 Concluding remarks of Section 2

In this section, the basics of open quantum system is first reviewed in Sec. 2.1, such as completely
positive and trace preserving (CPTP) map, effects of initial system-environment correlation, Lindblad
equation in the Markov limit, and the steady state solutions. Then, using the approximation methods,
the Lindblad equations are derived from microscopic theory depending on the regimes of time scale
hierarchy. Let us summarize here the obtained equations when the system-environment coupling is
weak and is given by

∑
i V

(i)
S ⊗V

(i)
E . Below, the Schrödinger picture is adopted for the time dependence.

8In the influence functional, this procedure literally means the integration by parts and is used for example in [113, 12].
The density matrix needs to be redefined because of the surface term in the partial integration.

20



• Lindblad equation in the quantum optical limit (τR � τE, τR � τS)

d

dt
ρS(t) = −i [HS + ∆HS, ρS(t)] +

∑
ω

∑
i,j

γij(ω)

[
V

(j)
S (ω)ρS(t)V

(i)†
S (ω)− 1

2

{
V

(i)†
S (ω)V

(j)
S (ω), ρS(t)

}]
,

∆HS ≡
∑
ω

∑
i,j

Sij(ω)V
(i)†
S (ω)V

(j)
S (ω), V

(i)
S (ω) ≡

∑
ε′−ε=ω

Π(ε)V
(i)
S Π(ε′),

Γij(ω) =

∫ ∞
0

dseiωsTrE

(
ρE(0)V

(i)
E (s)V

(j)
E (0)

)
≡ 1

2
γij(ω) + iSij(ω).

– γij(ω) and Sij(ω) are Hermitian, γij(ω) is positive semi-definite.

• Lindblad equation in the quantum Brownian regime (τR � τE, τS � τE)

d

dt
ρS(t) = −i [HS + ∆HS, ρS(t)] +

∑
i,j

γij

(
Ṽ

(j)
S ρS(t)Ṽ

(i)†
S − 1

2

{
Ṽ

(i)†
S Ṽ

(j)
S , ρS(t)

})
,

∆HS ≡
∑
i,j

SijV
(i)
S V

(j)
S +

1

8T

∑
i,j

γij

{
V

(i)
S , V̇

(j)
S

}
, Ṽ

(i)
S ≡ V

(i)
S +

i

4T
V̇

(i)
S , V̇

(i)
S ≡ i

[
HS, V

(i)
S

]
,

Γij(0) =

∫ ∞
0

dsTrE

(
ρE(0)V

(i)
E (s)V

(j)
E (0)

)
≡ 1

2
γij + iSij.

– Assumption: V
(i)
E s have the same sign under time reversal.

– γij and Sij are real and symmetric, γij is positive semi-definite.

• Lindblad equation in the quantum Brownian regime with γij = 0

d

dt
ρS(t) = −i [HS + ∆HS, ρS(t)] +

∑
i,j

1

2
γ

(2)
ij

(
V̇

(j)
S ρS(t)V̇

(i)
S −

1

2

{
V̇

(i)
S V̇

(j)
S , ρS(t)

})
,

∆HS ≡
∑
i,j

(
S

(0)
ij V

(i)
S V

(j)
S +

i

2
S

(1)
ij

[
V

(i)
S , V̇

(j)
S

]
+

1

2
S

(2)
ij V̇

(i)
S V̇

(j)
S

)
,

γij(ω) ' 1

2!
γ

(2)
ij ω

2 + · · · , Sij(ω) ' S
(0)
ij + S

(1)
ij ω +

1

2!
S

(2)
ij ω

2 + · · · .

– Assumption: V
(i)
E s have the same sign under time reversal.

– γ
(2)
ij and S

(0,1,2)
ij are real and symmetric, γ

(2)
ij is assumed to be positive semi-definite.
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3 Lindblad equations from non-relativistic QCD (NRQCD)

In this section, I first review in Sec. 3.1 the basics of an effective field theory (EFT) for non-relativistic
heavy quarks: non-relativistic QCD (NRQCD). Then I will introduce how to derive Lindblad equations
from NRQCD in the general framework of Sec. 2, in particular that of the quantum Brownian motion.
Before discussing the quantum Brownian motion of quarkonium, I first give introductory remarks on
the quantum Brownian motion in general in Sec. 3.2 by using a simpler example of quantum Brownian
motion of single heavy quark. In Sec. 3.3, I will illustrate various aspects of the quantum Brownian
motion of quarkonium by taking several interesting limits such as recoilless limit (Sec. 3.3.2), static
limit (Sec. 3.3.3), classical limit (Sec. 3.3.4), and small dipole limit (Sec. 3.3.5).

3.1 A short review of non-relativistic QCD (NRQCD)

The NRQCD is an effective description of almost on-shell heavy quarks, typically of heavy quark-
antiquark pair, based on the existence of a rest frame where the motion of heavy quarks stays non-
relativistic. Such a rest frame is guaranteed to exist when the heavy quark mass is much larger than
the strength of the (quantum and thermal) fluctuations in the environment (M � ΛQCD, T ), so that
the velocity of the heavy quarks stays small (v � 1). The NRQCD Lagrangian is defined in a standard
manner of EFT construction:

• The Lagrangian is systematically expanded by the inverse of heavy quark mass 1/M , with a power
counting scheme in terms of heavy quark velocity v, and respecting the symmetries of QCD such
as color SU(3) gauge symmetry, up to a desired precision one needs to accomplish.

• The expansion coefficients, or the Wilson coefficients, are determined by matching the Green’s
functions calculated by QCD and NRQCD at the ultraviolet scale (µNR) of the latter.

The degrees of freedom in NRQCD are non-relativistic heavy quarks represented by the two-component
Pauli spinors (ψ for heavy quark annihilation and χ for heavy antiquark creation), light quarks (q),
and gluons (A), and all of these are below the cutoff scale pµ < µNR. Since the typical energy and
momentum of the heavy quarks are E ∼ Mv2 � M and p ∼ Mv � M , we can put a cutoff scale at
Mv,ΛQCD, T � µNR �M where perturbative matching between QCD and NRQCD is available. With
the above considerations, the NRQCD Lagrangian is

LNRQCD = Lq+A + ψ†

[
iDt +

~D2

2M
+
cF~σ · g ~B

2M

]
ψ + χ†

[
iDt −

~D2

2M
− cF~σ · g ~B

2M

]
χ+O(1/M2), (3.1)

where Lq+A is the QCD Lagrangian for light quarks and gluons, Dµ ≡ ∂µ + igAaµt
a
F is the covariant

derivatives for fundamental quarks, and cF (µNR) = 1 +O(α) is the Wilson coefficient for the spin-color
magnetic coupling (the subscript F for cF comes from Fermi contact interaction). The O(1/M2) terms
consist of the spin-orbit and Darwin terms as well as higher order expansions of the kinetic energy in
the heavy quark bilinears, four-fermi contact interactions between the heavy quark pair including their
inclusive annihilation, and corrections to the light particle sector due to the heavy quark loops. Note
that the matching is done at µNR � T , so that there is no temperature dependence in the Wilson
coefficients.

Establishing a power counting scheme is of fundamental importance because it provides predictive
power to an effective field theory with a non-renormalizable Lagrangian. A beautiful application of
NRQCD power counting in terms of heavy quark velocity is the factorization formula for the inclusive
decay widths of quarkonia [117]. There is a technical subtlety in maintaining the velocity power counting
at loop orders, which is resolved by the prescription given in [118]. For further details and applications
of the NRQCD, see the reviews [119, 120].
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Let us now estimate the relevant scales of heavy quarks and gluons to derive power counting schemes
in terms of heavy quark velocity. Here, we restrict ourselves to considering two extreme cases: (i)
quarkonium in a Coulombic bound state and (ii) heavy quark pair far apart and in kinetic equilibrium.
The physical motivation of (ii) is to confirm that the NRQCD can describe the dissociation of heavy
quark pair in the quark-gluon plasma. Since our primary interest is in a quarkonium in the quark-gluon
plasma, we implicitly assume that there is no confining force between the heavy quark pair. We adopt
the Coulomb gauge (~∇ · ~A = 0) in which the power counting scheme becomes particularly simple.

For the case (i), let us quote the result [121]

∂i ∼Mv, ∂t ∼ gA0 ∼Mv2, v ∼ g2/4π � 1, (3.2a)

ψ ∼ χ ∼ (Mv)3/2, gAi ∼Mv3. (3.2b)

The first line is easily confirmed by the solution of non-relativistic bound state problem in the Coulomb
potential. The scale of heavy quark spinors is estimated by the normalization condition (

∫
x
|ψ|2 =∫

x
|χ|2 = 1). The strength of the transverse gauge field is perturbatively estimated by solving � ~A = ~jT ,

where ~jT is the transverse color current in the bound states. With this power counting, the gauge-
invariant NRQCD Lagrangian starts from ∼Mv2 · (Mv)3

LNRQCD = Lq+A + ψ†

[
iDt +

~D2

2M

]
ψ + χ†

[
iDt −

~D2

2M

]
χ+ · · · , (3.3)

where spin-color magnetic coupling contributes as O(v2) correction to the leading terms and is dropped
hereafter. For the case (ii), heavy quark scales are typically

∂t ∼Mv2 ∼ T, ∂i ∼Mv, v ∼
√
T

M
� 1, (3.4)

while the thermal fluctuations of gauge fields are simply estimated as Aµ ∼ T, Fµν ∼ T 2. We do not
and need not specify the scale of heavy quark spinors ψ and χ for an unbound heavy quark pair. By
keeping the leading terms of light particle and heavy quark sectors, the spin-color magnetic coupling
does not contribute and we get the same Lagrangian (3.3) in this case. In both cases (i) and (ii), the
transverse gauge field Ai is subdominant to the heavy quark canonical momentum ∂i and in the analysis
below we approximate Di ' ∂i.

In order to apply the formula derived in the Section 2 to NRQCD, the Hamiltonian formalism is
more convenient. The creation or annihilation of heavy quark pair occurs only at the order O(1/M2)
and is neglected in the NRQCD Lagrangian at the leading order, which allows us to formulate the heavy
quark dynamics by means of non-relativistic quantum mechanics. The Hamiltonian for the Fock state
containing a heavy quark pair is thus

H =
p2
Q

2M
+ gAa0(~xQ)taQ +

p2
Qc

2M
− gAa0(~xQc)t

a∗
Qc
, (3.5)

where (~xQ, ~pQ, t
a
Q) and (~xQc , ~pQc , t

a∗
Qc

) are operators for the heavy quark and antiquark respectively. The
matrices taQ and −ta∗Qc

are the color SU(Nc) algebras in the fundamental representation and its complex
conjugate. To explicitly distinguish the system (heavy quarks) and the environment (light particles) as
in Eq. (2.2), the total Hamiltonian Htot is written as

Htot =

(
p2
Q

2M
+
p2
Qc

2M

)
⊗ IE + IS ⊗Hq+A +

∫
d3x

[
δ(~x− ~xQ)taQ − δ(~x− ~xQc)t

a∗
Qc

]
⊗ gAa0(~x), (3.6)

where we add the Hamiltonian for the light particle sector Hq+A. In the last term, ~x is just a label,
whereas ~xQ and ~xQc are system operators and Aa0 is an environment operator.
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3.2 Quantum Brownian motion of a heavy quark

In this section, we derive and analyze the Lindblad equation for quantum Brownian motion of a heavy
quark in a weakly coupled quark-gluon plasma (QGP). The scale hierarchy for the quantum Brownian
motion (τR � τE and τS � τE) is satisfied as follows. The system relaxation time is estimated by its
kinetic equilibration time τR ∼M/g4T 2, the system time scale τS =∞, and the environment correlation

time is the duration of (t-channel) collisions, that is τ
(soft)
E ∼ 1/gT for soft collisions with momentum

transfer ∼ gT and τ
(hard)
E ∼ 1/T for hard collisions with momentum transfer ∼ T . Since M � T , this

is the regime of the quantum Brownian motion.

3.2.1 Lindblad equation

We apply the formula for quantum Brownian motion (2.53) to single non-relativistic heavy quark in the
QGP. The total Hamiltonian in this case is

Htot =
p2
Q

2M
⊗ IE + IS ⊗Hq+A +

∫
d3x

[
δ(~x− ~xQ)taQ

]
⊗ gAa0(~x). (3.7)

It is easy to see the operator correspondence

V
(i)
S ↔ δ(~x− ~xQ)taQ ≡ V a

S (~x), (3.8a)

V̇
(i)
S = i[HS, V

(i)
S ]↔

[
− i

2M
∇2
xδ(~x− ~xQ)− 1

M
~∇xδ(~x− ~xQ) · ~pQ

]
taQ ≡ V̇ a

S (~x), (3.8b)

and the coefficients in the Lindblad equation

γab(~x− ~y) = T
d

dω
σab(ω, ~x− ~y)

∣∣∣
ω=0

, Sab(~x− ~y) = −1

2

∫ ∞
−∞

dω

2π

σab(ω, ~x− ~y)

ω
, (3.9a)

σab(ω, ~x− ~y) ≡
∫ ∞
−∞

dteiωtTrE
(
ρth
E

[
gAa0(t, ~x), gAb0(0, ~y)

])
∝ δab. (3.9b)

Analytic expressions for γab(~x) = γ(~x)δab and Sab(~x) = S(~x)δab at the soft scale |~x| ∼ 1/gT are given
in the Appendix B. As explained at the end of Sec. 2.2.3, we can approximate using the hierarchy
τE/τS � 1

ηab(~x− ~y) ' − i

4T
γab(~x− ~y). (3.10)

Then, the Lindblad operator reads

Ṽ
(i)
S ↔ V a

S (~x) +
i

4T
V̇ a
S (~x)

=

[
δ(~x− ~xQ) +

1

8MT
∇2
xδ(~x− ~xQ)− i

4MT
~∇xδ(~x− ~xQ) · ~pQ

]
taQ ≡ Ṽ a

S (~x). (3.11)

One can show that the correction to the Hamiltonian

∆HS =

∫
d3x

∫
d3y

[
Sab(~x− ~y)V a

S (~x)V b
S (~y) +

1

8T
γab(~x− ~y)

(
V a
S (~x)V̇ b

S (~y) + V̇ b
S (~y)V a

S (~x)
)]

(3.12)

is a constant and thus neglected, using a property ~∇γab(~x = ~0) = 0 which follows from the rotational
invariance. Collecting these results, we obtain the Lindblad equation

d

dt
ρS(t) = −i [HS, ρS] +

∫
x

∫
y

γ(~x− ~y)

[
Ṽ a
S (~y)ρSṼ

a†
S (~x)− 1

2

{
Ṽ a†
S (~x)Ṽ a

S (~y), ρS

}]
, (3.13)
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where γab(~x) = γ(~x)δab and
∫
x
≡
∫
d3x. Performing the Fourier transform9, the Lindblad operators are

diagonalized:

d

dt
ρS(t) = −i [HS, ρS] +

∫
k

γ(~k)

[
Ṽ a
S (~k)ρSṼ

a†
S (~k)− 1

2

{
Ṽ a†
S (~k)Ṽ a

S (~k), ρS

}]
, (3.14a)

Ṽ a
S (~k) = ei

~k·~xQ/2

(
1−

~k · ~pQ
4MT

)
ei
~k·~xQ/2taQ, (3.14b)

where
∫
k
≡
∫
d3k/(2π)3 and we use f(~k) ≡

∫
x
ei
~k·~xf(~x) to denote the Fourier transform of f(~x) in

general. In this diagonal form, physical meaning of the Lindblad equation becomes clear as we discuss
below. The Lindblad equation is further simplified by taking the trace in the internal color space for
the heavy quark ρ̄S(t) ≡ TrcolorρS(t):10

d

dt
ρ̄S(t) = −i [HS, ρ̄S] +

∫
k

CFγ(~k)

[
ṼS(~k)ρ̄SṼ

†
S (~k)− 1

2

{
Ṽ †S (~k)ṼS(~k), ρ̄S

}]
, (3.15a)

ṼS(~k) = ei
~k·~xQ/2

(
1−

~k · ~pQ
4MT

)
ei
~k·~xQ/2, (3.15b)

where CF = (N2
c − 1)/2Nc is the fundamental Casimir of SU(Nc).

Let us see the physical meaning of the Lindblad equation. At the leading order in the gradi-

ent expansion, the Lindblad operator ei
~k·~xQtaQ shifts the heavy quark momentum by ~k and rotates

the color by taQ. Corresponding microscopic process is a scattering Q + g → Q + g or Q + q(q̄) →
Q + q(q̄) with momentum transfer ~k. The rate for this process is γ(~k) and equals the rate for

the inverse process γ(−~k) = γ(~k). Including the next-to-leading order, the Lindblad operator is

ei
~k·~xQ/2

(
1−

~k·~pQ
4MT

)
ei
~k·~xQ/2taQ = ei

~k·~xQ
(

1−
~k·~pQ
4MT
− k2

8MT

)
taQ and improves on the description of the scat-

tering event. At this order, the Lindblad operator shifts and rotates the momentum and color of the
heavy quark, but now with momentum dependent rates

Γ~pQ→~pQ+~k = γ(~k)

(
1−

~k · ~pQ
4MT

− k2

8MT

)2

= γ(~k)

(
1 +

E~pQ − E~pQ+~k

4T

)2

, (3.16a)

Γ~pQ+~k→~pQ = γ(~k)

(
1 +

~k · ~pQ
4MT

+
k2

8MT

)2

= γ(~k)

(
1 +

E~pQ+~k − E~pQ
4T

)2

, (3.16b)

with E~p ≡ p2/2M . Using an approximation for small x (relative error is less than 3% for |x| < 0.25)(
1 + x

1− x

)2

= 1 + 4x+ 8x2 + 12x3 + · · · ' e4x +O(x3), (3.17)

the detailed balance holds approximately

Γ~pQ→~pQ+~k

Γ~pQ+~k→~pQ
' exp

(
E~pQ − E~pQ+~k

T

)
, (3.18)

so that the equilibrium distribution is very close to the Boltzmann distribution. The next-to-leading
order term includes recoil effect of the heavy quark and thus the leading order approximation is often

9As mentioned in Sec. 2.1, this is an example of the unitary transformation of the Lindblad operator basis.
10We believe that readers are not confused with the same notation for a different meaning in the last part of Sec. 2.2.4
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referred to as the recoilless limit. Note that without the next-to-leading order term, the detailed balance
does not hold even approximately because the inverse process takes place at the same rate. In other
words, the detailed balance for unphysical temperature T = ∞ holds and the heavy quark system
continues to heat up. Therefore the master equation in the leading order gradient expansion, or in the
recoilless limit, can only describe the heavy quark evolution in a shorter time scale than its relaxation.

The Lindblad equation (3.14) for a heavy quark in the QGP was first derived in [12]. Its Abelian
limit, or equivalently (3.15), was first numerically simulated in 1 dimension in [51] using the Quantum
State Diffusion method [122, 123]. The equilibrium distribution is found to be very close to the Boltz-
mann distribution. Also, it is confirmed that the heavy quark energy continues to rise without the
dissipation term.

3.2.2 Decoherence vs dissipation

Let us examine how the system density matrix evolves according to (3.15). In the analysis below, it is
convenient to choose the position basis ρ̄S(t, ~x, ~y) = 〈~x|ρ̄S(t)|~y〉 for the density matrix. The Lindblad
equation at the leading order gradient expansion is

∂

∂t
ρ̄S(t, ~x, ~y) = i

∇2
x −∇2

y

2M
ρ̄S(t, ~x, ~y)− CF

[
γ(~0)− γ(~x− ~y)

]
ρ̄S(t, ~x, ~y). (3.19)

The effect of environment is summarized in the last term, which causes decoherence to the heavy
quark wave function: the off-diagonal element (~x 6= ~y) of the density matrix decays in a time scale
1/CF [γ(0)− γ(~x− ~y)]. This form of the master equation generally holds true for the description of
collisional decoherence [124, 125], which was experimentally measured [126]. Since r = |~x − ~y| is the
spatial extent of the heavy quark wave function and γ(~0) − γ(~r) is an increasing function of r that
starts from 0 and saturates to γ(~0) at very large r, the decoherence proceeds more quickly for extended
states. If the density matrix is evolved with the master equation long enough, it becomes nearly
diagonal. The process of the diagonalization itself is physical, but the relevant size of the coefficient
CF [γ(0)− γ(~x− ~y)] continues to get smaller and the gradient expansion is not justified at the late stage
of the diagonalization/decoherence. Therefore, we need to perform the gradient expansion up to the
next-to-leading order and see how the next-to-leading term affects the diagonalization process.

The explicit form of the Lindblad equation (3.15) is

∂

∂t
ρ̄S(t, ~x, ~y) = i

∇2
x −∇2

y

2M
ρ̄S(t, ~x, ~y)− CF

[
F1(~0)− F1(~x− ~y)

]
ρ̄S(t, ~x, ~y)

+ CF

[
~F2(~x− ~y) · (~∇x − ~∇y) + F ij

3 (~x− ~y)∂
(x)
i ∂

(y)
j + F ii

3 (~0)
∇2
x +∇2

y

6

]
ρ̄S(t, ~x, ~y), (3.20)

which not only contains the full leading and next-to-leading terms but also some of the next-to-next-
to-leading terms in the gradient expansion. The coefficients are defined as

F1(~r) ≡ γ(~r) +
∇2γ(~r)

4MT
+
∇4γ(~r)

64M2T 2
, ~F2(~r) ≡ ~∇

(
γ(~r)

4MT
+
∇2γ(~r)

32M2T 2

)
, F ij

3 (~r) ≡ −∂i∂jγ(~r)

16M2T 2
. (3.21)

To illustrate the fate of density matrix under decoherence at late enough time, we take the small wave
packet limit by expanding γ(~r) to the quadratic order. The master equation then becomes

∂

∂t
ρ̄S(t, ~x, ~y) = i

∇2
x −∇2

y

2M
ρ̄S(t, ~x, ~y) (3.22)

+
CF∇2γ(0)

6

[
(~x− ~y)2 +

~x− ~y
2MT

·
(
~∇x − ~∇y

)
− 1

16M2T 2

(
~∇x + ~∇y

)2
]
ρ̄S(t, ~x, ~y).
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This master equation is equivalent to the well-known Caldeira-Leggett master equation for the quantum
Brownian motion if we ignore the last term in the second line of (3.22). Near equilibrium, the wave

packet has typical extension |~x−~y| ∼ 1/
√
MT and momentum |~∇| ∼

√
MT . Therefore, the leading and

the next-to-leading terms in the gradient expansion are comparable11 and the latter cannot be simply
ignored. As will be fully discussed in the next section 3.2.3, the physical meaning of this observation
becomes clear when we take the classical limit: the leading order term represents random force from
the thermal environment and the next-to-leading term describes the friction, and these forces balance
in the equilibrium according to the fluctuation-dissipation theorem.

A few technical remarks are in order here. The master equation (3.22) is written as the Lindblad
equation (2.18) with

Ṽ
(i)
S ↔

(
~xQ +

i~pQ
4MT

)
i

, γij ↔ −
CF
3
∇2γ(0)δij > 0, ∆HS = −CF∇

2γ(0)

12MT
{~xQ, ~pQ} , (3.23)

which is a particular generalization of the Caldeira-Leggett master equation [113, 114, 115, 116]. This
is verified by explicit substitution or by expanding the operators of (3.15) up to the second order in ~xQ.
The explicit ~xQ dependence in the Lindblad operator and the Hamiltonian may seem to indicate the
violation of the translational invariance ~xQ → ~xQ + ~c, but the Lindblad equation is actually invariant
under this transformation thanks to the property mentioned in the last part of Sec. 2.1. In relation
to the Caldeira-Leggett master equation, the Lindblad equation (3.20) is regarded as its generalization
to a Brownian particle with extended wave functions. Similar master equations are also obtained in
[127, 128, 129, 130].

3.2.3 Equilibration in the classical limit

The master equation (3.20) describes the quantum decoherence and quantum dissipation. Moreover, it
describes the transition from quantum to classical [131] — after a long enough time, the decoherence
and dissipation eventually balance and the heavy quark is described by a localized wave packet that
can be approximated by a classical point particle. For a localized wave packet, the density matrix is
nearly diagonal, so that the master equation (3.22) is a good approximation. To gain further insight,
it is useful to define the Wigner function

f(t, ~r, ~p) ≡
∫
d3se−i~p·~sρS

(
t, ~r +

~s

2
, ~r − ~s

2

)
, (3.24)

which is a quantum mechanical counterpart of the classical phase space distribution but does not
necessarily take positive values. The evolution of f(t, ~r, ~p) is governed by[

∂

∂t
+

~p

M
· ~∇r −

κ

2MT

∂

∂~p
·
(
~p+MT

∂

∂~p

)
− κ

32M2T 2
∇2
r

]
f(t, ~r, ~p) = 0, (3.25)

with κ ≡ −CF∇2γ(0)
3

> 0 being the momentum diffusion constant12. It is clear that ∂2/∂p2, (∂/∂~p) · ~p,
and ∇2

r terms derive from the leading, next-to-leading, and next-to-next-to-leading terms respectively.
If we neglect the ∇2

r term, the equation is equivalent to the Kramers equation for the classical Brownian
motion:

d~r

dt
=

~p

M
,

d~p

dt
= − κ

2MT
~p+ ~ξ, Eξ [ξi(t)ξj(t

′)] = κδijδ(t− t′), (3.26)

11As we see in Sec. 3.2.3, the next-to-next-to-leading term turns out to be smaller than the leading and the next-to-
leading order terms and the lack of these terms in the Caldeira-Leggett master equation is physically justified.

12Since the master equation is obtained by weak coupling expansion, κ here should be the leading order perturbative

one κLO = CF g
4T 3

18π

[
Nc

(
ln 2T

mD
+ ξ
)

+
Nf

2

(
ln 4T

mD
+ ξ
)]

with ξ ' −0.64718 [132]. See Appendix B for details.
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where Eξ[O] denotes the expectation value of O(ξ) over the stochastic variable ξ. Since the classical
Brownian particle diffuses with a diffusion constant D = 2T 2/κ ∼ 1/T , the extra ∇2

r term just adds to
the diffusion constant D by a fraction T 2/M2 � 1, so that it can be safely neglected. In any case, it is
easy to see that the equilibrium distribution is the classical Boltzmann distribution ∝ exp [−p2/2MT ].

Here is a technical comment. Although we get (3.25) from the Lindblad equation (3.22) by Wigner
transformation, we can directly calculate the evolution equation of f(t, ~r, ~p) from the Lindblad equation

(3.20) by taking the small wave packet limit. In this case, we need to expand F1(~s), ~F2(~s), and F ij
3 (~s) in

terms of ~s, which yields extra contribution from higher order derivatives of γ(~s) other than ∇2γ(0). To
systematically count the small contributions, it is natural to recover ~ in Eq. (3.20) by γ(~s)→ γ(~s)/~,
∂t → ~∂t, and ∇ → ~∇ and in Eq. (3.24) by exp(−i~p · ~s) → exp(−i~p · ~s/~). The leading contribution
in ~→ 0 limit results in Eq. (3.25) without the last term, which is suppressed by ~2, and the Kramers
equation is obtained.

3.3 Quantum Brownian motion of a quarkonium

In this section, we derive and analyze the Lindblad equation for quantum Brownian motion of a quarko-
nium in a weakly coupled quark-gluon plasma (QGP). Let us see when the scale hierarchy for the
quantum Brownian motion (τR � τE and τS � τE) is satisfied. We estimate the system relaxation
time τR ∼ M/g4T 2 by its kinetic equilibration time, the system time scale τS = 1/E by the inverse

of the binding energy E, and the environment correlation time τ
(soft,hard)
E ∼ 1/gT, 1/T by the duration

of the collisions. The relation τR � τE is satisfied because M � T . Another relation τS � τE is
satisfied when E � gT . One might wonder whether the latter relation is close to the situation realized
in the heavy-ion collisions. To make the argument explicit, let us take the Coulombic binding energy
for bottomonium in the QGP. Using the textbook results for the hydrogen atom with singlet potential
−CFαs/r

1

τS
= E =

1

2
(Mb/2)(CFαs)

2 ' 0.5 · (4.7[GeV]/2) · (0.3-0.4)2 ' (0.11-0.19)[GeV], (3.27)

where Mb ' 4.7[GeV] is the bottom quark mass. Comparing with the relaxation time at typical
temperature T ∼ 0.4GeV ∼ 1/τE, the assumption τS ∼ (2-3)τE > τE is not too far from reality.
The situation is better for charmonium, whose mass is about three times lighter than bottomonium.
Furthermore, if we estimate by τS = 2π/E or by τE ∼ 1/2πT , the situation gets even better.

3.3.1 Lindblad equation

We apply the formula (2.53) to non-relativistic heavy quark pair in the QGP. The total Hamiltonian is
given in Eq. (3.6), which we quote here again,

Htot =

(
p2
Q

2M
+
p2
Qc

2M

)
⊗ IE + IS ⊗Hq+A +

∫
d3x

[
δ(~x− ~xQ)taQ − δ(~x− ~xQc)t

a∗
Qc

]
⊗ gAa0(~x),

and the operator correspondence is

V
(i)
S ↔ δ(~x− ~xQ)taQ − δ(~x− ~xQc)t

a∗
Qc
≡ V a

S (~x), (3.28a)

V̇
(i)
S = i[HS, V

(i)
S ]↔


[
− i

2M
∇2
xδ(~x− ~xQ)− 1

M
~∇xδ(~x− ~xQ) · ~pQ

]
taQ

−
[
− i

2M
∇2
xδ(~x− ~xQc)−

1

M
~∇xδ(~x− ~xQc) · ~pQc

]
ta∗Qc

 ≡ V̇ a
S (~x). (3.28b)
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The coefficients are again quoted from Eqs. (3.9) and (3.10)

γab(~x− ~y) = T
d

dω
σab(ω, ~x− ~y)

∣∣∣
ω=0
≡ γ(~x− ~y)δab,

Sab(~x− ~y) = −1

2

∫ ∞
−∞

dω

2π

σab(ω, ~x− ~y)

ω
≡ S(~x− ~y)δab,

σab(ω, ~x− ~y) ≡
∫ ∞
−∞

dteiωtTrE
(
ρth
E

[
gAa0(t, ~x), gAb0(0, ~y)

])
∝ δab,

ηab(~x− ~y) ' − i

4T
γab(~x− ~y) = − i

4T
γ(~x− ~y)δab,

whose explicit forms at the soft scale |~x| ∼ 1/gT are given in the Appendix B. Then the Lindblad
operator reads

Ṽ
(i)
S ↔ V a

S (~x) +
i

4T
V̇ a
S (~x)

=


[
δ(~x− ~xQ) +

1

8MT
∇2
xδ(~x− ~xQ)− i

4MT
~∇xδ(~x− ~xQ) · ~pQ

]
taQ

−
[
δ(~x− ~xQc) +

1

8MT
∇2
xδ(~x− ~xQc)−

i

4MT
~∇xδ(~x− ~xQc) · ~pQc

]
ta∗Qc

 ≡ Ṽ a
S (~x). (3.29)

The correction to the Hamiltonian is

∆HS =

[
−2S(~xQ − ~xQc)−

1

8MT

{
~pQ − ~pQc , ~∇γ(~xQ − ~xQc)

}]
taQt

a∗
Qc
, (3.30)

where the first term gives the Coulomb interaction which is Debye screened at the long distance and the
second term is time reversal odd. Note that tbQt

c∗
Qc

is not a matrix multiplication but a tensor product.

In the above derivation, we calculate V̇ a
S (~x) by the free Hamiltonian (p2

Q+p2
Qc

)/2M . We can improve
this calculation by including the induced potential term in the Hamiltonian

V̇
(i)
S,∆ ≡ i

[
HS + ∆HS

∣∣
∂0
, V

(i)
S

]
↔ V̇ a

S,∆(~x) ≡ V̇ a
S (~x)− 2iS(~xQ − ~xQc) [δ(~x− ~xQ)− δ(~x− ~xQc)] if

abctbQt
c∗
Qc
, (3.31)

and redefine the Lindblad operator as

Ṽ a
S,∆(~x) ≡ V a

S (~x) +
i

4T
V̇ a
S,∆(~x)

=



[
δ(~x− ~xQ) +

1

8MT
∇2
xδ(~x− ~xQ)− i

4MT
~∇xδ(~x− ~xQ) · ~pQ

]
taQ

−
[
δ(~x− ~xQc) +

1

8MT
∇2
xδ(~x− ~xQc)−

i

4MT
~∇xδ(~x− ~xQc) · ~pQc

]
ta∗Qc

+
S(~xQ − ~xQc)

2T
[δ(~x− ~xQ)− δ(~x− ~xQc)] if

abctbQt
c∗
Qc

 , (3.32)

where fabc is the structure constant of the SU(Nc) algebra [ta, tb] = ifabctc. In the present example, ∆HS

is not affected by adopting the improved V̇ a
S,∆(~x) instead of V̇ a

S (~x) in ∆HS

∣∣
∂1

. Diagrammatically, this
improvement corresponds to adding a cross-ladder exchange to the resummation kernel, which drives
the time-evolution of the density matrix via the master equation. By this improvement, we can take
into account the potential energy difference between the heavy quark pair in the singlet and that in the
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octet. Therefore, the equilibrium occupation depends on the color representations of the heavy quark
pair because of this improvement.

Collecting these results, we obtain the Lindblad equation

d

dt
ρS(t) = −i [HS + ∆HS, ρS] +

∫
x,y

γ(~x− ~y)

[
Ṽ a
S,∆(~y)ρSṼ

a†
S,∆(~x)− 1

2

{
Ṽ a†
S,∆(~x)Ṽ a

S,∆(~y), ρS

}]
= −i [HS + ∆HS, ρS] +

∫
k

γ(~k)

[
Ṽ a
S,∆(~k)ρSṼ

a†
S,∆(~k)− 1

2

{
Ṽ a†
S,∆(~k)Ṽ a

S,∆(~k), ρS

}]
, (3.33a)

∆HS =

[
−2S(~xQ − ~xQc)−

1

8MT

{
~pQ − ~pQc , ~∇γ(~xQ − ~xQc)

}]
taQt

a∗
Qc
, (3.33b)

Ṽ a
S,∆(~k) = ei

~k·~xQ/2

(
1−

~k · ~pQ
4MT

)
ei
~k·~xQ/2taQ − ei

~k·~xQc/2

(
1−

~k · ~pQc

4MT

)
ei
~k·~xQc/2ta∗Qc

+
S(~xQ − ~xQc)

2T

(
ei
~k·~xQ − ei~k·~xQc

)
ifabctbQt

c∗
Qc
. (3.33c)

The physical meaning of the Lindblad operator Ṽ a
S,∆(~k) can be understood similarly to the single heavy

quark case: the first two terms describe a simultaneous scattering of Q+ g → Q+ g and Q̄+ g → Q̄+ g
(and similar processes involving q and q̄) with momentum transfer ~k. Note that this simultaneous
scattering induces quantum interference on the wave function. To give physical meaning to the last
term, singlet-octet basis for the color space is more convenient as explained below.

The color part of the Lindblad equation (3.33) can be expressed in the singlet-octet basis. Switching
from the tensor product basis (|i〉Q|j〉Qc) to the singlet-octet basis (|s〉, |a〉) is done by the following
unitary transformation

|s〉 =
1√
Nc

δij|i〉Q|j〉Qc , (i, j = 1, 2, · · · , Nc), (3.34a)

|a〉 =
√

2(taF )ij|i〉Q|j〉Qc , (a = 1, 2, · · · , N2
c − 1), (3.34b)

where taF is the fundamental representation of SU(Nc) algebra with a conventional normalization
tr(taF t

b
F ) = δab/2. The color space operators in the singlet-octet basis are13

〈s|taQ|s〉 = 〈s|ta∗Qc
|s〉 = 〈s|fabctbQtc∗Qc

|s〉 = 〈d|fabctbQtc∗Qc
|e〉 = 0, (3.36a)

〈s|taQ|b〉 = 〈s|ta∗Qc
|b〉 =

1√
2Nc

δab, 〈s|fabctbQtc∗Qc
|d〉 = −i1

2

√
Nc

2
δad, (3.36b)

〈b|taQ|c〉 = 2tr(tcF t
b
F t

a
F ) =

dabc − ifabc
2

, 〈b|ta∗Qc
|c〉 = 2tr(taF t

b
F t

c
F ) =

dabc + ifabc
2

, (3.36c)

where dabc ≡ 2tr
(
{taF , tbF}tcF

)
is a totally symmetric tensor. In the singlet-octet basis, the Lindblad

13We provide a short derivation for 〈s|fabctbQtc∗Qc
|d〉 = −i 1

2

√
Nc

2 δad and 〈d|fabctbQtc∗Qc
|e〉 = 0:

〈s|fabctbQtc∗Qc
|d〉 =

√
2

Nc
fabctr(tcF t

b
F t
d
F ) = −i

√
2

Nc
tr([taF , t

b
F ]tbF t

d
F ) = −iNc

2

√
1

2Nc
δad, (3.35a)

〈d|fabctbQtc∗Qc
|e〉 = 2fabctr(tbF t

e
F t
c
F t
d
F ) = −2itr(tbF t

e
F [taF , t

b
F ]tdF ) = 0. (3.35b)

At the final steps for both, we use taF t
b
F t
a
F = −tbF /2Nc which follows from (tbF )ij(t

b
F )kl = 1

2 (δilδjk − 1
Nc
δijδkl).
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operator Ṽ a
S,∆(~k) is decomposed as

Ṽ a
S,∆(~k) = Ṽ+(~k)

√
1

2Nc

|a〉〈s|+ Ṽ−(~k)

√
1

2Nc

|s〉〈a|+ Ṽd(~k)
1

2
dabc|b〉〈c|+ Ṽf (~k)

1

2
ifabc|b〉〈c|, (3.37a)

Ṽ±(~k) = ei
~k·~xQ/2

[
1−

~k · ~pQ
4MT

∓ NcS(~xQ − ~xQc)

4T

]
ei
~k·~xQ/2

− ei~k·~xQc/2

[
1−

~k · ~pQc

4MT
∓ NcS(~xQ − ~xQc)

4T

]
ei
~k·~xQc/2, (3.37b)

Ṽd/f (~k) = ±ei~k·~xQ/2
(

1−
~k · ~pQ
4MT

)
ei
~k·~xQ/2 − ei~k·~xQc/2

(
1−

~k · ~pQc

4MT

)
ei
~k·~xQc/2. (3.37c)

In this basis, physical meaning of the last term in the Lindblad operators in (3.33) can be analyzed.

It only appears in V±(~k) that describes the transitions between the singlet and the octets. Repeating
the discussions on the detailed balance in Sec. 3.2.1 leads to the following detailed balance in the color
space

Γs→a
Γa→s

' exp

(
−NcS(~xQ − ~xQc)

T

)
, (3.38)

where −NcS(~xQ − ~xQc) < 0 is potential energy difference between the singlet and the octets.
In both basis, the internal color space has 9 dimensions. Physically, we often do not need to know

the detailed distribution in the octet space. Therefore it is very convenient if we can derive a master
equation for the projected density matrices

ρs(t) ≡ 〈s|ρS(t)|s〉, ρo(t) ≡ 〈a|ρS(t)|a〉. (3.39)

Indeed we can show that the off-diagonal parts 〈s|ρS(t)|a〉 and 〈a|ρS(t)|s〉 decouple from the diagonal
parts because of the properties faac = daac = fabcdabd = 0. Therefore the master equation for the
reduced density matrix with 2× 2 internal space

ρS(t) =

(
ρs(t) 0

0 ρo(t)

)
(3.40)

is obtained in the following Lindblad form with new Lindblad operators C̃n(~k)

d

dt
ρS(t) = −i [HS + ∆HS, ρS] +

∫
k

γ(~k)
∑

n=+,−,d,f

[
C̃n(~k)ρSC̃

†
n(~k)− 1

2

{
C̃†n(~k)C̃n(~k), ρS

}]
, (3.41a)

∆HS =

[
−2S(~xQ − ~xQc)−

1

8MT

{
~pQ − ~pQc , ~∇γ(~xQ − ~xQc)

}](CF 0
0 − 1

2Nc

)
, (3.41b)

C̃+(~k) = Ṽ+(~k)
√
CF

(
0 0
1 0

)
, C̃−(~k) = Ṽ−(~k)

√
1

2Nc

(
0 1
0 0

)
, (3.41c)

C̃d(~k) = Ṽd(~k)

√
N2
c − 4

4Nc

(
0 0
0 1

)
, C̃f (~k) = Ṽf (~k)

√
Nc

4

(
0 0
0 1

)
, (3.41d)

where formulas fabcfabd = Ncδcd and dabcdabd = N2
c−4
Nc

δcd are used14.

14A short derivation of the latter is given here. Using {taF , tbF } = δab

Nc
+ dabctcF and taF t

b
F t
a
F = −tbF /2Nc, one gets

{{taF , tbF }, tbF } =
2

Nc
taF + dabc{tcF , tbF } =

2

Nc
taF + dabcdcbdtdF =

(
2CF −

1

Nc

)
taF , (3.42)

from which dabcdcbd =
N2

c−4
Nc

δad follows.
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The Lindblad equation for a quarkonium in the QGP was first derived in [12]. In the original paper,
it was obtained in the form of (3.33) without taking into account the color state dependence of the

potential energy, i.e. the Lindblad operator was not Ṽ a
S,∆(~k) but Ṽ a

S (~k). The Abelian limit of (3.33), or
to be specific (3.54), was numerically simulated in 1-dimension for the first time in [53] using the method
of Quantum State Diffusion [122, 123] and in [55] by directly solving the master equation with a novel
trace preserving algorithm. The full non-Abelian version has recently been simulated in 1-dimension in
[60] using the Quantum State Diffusion method. The equilibration to the Boltzmann distribution was
confirmed within acceptable deviations. It was also pointed out that the quantum dissipation is not
negligible already at initial times if the initial quarkonium is a localized bound state such as the ground
state, as is expected from the discussions in Sec. 3.2.

3.3.2 Recoilless limit and the stochastic potential

As discussed in Sec. 3.2.2, the Lindblad equation in the leading order gradient expansion, or in the re-
coilless limit, describes quantum decoherence. Although its applicability is limited to shorter timescales
than the heavy quark relaxation time, quantum decoherence is an essential feature of the early-time
dynamics of quarkonium dissociation process in the QGP. In this section, we give an intuitive picture of
quantum decoherence by introducing a stochastic Hamiltonian which models the environmental thermal
fluctuations as a noise term15.

Let us start from the Lindblad equation in the tensor product basis

d

dt
ρS(t) = −i [HS + ∆HS, ρS] +

∫
x,y

γ(~x− ~y)

[
V a
S (~y)ρSV

a
S (~x)− 1

2
{V a

S (~x)V a
S (~y), ρS}

]
, (3.43a)

∆HS = −2S(~xQ − ~xQc)t
a
Qt

a∗
Qc
, V a

S (~x) = δ(~x− ~xQ)taQ − δ(~x− ~xQc)t
a∗
Qc
. (3.43b)

This equation is equivalent to the evolution by a stochastic Hamiltonian in the system Hilbert space:

H(t; θ) ≡ HS + ∆HS +

∫
x

θa(~x, t)V a
S (~x), (3.44a)

Eθ
[
θa(~x, t)θb(~y, t′)

]
= γ(~x− ~y)δabδ(t− t′), (3.44b)

|ψ(t+ dt; θ)〉 = e−iH(t;θ)dt|ψ(t; θ)〉, (3.44c)

where Eθ[O] denotes the expectation value of O(θ) over the stochastic variable θ and the stochastic
evolution is discretized in the Itô scheme. Note that this stochastic Hamiltonian is Hermitian because
θa(~x, t) is real. The equivalence is confirmed by deriving the time evolution of the system density matrix
from

ρS(t) ≡ Eθ [|ψ(t; θ)〉〈ψ(t; θ)|] , ρS(t+ dt) = Eθ
[
e−iH(t;θ)dtρS(t)eiH(t;θ)dt

]
, (3.45)

by noting that θdt ∼ dt1/2. The Hermiticity of H(t; θ) is essential for this equivalence. Comparing the
stochastic Hamiltonian (3.44) with Eq. (3.6), it is clear that the scalar potential Aa0(~x) is modeled by
the noise field θa(~x, t). By putting the screening potential and the noise term together, let us introduce
a stochastic potential

UQQc(~xQ, ~xQc ; θ) ≡ −2S(~xQ − ~xQc)t
a
Qt

a∗
Qc

+ θa(~xQ, t)t
a
Q − θa(~xQc , t)t

a∗
Qc
, (3.46)

which summarizes the effects in the leading order gradient expansion. The explicit analytic forms of
the potential S(~x) and the noise correlation function γ(~x) at the soft scale |~x| ∼ 1/gT are given in (B.7)

15It is straightforward to apply the description here to the recoilless limit of the single heavy quark in Sec. 3.2.2. In
this case, ∆HS = 0 and V aS (~x) = δ(~x− ~xQ)taQ in Eq. (3.44).
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in the Appendix B, which we quote here

S(~x) =
g2

8π|~x|
e−mD|~x|, γ(~x) = g2T

∫
d3q

(2π)3
ei~q·~x

πm2
D

q(q2 +m2
D)2

, (3.47)

where m2
D = 1

3
g2T 2

(
Nc + 1

2
Nf

)
for Nc colors and Nf light flavors.

The stochastic potential was first derived in an Abelian plasma [42] in which the noise field has
no color index and was numerically simulated (after integrating out the center-of-mass motion) in one
dimension [42, 44] and in three dimensions [43]. The SU(Nc) version (3.46) was first derived in [12]
and numerically simulated in one dimension [54, 59]16. Conventional description for the quarkonium
dissociation has mainly focused on the color screening in the QGP. However, our analysis based on the
open quantum system reveals that the decoherence is another important mechanism that contributes
to the dissociation. The importance of the decoherence can be estimated by the correlation length `corr

of the noise field. If the size of a quarkonium `ψ is smaller than `corr, the noises for the heavy quark
and antiquark cancel each other and quarkonium wave function remains almost intact17. If opposite
`ψ & `corr, the wave function receives local random phase rotations and quickly mixes with the excited
and unbound states. Therefore, the fate of the quarkonium in the QGP is not only determined by the
screening, but also by the decoherence. In other words, there are two fundamental scales of the QGP
concerning the quarkonium dissociation, namely the screening mass mD and the dynamical correlation
length `corr.

Once we gain the intuitive picture by the stochastic Hamiltonian, several statements are made
simpler to understand. For example, since the stochastic Hamiltonian, or Hamiltonian dynamics in
general, cannot treat non-potential forces, it is natural that the frictional force is not given by the leading
order gradient expansion. Another example is that the heavy quark momentum diffusion constant is

given by κ = −CF∇2γ(0)
3

. Since the stochastic force is given by the gradient of the stochastic potential
~f(~xQ, t) ≡ −~∇θa(~xQ)ta and the heavy quark wave function is localized in the classical limit, the averaged
strength of the stochastic force is given by

κ =
1

3

∫
dtEθ

[
1

Nc

tr
(
~f(~xQ, t) · ~f(~xQ, 0)

)]
=
CF
3
~∇x · ~∇yγ(~x− ~y)|~y→~x, (3.48)

where heavy quark color is assumed equally occupied18.

Finally, let us make a comment on the unavailability of stochastic description in the projected

16To be precise, Ref. [54] takes the small dipole limit for the stochastic potential and solves in the angular momentum
basis including only S and P waves. So it may be called a 1+ dimensional simulation. However, once the density matrix

is projected onto angular momentum by ρ
(`)
S (t, r1, r2) ≡

∑
m

∫
Ω1,Ω2

Y ∗`m(Ω1)Y`m(Ω2)ρS(t, r1,Ω1, r2,Ω2), the stochastic
description is no longer available because the Lindblad operators are not Hermitian anymore.

17In this case, quantum dissipation, which is neglected here, may be as important as quantum decoherence.
18Randomization of heavy quark color is achieved in a time scale of soft collision intervals ∼ 1/g2T , so that this

assumption is safely satisfied in the heavy quark equilibration time ∼M/g4T 2 [48].
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singlet-octet basis. The Lindblad equation in the leading order gradient expansion is

d

dt
ρS(t) = −i [HS + ∆HS, ρS] +

∫
x,y

γ(~x− ~y)
∑

n=+,−,d,f

[
Cn(~y)ρSC

†
n(~x)− 1

2

{
C†n(~x)Cn(~y), ρS

}]
, (3.49a)

∆HS = −2S(~xQ − ~xQc)

(
CF 0
0 − 1

2Nc

)
, (3.49b)

C+(~x) = [δ(~x− ~xQ)− δ(~x− ~xQc)]
√
CF

(
0 0
1 0

)
, (3.49c)

C−(~x) = [δ(~x− ~xQ)− δ(~x− ~xQc)]

√
1

2Nc

(
0 1
0 0

)
, (3.49d)

Cd(~x) = [δ(~x− ~xQ)− δ(~x− ~xQc)]

√
N2
c − 4

4Nc

(
0 0
0 1

)
, (3.49e)

Cf (~x) = [δ(~x− ~xQ) + δ(~x− ~xQc)]

√
Nc

4

(
0 0
0 1

)
. (3.49f)

To construct a stochastic potential, one might start from introducing 4 independent noise fields θn(~x),
each of which couples to Cn(~x). However, C±(~x) is not Hermitian and the resulting stochastic Hamilto-
nian would be non-Hermitian. One might still try to make them Hermitian by some linear combination
of C±(~x) as mentioned in Sec. 2.1, but it is impossible. Physically, this is because the dimensions of
the singlet and octet internal spaces are asymmetric and the excitation and de-excitation do not take
place at the same rate.

3.3.3 Static limit

Let us investigate a slightly different regime from the previous section. Since quarkonium has singlet
and octet sectors, it is interesting to study how the color configuration equilibrates. For this purpose,
the kinetic term complicates the situation because it mixes color internal spaces at different points.
Therefore, we take M → ∞ limit and focus on the color space dynamics of a heavy quark pair placed
at a fixed distance.

In the limit M →∞, the Lindblad equation in the projected singlet-octet basis is

d

dt
ρS(t) = −i [∆HS, ρS] +

∫
x,y

γ(~x− ~y)
∑

n=+,−,d,f

[
C̃n(~y)ρSC̃

†
n(~x)− 1

2

{
C̃†n(~x)C̃n(~y), ρS

}]
, (3.50a)

∆HS = −2S(~xQ − ~xQc)

(
CF 0
0 − 1

2Nc

)
≡
(
Us(~xQ − ~xQc) 0

0 Uo(~xQ − ~xQc)

)
, (3.50b)

C̃+(~x) = [δ(~x− ~xQ)− δ(~x− ~xQc)]

[
1− NcS(~xQ − ~xQc)

4T

]√
CF

(
0 0
1 0

)
, (3.50c)

C̃−(~x) = [δ(~x− ~xQ)− δ(~x− ~xQc)]

[
1 +

NcS(~xQ − ~xQc)

4T

]√
1

2Nc

(
0 1
0 0

)
, (3.50d)

C̃d(~x) = [δ(~x− ~xQ)− δ(~x− ~xQc)]

√
N2
c − 4

4Nc

(
0 0
0 1

)
, (3.50e)

C̃f (~x) = [δ(~x− ~xQ) + δ(~x− ~xQc)]

√
Nc

4

(
0 0
0 1

)
. (3.50f)

In this limit, the heavy quark pair is localized at ~rQ and ~rQc with ~r ≡ ~rQ − ~rQc and the density matrix
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takes the following form

ρS(t) =

(
ρs(t) 0

0 ρo(t)

)
, ρs/o(t) = ns/o(t;~r)|~rQ, ~rQc〉〈~rQ, ~rQc |. (3.51)

Substituting this form, the Lindblad equation is greatly simplified to a coupled rate equations

dns
dt

= −2
[
γ(~0)− γ(~r)

](
CF

[
1− NcS(~r)

4T

]2

ns −
1

2Nc

[
1 +

NcS(~r)

4T

]2

no

)
, (3.52a)

dno
dt

= −2
[
γ(~0)− γ(~r)

]( 1

2Nc

[
1 +

NcS(~r)

4T

]2

no − CF
[
1− NcS(~r)

4T

]2

ns

)
. (3.52b)

In a relaxation time ∼
(
Nc

[
γ(~0)− γ(~r)

])−1

, the color configuration reaches equilibrium

neq
s (~r)

neq
o (~r)

=
1

N2
c − 1

(
1 +NcS(~r)/4T

1−NcS(~r)/4T

)2

' 1

N2
c − 1

exp

[
NcS(~r)

T

]
, (3.53)

which is very close to the Boltzmann distribution as long as the energy gap is not larger than the
temperature; for example the error is less than 3% for NcS(~r) = Uo(~r)− Us(~r) = T .

3.3.4 Classical limit

In the previous two sections, the friction force is ignored because it vanishes in the recoilless and static
limits. Here, let us take the classical limit of Eq. (3.41) and derive corresponding classical dynamics.

First, let us first derive classical limit of quantum Brownian motion of two particles without internal
degrees of freedom (Abelian case). The Lindblad equation is

d

dt
ρS(t) = −i

[
p2

1 + p2
2

2M
+ U(~x1 − ~x2)± 1

8MT

{
~p1 − ~p2, ~∇γ(~x1 − ~x2)

}
, ρS

]
+

∫
k

γ(~k)

[
ṼS(~k)ρSṼ

†
S (~k)− 1

2

{
Ṽ †S (~k)ṼS(~k), ρS

}]
, (3.54a)

ṼS(~k) = ei
~k·~x1/2

(
1−

~k · ~p1

4MT

)
ei
~k·~x1/2 ± ei~k·~x2/2

(
1−

~k · ~p2

4MT

)
ei
~k·~x2/2, (3.54b)

which is readily obtained from (3.33) by replacing ta → 1. The signs ± in Eq. (3.54) correspond to
the cases where the two Brownian particles have the same charge (+) or the opposite charges (−). We
consider both cases because the Lindblad operators in Eq. (3.41) take both signs. The derivation of the
classical limit is straightforward but quite involved, so we summarize its procedure here. It consists of
the following 3 steps:

1. Write the Lindblad equation (3.54) in position space. The density matrix is ρS(t, ~x1, ~x2, ~y1, ~y2).
Note that ~x1,2 and ~y1,2 are just coordinates for particles 1 and 2 and not operators as in Eq. (3.54).

2. Put ~ where necessary (∂t → ~∂t, ∇ → ~∇, and γ(~x) → γ(~x)/~) and take ~ → 0 limit. It is
simpler to (i) substitute ~x1,2 = ~r1,2 + 1

2
~s1,2 and ~y1,2 = ~r1,2− 1

2
~s1,2, (ii) In the differential operators,

Taylor expand the coefficient functions in terms of s, and (iii) count s ∼ ~∇p and ∇s ∼ p/~ and
ignore the terms that vanish in ~→ 0.

3. Perform the Wigner transformation:

f(t, ~r1, ~r2, ~p1, ~p2) ≡
∫
d3s1d

3s2e
−i ~p1·~s1+~p2·~s2

~ ρS

(
t, ~r1 +

~s1

2
, ~r2 +

~s2

2
, ~r1 −

~s1

2
, ~r2 −

~s2

2

)
. (3.55)
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In this procedure, we use the fact that γ(~k) is an even function. The resulting kinetic equation is

∂

∂t
+
~p1 · ~∇r1 + ~p2 · ~∇r2

M
− ~∇U(~r1 − ~r2) ·

(
~∇p1 − ~∇p2

)
+

1

2
∂i∂jγ(~0)

(
∂2

∂p1i∂p1j

+
∂

∂p1i

p1j

MT
+

∂2

∂p2i∂p2j

+
∂

∂p2i

p2j

MT

)
± 1

2
∂i∂jγ(~r1 − ~r2)

(
2∂2

∂p1i∂p2j

+
∂

∂p1i

p2j

MT
+

∂

∂p2i

p1j

MT

)


f(t, ~r1, ~r2, ~p1, ~p2) = 0. (3.56)

Here ∂i∂jγ(~0) = ∇2γ(~0)δij/3. The static solution of this equation is the classical Boltzmann distribution

∝ exp
[
− 1
T

(
p21+p22

2M
+ U(~r)

)]
with ~r ≡ ~r1 − ~r2. The first two lines correspond to an intuitive picture of

classical Brownian motion of interacting two particles. However, in addition to the potential force, this
kinetic equation contains an interesting coupling between the two particles in their relaxation dynamics.

To see the physical origin of the coupling, it is easier to analyze the corresponding Langevin equation.

d

dt

(
~r1

~r2

)
=

1

M

(
~p1

~p2

)
, (3.57a)

d

dt

(
~p1

~p2

)
i

= −
(
~∇r1
~∇r2

)
i

U(~r) +
1

2MT

(
∂i∂jγ(~0) ±∂i∂jγ(~r)

±∂i∂jγ(~r) ∂i∂jγ(~0)

)(
~p1

~p2

)
j

+

(
~ξ1

~ξ2

)
i

, (3.57b)

Eξ[ξ1i(t)ξ1j(t
′)] = Eξ[ξ2i(t)ξ2j(t

′)] = −∂i∂jγ(~0)δ(t− t′), (3.57c)

Eξ[ξ1i(t)ξ2j(t
′)] = ∓∂i∂jγ(~r)δ(t− t′). (3.57d)

Recall now that in the stochastic potential picture, which is U(~x1− ~x2) + θ(~x1, t)± θ(~x2, t) in this case,

the random force is given by the gradient of the noise field (−~∇θ(~x1, t) and ∓~∇θ(~x2, t)) as discussed in
Sec. 3.3.2. Then the random forces of the two particles are correlated because the noise field has finite
correlation length. Note that the sign of the correlation can be naturally understood from the signs of
noise fields in the stochastic potential.

The Langevin equation (3.57) for a pair of heavy fermions in an Abelian plasma with correlated
noise was first derived in [13]. It was extended to more than two heavy fermions and simulated for
tens of heavy fermion pairs in [13]. Note that the equation (3.57) is an example of the generalized
Langevin equation, often used in the critical dynamics [133]. Let φi be a set of slow variables. They
evolve according to the stochastic equation

φ̇i = {φi, F (φ)}PB −
Kij(φ)

2T

∂F (φ)

∂φj
+ ξi, Eξ [ξi(t)ξj(t

′)] = Kij(φ)δ(t− t′), (3.58)

and their equilibrium distribution is ∝ exp [−F (φ)/T ] with F (φ) being the free energy. Here {A,B}PB

denotes the Poisson bracket and we assume that {φi, φj}PB is independent of φk. In our case, φ =
(~r1, ~r2, ~p1, ~p2), F (φ) = (p2

1 + p2
2)/2M + U(~r1 − ~r2), and K is finite only in the momentum sector

K =

(
0 0
0 κ

)
, κ =

(
−∂i∂jγ(~0) ∓∂i∂jγ(~r)

∓∂i∂jγ(~r) −∂i∂jγ(~0)

)
. (3.59)

Now that we understand the classical limit of quantum Brownian motion for two particles without
internal degrees of freedom, let us derive the same limit for particles with color degrees of freedom.
In Eq. (3.41), the Lindblad operators C̃±(~k) describe the transitions between the singlet and the octet

and C̃d,f (~k) describe the collisions among the octet channels, all with momentum transfer ~k. However,
when taking the classical limit, we face with a strange situation: the color sector is divided into singlet
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and octet but the transitions between them have no classical counterpart. To see the problem, let
us rewrite the Lindblad equations (3.41) for the singlet (ρs) and the octet (ρo) density matrices by
explicitly separating the transition processes

d

dt
ρs(t) = −i

[
p2
Q + p2

Qc

2M
+ Us(~xQ − ~xQc)−

CF
8MT

{
~pQ − ~pQc , ~∇γ(~xQ − ~xQc)

}
, ρs

]
+

∫
k

γ(~k)

[
1

2Nc

Ṽ−(~k)ρoṼ
†
−(~k)− CF Ṽ+(~k)ρsṼ

†
+(~k)

]
+ CF

∫
k

γ(~k)

[
Ṽ+(~k)ρsṼ

†
+(~k)− 1

2

{
Ṽ †+(~k)Ṽ+(~k), ρs

}]
, (3.60a)

d

dt
ρo(t) = −i

[
p2
Q + p2

Qc

2M
+ Uo(~xQ − ~xQc) +

1

2Nc

1

8MT

{
~pQ − ~pQc , ~∇γ(~xQ − ~xQc)

}
, ρo

]
+

∫
k

γ(~k)

[
CF Ṽ+(~k)ρsṼ

†
+(~k)− 1

2Nc

Ṽ−(~k)ρoṼ
†
−(~k)

]
+

1

2Nc

∫
k

γ(~k)

[
Ṽ−(~k)ρoṼ

†
−(~k)− 1

2

{
Ṽ †−(~k)Ṽ−(~k), ρo

}]
+
N2
c − 4

4Nc

∫
k

γ(~k)

[
Ṽd(~k)ρoṼ

†
d (~k)− 1

2

{
Ṽ †d (~k)Ṽd(~k), ρo

}]
+
Nc

4

∫
k

γ(~k)

[
Ṽf (~k)ρoṼ

†
f (~k)− 1

2

{
Ṽ †f (~k)Ṽf (~k), ρo

}]
, (3.60b)

with Ṽ+,−,d,f (~k) defined in Eq. (3.37) and Us(~r) ≡ −2CFS(~r) and Uo(~r) ≡ (1/Nc)S(~r). Here we can see

that the physical meaning of C̃±(~k) (or Ṽ±(~k)) is split into transitions and collisions. In the equations
for singlet and octet, the second lines describe transitions between them while the third lines and below
describe collisions without changing the color sector. To give a classical interpretation, we must slightly
modify the Lindblad operators for these processes:

Transitions: Ṽ±(~k)→ ei
~k·~xQ

[
1∓ NcS(~xQ − ~xQc)

4T

]
− ei~k·~xQc

[
1∓ NcS(~xQ − ~xQc)

4T

]
, (3.61a)

Collisions: Ṽ±(~k)→ ei
~k·~xQ/2

(
1−

~k · ~pQ
4MT

)
ei
~k·~xQ/2 − ei~k·~xQc/2

(
1−

~k · ~pQc

4MT

)
ei
~k·~xQc/2. (3.61b)

The modification for “Transitions” corresponds to ignoring the change of kinetic energy in the transitions
(because it is accounted for by the “Collisions”) and that for “Collisions” corresponds to discarding
the change of the potential energy in the collisions (because it does not change)19. The “Transitions”
are purely quantum processes (∝ ~−2) and their formal classical limit is still ill-defined while the
“Collisions” have a classical counter part. By recovering ~ and picking up the leading terms in ~ → 0

19After this modification, Ṽ−(~k) for the “Collisions” is identical to Ṽd(~k) and the third and fourth lines of octet equations
in Eq. (3.60) can be brought together with a new coefficient (N2

c − 2)/4Nc.
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for each process, we arrive at the following Langevin equations for the singlet and octet:

Singlet : (3.62a)

d

dt

(
~rQ
~rQc

)
=

1

M

(
~pQ
~pQc

)
, (3.62b)

d

dt

(
~pQ
~pQc

)
i

= −
(
~∇rQ
~∇rQc

)
i

Us(~r) +
CF

2MT

(
∂i∂jγ(~0) −∂i∂jγ(~r)

−∂i∂jγ(~r) ∂i∂jγ(~0)

)(
~pQ
~pQc

)
j

+

(
~ξQ
~ξQc

)
i

, (3.62c)

Eξ[ξQi(t)ξQj(t
′)] = Eξ[ξQci(t)ξQcj(t

′)] = −CF∂i∂jγ(~0)δ(t− t′), (3.62d)

Eξ[ξQi(t)ξQcj(t
′)] = CF∂i∂jγ(~r)δ(t− t′), (3.62e)

Octet : (3.63a)

d

dt

(
~rQ
~rQc

)
=

1

M

(
~pQ
~pQc

)
, (3.63b)

d

dt

(
~pQ
~pQc

)
i

= −
(
~∇rQ
~∇rQc

)
i

Uo(~r) +
1

2MT

(
CF∂i∂jγ(~0) 1

2Nc
∂i∂jγ(~r)

1
2Nc

∂i∂jγ(~r) CF∂i∂jγ(~0)

)(
~pQ
~pQc

)
j

+

(
~ξQ
~ξQc

)
i

, (3.63c)

Eξ[ξQi(t)ξQj(t
′)] = Eξ[ξQci(t)ξQcj(t

′)] = −CF∂i∂jγ(~0)δ(t− t′), (3.63d)

Eξ[ξQi(t)ξQcj(t
′)] = − 1

2Nc

∂i∂jγ(~r)δ(t− t′), (3.63e)

with ~r ≡ ~rQ − ~rQc . The color state changes with flipping probabilities (Γs→o∆t and Γo→s∆t) for each
time step (t→ t+ ∆t)

Γs→o = 2CF

[
1− Uo(~r)− Us(~r)

4T

]2
γ(~0)− γ(~r)

~2
, (3.64a)

Γo→s =
1

Nc

[
1 +

Uo(~r)− Us(~r)
4T

]2
γ(~0)− γ(~r)

~2
. (3.64b)

Since the detailed balance between the color sectors holds approximately

Γo→s
Γs→o

=
1

N2
c − 1

(
1 + [Uo(~r)− Us(~r)]/4T
1− [Uo(~r)− Us(~r)]/4T

)2

' 1

N2
c − 1

exp

[
Uo(~r)− Us(~r)

T

]
, (3.65)

and the phase space dynamics is again given by the generalized Langevin equation, the equilibrium

distribution for the Langevin equation is ∝ exp
[
− (p2Q+p2Qc

)/2M+Us(~r)

T

]
for the singlet and ∝ (N2

c − 1) ·

exp
[
− (p2Q+p2Qc

)/2M+Uo(~r)

T

]
for the octet within the same approximation. This approximation holds quite

well when Uo(~r)−Us(~r) . T but breaks down for larger energy gap. In particular, the rate for singlet-
to-octet transition is divergent at Uo(~r) − Us(~r) = 4T . This is where the gradient expansion for the
quantum Brownian motion fails completely and gives a reasonable scale for the ultraviolet cutoff for
the wave functions of relative motion. If one dares to simulate classically, the transition rate needs to
be regulated when the heavy quark pair is too close, for example by

Γs→o ≈ 2CF exp

[
−Uo(~r)− Us(~r)

2T

]
γ(~0)− γ(~r)

~2
, (3.66a)

Γo→s ≈
1

Nc

exp

[
Uo(~r)− Us(~r)

2T

]
γ(~0)− γ(~r)

~2
. (3.66b)
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This Langevin equation for a heavy quark pair in the quark-gluon plasma was first derived in [14].
In the original paper, an important factor [1∓ (Uo(~r)− Us(~r))/4T ]2 or exp[∓(Uo(~r)−Us(~r))/2T ] in the
flipping rate was missing, i.e. the color dependence of the potential energy is not taken into account in
the relaxation process.

3.3.5 Small dipole limit

The final limit we take is the small dipole limit. We examine this limit in order to compare with
the results in the Sec. 4 where the quarkonium Lindblad equation is studied in the potential NRQCD
(pNRQCD) approach.

When the heavy quark pair is close to each other, the pair can be regarded as a localized object
in the color singlet or octet states. To get this limit, we employ the center-of-mass and the relative
coordinates (for the operators)

~X ≡ ~xQ + ~xQc

2
, ~x ≡ ~xQ − ~xQc , ~P ≡ ~pQ + ~pQc , ~p ≡ ~pQ − ~pQc

2
. (3.67)

In these coordinates, the matrix structure of the Lindblad operators C̃n(~k) in Eq. (3.41) is unchanged

while Ṽn(~k) is

Ṽ±(~k) = ei
~k· ~X

[
1−

~k

4MT
·
(

1

2
~P + ~p

)
∓ NcS(~x)

4T

]
ei
~k·~x/2

− ei~k· ~X
[

1−
~k

4MT
·
(

1

2
~P − ~p

)
∓ NcS(~x)

4T

]
e−i

~k·~x/2, (3.68a)

Ṽd/f (~k) = ±ei~k· ~X
[

1−
~k

4MT
·
(

1

2
~P + ~p

)]
ei
~k·~x/2 − ei~k· ~X

[
1−

~k

4MT
·
(

1

2
~P − ~p

)]
e−i

~k·~x/2, (3.68b)

where an unitary operator ei
~k· ~X is moved to the left. Since we are interested in the relative motion of

the heavy quark pair, we define a further reduced density matrix

ρ
(r)
S ≡ TrXρS, (3.69)

where TrX denotes tracing over the Hilbert space for X. In general, the reduced density matrix is
entangled between the Hilbert spaces of the center-of-mass motion and of the relative and internal
dynamics. For an entangled density matrix, the operation of partial trace TrX gives rise to such terms

as TrX

(
~PρS

)
from which ρ

(r)
S does not factorize. Therefore, for simplicity we assume the following

factorized form of the reduced density matrix

ρS = |~P 〉〈~P | ⊗ ρ(r)
S . (3.70)

Since the pNRQCD calculation is performed for a quarkonium staying at rest, we take ~P = ~0. Then,
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the evolution of ρ
(r)
S is obtained in the Lindblad form

d

dt
ρ

(r)
S (t) = −i

[
H

(r)
S + ∆H

(r)
S , ρ

(r)
S

]
+

∫
k

γ(~k)
∑

n=+,−,d,f

[
C̃(r)
n (~k)ρ

(r)
S C̃(r)†

n (~k)− 1

2

{
C̃(r)†
n (~k)C̃(r)

n (~k), ρ
(r)
S

}]
,

(3.71a)

H
(r)
S =

p2

M
, ∆H

(r)
S =

[
−2S(~x)− 1

4MT

{
~p, ~∇γ(~x)

}](CF 0
0 − 1

2Nc

)
, (3.71b)

C̃
(r)
+ (~k) = Ṽ

(r)
+ (~k)

√
CF

(
0 0
1 0

)
, C̃

(r)
− (~k) = Ṽ

(r)
− (~k)

√
1

2Nc

(
0 1
0 0

)
, (3.71c)

C̃
(r)
d (~k) = Ṽ

(r)
d (~k)

√
N2
c − 4

4Nc

(
0 0
0 1

)
, C̃

(r)
f (~k) = Ṽ

(r)
f (~k)

√
Nc

4

(
0 0
0 1

)
, (3.71d)

with

Ṽ
(r)
± (~k) =

[
1−

~k · ~p
4MT

∓ NcS(~x)

4T

]
ei
~k·~x/2 −

[
1 +

~k · ~p
4MT

∓ NcS(~x)

4T

]
e−i

~k·~x/2, (3.72a)

Ṽ
(r)
d/f (

~k) = ±

[
1−

~k · ~p
4MT

]
ei
~k·~x/2 −

[
1 +

~k · ~p
4MT

]
e−i

~k·~x/2. (3.72b)

Instead of taking ~P = ~0, one may also be able to model ~P (t) by a solution of some classical model such
as Langevin dynamics of a quarkonium.

Now we can take the small dipole limit as follows.

1. Take the small ~x limit for ∆H
(r)
S and C̃

(r)
n (~k):

∆H
(r)
S =

[
−2S(~x)− ∇

2γ(~0)

12MT
{~p, ~x}+O(x3)

](
CF 0
0 − 1

2Nc

)
, (3.73a)

C̃
(r)
+ (~k) =

[
i~k · ~x

(
1− NcS(~x)

4T

)
−

~k · ~p
2MT

+O(x3)

]√
CF

(
0 0
1 0

)
, (3.73b)

C̃
(r)
− (~k) =

[
i~k · ~x

(
1 +

NcS(~x)

4T

)
−

~k · ~p
2MT

+O(x3)

]√
1

2Nc

(
0 1
0 0

)
, (3.73c)

C̃
(r)
d (~k) =

[
i~k · ~x−

~k · ~p
2MT

+O(x3)

]√
N2
c − 4

4Nc

(
0 0
0 1

)
, (3.73d)

C̃
(r)
f (~k) =

[
−2 +

(~k · ~x)2

4
+
i(~k · ~p)(~k · ~x)

4MT
+O(x3)

]√
Nc

4

(
0 0
0 1

)
. (3.73e)

Here, we count ~p = M
2
~̇x ∼ O(x). In this limit, C̃

(r)
+,−,d(

~k) implies the coupling between the

quarkonium dipole and the color electric fields while C̃
(r)
f (~k) reminds us of the adjoint gauge

interaction of an octet quarkonium with finite size corrections. For the latter, remember that
C̃

(r)
f (~k) comes from Ṽf (~k)ifabc|b〉〈c| = −Ṽf (~k)[taA]bc|b〉〈c| in Eq. (3.37), where taA denotes an SU(Nc)

generator in the adjoint representation.

2. Isolate the Coulomb singularity from S(~x) and evaluate the remaining thermal correction toO(x2):

40



S(~x) = ST=0(~x) + ST 6=0(~x) =
αs

2|~x|
+ ST 6=0(~0) +

∇2ST 6=0(~0)

6
x2 + · · · , (3.74a)

∇2ST 6=0(~0) =
1

2(N2
c − 1)

Re

[
i

∫ ∞
0

dtTrE

(
ρth
E

[
g~∇Aa0(t,~0), g ~∇Aa0(0,~0)

])]
T 6=0

. (3.74b)

We drop ST 6=0(~0) in the Hamiltonian ∆H
(r)
S because it is a constant. Note that ∇2ST 6=0(~0) is a

perturbative limit of the two point function of color electric fields.

3. Truncate the small-~x expansion of the Lindblad equation at O(x2). At this order, the dissipator

with C̃
(r)
f (~k) only plays a role of Hamiltonian

∆H
(r)
f = −∇

2γ(~0)

12MT

Nc

4
{~p, ~x}

(
0 0
0 1

)
, (3.75)

which we include in ∆H
(r)
S .

4. Complete the integration over ~k.

With this procedure, the Lindblad equation is finally obtained as

d

dt
ρ

(r)
S (t) = −i

[
H

(r)
S + ∆H

(r)
S , ρ

(r)
S

]
− ∇

2γ(~0)

3

∑
n=+,−,d

[
C̃niρ

(r)
S C̃†ni −

1

2

{
C̃†niC̃ni, ρ

(r)
S

}]
, (3.76a)

∆H
(r)
S =

[
−αs
|~x|
− ∇

2ST 6=0(~0)

3
x2

](
CF 0
0 − 1

2Nc

)
− ∇

2γ(~0)

12MT
{~p, ~x}

(
CF 0
0 Nc

4
− 1

2Nc

)
, (3.76b)

C̃+i =

[
~x

(
1− Ncαs

8T |~x|

)
+

i~p

2MT

]
i

√
CF

(
0 0
1 0

)
, (3.76c)

C̃−i =

[
~x

(
1 +

Ncαs
8T |~x|

)
+

i~p

2MT

]
i

√
1

2Nc

(
0 1
0 0

)
, (3.76d)

C̃di =

[
~x+

i~p

2MT

]
i

√
N2
c − 4

4Nc

(
0 0
0 1

)
. (3.76e)

In this limit, the Lindblad equation is parametrized by two constants: the momentum diffusion constant

κ = −CF∇2γ(~0)
3

> 0 and the coefficient for dipole self-energy of the singlet λ = −2CF∇2ST 6=0(~0)

3
, which we

call thermal dipole self-energy constant in this paper20.
The form of the Lindblad equation (3.76) is identical to that of the pNRQCD result (4.15) in Sec. 4.2

except for the quadratic term ∝ x2 of ∆H
(r)
S in the octet channel. Not only are the Lindblad equations

almost identical, but the two constants −∇
2γ(~0)
3

> 0 and −∇
2ST 6=0(~0)

3
< 0 of (3.76) are weak coupling

limit of the corresponding constants γ and S of (4.15). The difference of these Lindblad equations
comes from the gauge interaction of an octet quarkonium. In NRQCD, the gauge interaction contains
corrections due to the finite size of the quarkonium, while in pNRQCD the octet quarkonium interacts
with the gauge field as a point-like particle in the next-to-leading order multipole expansion. Up to
O(x2), the only effect of the finite size correction in the Lindblad equation is the quadratic term in

∆H
(r)
S . This term is absent in the pNRQCD because the finite size correction is not included.

20Since the master equation is obtained by weak coupling expansion, λ here should be the leading order perturbative
one λLO = −2ζ(3)CF

(
4
3Nc +Nf

)
α2
sT

3 [32]. See Appendix B for details.
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To verify more explicitly that the difference is due to the finite size correction, recall that ∆HS is
given by the Lindblad operators as in Eq. (2.53). The gauge interaction for an octet quarkonium with

finite size correction is described by the Lindblad operator C̃
(r)
f (~k) in Eq. (3.73)

C̃
(r)
f (~k) =

[(
−2 +

(~k · ~x)2

4

)
+

i

4T

(~k · ~p)(~k · ~x)

M
+O(x3)

]√
Nc

4

(
0 0
0 1

)
≡ C

(r)
f (~k) +

i

4T
Ċ

(r)
f (~k),

(3.77)

with which ∆H
(r)
S is given by

∆H
(r)
S

∣∣∣
C̃

(r)
f

=

∫
k

ST 6=0(~k)C
(r)†
f (~k)C

(r)
f (~k) +

1

8T

[
γ(~k)C

(r)†
f (~k)Ċ

(r)
f (~k) + h.c.

]
=

[
4ST 6=0(~0) +

∇2ST 6=0(~0)

3
x2 +

∇2γ(~0)

12MT
{~p, ~x}+O(x3)

]
Nc

4

(
0 0
0 1

)
. (3.78)

The first term does not play any role for a density matrix of the form (3.40) and the third term is

exactly canceled by ∆H
(r)
f of Eq. (3.75) from the Lindblad form, leaving the second term as the only

difference from the pNRQCD result.
Finally, as is clear from the order of the gradient expansion of each term, the recoilless limit for a

small dipole corresponds to

∆H
(r)
S =

[
−αs
|~x|
− ∇

2ST 6=0(~0)

3
x2

](
CF 0
0 − 1

2Nc

)
, (3.79a)

C+i = xi
√
CF

(
0 0
1 0

)
, C−i = xi

√
1

2Nc

(
0 1
0 0

)
, Cdi = xi

√
N2
c − 4

4Nc

(
0 0
0 1

)
. (3.79b)

This is again different from the recoilless limit of the pNRQCD results (4.20) for the same reason as
above.

3.4 Concluding remarks of Section 3

In this section, the main result is the Lindblad equation (3.41) for quantum Brownian motion of a
quarkonium in a weakly coupled quark-gluon plasma, obtained by applying the formulas of section
2 to quarkonium, which is described by the non-relativistic QCD. A density matrix in the projected
singlet-octet basis

ρS(t) =

(
ρs(t) 0

0 ρo(t)

)
evolves according to the following Lindblad equation:

d

dt
ρS(t) = −i [HS + ∆HS, ρS] +

∫
k

γ(~k)
∑

n=+,−,d,f

[
C̃n(~k)ρSC̃

†
n(~k)− 1

2

{
C̃†n(~k)C̃n(~k), ρS

}]
,

∆HS =

[
−2S(~xQ − ~xQc)−

1

8MT

{
~pQ − ~pQc , ~∇γ(~xQ − ~xQc)

}](CF 0
0 − 1

2Nc

)
,

C̃+(~k) = Ṽ+(~k)
√
CF

(
0 0
1 0

)
, C̃−(~k) = Ṽ−(~k)

√
1

2Nc

(
0 1
0 0

)
,

C̃d(~k) = Ṽd(~k)

√
N2
c − 4

4Nc

(
0 0
0 1

)
, C̃f (~k) = Ṽf (~k)

√
Nc

4

(
0 0
0 1

)
,
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Table 2: Numerical simulations of Lindblad equation from NRQCD. For “color” U(1), it means simu-
lations of the Lindblad equation (3.54) and its recoilless limit.

Dimension Color Gradient Expansion Numerical Method
1D U(1) LO Stochastic Potential [42, 44]
3D U(1) LO Stochastic Potential [43]
1D SU(3) LO Stochastic Potential [54, 59]
1D U(1) NLO Quantum State Diffusion [51, 53]
1D SU(3) NLO Quantum State Diffusion [60]
1D U(1) NLO Direct evolution [55]

where the operators Ṽ+,−,d,f (~k) are

Ṽ±(~k) = ei
~k·~xQ/2

[
1−

~k · ~pQ
4MT

∓ NcS(~xQ − ~xQc)

4T

]
ei
~k·~xQ/2 − ei~k·~xQc/2

[
1−

~k · ~pQc

4MT
∓ NcS(~xQ − ~xQc)

4T

]
ei
~k·~xQc/2,

Ṽd/f (~k) = ±ei~k·~xQ/2
(

1−
~k · ~pQ
4MT

)
ei
~k·~xQ/2 − ei~k·~xQc/2

(
1−

~k · ~pQc

4MT

)
ei
~k·~xQc/2

and the coefficients S(~x) and γ(~x) are defined by a correlation function of gauge fields and are calculated
perturbatively at |~x| ∼ 1/gT as (quoted from Appendix B)

S(~x) =
g2

8π|~x|
e−mD|~x|, γ(~x) = g2T

∫
d3q

(2π)3
ei~q·~x

πm2
D

q(q2 +m2
D)2

.

In the Table 2, a list of numerical simulations of the Lindblad equation from NRQCD is shown.

• This Lindblad equation contains rich physics but also non-essential physics in some specific situ-
ations. By taking various limits of the Lindblad equation (recoilless, static, classical, and small
dipole limits), essential physics in each regime becomes apparent. One should note however that
the time evolution of quarkonium is not necessarily confined in one particular regime.

– For example, it was shown in [60] that off-diagonal elements of the density matrix show
nontrivial time dependence and the heavy quark pair distance grows in time.

• To be strict, when the temperature is not high enough for perturbative analysis, this Lindblad
equation is not applicable. However, we believe that one can construct a model Lindblad equation
by assuming some forms for S(~x) and γ(~x) above, as is done in the numerical simulations.

• If the temperature is too low for the quantum Brownian regime, one would need to consider
coupled Boltzmann equation, which will be explained in Sec. 4.4.

• If the diagonalization in the heavy-ion collisions proceeds only within the applicability of dipole
approximation, the general description above can be simplified to the master equation in the small
dipole limit (3.76). In that case, non-perturbative results can be obtained in the framework of
potential non-relativistic QCD, which is the main topic of the next section.
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4 Lindblad equations from potential non-relativistic QCD (pN-

RQCD)

In this section, I first give a brief introduction to an effective field theory for quarkonium: potential non-
relativistic QCD (pNRQCD) in Sec. 4.1. Then, I apply the general framework of Sec. 2 to the derivation
of the Lindblad equations from pNRQCD. There are several interesting regimes for quarkonium in
the quark-gluon plasma (QGP) with different hierarchies of scales: (i) 1/r � T ∼ mD � E, (ii)
1/r � T � E � mD, and (iii) 1/r � T ∼ E � mD, where T is the temperature of QGP, mD

is the Debye screening mass, and r and E are the radius and the binding energy of the quarkonium.
Each regime is discussed in Sec. 4.2, 4.3, and 4.4. The regimes (i) and (ii) correspond to loosely bound
quarkonium because T � E while (iii) corresponds to deeply bound quarkonium because T ∼ E. Since
the Debye mass is given by mD ∼ gT , QGP is strongly coupled in the regime (i) and is weakly coupled
in the regimes (ii) and (iii). In terms of the open quantum system classification, the regimes (i) and (ii)
are described by the quantum Brownian motion. The previous analyses in Sec. 3.3.5 overlap with (the
perturbative limit of) the regime (i). The regime (iii) seems to be in the quantum optical limit, but is
not classified into either of the two basic regimes of the open quantum system and thus the standard
approximation schemes are not applicable. As a result, there is no well-defined Lindblad equation in this
regime. I will explain that the classical approximation and the point particle approximation for bound
state quarkonium are essential in obtaining classical kinetic equations often adopted in this regime.

4.1 A short review of potential non-relativistic QCD (pNRQCD)

In Sec. 3.1, an effective field theory for non-relativistic heavy quarks (NRQCD) was reviewed. When a
pair of heavy quark and antiquark form a non-relativistic bound state of size r, typical scales involved
are p ∼ Mv ∼ 1/r for heavy quark momentum and E ∼ Mv2 � Mv for heavy quark energy, where v
is the relative velocity of the heavy quark pair. We can focus on this particular setting to construct an
effective field theory for a quarkonium: potential NRQCD (pNRQCD).

The degrees of freedom in pNRQCD are quarkonium in the singlet S(t, ~R,~r) and in the octet

Oa(t, ~R,~r), and the gluons Aaµ(t, ~R). Here ~R and ~r denote the center-of-mass and relative coordinates
for the quarkonium. The cutoff Λ1 is chosen to satisfy Mv2 � Λ1 � Mv except for the cutoff Λ2 for
the quarkonium relative momentum, i.e. the resolution of (t, ~R) is ∼ 1/Λ1 and that of ~r is ∼ 1/Λ2.
The latter cutoff Λ2 satisfies Mv � Λ2 � M , so that the quarkonium is described as an extended
non-relativistic object, whose structure is, however, not resolved by the gluon fields. We further assume
that ΛQCD, T � Mv, which enables us to put cutoffs at Mv2,ΛQCD, T � Λ1 � Mv � Λ2 � M . In
this case, perturbative matching between NRQCD and pNRQCD is possible.

With these field contents and scales, the quarkonium dipole of size r ∼ 1/Mv is a localized color
source for the gluons and their coupling is approximated by the multipole expansion. Therefore, the
pNRQCD Lagrangian is expanded in terms of the inverse heavy quark mass 1/M and the dipole size
r. The non-analytic terms of r, such as the Coulomb potential ∝ 1/r, only enter through the Wilson
coefficients. In the leading order in 1/M and the next-to-leading order in r, the pNRQCD Lagrangian
is

LpNRQCD = Lq+A +

∫
d3rTr

[
S† (i∂t − Vs(r) + · · · ) S + O† (iDt − Vo(r) + · · · ) O

]
(4.1)

+ VA(r)Tr
[
O†~r · g ~ES + S†~r · g ~EO

]
+
VB(r)

2
Tr
[
O†~r · g ~EO + O†O~r · g ~E

]
+O(1/M),

S(t, ~R,~r) ≡ S(t, ~R,~r)√
Nc

1, O(t, ~R,~r) ≡
√

2Oa(t, ~R,~r)taF . (4.2)
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By matching with the NRQCD, the leading order Wilson coefficients are21

Vs(r) = −CFαs
r

, Vo(r) =
αs

2Ncr
, VA(r) = VB(r) = 1. (4.3)

In the pNRQCD Lagrangian, the color SU(3) gauge symmetry applies only for the center-of-mass

coordinates (t, ~R). Since the octet quarkonium Oa has an adjoint color, its gauge interaction is given

by the covariant derivative DtO = ∂tO + ig[Aa0(t, ~R)taF , O]. By field redefinitions

O(t, ~R,~r) = Ω(t, ~R)O′(t, ~R,~r)Ω†(t, ~R), ~E(t, ~R) = Ω(t, ~R) ~E ′(t, ~R)Ω†(t, ~R), (4.4a)

Ω(t, ~R) ≡ P exp

[
−ig

∫ t

−∞
dsA0(s, ~R)

]
, (4.4b)

this covariant derivative can be eliminated. Hereafter, the redefined fields are denoted by O(t, ~R,~r) and
~E(t, ~R). According to the Virial theorem Mv2 ∼ CFαs/r for the bound states, the kinetic term for the
relative motion ∇2

r/M turns out necessary in the singlet and thus in the octet as well for consistency:∫
d3rTr

[
S†
(
i∂t +

∇2
r

M
+
CFαs
r

+ · · ·
)

S + O†
(
i∂t +

∇2
r

M
− αs

2Ncr
+ · · ·

)
O

]
. (4.5)

At this order of expansion, the center-of-mass kinetic energy for the quarkonium is irrelevant.
In order to apply the formula in the Section 2, let us give a quantum mechanical Hamiltonian

corresponding to the pNRQCD Lagrangian

H =
p2

M
− CFαs

r
|s〉〈s|+ αs

2Ncr
|a〉〈a| − ~r · g ~Ea(~R)

[√
1

2Nc

(|a〉〈s|+ |s〉〈a|) +
1

2
dabc|b〉〈c|

]
, (4.6)

where ~R is the center-of-mass position of a quarkonium. To explicitly distinguish the system and
environment operators as in Eq. (2.2), the total Hamiltonian is written as

Htot =

(
p2

M
− CFαs

r
|s〉〈s|+ αs

2Ncr
|a〉〈a|

)
⊗ IE + IS ⊗Hq+A

− ri
[√

1

2Nc

(|a〉〈s|+ |s〉〈a|) +
1

2
dabc|b〉〈c|

]
⊗ gEa

i (~R). (4.7)

Before closing this section, let us focus on the vacuum T = 0 for a moment and discuss how
heavy quark potential is defined in the pNRQCD. As is clear from construction, the Coulomb potential
originates from the gauge fields above the cutoff scale Λ1, typically with Mv. If the next relevant
energy scale is Mv2 & ΛQCD, the gauge fields in the pNRQCD interact with quarkonium non-potentially,
i.e. their effects cannot be integrated into an instantaneous potential term. In this case, the Wilson
coefficients Vs,o(r) are potentials for the quarkonium. If the next scale is ΛQCD � Mv2, the gauge
fields do contribute to the potential22, which means that Vs,o(r) are not precisely potentials for the
quarkonium. In this case, one needs to integrate out the pNRQCD degrees of freedom with ΛQCD and
construct a new effective field theory pNRQCD’ by matching them at a scale between ΛQCD and Mv2.
The Wilson coefficients of the latter properly define the heavy quark potentials. For further details
about pNRQCD, see the reviews [119, 120, 134].

21To avoid the abusive use of “V ”, hereafter we explicitly write Vs(r) and Vo(r) as −CFαs

r and αs

2Ncr
.

22A keen reader might notice that the condition for the potential effect is very similar to one of the criteria for the
quantum Brownian motion τS � τE . In this analogy, the condition for the non-potential effect corresponds to τS . τE ,
which implies the quantum optical regime if we assume τE � τR.
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4.2 Quantum Brownian motion of a quarkonium with 1/r � T ∼ mD � E

In this section, we derive the Lindblad equation for quantum Brownian motion of a quarkonium in the
quark-gluon plasma (QGP). The relation T ∼ mD indicates that the QGP is strongly coupled. In this
regime, the system relaxation time is estimated by its kinetic equilibration time τR ∼M/T 2, the system
time scale is by the inverse of the binding energy τS = 1/E, and the environment correlation time is
the duration of the collisions τE ∼ 1/mD. Since M � T , we can see that the scale hierarchy for the
quantum Brownian motion (τR � τE and τS � τE) is satisfied.

We apply the formula (2.53) to a quarkonium in the QGP. The formula relies on perturbative
expansion with the system-environment interaction. Even though the QGP is strongly coupled in this
regime, the perturbative expansion is justified in the limit of small dipole. The total Hamiltonian is
given in Eq. (4.7), which we quote here again,

Htot =

(
p2

M
− CFαs

r
|s〉〈s|+ αs

2Ncr
|a〉〈a|

)
⊗ IE + IS ⊗Hq+A

− ri
[√

1

2Nc

(|a〉〈s|+ |s〉〈a|) +
1

2
dabc|b〉〈c|

]
⊗ gEa

i (~R),

and the operator correspondence is

V
(i)
S ↔ −ri

[√
1

2Nc

(|a〉〈s|+ |s〉〈a|) +
1

2
dabc|b〉〈c|

]
≡ V ai

S , (4.8a)

V̇
(i)
S = i[HS, V

(i)
S ]↔ −2pi

M

[√
1

2Nc

(|a〉〈s|+ |s〉〈a|) +
1

2
dabc|b〉〈c|

]
+ i

√
Nc

8

αsri
r

(|s〉〈a| − |a〉〈s|) ≡ V̇ ai
S .

(4.8b)

The coefficients are given by non-perturbative gauge invariant color electric correlators23

γab,ij = T
d

dω
σab,ij(ω)

∣∣∣
ω=0
≡ γδabδij, (4.9a)

Sab,ij = −1

2

∫ ∞
−∞

dω

2π

σab,ij(ω)

ω
≡ Sδabδij, (4.9b)

σab,ij(ω) ≡
∫ ∞
−∞

dteiωtTrE

(
ρth
E

[
gEa

i (t, ~R), gEb
j (0, ~R)

])
∝ δabδij, (4.9c)

ηab,ij ' −
i

4T
γab,ij = − i

4T
γδabδij. (4.9d)

Here, the real part of ηab,ij can be neglected24 because of the time scale hierarchy τE/τS � 1 (see the
discussion at the end of Sec. 2.2.3). Then the Lindblad operator reads

Ṽ
(i)
S ↔ V ai

S +
i

4T
V̇ ai
S =


−
(
ri +

ipi
2MT

− Nc

8T

αsri
r

)√
1

2Nc

|a〉〈s|

−
(
ri +

ipi
2MT

+
Nc

8T

αsri
r

)√
1

2Nc

|s〉〈a|

−
(
ri +

ipi
2MT

)
1

2
dabc|b〉〈c|


≡ Ṽ ai

S , (4.10)

23Recall that we have made the field redefinition ~E(t, ~R) = Ω(t, ~R) ~E′(t, ~R)Ω†(t, ~R) in Eq. (4.4), so that the spectral

density σab,ij(ω) for ~E′(t, ~R) and thus all the other coefficients are gauge invariant. Note that S contains vacuum
contributions which need to be subtracted.

24Using (2.52), (4.8), and (4.9), singlet complex potential in M →∞ limit is −CFαs

r +CFSr
2−iCF γ

2 r2
[
1− Ncαs

4Tr

]
in the

first order gradient expansion. The absence of linear term ∝ r in the real part is due to the approximation Reηab,ij ≈ 0.
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and the correction to the Hamiltonian is

∆HS =
(
Sr2 +

γ

4MT
{~p, ~r}

)[
CF |s〉〈s|+

N2
c − 2

4Nc

|a〉〈a|
]
. (4.11)

With these operators, we obtain the Lindblad equation

d

dt
ρS(t) = −i [HS + ∆HS, ρS] + γ

[
Ṽ ai
S ρSṼ

ai†
S − 1

2

{
Ṽ ai†
S Ṽ ai

S , ρS

}]
. (4.12)

As in Sec. 3.3.1, we can express the Lindblad equation in the projected singlet-octet basis. Let us
first define

Ṽ ai
S = Ṽ+i

√
1

2Nc

|a〉〈s|+ Ṽ−i

√
1

2Nc

|s〉〈a|+ Ṽdi
1

2
dabc|b〉〈c|, (4.13a)

Ṽ±i ≡ −
(
ri +

ipi
2MT

∓ Nc

8T

αsri
r

)
, Ṽdi ≡ −

(
ri +

ipi
2MT

)
. (4.13b)

The master equation for the diagonal parts of the density matrix

ρS(t) =

(
ρs(t) 0

0 ρo(t)

)
, ρs(t) ≡ 〈s|ρS(t)|s〉, ρo(t) ≡ 〈a|ρS(t)|a〉 (4.14)

is again written in the Lindblad form

d

dt
ρS(t) = −i [HS + ∆HS, ρS] + γ

∑
n=+,−,d

[
C̃niρSC̃

†
ni −

1

2

{
C̃†niC̃ni, ρS

}]
, (4.15a)

∆HS =
(
Sr2 +

γ

4MT
{~p, ~r}

)(CF 0

0 N2
c−2

4Nc

)
, (4.15b)

C̃+i = Ṽ+i

√
CF

(
0 0
1 0

)
, C̃−i = Ṽ−i

√
1

2Nc

(
0 1
0 0

)
, C̃di = Ṽdi

√
N2
c − 4

4Nc

(
0 0
0 1

)
. (4.15c)

The Lindblad equation (4.15) is parametrized by two non-perturbative coefficients γ and S. The
former is proportional to the heavy quark momentum diffusion constant κ = CFγ and was calculated
non-perturbatively by lattice QCD simulations for a pure gluon plasma with Nc = 3

1.8 .
κ

T 3
. 3.4 (4.16)

at around T = 1.5Tc where Tc is the deconfinement transition temperature [135]. It was also calculated
in a wider temperature range Tc < T < 2Tc with similar values κ/T 3 ∼ 1 − 4 [136]. Lattice QCD
simulations at higher temperatures 1.1Tc < T < 104Tc [137] found that κ/T 3 decreases with temperature
and is consistent with the next-to-leading order perturbative result [138, 139] at the highest temperature
T = 104Tc. The latter coefficient S is proportional to the thermal dipole self-energy constant λ = 2CFS
but has not been calculated non-perturbatively although it is computable by lattice QCD simulations
without analytic continuation to Minkowski space [140]. Using the fact that the thermal dipole self
energy λr2/2 shifts the in-medium quarkonium mass, a nonperturbative estimate of λ was given in
[52]25

−3.8 .
λ

T 3
. −0.7 (4.17)

25The thermal dipole self-energy constant λ corresponds to γ in [140] and [52]; readers should not get confused.
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by examining the data of lattice QCD simulations [27] for mass shifts of J/ψ at T = 251MeV and
Υ(1S) at T = 251, 407MeV.

Let us see the relation to the small dipole limit of the Lindblad equation from NRQCD in Sec. 3.3.5.
In the weak coupling and in the long-time limit, only the potential force part is relevant in the color
electric fields, so that the spectral density can be approximated by

σab,ij(ω) '
∫ ∞
−∞

dteiωtTrE

(
ρth
E

[
g∂iA

a
0(t, ~R), g∂jA

b
0(0, ~R)

])
= − ∂

∂Ri

∂

∂Rj

∫ ∞
−∞

dteiωtTrE

(
ρth
E

[
gAa0(t, ~R), gAb0(0, ~R′)

])∣∣∣
R′→R

, (4.18)

and thus

γ ' −∇
2γ(~0)

3
, S ' −∇

2ST 6=0(~0)

3
, (4.19)

where the left hand sides are the coefficients of the Lindblad equation from pNRQCD while the right
hand sides are those from NRQCD. By substituting these relations, we can reproduce the NRQCD result
Eq. (3.76) except for the quadratic term ∝ r2 in the Hamiltonian in the octet channel. As explained
in Sec. 3.3.5, the reason for the discrepancy is that the gauge interaction of the octet quarkonium is
point-like (and is gauged away) in pNRQCD while that in NRQCD takes account of the finite size of
the dipole.

The recoilless limit of this Lindblad equation can be obtained by keeping the leading terms in the
gradient expansion. The resulting Lindblad equation is

d

dt
ρS(t) = −i [HS + ∆HS, ρS] + γ

∑
n=+,−,d

[
CniρSC

†
ni −

1

2

{
C†niCni, ρS

}]
, (4.20a)

∆HS = Sr2

(
CF 0

0 N2
c−2

4Nc

)
, (4.20b)

C+i = ri
√
CF

(
0 0
1 0

)
, C−i = ri

√
1

2Nc

(
0 1
0 0

)
, Cdi = ri

√
N2
c − 4

4Nc

(
0 0
0 1

)
, (4.20c)

which was first derived in [16, 17] and numerically solved in [16, 17, 56, 57]. In the numerical simulations,
the Lindblad equation is written in the angular momentum basis (see Appendix C) and Refs. [16, 17]
directly solved it including only S and P waves while Refs. [56, 57] solved using the Quantum Jump
Method [141] without the angular momentum cutoff. This Lindblad equation in the projected singlet-
octet basis does not have an equivalent representation by the stochastic potential for the same reason
given in Sec. 3.3.2. The stochastic potential can be obtained from the Lindblad equation in the full
color space Eq. (4.12) in the recoilless limit Ṽ ai

S → V ai
S = V ai†

S :

UQQc(θ) =

[
CF

(
−αs
r

+ Sr2
)
|s〉〈s|+

(
αs

2Ncr
+
N2
c − 2

4Nc

Sr2

)
|a〉〈a|

]
+ θairi

[√
1

2Nc

(|a〉〈s|+ |s〉〈a|) +
1

2
dabc|b〉〈c|

]
, (4.21a)

Eθ[θ
ai(t)θbj(t′)] = γδijδ

abδ(t− t′). (4.21b)

As emphasized in Secs. 3.2.2 and 3.3.2, it should be reminded that the master equation in the recoilless
limit is applicable only when the decoherence is dominant over the dissipation.
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4.3 Quantum Brownian motion of a quarkonium with 1/r � T � E � mD

In this section, we derive the Lindblad equation for quantum Brownian motion of a quarkonium in
the quark-gluon plasma (QGP). The relation T � mD indicates that the QGP is weakly coupled. In
this regime, the system relaxation time is estimated by its kinetic equilibration time τR ∼ M/g4T 2,
the system time scale is by the inverse of the binding energy τS = 1/E. The environment correlation

time for the collisional processes is the duration of the collision, that is τ
(soft)
E ∼ 1/mD for soft collisions

and τ
(hard)
E ∼ 1/T for hard collisions, and that for the absorptions and emissions of a thermal gluon

is the duration of these processes τ
(g)
E ∼ 1/T . In this regime, only the hard collisions and gluon

absorptions and emissions satisfy the scale hierarchy of quantum Brownian motion τ
(hard)
E , τ

(g)
E � τS. In

[142, 143, 144], it was shown that the thermal width of a quarkonium is dominated by gluo-dissociation,
a process in which a singlet quarkonium is excited to an octet unbound state by absorbing a thermal
gluon. Therefore we here analyze the quantum Brownian motion driven by the gluon absorptions and
emissions.

In the Coulomb gauge, the correlation functions are perturbatively calculated from the spectral
density of thermal gluons σab,ij(ω) = g2

3π
ω3δijδ

ab (see Appendix B):

γab,ij(ω) =
g2

3π
ω3(1 + nB(ω))δijδ

ab, (4.22a)

Sab,ij(ω) = − g
2

3π
P
∫ ∞

0

dω′

2π

{
[1 + nB(ω′)]

ω′3

ω′ − ω
+ nB(ω′)

ω′3

−ω′ − ω

}
, (4.22b)

= Sab,ij(ω)
∣∣∣
T=0
− g2

3π
P
∫ ∞

0

dω′

2π
ω′3nB(ω′)

(
1

ω′ − ω
− 1

ω′ + ω

)
. (4.22c)

Here Sab,ij(ω)
∣∣∣
T=0

isolates ultraviolet divergence which is renormalized in the vacuum. In the limit of

vanishing ω, we can approximate the correlation functions as

γab,ij(ω) ' g2T

3π
ω2δijδ

ab +O(ω3), Sab,ij(ω)
∣∣∣
T 6=0
' −g

2T 2

18
ωδijδ

ab + . . . (4.23)

Since γab,ij(0) = 0, we need to use the formula (2.67), instead of (2.53), in this regime. The coefficients
in the formula correspond to

γ
(2)
ab,ij =

2g2T

3π
δijδ

ab, S
(0)
ab,ij = 0, S

(1)
ab,ij = −g

2T 2

18
δijδ

ab, (4.24)

and S
(2)
ab,ij is unavailable because it is infrared divergent which might require resummation of higher

order perturbative expansions. The correction to the Hamiltonian is thus

∆HS =
i

2
S

(1)
ab,ij

[
V ai
S , V̇

bj
S

]
=
g2T 2

36

[(
Ncαsr +

6

M

)
CF |s〉〈s|+

(
−αsr

2
+

3(N2
c − 2)

2NcM

)
|a〉〈a|

]
. (4.25)

By keeping the lowest non-vanishing order in the gradient expansion in the ∆HS and the Lindblad
operators, we obtain the Lindblad equation

d

dt
ρS(t) = −i [HS + ∆HS, ρS] +

g2T

3π

[
V̇ ai
S ρSV̇

ai
S −

1

2

{
V̇ ai
S V̇

ai
S , ρS

}]
, (4.26a)

V̇ ai
S = −2pi

M

[√
1

2Nc

(|a〉〈s|+ |s〉〈a|) +
1

2
dabc|b〉〈c|

]
+ i

√
Nc

8

αsri
r

(|s〉〈a| − |a〉〈s|) , (4.26b)
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which is in the projected singlet-octet basis

d

dt
ρS(t) = −i [HS + ∆HS, ρS] +

g2T

3π

∑
n=+,−,d

[
ĊniρSĊ

†
ni −

1

2

{
Ċ†niĊni, ρS

}]
, (4.27a)

∆HS =
g2T 2

36

((
Ncαsr + 6

M

)
CF 0

0 −αsr
2

+ 3(N2
c−2)

2NcM

)
, (4.27b)

Ċ+i =

(
−2pi
M
− iNc

2

αsri
r

)√
CF

(
0 0
1 0

)
, (4.27c)

Ċ−i =

(
−2pi
M

+ i
Nc

2

αsri
r

)√
1

2Nc

(
0 1
0 0

)
, Ċdi = −2pi

M

√
N2
c − 4

4Nc

(
0 0
0 1

)
. (4.27d)

This Lindblad equation for a quarkonium in the weakly-coupled quark-gluon plasma was first derived
in [17]. The long-time behavior of this Lindblad equation has not been fully analyzed yet and one may
need to continue the gradient expansion to higher order to describe the relaxation of quarkonium in
this regime.

4.4 Classical approximation for a quarkonium with 1/r � T ∼ E � mD

In this section, let us focus on a quarkonium whose binding energy E is as large as the temperature T .
In this regime, the dominant process of quarkonium dissociation is the gluo-dissociation [143]. Relevant
time scales are τR ∼M/g4T 2 for heavy quark kinetic equilibration time, τS ∼ 1/E ∼ 1/T for the bound

state time scale, and τ
(g)
E ∼ 1/T for the duration of the gluon absorption/emission processes. Clearly,

this regime is not the quantum Brownian motion because τS ∼ τ
(g)
E . One would easily expect that it

is in the quantum optical limit because τR � τS holds. However, by detailed examination of the gluon
absorption and emission process, one can find that the rotating wave approximation∑

ω,ω′

ei(ω
′−ω)t '

∑
ω,ω′

δω,ω′ , (4.28)

where ω is the energy of a gluon, is not applicable. The rotating wave approximation takes advantage
of the gapped spectrum for ω, which is a stricter condition than the existence of the energy gap. For
gluo-dissociation processes, ω is gapped from zero by the binding energy E, but it takes continuous
values because a singlet quarkonium is excited to an octet unbound state in the continuum.

The purpose of the analysis here is to examine the result of [84, 18], in which the authors claim that
coupled Boltzmann equations for quarkonium and unbound heavy quark pair are derived on the basis
of the open quantum system approach, which is however not applicable. Since the result is physically
natural, I will try to discuss how one can nevertheless get the Boltzmann equations by overcoming the
inapplicability of any of the open quantum system techniques.

We start from adding the center-of-mass energy of the heavy quark pair to the Hamiltonian

Htot =

(
P 2

4M
+
p2

M
− CFαs

r
|s〉〈s|+ αs

2Ncr
|a〉〈a|

)
⊗ IE + IS ⊗Hq+A

− g
∫
x

riδ(~x− ~R)

[√
1

2Nc

(|a〉〈s|+ |s〉〈a|) +
1

2
dabc|b〉〈c|

]
⊗ Ea

i (~x). (4.29)

Here ~P and ~R are operators for center-of-mass momentum and coordinate and ~p and ~r are those for
relative momentum and coordinate. Since the classical kinetic equation is based on the conservation
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laws for energy and momentum, it is desirable that the dynamics of center-of-mass motion is included
in the description. From this Hamiltonian, the operator correspondence to Sec. 2 is found by

V
(i)
S ↔ −riδ(~x− ~R)

[√
1

2Nc

(|a〉〈s|+ |s〉〈a|) +
1

2
dabc|b〉〈c|

]
≡ V ai

S (~x). (4.30)

Although we know that the formula (2.43) for the quantum optical limit is not applicable on the
physical grounds, let us anyway apply it here and see what happens. To define the transition operators
(2.38) V

(i)
S (ω) ≡

∑
ε,ε′ δε+ω,ε′Π(ε)V

(i)
S Π(ε′) in the present case, we first need to prepare eigenstates of

the Hamiltonian. We adopt the large Nc limit to simplify the discussions as below. In the singlet
sector, we only consider bound states. This is because only 1/(N2

c − 1) � 1 portion of the unbound
states are singlet. In the octet sector, the repulsive potential is neglected and the heavy quark pair in
the octet does not interact with each other. This is justified because the large Nc limit is taken with
Ncg

2 ' 8πCFαs fixed and thus αs/2Nc → 0 in the limit. With these simplifying assumptions, the
eigenstates are

HS|~k, n, s〉 =

(
k2

4M
+ En

)
|~k, n, s〉 ≡ Ek,n|~k, n, s〉, (4.31a)

HS|~P , ~p, a〉 =

(
P 2

4M
+
p2

M

)
|~P , ~p, a〉 ≡ EP,p|~P , ~p, a〉, (4.31b)

where ~k and En < 0 are the center-of-mass momentum and the bound state energy of the quarkonium
and ~P and ~p are center-of-mass and relative momenta of the heavy quark pair. For simplicity, we
further assume the bound states are not degenerate. The extension to the degenerate case must be
relatively straightforward. The definition of the transition operator (2.38) is extended to the case
when the transition energy ω is continuous. Since we are interested in how to describe the singlet-
octet transitions, let us omit from V ai

S (~x) the octet-octet scattering processes which is in the regime of
quantum Brownian motion. Transition operator from the singlet to the octet (∼ |a〉〈s|) is restricted to
negative frequency and is given by26

V ai
S (~x, ω < 0) =

2π

T
∑
n

∫
P,p,k

δ(ω − Ek,n + EP,p)|~P , ~p, b〉〈~P , ~p, b|V ai
S (~x)|~k, n, s〉〈~k, n, s|

= −2π

T
∑
n

∫
P,p,k

δ(ω − Ek,n + EP,p)
〈~p|ri|n〉ei(

~k−~P )·~x
√

2Nc

|~P , ~p, a〉〈~k, n, s|

= V ai†
S (~x,−ω). (4.32)

Here T is a range of time integration and is introduced to extend
∑

ε,ε′ and δε+ω,ε′ when energy spectrum

is continuous. The matrix element 〈~P , ~p, b|V ai
S (~x)|~k, n, s〉 is calculated in each subspace of the heavy

quark pair. The transition operator from the octet to the singlet (∼ |s〉〈a|) with positive frequency is
also given by

V ai
S (~x, ω > 0) = −2π

T
∑
n

∫
P,p,k

δ(ω + Ek,n − EP,p)
〈n|ri|~p〉e−i(

~k−~P )·~x
√

2Nc

|~k, n, s〉〈~P , ~p, a|. (4.33)

26Summation over repeated indices is assumed for the adjoint color a and the vector component i. However, we explicitly
write

∑
n to sum the bound state labels.
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4.4.1 Singlet-to-octet transition by gluon absorption

Here we analyze the transition process from the singlet to the octet. The transition term in the Lindblad
equation again needs an extension to the case with a continuous energy spectrum∑

ω<0

∑
i,j

γij(ω)V
(j)
S (ω)ρS(t)V

(i)†
S (ω)↔ T

∫
ω,x,y

θ(−ω)γab,ij(ω, ~x, ~y)V bj
S (~y, ω)ρS(t)V ai†

S (~x, ω), (4.34)

where
∫
ω
≡
∫

dω
2π

. After a straightforward calculation with substitution of γab,ij(ω, ~q) for thermal gluons
in the Appendix B, the time evolution of the octet density matrix due to gluon absorption is given by

∂

∂t
〈~P , ~p, a|ρS|~P ′, ~p ′, a′〉

∣∣∣
s→o

=
(2π)8

T
δaa′

g2

2Nc

∑
n,n′

∫
q,k,k′

[8 δ-functions]

× nB(q)〈~k, n, s|ρS|~k′, n′, s〉 · q2δijT (q̂)〈~p|ri|n〉〈n′|rj|~p ′〉, (4.35)

where the 8 delta functions impose energy and momentum conservation in the forward and backward
amplitudes:

δ(q + Ek,n − EP,p)δ(~q + ~k − ~P )δ(q + Ek′,n′ − EP ′,p′)δ(~q + ~k′ − ~P ′). (4.36)

Here we introduce the real gluon momentum ~q and a shorthand notation for its integration
∫
q
≡
∫

d3q
(2π3)2q

with covariant normalization. Unless one of the energy delta functions is trivially satisfied δ(0) = T /2π,
the transition rate contains a peculiar dependence on T . This indicates that the formula for the quantum
optical limit is not applicable.

To save this situation, we need to make two additional approximations: (i) classical approximation by
Wigner transformation, and (ii) local approximation for bound states in the singlet-to-octet transitions.
In the Wigner transformation, we assume that the density matrix is diagonal in the singlet and color
neutral in the octet, that is ρS ∼ |n, s〉〈n, s| + |a〉〈a|, and define the phase space distribution function
for a singlet bound state n and unbound pair in the octet as

fn(t, ~R,~k) ≡
∫

∆k

〈
~k+, n, s

∣∣∣ρS(t)
∣∣∣~k−, n, s〉 ei∆~k·~R, (4.37a)

fo(t, ~R,~r, ~P , ~p) ≡
∫

∆P,∆p

〈
~P+, ~p+, a

∣∣∣ρS(t)
∣∣∣~P−, ~p−, a〉 ei∆~P ·~R+i∆~p·~r, (4.37b)

~k± ≡ ~k ±
1

2
∆~k, ~P± ≡ ~P ± 1

2
∆~P , ~p± ≡ ~p± 1

2
∆~p. (4.37c)

By the Wigner transformation, the transition term in the Lindblad equation turns into a collision term
of the kinetic equation for the octet27

∂

∂t
fo(t, ~R,~r, ~P , ~p)

∣∣∣
s→o

=
(2π)5

T
CFg

2
∑
n

∫
q,k

[4 δ-functions] · nB(q)fn(t, ~R,~k)

× q2δijT (q̂)

∫
∆p

ei∆~p·~r〈~p+|ri|n〉〈n|rj|~p−〉δ
(

2~p ·∆~p
M

)
, (4.39)

27To get this form, we approximate one of the energy delta functions as

δ

(
2~p ·∆~p
M

+
~q ·∆~k
2M

)
≈ δ

(
2~p ·∆~p
M

)
, (4.38)

using the estimates q ∼ T for thermal gluons, p ∼ ∆p ∼ Mv for bound states, and ∆k ∼
√
MT for total momentum

of a quarkonium in equilibrium, and the assumption Mv2 ∼ T in this regime. The same approximation is made in the
derivation of Eq. (4.51).
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and the T does not yet disappear from the equation. The energy-momentum conservation is satisfied
by the 4 delta functions

δ(q + Ek,n − EP,p)δ(~q + ~k − ~P ). (4.40)

From the uncertainty principle, the matrix elements 〈~p+|ri|n〉 and 〈n|rj|~p−〉 are simultaneously finite
for ∆p ∼Mv. Then the right hand side of (4.39) is finite only in a small domain of the bound state size
r . 1/Mv as is naturally expected. This scale is too microscopic for the kinetic description to resolve
and thus the singlet-to-octet transition can be approximated as a local process. Therefore, the kinetic
equation is approximated by

∂

∂t
fo(t, ~R,~r, ~P , ~p)

∣∣∣
s→o

= δ(~r)Cs→o, Cs→o =

∫
r

[r.h.s. of Eq. (4.39)]. (4.41)

The integration over ~r yields a delta function δ(∆~p) which makes one of the energy delta functions
trivial

δ

(
2~p ·∆~p
M

)
δ(∆~p) = δ(0)δ(∆~p) =

T
2π
δ(∆~p). (4.42)

Finally, T dependence disappears and we get

∂

∂t
fo(t, ~R,~r, ~P , ~p)

∣∣∣
s→o

= δ(~r)(2π)4
∑
n

∫
q,k

[4 δ-functions] · nB(q)fn(t, ~R,~k) · |Ms→o(~q, n; ~p)|2, (4.43a)

|Ms→o(~q, n; ~p)|2 ≡ CFg
2q2δijT (q̂)〈n|ri|~p〉〈~p|rj|n〉. (4.43b)

The damping term in the Lindblad equation is also written for continuous energy spectrum as

1

2

∑
ω<0

∑
i,j

γij(ω)
{
V

(i)†
S (ω)V

(j)
S (ω), ρS(t)

}
↔ 1

2
T
∫
ω,x,y

θ(−ω)γab,ij(ω, ~x, ~y)
{
V ai†
S (~x, ω)V bj

S (~y, ω), ρS(t)
}
,

(4.44)

from which the decay of the singlet density matrix is obtained

∂

∂t
〈~k, n, s|ρS(t)|~k′, n′, s〉

∣∣∣
s→o

= −Γnn′(~k,~k
′)〈~k, n, s|ρS(t)|~k′, n′, s〉, (4.45a)

Γnn′(~k,~k
′) = (2π)4CFg

2

∫
q,P,p

nB(q) · q2δijT (q̂)

× 1

2

[
〈n|ri|~p〉〈~p|rj|n〉δ(q + Ek,n − EP,p)δ(~q + ~k − ~P )

+ 〈n′|ri|~p〉〈~p|rj|n′〉δ(q + Ek′,n′ − EP ′,p′)δ(~q + ~k′ − ~P ′)

]
. (4.45b)

In this case, T dependence has already disappeared from the equation because one of the two energy
delta functions is trivially satisfied for discrete bound state levels. Assuming the same structure of the
density matrix as above, the Wigner transform of the damping term turns into a collision term of the
kinetic equation for the singlet

∂

∂t
fn(t, ~R,~k)

∣∣∣
s→o

= −(2π)4

∫
q,P,p

[4 δ-functions] · nB(q)fn(t, ~R,~k) · |Ms→o(~q, n; ~p)|2, (4.46)

where the energy-momentum conservation is imposed by the 4 delta functions (4.40).
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After the peculiar T dependence disappears, singlet-to-octet transition is described as the collision
terms (4.43) and (4.46) in the kinetic equation. Two particle spatial distribution of the heavy quark
pair

N(t, ~R,~r) ≡
∫
P,p

fo(t, ~R,~r, ~P , ~p) + δ(~r)
∑
n

∫
k

fn(t, ~R,~k) (4.47)

is locally conserved in the singlet-to-octet transition process

∂

∂t
N(t, ~R,~r)

∣∣∣
s→o

= 0. (4.48)

The difference from the classical description in Sec. 3.3.4 is that here the singlet heavy quark pair is
described as a point-like molecule while in Sec. 3.3.4 the phase space trajectory of the relative motion
in the singlet is resolved.

4.4.2 Octet-to-singlet transition by gluon emission

Here we analyze the transition process from the octet to the singlet, the inverse process of the previous
analysis. The transition term in the Lindblad equation for the continuous energy spectrum is∑

ω>0

∑
i,j

γij(ω)V
(j)
S (ω)ρS(t)V

(i)†
S (ω)↔ T

∫
ω,x,y

θ(ω)γab,ij(ω, ~x, ~y)V bj
S (~y, ω)ρS(t)V ai†

S (~x, ω), (4.49)

from which we obtain

∂

∂t
〈~k, n, s|ρS|~k′, n′, s〉

∣∣∣
o→s

=
(2π)8

T
g2

2Nc

∫
q,P,p,P ′,p′

[8 δ-functions]

× (1 + nB(q))〈~P , ~p, a|ρS|~P ′, ~p ′, a〉 · q2δijT (q̂)〈n|ri|~p〉〈~p ′|rj|n′〉, (4.50)

where the 8 delta functions (4.36) impose energy and momentum conservation in the forward and
backward amplitudes. The Wigner transform of this equation yields

∂

∂t
fn(t, ~R,~k)

∣∣∣
o→s

=
(2π)5

T
g2

2Nc

∫
q,P,p

[4 δ-functions] · (1 + nB(q)) · q2δijT (q̂)

×
∫

∆P,∆p

ei∆
~P ·~R〈~P+, ~p+, a|ρS|~P−, ~p−, a〉〈n|ri|~p+〉〈~p−|rj|n〉δ

(
2~p ·∆~p
M

)
, (4.51)

with the T dependence still present. The heavy quark pair in the octet is unbound and its wave function
in the relative coordinate is expected to be extended, at least much larger than the bound state size.
We therefore assume that octet density matrix 〈~P+, ~p+, a|ρS|~P−, ~p−, a〉 is localized at ∆~p ∼ ~0. Then,
we can approximate

〈~P+, ~p+, a|ρS|~P−, ~p−, a〉 ≈ (2π)3δ(∆~p)

∫
∆p′
〈~P+, ~p

′
+, a|ρS|~P−, ~p ′−, a〉, ~p ′± ≡ ~p± 1

2
∆~p ′ (4.52)

to get a collision term for the singlet:

∂

∂t
fn(t, ~R,~k)

∣∣∣
o→s

= (2π)4

∫
q,P,p

[4 δ-functions] · (1 + nB(q))fo(t, ~R,~0, ~P , ~p) · |Mo→s(~p; ~q, n)|2, (4.53a)

|Mo→s(~p; ~q, n)|2 ≡ g2

2Nc

q2δijT (q̂)〈~p|ri|n〉〈n|rj|~p〉, (4.53b)
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where the energy-momentum conservation is imposed by the 4 delta functions (4.40). The fo(t, ~R,~r =
~0, ~P , ~p) term in the right hand side of Eq. (4.53) shows that the approximation made here for the octet
density matrix (4.52) is essentially the local approximation for singlet bound states, the same as in the
singlet-to-octet transitions.

The damping term in the Lindblad equation for the continuous energy spectrum is

1

2

∑
ω>0

∑
i,j

γij(ω)
{
V

(i)†
S (ω)V

(j)
S (ω), ρS(t)

}
↔ 1

2
T
∫
ω,x,y

θ(ω)γab,ij(ω, ~x, ~y)
{
V ai†
S (~x, ω)V bj

S (~y, ω), ρS(t)
}
,

(4.54)

from which the decay of the octet density matrix is obtained as

∂

∂t
〈~P , ~p, a|ρS(t)|~P ′, ~p ′, a′〉

∣∣∣
o→s

=
(2π)5

T
∑
n

∫
q,k,p′′

g2

2Nc

(1 + nB(q))q2 (4.55)

× 1

2

δ(q + Ek,n − EP,p)δ(~q + ~k − ~P )δ

(
p2

M
− p′′2

M

)
〈p|ri|n〉〈n|rj|p′′〉δijT (q̂)〈~P , ~p ′′, a|ρS(t)|~P ′, ~p ′, a′〉

+ δ(q + Ek,n − EP ′,p′)δ(~q + ~k − ~P ′)δ

(
p′2

M
− p′′2

M

)
〈p′′|ri|n〉〈n|rj|p′〉δijT (q̂)〈~P , ~p, a|ρS(t)|~P ′, ~p ′′, a′〉

 .

Unlike the damping term in the singlet-to-octet transition, this equation depends explicitly on T .

To get rid of T dependence, the energy delta functions δ
(
p2

M
− p′′2

M

)
and δ

(
p′2

M
− p′′2

M

)
need to be

trivially satisfied. Wigner transform alone does not remove T from the equation. In addition, we must
approximate the octet density matrix by Eq. (4.52), and assume that the octet-to-singlet process is
local in the octet kinetic equation (s → o replaced with o → s in Eq. (4.41)). Then, we can eliminate
T dependence and get a collision term for the octet:

∂

∂t
fo(t, ~R,~r, ~P , ~p)

∣∣∣
o→s

= −δ(~r)(2π)4
∑
n

∫
q,k

[4 δ-functions] · (1 + nB(q))fo(t, ~R,~0, ~P , ~p) · |Mo→s(~p; ~q, n)|2,

(4.56)

where the energy-momentum conservation is imposed by the 4 delta functions (4.40). Again, we observe
that the local approximation for singlet bound states as well as classical approximation is essential to
get the collision term without explicit T dependence.

Once the T dependence disappears in the collision terms (4.53) and (4.56), we can check that the

two particle distribution N(t, ~R,~r) defined in Eq. (4.47) is locally conserved in the octet-to-singlet
transitions:

∂

∂t
N(t, ~R,~r)

∣∣∣
o→s

= 0. (4.57)
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4.4.3 Coupled Boltzmann equations for singlet and octet

With the results in Sec. 4.4.1 and 4.4.2, we can summarize the classical kinetic descriptions for the heavy
quark pair by the following coupled Boltzmann equations for singlet and octet distribution functions:

[
∂

∂t
+

~k

2M
· ~∇R

]
fn(t, ~R,~k)

= (2π)4

∫
q,P,p

[4 δ-functions]

[
(1 + nB(q))fo(t, ~R,~0, ~P , ~p) · |Mo→s(~p; ~q, n)|2

− nB(q)fn(t, ~R,~k) · |Ms→o(~q, n; ~p)|2

]
, (4.58a)[

∂

∂t
+

~P

2M
· ~∇R +

2~p

M
· ~∇r

]
fo(t, ~R,~r, ~P , ~p)

= δ(~r)(2π)4
∑
n

∫
q,k

[4 δ-functions]

[
nB(q)fn(t, ~R,~k) · |Ms→o(~q, n; ~p)|2

− (1 + nB(q))fo(t, ~R,~0, ~P , ~p) · |Mo→s(~p; ~q, n)|2

]
. (4.58b)

The two particle distribution for the octet fo(t, ~R,~r, ~P , ~p) contains correlation between the heavy quark
pair. It is a probability distribution to find the heavy quark pair in the octet with which single heavy
quark distribution functions are obtained as

fQ(t, ~rQ, ~pQ) =

∫
rQc ,pQc

fo

(
t,
~rQ + ~rQc

2
, ~rQ − ~rQc , ~pQ + ~pQc ,

~pQ − ~pQc

2

)
, (4.59a)

fQc(t, ~rQc , ~pQc) =

∫
rQ,pQ

fo

(
t,
~rQ + ~rQc

2
, ~rQ − ~rQc , ~pQ + ~pQc ,

~pQ − ~pQc

2

)
. (4.59b)

They are normalized to

∫
R,r,P,p

fo(t, ~R,~r, ~P , ~p) =

∫
rQ,pQ

fQ(t, ~rQ, ~pQ) =

∫
rQc ,pQc

fQc(t, ~rQc , ~pQc) = No(t), (4.60)

with 0 ≤ No(t) ≤ 1. When we make the molecular chaos assumption, fo(t, ~R,~r, ~P , ~p) is factorized into

fo(t, ~R,~r, ~P , ~p) =
1

No(t)
fQ(t, ~rQ, ~pQ)fQc(t, ~rQc , ~pQc). (4.61)

The factor 1/No(t) takes account of the correlation that if there is an unbound heavy quark, there
is always an unbound heavy antiquark (in the octet). This factor is important especially when No(t)
is small, for example at the initial stage of quarkonium dissociation, and correctly normalizes the
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recombination probability28. The Boltzmann equations for single particle distribution functions are[
∂

∂t
+

~k

M
· ∇R

]
fn(t, ~R,~k) = (2π)4

∫
q,pQ,pQc

[4 δ-functions] (4.63a)

×


1

No(t)
fQ(t, ~R, ~pQ)fQc(t, ~R, ~pQc)(1 + nB(q)) ·

∣∣∣Mo→s

(
~pQ − ~pQc

2
; ~q, n

)∣∣∣2
− nB(q)fn(t, ~R,~k) ·

∣∣∣Ms→o

(
~q, n;

~pQ − ~pQc

2

)∣∣∣2
 ,

[
∂

∂t
+
~pQ
M
· ~∇rQ

]
fQ(t, ~rQ, ~pQ) = (2π)4

∑
n

∫
q,k,pQc

[4 δ-functions] (4.63b)

×

nB(q)fn(t, ~rQ, ~k) ·
∣∣∣Ms→o

(
~q, n;

~pQ − ~pQc

2

)∣∣∣2
− 1

No(t)
fQ(t, ~rQ, ~pQ)fQc(t, ~rQ, ~pQc)(1 + nB(q)) ·

∣∣∣Mo→s

(
~pQ − ~pQc

2
; ~q, n

)∣∣∣2
 ,

and similarly for fQc(t, ~rQc , ~pQc). The product of 4 delta functions (4.40) is rewritten as

δ

(
q + Ek,n −

p2
Q

2M
−
p2
Qc

2M

)
δ(~q + ~k − ~pQ − ~pQc), (4.64)

and imposes the conservation of energy and momentum in the collisions.
The octet-to-octet collisions, which we so far have ignored, are in the regime of quantum Brownian

motion and the results of Sec. 3.3.4 can be used here. The Lindblad operators describing the octet-to-
octet collisions are Ṽd(k) and Ṽf (k) in Eq. (3.60b), which yield the noise correlation in the Langevin
equation for the octet.

Eξ[ξQi(t)ξQj(t
′)] = Eξ[ξQci(t)ξQcj(t

′)] = −N
2
c − 2

2Nc

∂i∂jγ(~0)δ(t− t′), (4.65a)

Eξ[ξQi(t)ξQcj(t
′)] = − 1

Nc

∂i∂jγ(~r)δ(t− t′). (4.65b)

This is different from Eq. (3.63) by the contribution of Ṽ−(k), which describes the octet-to-singlet
process and is already taken into account in the collision term in Sec. 4.4.2. In the large Nc limit,
the noise correlation between the heavy quark pair vanishes and the Boltzmann equation for the octet
(4.63b) is modified to the Kramers equation with a collision term[

∂

∂t
+
~pQ
M
· ~∇rQ −

κ∞
2MT

∂

∂~pQ
·
(
~pQ +MT

∂

∂~pQ

)]
fQ(t, ~rQ, ~pQ) = [r.h.s. of Eq. (4.63b)], (4.66)

where the momentum diffusion constant is κ∞ = − limNc→∞
N2

c−2
2Nc

∇2γ(~0)
3

> 0. The coupled Boltzmann
equations (4.63) and (4.66) reproduce those in [84] except that the factor 1/No(t) is absent, which is
fine when No > 1, and the octet-to-octet collisions are simplified by the relaxation time approximation.

28If there are always several unbound heavy quarks NQ, NQc
> 1, normalizations of the distribution functions are

schematically∫
Q

fQ = NQ,

∫
Qc

fQc
= NQc

,

∫
Q,Qc

fo = NQNQc
,

1

NQc

∫
Qc

fo = fQ,
1

NQ

∫
Q

fo = fQc
, (4.62)

and the molecular chaos assumption means fo ≈ fQfQc
. As a result, there is no 1/No factors in the Boltzmann equations

(4.63) in this case.
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Table 3: Numerical simulations of Lindblad equation from pNRQCD. The dimension 1+D means that
it takes partial account of the angular directions by S and P waves, in addition to the radial direction.

Dimension Color Gradient Expansion Numerical Method
1+D SU(3) LO Direct evolution for S and P waves [16, 17]
3D SU(3) LO Quantum Jump [56, 57]

4.5 Concluding remarks of Section 4

In this section, we restrict ourselves to the situation where heavy quark pair is close to each other. By
this restriction, the description becomes far simpler. For instance, in the regime 1/r � T ∼ mD � E
(Sec. 4.2), the Lindblad equation for a density matrix in the projected singlet-octet basis is obtained in
Eq. (4.15) as

d

dt
ρS(t) = −i [HS + ∆HS, ρS] + γ

∑
n=+,−,d

[
C̃niρSC̃

†
ni −

1

2

{
C̃†niC̃ni, ρS

}]
,

∆HS =
(
Sr2 +

γ

4MT
{~p, ~r}

)(CF 0

0 N2
c−2

4Nc

)
,

C̃+i = Ṽ+i

√
CF

(
0 0
1 0

)
, C̃−i = Ṽ−i

√
1

2Nc

(
0 1
0 0

)
, C̃di = Ṽdi

√
N2
c − 4

4Nc

(
0 0
0 1

)
,

where the operators Ṽni (n = +, i, d) are

Ṽ±i ≡ −
(
ri +

ipi
2MT

∓ Nc

8T

αsri
r

)
, Ṽdi ≡ −

(
ri +

ipi
2MT

)
and constants S and γ are defined non-perturbatively in terms of gauge invariant gluon correlators.
Table 3 lists numerical simulations of the Lindblad equation from pNRQCD.

• A nontrivial question is whether equilibration of the quarkonium system is achieved within this
regime. In equilibrium, heavy quark pair is separately distributed and thus the dipole approxi-
mation must break down at some point even if the system starts from a small dipole. Therefore,
one must know to what extent this Lindblad equation can describe the equilibration process.

• At lower temperature, one of the conditions for the quantum Brownian motion (T � E) becomes
inapplicable and one needs to match and switch to an alternative description by coupled Boltz-
mann equation (4.63). Although the Boltzmann equation is derived assuming the coupling g is
small, it is expected to capture the essence of physical process even when extrapolated to a larger
value of g.
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5 Summary

In this review, I re-examined all of the open quantum system approaches to quarkonium dynamics in
the quark-gluon plasma (QGP) in a systematic way. I first introduced in Sec. 2 the regimes and the
approximation methods for an open quantum system weakly coupled to its environment. I showed
useful formulas for Lindblad equations in two regimes: the quantum optical regime (Eq. (2.43)) and the
quantum Brownian motion (Eqs. (2.53) and (2.67)). The formulas are applied to quarkonium system
in the QGP, when the coupling constant is small in Sec. 3 and when the quarkonium can be treated as
a small color dipole in Sec. 4. Note that the coupling constant is not necessarily small in the latter. In
most cases, the dynamics of quarkonium is the quantum Brownian motion.

Two most important results are the Lindblad equations (3.41) and (4.15), which are applicable
when the QGP is weakly coupled and when the quarkonium is a small color dipole, respectively. These
equations are slightly different from the original results: (3.41) supplements the Lindblad operators
of [12] with new terms that derive from the color dependent heavy quark potential, and (4.15) adds
dissipative terms to the Lindblad operators of [16, 17]. When quarkonium is a small color dipole in a
weakly coupled QGP, these Lindblad equations are both applicable and indeed agree with each other
except for a minor technical difference. This suggests that the Lindblad equation for quarkonium in a
strongly coupled QGP can be generally inferred from (3.41) in such a way that the small color dipole
limit corresponds to (4.15). Derivation of the Lindblad equations at the next-to-leading order in the
weak coupling expansion or at the next-to-next-to-leading order in the multipole expansion will be a
first step toward such construction.

Time evolution of quarkonium in the QGP is diagonalization process of density matrix, during which
quantum dissipation becomes essential and quarkonium may cease to be a small color dipole. Because
of the high numerical cost of simulating Lindblad equations in 3 dimensions, two simplifications, if
available, are crucial. One must ask whether or not (i) quantum dissipation is negligible and (ii)
quarkonium stays a small color dipole, during the lifetime of QGP fireballs. Depending on the answers,
one may choose to simplify as follows:

(i) Yes (ii) Yes – Lindblad equation (4.20) or Schrödinger equation with stochastic potential (4.21)

(i) Yes (ii) No – Lindblad equation (3.43) or Schrödinger equation with stochastic potential (3.46)

(i) No (ii) Yes – Lindblad equation (4.15)

(i) No (ii) No – Lindblad equation (3.41)

In the first two cases, stochastic evolution of 3-dimensional wave function is enough, which lowers the
numerical cost dramatically. In the third case, the number of Lindblad operators is small and thus
the numerical cost is lower than the fourth case. In the first and third cases, one can exploit the
selection rules for dipole transitions and solve in the angular momentum basis (see Appendix C) using
the Quantum Jump method, which also lowers the numerical cost. To answer these questions, however,
one needs to solve the Lindblad equation (3.41) in a realistic set up for heavy-ion collisions. Therefore, a
test calculation of the Lindblad equation (3.41) even in 1 dimension to compare with the other simplified
descriptions will have a very important impact on the future phenomenological applications of the open
quantum system approaches, which is left for a future work.
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A Properties of thermal correlation functions Γij(ω)

In this Appendix, we summarize the properties of environment correlation functions when the envi-
ronment is a thermal bath ρE(0) = ρth

E with temperature T = 1/β. In this case, the environment
correlation function Γij(ω) and their decompositions into Hermitian (γij) and anti-Hermitian (iSij)
parts are defined as in Eq. (2.41b):

Γij(ω) ≡
∫ ∞

0

dseiωsTrE

(
ρth
E V

(i)
E (s)V

(j)
E (0)

)
≡ 1

2
γij(ω) + iSij(ω), (A.1a)

γ∗ij(ω) = γji(ω), S∗ij(ω) = Sji(ω). (A.1b)

A.1 General properties

Here we list several general properties of the correlation functions. First, the Hermitian matrix γij(ω)
satisfies

γij(ω) =

∫ ∞
−∞

dteiωtTrE

(
ρth
E V

(i)
E (t)V

(j)
E (0)

)
=

∫ ∞
−∞

dteiωtTrE

(
ρth
E V

(j)
E (0)V

(i)
E (t+ iβ)

)
= eβωγji(−ω), (A.2)

the Kubo-Martin-Schwinger (KMS) relation, which is used to prove that the system density matrix
∝ e−βHS is a steady state solution in the quantum optical regime. The first line of (A.2) shows that
the spectrum of γij(ω) contains enough information to express Sij(ω). The explicit form is

Sij(ω) =
1

2i

[∫ ∞
0

dt−
∫ 0

−∞
dt

]
eiωtTrE

(
ρth
E V

(i)
E (t)V

(j)
E (0)

)
=

1

2

∫ ∞
−∞

dω′

2π
γij(ω

′)

(
1

ω − ω′ + iε
+

1

ω − ω′ − iε

)
= −P

∫ ∞
−∞

dω′

2π

γij(ω
′)

ω′ − ω
, (A.3)

where P denotes the Cauchy principal value. A straight forward calculation derives a relation between
γij(ω) and the spectral function σij(ω) of environment operators:

σij(ω) ≡
∫ ∞
−∞

dteiωtTrE

(
ρth
E

[
V

(i)
E (t), V

(j)
E (0)

])
= (γij(ω)− γji(−ω)) = (1− e−βω)γij(ω), (A.4a)

and that between Sij(ω) and σij(ω) as well

Sij(ω) = −P
∫ ∞
−∞

dω′

2π

1

ω′ − ω
σij(ω

′)

1− e−βω′
. (A.4b)

For completeness, we also list the relations between the spectral function σij(ω) and various Green

functions of the environment operators, namely the retarded/advanced (G
R/A
ij ) and symmetrized (GS

ij)
Green functions:

GR
ij(ω) ≡ i

∫ ∞
0

dteiωtTrE

(
ρth
E

[
V

(i)
E (t), V

(j)
E (0)

])
=

∫
dω′

2π

σij(ω
′)

ω′ − ω − iε
, (A.5a)

GA
ij(ω) ≡ −i

∫ 0

−∞
dteiωtTrE

(
ρth
E

[
V

(i)
E (t), V

(j)
E (0)

])
=

∫
dω′

2π

σij(ω
′)

ω′ − ω + iε
, (A.5b)

GS
ij(ω) ≡

∫ ∞
−∞

dteiωtTrE

(
ρth
E

{
V

(i)
E (t), V

(j)
E (0)

})
= γij(ω) + γji(−ω) = coth

(
βω

2

)
σij(ω). (A.5c)
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When the environment operators V
(i)
E (t) and V

(j)
E (t) are both Hermitian and have the same sign

under time-reversal transformation, which is always the case in the examples in the main text, the
spectral function σij(ω) is shown to be a real and odd function of ω and thus is a symmetric matrix
σij(ω) = σji(ω). In this case, γij(ω) and Sij(ω) are also real symmetric matrices and expressed by

γij(ω) = [1 + nB(ω)]σij(ω) = nB(−ω)σij(−ω), (A.6a)

Sij(ω) = −P
∫ ∞

0

dω′

2π

{
[1 + nB(ω′)]

σij(ω
′)

ω′ − ω
+ nB(ω′)

σij(ω
′)

−ω′ − ω

}
. (A.6b)

In this form, it is clear that the eigenvalues of γij(ω) is the rate of energy transfer |ω| between the
environment and the system; when ω is positive/negative, the environment absorbs/emits the energy.
We can also interpret Sij(ω) as virtual state contributions to the forward amplitude when the transferred
energy is off-shell ω 6= ω′. The first/second term corresponds to E → E ± ω′ → E with ω′ > 0.

A.2 Small ω behaviors

When the transferred energy is small ω ∼ 0, the real and odd spectral density σij(ω) can be expanded
by

σij(ω) ' dσij
dω

∣∣∣
0
ω +

1

3!

d3σij
dω3

∣∣∣
0
ω3 + · · · . (A.7)

The lower order expansion of γij(ω) is then obtained as

γij(ω) ' γ
(0)
ij + γ

(1)
ij ω + · · · ' T

dσij
dω

∣∣∣
0

(
1 +

ω

2T

)
+O(ω2). (A.8)

Note that the leading and the next-to-leading order terms of γij(ω) are characterized by a common
transport coefficient:

γ
(0)
ij

T
= 2γ

(1)
ij =

dσij
dω

∣∣∣
0

=
d

dω

[
2ImGR

ij(ω)
]∣∣∣

0
. (A.9)

Similarly, Sij(ω) can also be expanded by

Sij(ω) ' S
(0)
ij + S

(1)
ij ω + · · · (A.10)

with the coefficients being

S
(0)
ij = −P

∫ ∞
−∞

dω

2π

1

ω

σij(ω)

1− e−βω
= −1

2

∫ ∞
−∞

dω

2π

σij(ω)

ω
= −1

2
Re
[
GR
ij(0)

]
, (A.11a)

S
(1)
ij = −P

∫ ∞
−∞

dω

2π

1

ω

d

dω

[
σij(ω)

1− e−βω

]
= −1

2

∫ ∞
−∞

dω

2π

1

ω

d

dω

[
coth

(
βω

2

)
σij(ω)

]
= −1

2

∫ ∞
−∞

dω

2π

1

ω

d

dω
GS
ij(ω). (A.11b)

In the main text, we also encounter an exceptional case dσij/dω|0 = 0, that is,

σij(ω) ' 1

3!

d3σij
dω3

∣∣∣
0
ω3 +

1

5!

d5σij
dω5

∣∣∣
0
ω5 + · · · . (A.12)

In this case, the expansion of γij(ω) starts from the second order:

γij(ω) ' 1

2!
γ

(2)
ij ω

2 +
1

3!
γ

(3)
ij ω

3 + · · · ' T

3!

d3σij
dω3

∣∣∣
0
ω2
(

1 +
ω

2T

)
+O(ω4). (A.13)

From the small ω behavior of σij(ω), the spectral integration for S
(1)
ij can be defined without employing

Cauchy principal value.
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B Thermal correlation functions of gluons

In this Appendix, we quote several analytic results for thermal correlation functions of gluons in the
leading order perturbation theory.

B.1 γ(~x) and S(~x) in Section 3

The retarded Green function

GR
ab,µν(Q) ≡ i

∫ ∞
0

dt

∫
d3xeiωt−i~q·~xTrE

(
ρth
E

[
Aaµ(t, ~x), Abν(0,~0)

])
≡ GR

µν(Q)δab, Qµ ≡ (ω, ~q) (B.1)

is calculated in the Hard-Thermal Loop (HTL) approximation [145]. In the Coulomb gauge and covari-
ant gauge with parameter ξ, the retarded function is parametrized by

(Coulomb gauge) GR
µν(Q) =

−(PT )µν
Q2 − ΠT

+
Q2

q2

−δµ0δν0

Q2 − ΠL

, (B.2a)

(Covariant gauge) GR
µν(Q) =

−(PT )µν
Q2 − ΠT

+
−(PL)µν
Q2 − ΠL

+ ξ
QµQν

Q4
, (B.2b)

where PT and PL denote transverse and longitudinal projectors:

(PT )ij = δij −
qiqj
q2

, (PT )00 = (PT )0j = (PT )i0 = 0, (PL)µν + (PT )µν = −gµν +
QµQν

Q2
. (B.3)

The self energy is obtained perturbatively in the HTL approximation for soft external momenta Q ∼ gT

ΠL(Q) = −m2
D

Q2

q2
(1− F (ω/q)), ΠT (Q) =

m2
D

2

[
1 +

Q2

q2
(1− F (ω/q))

]
, (B.4a)

F (x) ≡ x

2

[
ln

∣∣∣∣x+ 1

x− 1

∣∣∣∣− iπθ(1− |x|)] , m2
D =

1

3
g2T 2

(
Nc +

1

2
Nf

)
, (B.4b)

where Nc and Nf denote the numbers of colors and massless quark flavors. For Q ∼ mD ∼ gT , the
resummation of ΠT,L is essential to obtain the leading order correlation functions.

In the section 3, we use the following correlation functions in the Coulomb gauge

γ(~x) = 2g2T
∂

∂ω
ImGR

00(ω, ~x)
∣∣∣
ω=0

, S(~x) = −g
2

2
ReGR

00(ω, ~x)
∣∣∣
ω=0

. (B.5)

The longitudinal self energy and the retarded Green function with small frequency are

ΠL(ω < q, ~q) = −m2
D

Q2

q2

(
1− ω

2q
ln

1 + ω/q

1− ω/q
+ iπ

ω

2q

)
' m2

D

(
1 + iπ

ω

2q

)
+O(ω2), (B.6a)

GR
00(ω, ~x) '

∫
d3q

(2π)3
ei~q·~x

−1

q2 +m2
D + iπm2

Dω/2q
+O(ω2), (B.6b)

and we get

γ(~x) = g2T

∫
d3q

(2π)3
ei~q·~x

πm2
D

q(q2 +m2
D)2

, S(~x) =
g2

8π|~x|
e−mD|~x|. (B.7)

The same result is obtained in the covariant gauge in which GR
00(ω, ~x) is different from that in the

Coulomb gauge only by O(ω2). The expression (B.7) is applicable for |~x| & 1/mD where the HTL
approximation works.
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B.2 κ and λ in Section 3

It is noteworthy to emphasize that the coefficients ∇2γ(~0) and ∇2ST 6=0(~0) of the Lindblad equation
in the small dipole limit (see Eq. (3.76) in Sec. 3.3.5) cannot be calculated from (B.7). As one would

soon recognize, heavy quark momentum diffusion constant κ = −CF∇2γ(~0)
3

is divergent from ultraviolet
contributions. Physically, this divergence originates from the fact that the relevant scattering processes
for heavy quark momentum diffusion involve hard as well as soft momentum transfers. The former is
rare but significant, while the latter is frequent but individually less significant. The HTL approximation
for the gluon self energy is justified only when the exchanged momentum is soft Q ∼ mD. By correcting
the gluon self energy for hard momentum transfer, κ is obtained to be finite [132]

κLO =
CFg

4T 3

18π

[
Nc

(
ln

2T

mD

+ ξ

)
+
Nf

2

(
ln

4T

mD

+ ξ

)]
, ξ =

1

2
− γE +

ζ ′(2)

ζ(2)
' −0.64718, (B.8)

where γE ' 0.5772 is the Euler-Mascheroni constant and ζ(s) is the Riemann zeta function. Non-
perturbative definition of κ(= CFγ) is given by [146, 147] in terms of a gauge invariant correlator of the
color electric fields (4.9). The weak coupling expansion of κ is known at present to the next-to-leading
order [138, 139]

κNLO =
CFg

4T 3

18π

[
Nc

(
ln

2T

mD

+ ξ

)
+
Nf

2

(
ln

4T

mD

+ ξ

)
+
NcmD

T
C

]
, C ' 2.3302, (B.9)

whose convergence is not very good. For the same reason as above, the short distance behavior of S(~x) in

(B.7) is not accurate, either. Correct result for the thermal dipole self energy constant λ = −2CF∇2ST 6=0(~0)

3

of Eq. (3.74) can be extracted from [32] as shown in [16, 17, 52]

λLO = −2ζ(3)CF

(
4

3
Nc +Nf

)
α2
sT

3. (B.10)

Non-perturbative definition of λ(= 2CFS) is given in [16, 17, 52] in terms of a gauge invariant corre-
lator of the color electric fields (4.9) with subtraction of the vacuum contribution. The weak coupling
expansion of λ is known up to the next-to-leading order [140]

λNLO = −2ζ(3)CF

(
4

3
Nc +Nf

)
α2
sT

3 +
αsCFm

3
D

3
, (B.11)

which again can be extracted from [32].

B.3 γab,ij(ω, ~q) in Sections 4.3 and 4.4

In the section 4.3, we use a spectral density of transverse gluons

σab,ij(ω) = 2g2ω2δabIm

∫
d3q

(2π)3
(PT )ik(PT )jlG

R
kl(ω, ~q)

= 2g2ω2δabIm

∫
d3q

(2π)3

−(PT )ij
Q2 − ΠT

= −4g2

3
ω2δabδijIm

∫
d3q

(2π)3

1

Q2 − ΠT

. (B.12)

The self energy for the thermal gluons Q ∼ T is sub-leading and can be neglected. The spectral density
for the thermal gluons is thus

σab,ij(ω) = −4g2

3
ω2δijδ

abIm

∫
d3q

(2π)3

1

(ω + iε)2 − q2

= −2g2

3
ωδijδ

abIm

∫ ∞
0

q2dq

2π2

(
1

ω − q + iε
+

1

ω + q + iε

)
=
g2

3π
ω3δijδ

ab, (B.13)
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from which γab,ij(ω, ~q) used in the section 4.4 is readily obtained as

γab,ij(ω, ~q) = πg2δabδijT (q̂)q [(1 + nB(q))δ(ω − q) + nB(q)δ(ω + q)] , δijT (q̂) ≡ (PT )ij. (B.14)
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C Lindblad equation with angular momentum projection

In this Appendix, we rewrite the Lindblad equation (4.15) for the density matrix projected onto angular
momentum. The result is partially obtained in [56, 59] at the leading order of the gradient expansion,
but let us give it here including the next-to-leading terms for the sake of possible future numerical
implementation. Let us first quote Eq. (4.15). For a density matrix in the projected singlet-octet basis

ρS(t) =

(
ρs(t) 0

0 ρo(t)

)
,

the Lindblad equation is

d

dt
ρS(t) = −i [HS + ∆HS, ρS] + γ

∑
i=x,y,z

∑
n=+,−,d

[
C̃niρSC̃

†
ni −

1

2

{
C̃†niC̃ni, ρS

}]
,

∆HS =

(
Sr2 +

γ

4MT

∑
i=x,y,z

{pi, ri}

)(
CF 0

0 N2
c−2

4Nc

)
,

C̃+i = Ṽ+i

√
CF

(
0 0
1 0

)
, C̃−i = Ṽ−i

√
1

2Nc

(
0 1
0 0

)
, C̃di = Ṽdi

√
N2
c − 4

4Nc

(
0 0
0 1

)
,

with the operators Ṽni (n = +, i, d) being

Ṽ±i ≡ −
(
ri +

ipi
2MT

∓ Nc

8T

αsri
r

)
, Ṽdi ≡ −

(
ri +

ipi
2MT

)
.

To avoid confusion, summation over repeated indices i is explicitly written with
∑

i=x,y,z.
We define the density matrices projected onto angular momentum

ρ
(`)
s/o(t, r1, r2) ≡

∑̀
m=−`

∫
Ω1,Ω2

Y ∗`m(Ω1)Y`m(Ω2)ρs/o(t, r1,Ω1, r2,Ω2), (C.1)

where
∫

Ω
≡
∫
d(cos θ)dφ in the spherical coordinates and Y`m(Ω) is the spherical harmonics. First, we

show that the evolution of ρ
(`)
s/o(t, r1, r2) (` = 0, 1, 2, · · · ) is coupled but closed. Since HS, ∆HS, and∑

i Ṽ
†
niṼni are all scalar operators, it amounts to show that

W(`)[n]
`1m1;`2m2

(r1, r2) ≡
∑
m

∑
i

∫
Ω1,Ω2

Y ∗`m(Ω1)Y`m(Ω2)Ṽni(r1,Ω1)Ṽ ∗ni(r2,Ω2)Y`1m1(Ω1)Y ∗`2m2
(Ω2) (C.2)

is proportional to δ`1`2δm1m2 with a m1,2-independent coefficient. Here Ṽ ∗ni(r2,Ω2) is complex conjugate,
not Hermitian conjugate, of Ṽni(r2,Ω2). From the vector operator Ṽni(r1,Ω1) = (Ṽnx, Ṽny, Ṽnz), we can
make a rank-1 tensor operator Ṽnq(r1,Ω1) = (Ṽn+, Ṽn0, Ṽn−) by

Ṽn+ = − Ṽnx + iṼny√
2

, Ṽn0 = Ṽnz, Ṽn− =
Ṽnx − iṼny√

2
, (C.3)

which leads to
∑

i Ṽni(r1,Ω1)Ṽ ∗ni(r2,Ω2) =
∑

q Ṽnq(r1,Ω1)Ṽ ∗nq(r2,Ω2). The Wigner-Eckart theorem dic-
tates that ∫

Ω

Y ∗`m(Ω)Ṽnq(r,Ω)Y`′m′(Ω) = C1`′(`m; qm′)
[
Ṽn(r)

]
``′
, (C.4)
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where
[
Ṽn(r)

]
``′

is a reduced matrix element, more precisely a reduced “operator”, and Cj1j2(jm;m1m2)

is the Clebsch-Gordan coefficient. We then get

W(`)[n]
`1m1;`2m2

(r1, r2) =
∑
m,q

C1`1(`m; qm1)C1`2(`m; qm2)
[
Ṽn(r1)

]
``1

[
Ṽn(r2)

]∗
``2
. (C.5)

Using the symmetry and orthogonality of the Clebsch-Gordan coefficients

Cj1j2(jm;m1m2) = (−1)j1−m1

√
2j + 1

2j2 + 1
Cjj1(j2m2;m,−m1), (C.6a)∑

m1,m2

Cj1j2(jm;m1m2)Cj1j2(j
′m′;m1m2) = δjj′δmm′ , (C.6b)

their sum is explicitly calculated∑
m,q

C1`1(`m; qm1)C1`2(`m; qm2) =
2`+ 1√

(2`1 + 1)(2`2 + 1)

∑
m,q

C`1(`1m1;m,−q)C`1(`2m2;m,−q)

=
2`+ 1

2`1 + 1
δ`1`2δm1m2 (|`− 1| ≤ `1 ≤ `+ 1) (C.7)

and finally we obtain for ` ≥ 1 (for ` = 0 only `1 = `+ 1 = 1 is allowed)

W(`)[n]
`1m1;`2m2

(r1, r2) =
2`+ 1

2`1 + 1
δ`1`2δm1m2

[
Ṽn(r1)

]
``1

[
Ṽn(r2)

]∗
``1

(`1 = `± 1). (C.8)

Here
[
Ṽn(r)

]
``

= 0 because Ṽnq(r) has odd parity. The action of W(`)[n]
`1m1;`2m2

(r1, r2) is

∂

∂t
ρ

(`)
s/o(t, r1, r2) 3

∑
`1,m1

∑
`2,m2

W(`)[n]
`1m1;`2m2

(r1, r2)

∫
Ω1,Ω2

Y ∗`1m1
(Ω1)Y`2m2(Ω2)ρs/o(t, r1,Ω1, r2,Ω2)

=
∑
`′=`±1

2`+ 1

2`′ + 1

[
Ṽn(r1)

]
``′

[
Ṽn(r2)

]∗
``′
ρ

(`′)
s/o(t, r1, r2)

=
∑
`′=`±1

2`+ 1

2`′ + 1

[
Ṽn(r1)

]
``′
ρ

(`′)
s/o(t, r1, r2)

[
Ṽn(r2)

]†
``′
, (C.9)

showing that the evolution is coupled but closed in ρ
(`)
s/o(t, r1, r2). Since the number of angular momentum

states increases from 2`′+1 to 2`+1 in the process `′ → ` , the reduced operator
[
Ṽn(r)

]
``′

is interpreted

as an averaged all-to-one transition operator from `′ to `.
Next, let us explicitly derive the Lindblad operators in the angular momentum basis, which correctly

reproduce the time evolution of

ρs/o(t, r1, r2) ≡
∞∑
`=0

ρ
(`)
s/o(t, r1, r2)|`〉〈`|. (C.10)

It is clear from Eq. (C.9) that the Lindblad operators need to be split into raising and lowering parts
in the angular momentum ladder[

Ṽn↑(r)
]
≡

∞∑
`=1

√
2`+ 1

2`− 1

[
Ṽn(r)

]
`,`−1
|`〉〈`− 1|, (C.11a)

[
Ṽn↓(r)

]
≡

∞∑
`=0

√
2`+ 1

2`+ 3

[
Ṽn(r)

]
`,`+1
|`〉〈`+ 1|, (C.11b)
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otherwise the density matrix gains off-diagonal components in the angular momentum. Here, |`〉 is just
a formal basis to express infinite dimensional matrices. It might be technical, but one should keep in
mind that [

Ṽn(r)
]†
``′
6=
[
Ṽ †n (r)

]
`′`
. (C.12)

This is because
[
Ṽn(r)

]
``′

is a reduced operator and a simple operation for a true basis |i〉 ⊗ |a〉

〈a|O|b〉† = 〈b|O†|a〉 (C.13)

does not hold. In this way, the Lindblad operator in the angular momentum basis is obtained by

replacing Ṽni with
[
Ṽn↑(r)

]
and

[
Ṽn↓(r)

]
for n = +,−, d.

Finally, we calculate the operator
[
Ṽn(r)

]
``′

. We only need to calculate the left hand side of the

relation∫
Ω

Y ∗`0(Ω)Ṽn0(r,Ω)Y`′0(Ω) = C1`′(`0; 00)
[
Ṽn(r)

]
``′

=
−
√
`′δ`+1,`′ +

√
`δ`−1,`′√

2`′ + 1

[
Ṽn(r)

]
``′
, (C.14)

where Ṽn0(r,Ω) contains operators such as

z = r cos θ, pz = −i
(

cos θ
∂

∂r
+

sin2 θ

r

∂

∂ cos θ

)
, ez = cos θ. (C.15)

A straightforward calculation shows∫
Ω

Y ∗`0(Ω) cos θY`′0(Ω) =
`′δ`+1,`′ + `δ`−1,`′√
(2`+ 1)(2`′ + 1)

, (C.16a)∫
Ω

Y ∗`0(Ω) sin2 θ
∂

∂ cos θ
Y`′0(Ω) =

`′(`′ + 1)√
(2`+ 1)(2`′ + 1)

(δ`+1,`′ − δ`−1,`′) (C.16b)

and we get

[r]`,`+1 = r [er]`,`+1 = −r
√

`+ 1

2`+ 1
, [r]`,`−1 = r [er]`,`−1 = r

√
`

2`+ 1
, (C.17a)

[p]`,`+1 = i

√
`+ 1

2`+ 1

(
∂

∂r
+
`+ 2

r

)
, [p]`,`−1 = −i

√
`

2`+ 1

(
∂

∂r
− `− 1

r

)
. (C.17b)

To conclude, the orbital parts of the Lindblad operators are[
Ṽ±↑(r)

]
= −

∞∑
`=0

√
`+ 1

2`+ 1

[
r +

1

2MT

(
∂

∂r
− `

r

)
∓ Ncαs

8T

]
|`+ 1〉〈`|, (C.18a)

[
Ṽ±↓(r)

]
=
∞∑
`=1

√
`

2`+ 1

[
r +

1

2MT

(
∂

∂r
+
`+ 1

r

)
∓ Ncαs

8T

]
|`− 1〉〈`|, (C.18b)

[
Ṽd↑(r)

]
= −

∞∑
`=0

√
`+ 1

2`+ 1

[
r +

1

2MT

(
∂

∂r
− `

r

)]
|`+ 1〉〈`|, (C.18c)

[
Ṽd↓(r)

]
=
∞∑
`=1

√
`

2`+ 1

[
r +

1

2MT

(
∂

∂r
+
`+ 1

r

)]
|`− 1〉〈`| (C.18d)

and the full Lindblad operators are constructed by making a direct product with appropriate color
space operators.
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[102] P. Štelmachovič, V. Bužek, Dynamics of open quantum systems initially entangled with environ-
ment: Beyond the kraus representation, Physical Review A 64 (6) (2001) 062106.

[103] P. Pechukas, Reduced dynamics need not be completely positive, Physical review letters 73 (8)
(1994) 1060.

[104] R. Alicki, Comment on “reduced dynamics need not be completely positive”, Physical review
letters 75 (16) (1995) 3020.

[105] P. Pechukas, Pechukas replies, Physical review letters 75 (16) (1995) 3021.

[106] A. Kossakowski, On necessary and sufficient conditions for a generator of a quantum dynamical
semi-group, Bulletin de l’Academie Polonaise des Sciences. Serie des Sciences, Mathematiques,
Astronomiques et Physiques 20 (12) (1972) 1021–1025.

[107] M.-D. Choi, Positive linear maps on c*-algebras, Canadian Journal of Mathematics 24 (3) (1972)
520–529.

[108] S. Schirmer, X. Wang, Stabilizing open quantum systems by markovian reservoir engineering,
Physical Review A 81 (6) (2010) 062306.

[109] E. B. Davies, Markovian master equations, Communications in mathematical Physics 39 (2)
(1974) 91–110.
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