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Preparations and Conventions

• We use units such that “ c = ~ = 1”

• Space-time four vector x:

contravariant form: xµ = (t, ~x)T

covariant form: xµ = (t, −~x)T = gµνx
ν

with µ = 0, 1, 2, 3 and metric tensor defined as

gµν = gµν =










1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1










• Inner product:

a · b = aµb
µ = a0b

0 − ~a ·~b

where, and also from now on, we use the Einstein summation convention.

• Four-gradient:

∂

∂xµ
≡ ∂µ =

(

∂

∂t
, ~∇
)T

∂

∂xµ

≡ ∂µ =

(

∂

∂t
, −~∇

)T

• d’Alembert operator:

� ≡ ∂µ∂
µ =

∂2

∂t2
− ~∇2

• Four-momenta:

pµ = (p0, ~p )T = (E, ~p )T

p2 ≡ pµp
µ = E2 − ~p 2

• Dirac- and Pauli-matrices:

γµ = (γ0, ~γ )T ; γ0 =




1 0

0 −1 , ~γ =




0 ~σ

−~σ 0
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1 =




1 0

0 1



 , σx =




0 1

1 0



 , σy =




0 −i
i 0



 , σz =




1 0

0 −1





γ5 = γ5 ≡ iγ0γ1γ2γ3 =




0 11 0





• Useful properties of Dirac- and Pauli-matrices:

σµν ≡ i

2

[
γµ, γν

]
=
i

2

(
γµγν − γνγµ

)

{
γµ, γν

}
= γµγν + γνγµ = 2gµν

σi · σj = i ǫijk σk

[
σi, σj

]
= 2i ǫijk σk

{
σi, σj

}
= 2δij

where ǫijk is the totally antisymmetric tensor with ǫ123 = +1.
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CHAPTER 1. PRELUDE

1. 1. Quarks in Hadrons and Concept of “Color”

• e+e− annihilation into hadrons

_
e

Hadrons

Quark

+e

γ

Antiquark

FIG. 1.1: Feynman diagram of e+e− → hadrons: The reaction is considered to be proceed through

pair production of quark-antiquark as indicated inside the dashed box.

Comparing the total cross section with that of the elementary process e+e− → µ+µ−

which is the analogue in pure QED:

R =
σ
(
e+e− → Hadrons

)

σ
(
e+e− → µ+µ−

) =
∑

q

σ
(
e+e− → qq̄

)

σ
(
e+e− → µ+µ−

) = Nc

∑

q

Z2
q (1.1)

with

σ
(
e+e− → µ+µ−) =

4πα2
e

3s

σ
(
e+e− → qq̄

)
=

4πα2
e

3s
NcZ

2
q

(1.2)

where s is the center of mass energy squared and αe = e2

4π
≃ 1

137
is the fine struc-

ture constant. The hypothetical introduction of the “color” freedom (Nc = 3) gives

consistent explanation of experimental results as shown in Fig. 1.2.

q u d c s t b

Zq
2
3 −1

3
2
3 −1

3
2
3 −1
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TABLE 1.1: The electric charge Zq of each quark flavor in unit e
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FIG. 1.2: The prediction of the quark model on the total cross section (left) and the ratio R (right)

with Nc = 3. The typical vector meson resonances are represented.

• Spectroscopy and quark models

According to the quark theory ∆++, a particle of spin 3/2, should consist of three u

quarks with parallel spins if in a state of maximal spin projection:

|∆++, mJ = 3/2〉 = | u ↑ u ↑ u ↑〉, (1.3)

while the Pauli exclusion principle forbids three identical fermions in the same ground

state. Therefore it was suggested that each quark has an additional degree of freedom

(three “colors”), thus avoiding violation of the Pauli exclusion principle.

|∆++, mJ = 3/2〉 =
1√
6

∑

ijk

ǫijk | ui ↑ uj ↑ uk ↑〉 (1.4)

1. 2. Quarks as Dirac-Fields

• Quarks are spin 1/2 particles.

• They exist in 6 species called flavors.

• Each quark carries a 3-fold intrinsic degree of freedom (color).
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• Representation of quarks in terms of fields

ψ(x) ≡
(
ψαi(x)

)
=













ψui(x)

ψdi(x)

ψsi(x)
...

ψαi(x)













(1.5)

where α = u, d, s, c, b, t and i = 1, 2, 3 are flavor and color indices respectively.

• Each of the ψαi(x) satisfies a Dirac equation in case of free quarks

[
iγµ∂

µ −m
]
ψ(x) = 0 (1.6)

with the mass matrix

m =
















mu 0 0 0 0 0

0 md 0 0 0 0

0 0 ms 0 0 0

0 0 0 mc 0 0

0 0 0 0 mb 0

0 0 0 0 0 mt
















(1.7)

• Explicit representation (spin projection s = ±1
2
)

ψ(x) =
∑

s

∫
d3p

(2π)3

1

2Ep

[

b(p, s) us(p) e
−ip·x + d†(p, s) vs(p) e

ip·x
]

(1.8)

where Ep =
√
~p 2 +m2

q.

• Definition: State vector of a given quark with spin s = ±1
2

and 4-momentum pµ;

quark : |p, s〉αi = b†αi(p, s)|0〉

antiquark : |p, s〉αi = d†αi(p, s)|0〉
(1.9)
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where the vacuum |0〉 is defined as: b|0〉 = d|0〉 = 0 with:







b† : creation operator for a quark

b : annihilation operator for a quark

d† : creation operator for an antiquark

d : annihilation operator for an antiquark.

• Anticommutation rules for creation and annihilation operators

{

bαi(p, s), b
†
βj(p

′, s′)
}

=
{

dαi(p, s), d
†
βj(p

′, s′)
}

= 2Ep(2π)3δ3(~p− ~p ′)δαβδijδss′ (1.10)

otherwise vanish, e.g.

{
b†, b†

}
=
{
b, b
}

=
{
d†, d†

}
=
{
d, d
}

= 0 (1.11)

• Normalization of state vector

〈 p′ s′ | p s 〉 = 2Ep(2π)3δ3(~p− ~p ′)δss′ (1.12)

• Digression: Lorentz invariant phase space
∫

d4p

(2π)4
2π δ(p2 −m2) =

∫
dE

2π

d3p

(2π)3
2π δ(E2 − ~p 2 −m2)

=

∫
dE

2π

∫
d3p

(2π)3
2π

δ(E −
√

~p 2 +m2)

2E

=

∫
d3p

(2π)32Ep

(1.13)

where Ep =
√

~p 2 +m2

• Dirac equations for particle and antiparticle

(
γµp

µ −m
)
us(p) = 0

(
γµp

µ +m
)
vs(p) = 0

(1.14)

Free Dirac spinors

us(p) =
√

Ep +m




χs

~σ · ~p
Ep+m

χs





vs(p) = η (−1)
1
2
−s

︸ ︷︷ ︸

phase free

√

Ep +m





~σ · ~p
Ep+m

χ−s

χ−s



 ,

(1.15)
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where χs= 1
2

=




1

0



 and χs=− 1
2

=




0

1



 respectively.

• Normalization of spinors

u†s(p) us′(p) = 2Ep δss′

v†s(p) vs′(p) = 2Ep δss′.
(1.16)

1. 3. Quark Currents

• Dirac current density of quarks:

Jµ(x) = ψ̄(x) γµ ψ(x)

J0(x) = ψ̄(x) γ0 ψ(x) = ψ†(x)ψ(x) ≡ ρ(x)

~J(x) = ψ̄(x)~γ ψ(x) = ψ†(x) γ0~γ ψ(x) = ψ†(x) ~α ψ(x)

(1.17)

where ψ̄ = ψ†γ0 and ~α =




0 ~σ

~σ 0





• Continuity equation:

∂µJ
µ(x) =

∂ρ

∂t
+ ~∇ · ~J = 0 (1.18)

• Electromagnetic quark current:

Jµ
e.m.(x) = ψ̄(x)Qγµψ(x) (1.19)

with quark charges, Q =







±2
3
e for u, c, t or ū, c̄, t̄

∓1
3
e for d, s, b or d̄, s̄, b̄

.

1. 4. Lagrangian Density (Lagrangian) of free quarks

L0(x) = ψ̄(x)
[
iγµ∂

µ −m
]
ψ(x) (1.20)

• Generalized variables: fields ψ, ∂µψ, ψ̄ and ∂µψ̄.
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• Action for free quark:

S0 =

∫

d4xL0(x) = S0

[
ψ, ∂µψ ; · · ·

]
(1.21)

⊲ Stationary action principle: δ S0 = 0.

• Euler-Lagrange equations:

∂L0

∂ψ
− ∂µ ∂L0

∂(∂µψ)
= 0

∂L0

∂ψ̄
− ∂µ ∂L0

∂
(
∂µψ̄

) = 0.
(1.22)

• Dirac equations from Euler-Lagrange equations:

∂L0

∂ψ̄
= 0 ⇒

[
iγµ∂

µ −m
]
ψ(x) = 0

∂L0

∂ψ
= ∂µ ∂L0

∂
(
∂µψ

) ⇒ ψ̄(x)
[
iγµ∂

µ −m
]

= 0

1. 5. Hamiltonian Density (Hamiltonian)

• Canonical conjugate field:

π =
∂L
∂ψ̇

(1.23)

L0 = ψ̄
[

iγ0
∂

∂t
+ i~γ · ~∇−m

]

ψ ⇒ π = iψ̄γ0 = iψ† (1.24)

• Canonical form of Hamiltonian as Legendre transform from Lagrangian:

H(x) = πψ̇ − L(x)

= ψ†[− i~α · ~∇ + βm
]
ψ

= ψ†i
∂

∂t
ψ,

(1.25)

where ~α ≡ γ0~γ and β ≡ γ0.

• Dirac equation in Hamiltonian form

[
− i~α · ~∇ + βm

]
ψ(x) = i

∂

∂t
ψ(x) (1.26)
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