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Abstract

We describe the development of a theoretical description of the structure of finite nuclei based
on a relativistic quark model of the structure of the bound nucleons which interact through
the (self-consistent) exchange of scalar and vector mesons.

1. Introduction

By now it is well established that one needs many-body forces to understand
the structure of atomic nuclei. There are many ways of dealing with this problem.
In the space available we cannot review the problem in general, rather we shall
focus on recent progress based on one specific model—the quark–meson coupling
model originally proposed by Guichon [1].

The quark–meson coupling model may be viewed as an extension of QHD
in which the nucleons still interact through the exchange of σ and ω mesons.
However, the mesons couple not to point-like nucleons but to confined quarks. In
studies of infinite nuclear matter it was found that the extra degree of freedom
provided by the internal structure of the nucleon means that one gets quite an
acceptable value for the incompressibility once gσ and gω are chosen to reproduce
the correct saturation energy and density. This is a significant improvement on
QHD [2,3] at the same level of sophistication.

In the light of current experimental work in relativistic heavy ion collisions,
which produce nuclear matter at densities several times normal, there has been
some initial work on the variation of baryon and meson properties with density
using the quark–meson coupling model [4]. There have also been some interesting
applications to the properties of finite nuclei using the local-density approximation,
notably the Okamoto–Nolen–Schiffer anomaly [5] and super-allowed Fermi β-decay
[6]. However, the inherent problems of the local-density approximation mean
that these applications can at best be semi-quantitative and it is clearly very
important that the extension to finite nuclei be developed.
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Our aim here is review a recently developed formulation of the quark–meson
coupling model for finite nuclei [7], based on the Born–Oppenheimer approximation.
We shall pay particular attention to the spin–orbit force in the model and its
relation to the corresponding force in conventional models involving meson
exchange between point-like nucleons. Some initial results for finite nuclei will
also be presented.

2. Born–Oppenheimer Approximation for Finite Nuclei

The solution of the general problem of a composite, quantum particle moving
in background scalar and vector fields that vary with position is extremely
difficult. One has a chance to solve the particular problem of interest to us,
namely light quarks confined in a ‘nucleon’ which is itself bound in a finite
nucleus, only because the nucleon motion is relatively slow and the quarks highly
relativistic. Thus the Born-Oppenheimer approximation, in which the ‘nucleon’
internal structure has time to adjust to the local fields, is naturally suited to the
problem. It is relatively easy to establish that the method should be reliable at
the level of a few percent.

Even within the Born-Oppenheimer approximation the nuclear surface gives
rise to external fields that may vary appreciably across the finite size of the
nucleon. Our approach has been to start with a classical ‘nucleon’ and to allow
its internal structure (quark wavefunctions and bag radius) to adjust to minimise
the energy of three quarks in the ground state of a system consisting of the
bag plus constant scalar and vector fields, with the values at the centre of
the ‘nucleon’. (From now on we shall not put quotation marks on ‘nucleon’,
but it should be remembered that our bound nucleon is a quasi-particle whose
structure necessarily differs from that of a free nucleon.) Of course, the major
problem with the MIT bag (as with many other relativistic models of nucleon
structure) is that it is difficult to boost. We therefore solve the bag equations
in the instantaneous rest frame (IRF) of the nucleon—using a standard Lorentz
transformation to find the energy and momentum of the classical nucleon bag in
the nuclear rest frame.

Having solved the problem using the fields at the centre of the nucleon one
can then use perturbation theory to correct for the variation of the scalar and
vector fields across the bag. In first order perturbation theory only the spatial
components of the vector potential give a non-vanishing contribution. (Note that
although in the nuclear rest frame only the time component of the vector field is
non-zero, in the nucleon IRF there are also non-vanishing spatial components.)
This extra term is a small spin–orbit correction to the energy

δM∗N (~R) = ηs(~R)
µs

M?2
N (~R)R

(
d

dR
3gqωω(~R)

)
~S · ~L , (1)

where µs is the isoscalar magnetic moment of the nucleon bag, 3gqωω is the vector
potential felt by the nucleon with effective mass M∗N and ηs is a correction factor
of order unity. In retrospect it is not surprising that the scalar magnetic moment
appears, as this correction is associated with the effective magnetic field of the
vector potential.
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The interaction in Eq. (1) induces a rotation of the spin as a function of time.
However, even if µs were equal to zero, the spin would rotate because of Thomas
precession. Suppose that at time t, the spin vector is ~S(t) in the IRF(t). Then
we expect that, at time t + dt the spin has the same direction if it is viewed
from the frame obtained by boosting the IRF(t) by d~v so as to get the right
velocity ~v(t+ dt). That is, the spin looks at rest in the frame obtained by first
boosting the NRF to ~v(t) and then boosting by d~v. This product of Lorentz
transformation amounts to a boost to ~v(t+ dt) times a rotation. So, viewed from
the IRF(t + dt), the spin appears to rotate. In order that our Hamiltonian be
correct it should contain a piece Hprec which produces this rotation through the
Hamilton equations of motion. A detailed derivation can be found in Refs [8, 9]
and the result is

Hprec = − 1
2~v ×

d~v

dt
· ~S. (2)

One may find the acceleration corresponding to the interaction (2) from the
Hamilton equations of motion. This gives

d~v

dt
= − 1

M?
N (~R)

~∇[M?
N (~R) + 3gqωω(~R)]. (3)

If we put this result into Eq. (2) and add the result to Eq. (1), we get the
total spin–orbit interaction (to first order in the velocity)

Hprec. +H1 = Vs.o.(~R)~S · ~L, (4)

where

Vs.o.(~R) = − 1

2M?2
N (~R)R

[(
d

dR
M?
N (~R)

)
+ [1− 2µsηs(~R)]

(
d

dR
3gqωω(~R)

)]
. (5)

(2a) Centre of Mass Motion

We have already mentioned the difficulty of boosting the bag, a problem which
is closely related to the removal of spurious centre of mass motion. In Ref. [10]
the effective mass of the nucleon at each radius was computed by removing the
average value of the square of the momentum of the three quarks, computed in
the bag at each radius. This gives a very strong field dependence which reduces
the vector potential needed to reproduce the correct saturation properties of
nuclear matter. In Ref. [7] we studied the relativistic oscillator in an external
field and found that the field dependence of the c.m. correction was, in fact,
quite small. Therefore we have not followed the prescription of Ref. [10], but
instead used a phenomenological c.m. correction to the bag energy of the form
−z0/RB , which is not strongly dependent on the applied fields. As a consequence
the vector potential in this work tends to be a little bigger (and the nucleon
effective mass a little smaller) than in earlier work [4, 10, 11].
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(2b) Quantization of the Motion of the Nucleon

Having obtained the expressions for the energy and momentum of the bound,
classical nucleon we can then quantize its motion. In many ways the simplest
quantization procedure would be to set ~P → −i~∇R in a non-relativistic expansion
of the energy. There is then a small ambiguity over the ordering of ~∇R and
M∗N (~R) which is discussed in detail in Ref. [7]. An alternative procedure, which is
designed to clarify the connection to QHD, is to quantize using the Dirac equation
for the nucleon. In this case, the idea is to write a relativistic Lagrangian which
gives equivalent expressions for the nucleon energy and momentum in mean-field
approximation. This Lagrangian density is

L = iψγ · ∂ψ −MNψψ + gσ(σ̂)σ̂ψψ − gωω̂µψγµψ + Lmesons, (6)

and clearly the only difference from QHD lies in the fact that the internal structure
of the nucleon has forced a (known) dependence of the scalar meson–nucleon
coupling constant, gσ(σ̂) on the scalar field itself. In terms of this coupling
constant the nucleon effective mass is

M?
N (σ̂) = MN − gσ(σ̂)σ̂ . (7)

3. Self-consistent Field Equations

In the mean field approximation, the meson field operators in Eq. (6) are
replaced by their time independent expectation values in the ground state of
the nucleus. As the resulting equations are in a form which closely resembles
the QHD equations in the Hartree approximation and one can relatively easily
adapt existing computer programs to solve the quark–meson coupling model, it
seems worth while to summarise the field equations here. For simplicity we shall
retain only the σ and ω fields, although it is straightforward to generalise these
equations to include isovector mesons.

As explained above, the nucleon satisfies the Dirac equation

(iγ · ∂ −M?
N (σ)− gωγ0ω)ψ = 0 , (8)

where the nucleon effective mass M?
N (σ) is given by Eq. (7) and the scalar and

vector fields satisfy

(−∇2
r +m2

σ)σ(~r) = −
(
∂

∂σ
M?
N (σ)

)
〈A|ψψ(~r)|A〉 , (9)

(−∇2
r +m2

ω)ω(~r) = gω〈A|ψ†ψ(~r)|A〉 . (10)

Note that the internal structure of the nucleon enters only through the scalar
field dependence of the scalar coupling constant. In terms of the scalar charge
of the nucleon

S(~r) =

∫
Bag

d~uq(~u− ~r)q(~u− ~r) (11)
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(where q is the quark wave function in the bound nucleon), which can be expressed
in closed form as

S(~r) =
Ω0/2 +m?

qRB(Ω0 − 1)

Ω0(Ω0 −−1) +m?
qRB/2

, (12)

we can define C(σ):

C(~r) = S(~r)/S(σ = 0) . (13)

Then for consistency gσ(σ) and C(σ) must be related by

C(σ)gσ(σ = 0) = − ∂

∂σ
M?
N (σ) =

∂

∂σ
(gσ(σ)σ) . (14)

It turns out that C(σ) is well approximated by a linear form

C(σ) = 1− a× (gσσ) (15)

[where gσ ≡ gσ(σ = 0)] so that C decreases by between 10 and 20% between free
space and the density of normal nuclear matter [7]. Indeed, in this case one can
easily solve Eq. (14) for gσ(σ), obtaining

M?
N = MN −

[
1− a

2
(gσσ)

]
(gσσ) . (16)

In conclusion, we note for completeness the relation between the quark level
coupling constants and those at the nucleon level

gσ = 3gqσS(σ = 0), gω = 3gqω . (17)

4. More on the Spin–Orbit Force

We saw earlier that the internal structure of the nucleon leads to a spin–orbit
coupling to the (isoscalar) vector potential proportional to 1− 2µs (ignoring the
small medium correction ηs). For the ρ meson we find the same expression
but with the isovector nucleon magnetic moment. Now in the isoscalar case it
happens that µs is approximately one so that 1− 2µs ≈ −1 which is what one
obtains directly from the non-relativistic reduction of the Dirac equation (8).
Thus one can simply use the Dirac equation without any serious loss of accuracy.

On the other hand, in the isovector case one has an isovector nucleon magnetic
moment equal to 4 ·7 nuclear magnetons, which is very far from unity and it
appears that the Dirac formalism is inappropriate. However, it is well known in
the one-boson-exchange models of the NN force, that the ρ coupling to the nucleon
has a large anomalous piece, fρψσ

µνψ∂νρµ. In the mean field approximation such
couplings can be ignored for nuclear matter because the meson field is independent
of position and time. The situation is rather different in a finite nucleus, where
the time component of the vector field varies with radius. In fact, in this case
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it is relatively straightforward to show that the non-relativistic reduction of the
Dirac equation, including an anomalous coupling, gives a spin–orbit term equal
to that derived in Eq. (8) provided fρ/gρ is chosen to be the isovector, anomalous
magnetic moment 3 ·7 ≡ (µp − 1)− µn.

Clearly we could improve the accuracy of the treatment of the ω too by
adding a small anomalous, isoscalar term with fω/gω = −0 ·12. It will be very
interesting to extend these considerations to other cases—for example, the Λ and
Σ hypernuclei. For an initial investigation of the masses of hyperons in dense
nuclear matter we refer to Ref. [4]. (Note, however, that that work used the
treatment of c.m. corrections to the bag energy which we now believe to be
inappropriate—cf. Section 2 above.)

Fig. 1. Charge density of 16O in the present model and QHD, compared with the experimental
distribution.

5. Initial Results

As an initial investigation of the application of the quark–meson coupling
model to finite nuclei we have considered the case of 16O. For the protons one
must, of course, include the central Coulomb repulsion. The numerical calculation
was carried out using the techniques described by Walecka and Serot [3]. The
resulting charge density for 16O is shown in Fig. 1 (dotted curve) in comparison
with the experimental data [12] (hatched area) and QHD [3] (dashed curve).

The parameters used correspond to a free bag radius of 0 ·8 fm—although this
shrinks by about 2% at nuclear matter density. As the central density tended to
be a little high in comparison with experiment we increased the model dependent
slope parameter, a in Eq. (15), by about 10% (above that calculated in the bag
model) to obtain the results shown. The corresponding effect on the saturation
energy and density of nuclear matter was very small. It is interesting to note,
although the physical significance of the observation is not at all clear, that if
the quark mass was taken to be around 300 MeV, rather than near zero (i.e. a
constituent mass rather than a current quark mass) the density of 16O was just
as good without the need to adjust a at all.
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6. Concluding Remarks

Having made so much progress in the development of the quark–meson coupling
model there is a great deal of interest in exploring its consequences. The obvious
extensions of the work described here and in Ref. [7] to heavier nuclei are already
underway. In view of the promising results for nuclear charge symmetry breaking
and β-decay obtained using the local density approximation we are also keen
to explore these applications in a genuine finite nucleus. For hypernuclei the
natural extension (cf. Ref. [4]) is to assume that the σ and ω mesons couple only
to the non-strange constituents. From our discussion of the spin–orbit force in
Section 4 and the fact that the spin of the Λ is carried entirely by the strange
quark, one can easily see that the Λ spin–orbit force will arise entirely from the
Thomas precession term. As the scalar and vector potentials tend to cancel in
that term cf. Eq. (3), this means that the Λ spin–orbit force is very naturally
suppressed in this model—as observed experimentally. It will be important to
follow this observation with quantitative results.

In view of the suggestion that vector meson masses may be substantially lower
in dense matter [13, 14] it will also be interesting to repeat our earlier work [4]
with the new treatment of the c.m. correction—i.e. with our larger scalar and
vector fields. As a first estimate, however, we can take the lesson of Ref. [4] that
the reduction in the mass scales with the number of non-strange quarks, and
the result in the present model that the nucleon effective mass is of the order of
600 MeV at 2 ·5ρ0, to estimate that at such densities the effective mass of the
ρ meson should also be around 600 MeV. This seems to be roughly the range
needed to understand the current experiments.

In terms of further theoretical development it will be interesting to compare
the present model with more phenomenological, non-linear extensions of QHD—as
reviewed recently in Ref. [15]. We would also like to consider the replacement
of the effective σ-meson exchange by two-pion-exchange within a chiral quark
model such as the cloudy bag [16]. Finally one would also like to find ways to
replace at least some of the repulsion associated with ω exchange by nucelon
overlap with quark and gluon exchange.
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