Quarter-symmetric metric connection in a P-Sasakian manifold

Krishanu Mandal and Uday Chand De

Abstract

In this paper, we consider a quarter-symmetric metric connection in a P-Sasakian manifold. We investigate the curvature tensor and the Ricci tensor of a P-Sasakian manifold with respect to the quarter-symmetric metric connection. We consider semisymmetric P-Sasakian manifold with respect to the quartersymmetric metric connection. Furthermore, we consider generalized recurrent P-Sasakian manifolds and prove the non-existence of recurrent and pseudosymmetric P-Sasakian manifolds with respect to the quarter-symmetric metric connection. Finally, we construct an example of a 5 -dimensional P-Sasakian manifold admitting quarter-symmetric metric connection which verifies Theorem 4.1.

AMS Subject Classification (2000). 53C35,53D40.
Keywords. Quarter-symmetric metric connection, P-Sasakian manifold, semi-symmetric manifold, generalized recurrent manifold, recurrent manifold, pseudosymmetric manifold.

1 Introduction

A linear connection $\widetilde{\nabla}$ in a Riemannian manifold M is said to be a quartersymmetric connection $[10]$ if the torsion tensor T of the connection $\stackrel{\rightharpoonup}{\nabla}$

$$
\begin{equation*}
T(X, Y)=\widetilde{\nabla}_{X} Y-\widetilde{\nabla}_{Y} X-[X, Y] \tag{1.1}
\end{equation*}
$$

satisfies

$$
\begin{equation*}
T(X, Y)=\eta(Y) \phi X-\eta(X) \phi Y \tag{1.2}
\end{equation*}
$$

where η is a 1 -form and ϕ is a $(1,1)$ tensor field. If moreover, a quartersymmetric connection $\widetilde{\nabla}$ satisfies the condition

$$
\begin{equation*}
\left(\widetilde{\nabla}_{X} g\right)(Y, Z)=0 \tag{1.3}
\end{equation*}
$$

where $X, Y, Z \in \chi(M)$, then $\widetilde{\nabla}$ is said to be a quarter-symmetric metric connection, otherwise it is said to be a quarter-symmetric non-metric connection. If we put $\phi X=X$, then the quarter-symmetric metric connection reduces to a semi-symmetric metric connection [22]. Thus the notion of quartersymmetric connection generalizes the idea of the semi-symmetric connection.

A non-flat n-dimensional Riemannian manifold $(n>3)$ is called generalized recurrent [7] if its curvature tensor R satisfies the condition

$$
\begin{equation*}
\left(\nabla_{X} R\right)(Y, Z) W=\alpha(X) R(Y, Z) W+\beta(X)[g(Z, W) Y-g(Y, W) Z] \tag{1.4}
\end{equation*}
$$

where ∇ is the Levi-Civita connection and α and β are two 1 -forms, $\beta \neq 0$. If $\beta=0$ and $\alpha \neq 0$, then M is called recurrent [21].

A non-flat n-dimensional Riemannian manifold $M(n>3)$ is said to be pseudosymmetric [4] if there exists a non-zero 1-form α on M such that

$$
\begin{align*}
\left(\nabla_{X} R\right)(Y, Z) W= & 2 \alpha(X) R(Y, Z) W+\alpha(Y) R(X, Z) W \\
& +\alpha(Z) R(Y, X) W+\alpha(W) R(Y, Z) X \\
& +g(R(Y, Z) W, X) \rho \tag{1.5}
\end{align*}
$$

where $X, Y, Z, W \in \chi(M)$ and ρ is the corresponding vector field metrically equivalent to the 1-form α defined by

$$
\begin{equation*}
g(X, \rho)=\alpha(X) \tag{1.6}
\end{equation*}
$$

for all $X \in \chi(M)$.
A Riemannian manifold (M, g) is called locally symmetric if its curvature tensor R is parallel, that is, $\nabla R=0$. The notion of semisymmetric, a proper generalization of locally symmetric manifold, is defined by $R(X, Y) \cdot R=0$, where $R(X, Y)$ acts on R as a derivation. A complete intrinsic classification of these manifolds was given by Szabó in [20].

Quarter-symmetric metric connection in a Riemannian manifold studied by several authors such as S.C. Rastogi ([15], [16]), Yano and Imai [23],

Mukhopadhyay, Roy and Barua [13], Biswas and De [3], De and Mondal [5], Sular et al [19], Kumar et al [11] and many others.

Motivated by the above studies in the present paper, we study quartersymmetric metric connection in a P-Sasakian manifold. The paper is organized as follows: In Section 2, we first give a brief account of P-Sasakian manifolds. In Section 3, we obtain the expressions of the curvature tensor and the Ricci tensor of a P-Sasakian manifold with respect to the quartersymmetric metric connection. Section 4 is devoted to study semisymmetric P-sasakian manifolds with respect to the quarter-symmetric metric connection and in this case we have shown that such manifolds are Einstein manifolds with respect to the quarter-symmetric metric connection. Section 5 deals with generalized recurrent P-Sasakian manifold with respect to the quarter-symmetric metric connection. In Section 6, we consider pseudosymmetric P-Sasakian manifold with respect to the quarter-symmetric metric connection and we obtain the non-existence of these type of manifolds. Finally, we construct an example of a 5 -dimensional P-Sasakian manifold admitting quarter-symmetric metric connection which verifies Theorem 4.1.

$2 \quad P$-Sasakian manifolds

Let M be an n-dimensional differentiable manifold of class C^{∞} in which there are given a $(1,1)$-type tensor field ϕ, a characteristic vector field ξ and a 1-form η such that

$$
\begin{equation*}
\phi^{2} X=X-\eta(X) \xi, \phi \xi=0, \eta(\xi)=1, \eta(\phi X)=0 . \tag{2.1}
\end{equation*}
$$

Then (ϕ, ξ, η) is called an almost paracontact structure and M an almost paracontact manifold. Moreover, if M admits a Riemannian metric g such that

$$
\begin{equation*}
g(\xi, X)=\eta(X), g(\phi X, \phi Y)=g(X, Y)-\eta(X) \eta(Y), \tag{2.2}
\end{equation*}
$$

then (ϕ, ξ, η, g) is called an almost paracontact metric structure and M an almost paracontact metric manifold [17]. If (ϕ, ξ, η, g) satisfy the following equations:

$$
\begin{align*}
& d \eta=0, \nabla_{X} \xi=\phi X \\
& \left(\nabla_{X} \phi\right) Y=-g(X, Y) \xi-\eta(Y) X+2 \eta(X) \eta(Y) \xi, \tag{2.3}
\end{align*}
$$

then M is called a para-Sasakian manifold or briefly a P-Sasakian manifold [1]. Especially, a P-Sasakian manifold M is called a special para-Sasakian manifold or briefly a $S P$-Sasakian manifold [18] if M admits a 1 -form η satisfying

$$
\begin{equation*}
\left(\nabla_{X} \eta\right)(Y)=-g(X, Y)+\eta(X) \eta(Y) \tag{2.4}
\end{equation*}
$$

Also in a P-Sasakian manifold the following relations hold [1], [6], [14]:

$$
\begin{gather*}
S(X, \xi)=-(n-1) \eta(X), Q \xi=-(n-1) \xi, \tag{2.5}\\
\eta(R(X, Y) Z)=g(X, Z) \eta(Y)-g(Y, Z) \eta(X), \tag{2.6}\\
R(X, \xi) Y=g(X, Y) \xi-\eta(Y) X \tag{2.7}\\
R(X, Y) \xi=\eta(X) Y-\eta(Y) X \tag{2.8}\\
S(\phi X, \phi Y)=S(X, Y)+(n-1) \eta(X) \eta(Y), \tag{2.9}\\
\eta(R(X, Y) \xi)=0 \tag{2.10}
\end{gather*}
$$

for any vector fields $X, Y, Z \in \chi(M)$, where R is the Riemannian curvature tensor, S is the Ricci tensor and Q is the Ricci operator defined by

$$
g(Q X, Y)=S(X, Y)
$$

P-Sasakian manifolds have been studied by several authors such as De et al [8], Yildiz et al [24], Deshmukh and Ahmed [9], Matsumoto, Ianus and Mihai [12], Özgür [14], Adati and Miyazawa [2] and many others.

An almost paracontact Riemannian manifold M is said to be an η-Einstein manifold if the Ricci tensor S satisfies the condition

$$
S(X, Y)=a g(X, Y)+b \eta(X) \eta(Y)
$$

where a and b are smooth functions on the manifold. In particular, if $b=0$, then M is an Einstein manifold.

3 Curvature tensor of a P-Sasakian manifold with respect to the quarter-symmetric metric connection

Let $\widetilde{\nabla}$ be a linear connection and ∇ be the Levi-Civita connection of a P Sasakian manifold M such that

$$
\begin{equation*}
\widetilde{\nabla}_{X} Y=\nabla_{X} Y+U(X, Y) \tag{3.1}
\end{equation*}
$$

where U is a (1,1)-type tensor. For $\widetilde{\nabla}$ to be a quarter-symmetric metric connection in M, we have [10],

$$
\begin{equation*}
U(X, Y)=\frac{1}{2}\left[T(X, Y)+T^{\prime}(X, Y)+T^{\prime}(Y, X)\right] \tag{3.2}
\end{equation*}
$$

where

$$
\begin{equation*}
g\left(T^{\prime}(X, Y), Z\right)=g(T(Z, X), Y) \tag{3.3}
\end{equation*}
$$

From (1.2) and (3.3) we get

$$
\begin{equation*}
T^{\prime}(X, Y)=\eta(X) \phi Y-g(\phi X, Y) \xi \tag{3.4}
\end{equation*}
$$

Using (1.2) and (3.4) in (3.2), we have

$$
\begin{equation*}
U(X, Y)=\eta(Y) \phi X-g(\phi X, Y) \xi \tag{3.5}
\end{equation*}
$$

Therefore a quarter-symmetric metric connection $\widetilde{\nabla}$ in a P-Sasakian manifold is given by

$$
\begin{equation*}
\widetilde{\nabla}_{X} Y=\nabla_{X} Y+\eta(Y) \phi X-g(\phi X, Y) \xi . \tag{3.6}
\end{equation*}
$$

Let \widetilde{R} and R be the curvature tensors with respect to the quarter-symmetric metric connection $\widetilde{\nabla}$ and the Levi-Civita connection ∇ respectively. Then we have from (3.6),

$$
\begin{align*}
\widetilde{R}(X, Y) U= & R(X, Y) U+3 g(\phi X, U) \phi Y-3 g(\phi Y, U) \phi X \\
& +\eta(U)[\eta(X) Y-\eta(Y) X] \\
& -[\eta(X) g(Y, U)-\eta(Y) g(X, U)] \xi \tag{3.7}
\end{align*}
$$

where

$$
\widetilde{R}(X, Y) U=\widetilde{\nabla}_{X} \widetilde{\nabla}_{Y} U-\widetilde{\nabla}_{Y} \widetilde{\nabla}_{X} U-\widetilde{\nabla}_{[X, Y]} U
$$

and $X, Y, Z \in \chi(M)$. By suitable contraction we have from (3.7)

$$
\begin{equation*}
\widetilde{S}(Y, U)=S(Y, U)+2 g(Y, U)-(n+1) \eta(Y) \eta(U)-3 \operatorname{trace} \phi g(\phi Y, U) \tag{3.8}
\end{equation*}
$$

where \widetilde{S} and S are the Ricci tensors of the connections $\widetilde{\nabla}$ and ∇, respectively. Hence we have the following theorem:

Theorem 3.1. For a P-Sasakian manifold (M, g) with respect to the quartersymmetric metric connection $\widetilde{\nabla}$
(a) The curvature tensor \widetilde{R} is given by (3.7),
(b) The Ricci tensor \widetilde{S} is symmetric,
(c) $\widetilde{R}(X, Y, Z, W)+\widetilde{R}(X, Y, W, Z)=0$,
(d) $\widetilde{R}(X, Y, Z, W)+\widetilde{R}(Y, X, Z, W)=0$,
(e) $\widetilde{R}(X, Y, Z, W)=\widetilde{R}(Z, W, X, Y)$,
(f) $\widetilde{S}(Y, \xi)=-2(n-1) \eta(Y)$,
where $X, Y, Z, W \in \chi(M)$.
With the help of (2.7), (2.8) and (2.1) in (3.7) we obtain

$$
\begin{equation*}
\widetilde{R}(\xi, Y) U=2[\eta(U) Y-g(U, Y) \xi] \tag{3.9}
\end{equation*}
$$

and

$$
\begin{equation*}
\widetilde{R}(X, Y) \xi=2[\eta(X) Y-\eta(Y) X] \tag{3.10}
\end{equation*}
$$

where $X, Y \in \chi(M)$.

4 Semisymmetric P-Sasakian manifolds with respect to the quarter-symmetric metric connection

In this section we characterize semisymmetric P-Sasakian manifolds with respect to the quarter-symmetric metric connection, that is, the curvature tensor satisfies the condition

$$
(\widetilde{R}(\xi, Y) \cdot \widetilde{R})(U, V) W=0
$$

This implies

$$
\begin{align*}
& \widetilde{R}(\xi, Y) \widetilde{R}(U, V) W-\widetilde{R}(\widetilde{R}(\xi, Y) U, V) W \\
& -\widetilde{R}(U, \widetilde{R}(\xi, Y) V) W-\widetilde{R}(U, V) \widetilde{R}(\xi, Y) W=0 \tag{4.1}
\end{align*}
$$

Using (3.9) and (4.1) yields

$$
\begin{align*}
& 2 \eta(\widetilde{R}(U, V) W) Y-2 g(Y, \widetilde{R}(U, V) W) \xi-2 \eta(U) \widetilde{R}(Y, V) W \\
& +2 g(Y, U) \widetilde{R}(\xi, V) W-2 \eta(V) \widetilde{R}(U, Y) W+2 g(V, Y) \widetilde{R}(U, \xi) W \\
& -2 \eta(W) \widetilde{R}(U, V) Y+2 g(Y, W) \widetilde{R}(U, V) \xi=0 \tag{4.2}
\end{align*}
$$

Taking inner product of (4.2) with ξ, we obtain

$$
\begin{align*}
& 2 \eta(\widetilde{R}(U, V) W) \eta(Y)-2 g(Y, \widetilde{R}(U, V) W)-2 \eta(U) \eta(\widetilde{R}(Y, V) W) \\
& +2 g(Y, U) \eta(\widetilde{R}(\xi, V) W)-2 \eta(V) \eta(\widetilde{R}(U, Y) W)+2 g(V, Y) \eta(\widetilde{R}(U, \xi) W) \\
& -2 \eta(W) \eta(\widetilde{R}(U, V) Y)+2 g(Y, W) \eta(\widetilde{R}(U, V) \xi)=0 . \tag{4.3}
\end{align*}
$$

With the help of (3.7), (3.9), (3.10) we get from (4.3)

$$
\begin{align*}
& 4 \eta(Y)[g(U, W) \eta(V)-g(V, W) \eta(U)]-2\{g(R(U, V) W, Y) \\
& +3 g(\phi U, W) g(\phi V, Y)-3 g(\phi V, W) g(\phi U, Y)+\eta(W)[\eta(U) g(V, Y) \\
& -\eta(V) g(U, Y)]-\eta(Y)[\eta(U) g(V, W)-\eta(V) g(U, W)]\} \\
& -4 \eta(U)[g(Y, W) \eta(V)-g(V, W) \eta(Y)]+4 g(Y, U)[\eta(V) \eta(W) \\
& -g(V, W)]-4 \eta(V)[g(U, W) \eta(Y)-g(Y, W) \eta(U)] \\
& +4 g(V, Y)[g(U, W)-\eta(W) \eta(U)] \\
& -4 \eta(W)[g(U, Y) \eta(V)-g(V, Y) \eta(U)]=0 \tag{4.4}
\end{align*}
$$

Equation (4.4) implies

$$
\begin{align*}
& g(R(U, V) W, Y)+3 g(\phi U, W) g(\phi V, Y)-3 g(\phi V, W) g(\phi U, Y) \\
& +g(V, Y) \eta(U) \eta(W)-g(U, Y) \eta(V) \eta(W)-g(V, W) \eta(U) \eta(Y) \\
& +g(U, W) \eta(V) \eta(Y)+2 g(Y, U) g(V, W)-2 g(U, W) g(V, Y)=0 . \tag{4.5}
\end{align*}
$$

Now putting $V=W=e_{i}$ in (4.5), where $\left\{e_{i}\right\}$ is an orthonormal basis of the tangent space at each point of the manifold, and taking summation over $i=1,2, \ldots, n$, we get

$$
\begin{equation*}
S(U, Y)=-2 n g(U, Y)+(n+1) \eta(U) \eta(Y)+3 \text { trace } \phi g(\phi U, Y) . \tag{4.6}
\end{equation*}
$$

Again from (3.8) and (4.6) we have

$$
\begin{equation*}
\widetilde{S}(U, Y)=-2(n-1) g(U, Y) \tag{4.7}
\end{equation*}
$$

By making contraction of (4.7) we obtain

$$
\begin{equation*}
\widetilde{r}=-2 n(n-1) . \tag{4.8}
\end{equation*}
$$

This leads to the following theorem:
Theorem 4.1. If a P-Sasakian manifold is semisymmetric with respect to the quarter-symmetric metric connection, then the manifold is an Einstein manifold with respect to the quarter-symmetric metric connection and the scalar curvature with respect to the quarter-symmetric metric connection is a negative constant.

5 Generalized recurrent P-Sasakian manifolds with respect to the quarter-symmetric metric connection

In this section we consider generalized recurrent P-Sasakian manifolds with respect to the quarter-symmetric metric connection $\widetilde{\nabla}$. Let us assume that
there exists a generalized recurrent P-Sasakian manifold M with respect to the quarter-symmetric metric connection $\widetilde{\nabla}$. Then from (1.4), we have

$$
\begin{equation*}
\left(\widetilde{\nabla}_{X} \widetilde{R}\right)(Y, Z) W=\alpha(X) \widetilde{R}(Y, Z) W+\beta(X)[g(Z, W) Y-g(Y, W) Z] \tag{5.1}
\end{equation*}
$$

for all vector fields $X, Y, Z, W \in \chi(M)$. Substituting $Y=W=\xi$ in (5.1) we obtain

$$
\begin{equation*}
\left(\widetilde{\nabla}_{X} \widetilde{R}\right)(\xi, Z) \xi=\alpha(X) \widetilde{R}(\xi, Z) \xi+\beta(X)[\eta(Z) \xi-Z] \tag{5.2}
\end{equation*}
$$

We have from (3.10)

$$
\begin{equation*}
\left(\widetilde{\nabla}_{X} \widetilde{R}\right)(Y, Z) \xi=2\left[\left(\left(\widetilde{\nabla}_{X} \eta\right) Y\right) Z-\left(\left(\widetilde{\nabla}_{X} \eta\right) Z\right) Y\right] \tag{5.3}
\end{equation*}
$$

On the other hand using (3.6), (2.3) and (1.3) we get

$$
\begin{equation*}
\left(\widetilde{\nabla}_{X} \eta\right) Y=2 g(Y, \phi X) \tag{5.4}
\end{equation*}
$$

So by the use of (5.4) in (5.3) we have

$$
\begin{equation*}
\left(\widetilde{\nabla}_{X} \widetilde{R}\right)(Y, Z) \xi=4[g(Y, \phi X) Z-g(Z, \phi X) Y] . \tag{5.5}
\end{equation*}
$$

Putting $Y=\xi$ in the above equation yields

$$
\begin{equation*}
\left(\widetilde{\nabla}_{X} \widetilde{R}\right)(\xi, Z) \xi=-4 g(Z, \phi X) \xi \tag{5.6}
\end{equation*}
$$

Again from (3.10) we have

$$
\begin{equation*}
\widetilde{R}(\xi, Z) \xi=2[Z-\eta(Z) \xi] \tag{5.7}
\end{equation*}
$$

Thus we get from (5.2) and (5.7)

$$
\begin{equation*}
\left(\widetilde{\nabla}_{X} \widetilde{R}\right)(\xi, Z) \xi=2 \alpha(X)[Z-\eta(Z) \xi]+\beta(X)[\eta(Z) \xi-Z] \tag{5.8}
\end{equation*}
$$

Hence comparing the right hand sides of the equations (5.6) and (5.8) we obtain

$$
\begin{equation*}
-4 g(Z, \phi X) \xi=2 \alpha(X)[Z-\eta(Z) \xi]-\beta(X)[Z-\eta(Z) \xi] . \tag{5.9}
\end{equation*}
$$

Operating ϕ both sides of (5.9) and using (2.1), we get

$$
\begin{equation*}
\beta(X)=2 \alpha(X) \tag{5.10}
\end{equation*}
$$

This leads to the following theorem:
Theorem 5.1. If a P-Sasakian manifold is generalized recurrent with respect to the quarter-symmetric metric connection $\widetilde{\nabla}$, then the associated 1-forms are related by $\beta=2 \alpha$.

Next, we consider recurrent P-Sasakian manifold M with respect to the quarter-symmetric metric connection $\widetilde{\nabla}$. Then from (1.4), we have

$$
\begin{equation*}
\left(\widetilde{\nabla}_{X} \widetilde{R}\right)(Y, Z) W=\alpha(X) \widetilde{R}(Y, Z) W \tag{5.11}
\end{equation*}
$$

for all vector fields $X, Y, Z, W \in \chi(M)$. From Theorem 5.1. we obtain

$$
\begin{equation*}
\alpha(X)=0 . \tag{5.12}
\end{equation*}
$$

Hence we have the following corollary:
Corollary 5.2. There is no recurrent P-Sasakian manifold with respect to the quarter-symmetric metric connection $\widetilde{\nabla}$.

6 Pseudosymmetric P-Sasakian manifolds with respect to the quarter-symmetric metric connection

This section is devoted to study of pseudosymmetric P-Sasakian manifolds with respect to the quarter-symmetric metric connection. We prove the following theorem:

Theorem 6.1. There is no pseudosymmetric P-Sasakian manifold with respect to the quarter-symmetric metric connection $\widetilde{\nabla}$.

Proof. Let us assume that there exists a pseudosymmetric P-Sasakian manifold with respect to the quarter-symmetric metric connection $\widetilde{\nabla}$. Then we get from (1.5)

$$
\begin{align*}
\left(\widetilde{\nabla}_{X} \widetilde{R}\right)(Y, Z) W= & 2 \alpha(X) \widetilde{R}(Y, Z) W+\alpha(Y) \widetilde{R}(X, Z) W \\
& +\alpha(Z) \widetilde{R}(Y, X) W+\alpha(W) \widetilde{R}(Y, Z) X \\
& +g(\widetilde{R}(Y, Z) W, X) \rho . \tag{6.1}
\end{align*}
$$

So contracting Y in (6.1), we have

$$
\begin{align*}
\left(\widetilde{\nabla}_{X} \widetilde{S}\right)(Z, W)= & 2 \alpha(X) \widetilde{S}(Z, W)+\alpha(\widetilde{R}(X, Z) W) \\
& +\alpha(Z) \widetilde{S}(X, W)+\alpha(W) \widetilde{S}(Z, X) \\
& +g(\widetilde{R}(\rho, Z) W, X) \tag{6.2}
\end{align*}
$$

Substituting $W=\xi$ in (6.2) we get

$$
\begin{align*}
\left(\widetilde{\nabla}_{X} \widetilde{S}\right)(Z, \xi)= & 2 \alpha(X) \widetilde{S}(Z, \xi)+\alpha(\widetilde{R}(X, Z) \xi) \\
& +\alpha(Z) \widetilde{S}(X, \xi)+\alpha(\xi) \widetilde{S}(Z, X) \\
& +g(\widetilde{R}(\rho, Z) \xi, X) \tag{6.3}
\end{align*}
$$

From Theorem 3.1. we get

$$
\widetilde{S}(Z, \xi)=-2(n-1) \eta(Z)
$$

Hence using (5.4) it follows that

$$
\begin{equation*}
\left(\widetilde{\nabla}_{X} \widetilde{S}\right)(Z, \xi)=-4(n-1) g(Z, \phi X) \tag{6.4}
\end{equation*}
$$

On the other hand, in view of (2.1) and Theorem 3.1. we obtain

$$
\begin{align*}
\left(\widetilde{\nabla}_{X} \widetilde{S}\right)(Z, \xi)= & -4 n \alpha(X) \eta(Z)+2 \eta(X) \alpha(Z) \\
& -2(n-1) \alpha(Z) \eta(X)+2 \alpha(\xi) g(X, Z) \\
& +\alpha(\xi) \widetilde{S}(X, Z) \tag{6.5}
\end{align*}
$$

From (6.4) and (6.5), we get

$$
\begin{align*}
-4(n-1) g(Z, \phi X)= & -4 n \alpha(X) \eta(Z)+2 \eta(X) \alpha(Z) \\
& -2(n-1) \alpha(Z) \eta(X)+2 \alpha(\xi) g(X, Z) \\
& +\alpha(\xi) \widetilde{S}(X, Z) \tag{6.6}
\end{align*}
$$

Taking $X=\xi$ in the above equation gives

$$
\begin{align*}
-4(n-1) g(Z, \phi \xi)= & -4 n \alpha(\xi) \eta(Z)+2 \eta(\xi) \alpha(Z) \\
& -2(n-1) \alpha(Z) \eta(\xi)+2 \alpha(\xi) \eta(Z) \\
& +\alpha(\xi) \widetilde{S}(\xi, Z) \tag{6.7}
\end{align*}
$$

By making use of (2.1), (2.2), (1.6) and Theorem 3.1. in (6.7) yields

$$
\begin{equation*}
(2-3 n) \alpha(\xi) \eta(Z)+(2-n) \alpha(Z)=0 . \tag{6.8}
\end{equation*}
$$

Replacing Z with ξ in (6.8), we have (since $n>3$)

$$
\begin{equation*}
\alpha(\xi)=0 \tag{6.9}
\end{equation*}
$$

Now using (6.9) it follows from (6.8) that

$$
\alpha(Z)=0,
$$

for every vector field Z on M, which implies that $\alpha=0$ on M. This contradicts to our assumption.
Thus the proof of our theorem is completed.

7 Example of a 5-dimensional P-Sasakian manifold admitting quarter-symmetric metric connection

Example 7.1. We consider the 5 -dimensional manifold $\left\{(x, y, z, u, v) \in \mathbb{R}^{5}\right\}$, where (x, y, z, u, v) are the standard coordinates in \mathbb{R}^{5}.
We choose the vector fields

$$
e_{1}=\frac{\partial}{\partial x}, e_{2}=e^{-x} \frac{\partial}{\partial y}, e_{3}=e^{-x} \frac{\partial}{\partial z}, e_{4}=e^{-x} \frac{\partial}{\partial u}, e_{5}=e^{-x} \frac{\partial}{\partial v},
$$

which are linearly independent at each point of M.
Let g be the Riemannian metric defined by

$$
g\left(e_{i}, e_{j}\right)=\left\{\begin{array}{lll}
1 & \text { if } \quad i=j \\
0 & \text { if } \quad i \neq j ; i, j=1,2,3,4,5 .
\end{array}\right.
$$

Let η be the 1 -form defined by

$$
\eta(Z)=g\left(Z, e_{1}\right)
$$

for any $Z \in \chi(M)$.
Let ϕ be the (1,1)-tensor field defined by

$$
\phi\left(e_{1}\right)=0, \phi\left(e_{2}\right)=e_{2}, \phi\left(e_{3}\right)=e_{3}, \phi\left(e_{4}\right)=e_{4}, \phi\left(e_{5}\right)=e_{5} .
$$

Using the linearity of ϕ and g, we have

$$
\eta\left(e_{1}\right)=1, \phi^{2} Z=Z-\eta(Z) e_{1}
$$

and

$$
g(\phi Z, \phi U)=g(Z, U)-\eta(Z) \eta(U)
$$

for any vector fields $Z, U \in \chi(M)$. Thus for $e_{1}=\xi$, the structure (ϕ, ξ, η, g) defines an almost paracontact metric structure on M.
Then we have

$$
\begin{aligned}
& {\left[e_{1}, e_{2}\right]=-e_{2},\left[e_{1}, e_{3}\right]=-e_{3},\left[e_{1}, e_{4}\right]=-e_{4},\left[e_{1}, e_{5}\right]=-e_{5}} \\
& {\left[e_{2}, e_{3}\right]=\left[e_{2}, e_{4}\right]=\left[e_{2}, e_{5}\right]=\left[e_{3}, e_{4}\right]=\left[e_{3}, e_{5}\right]=\left[e_{4}, e_{5}\right]=0 .}
\end{aligned}
$$

The Levi-Civita connection ∇ of the metric tensor g is given by Koszul's formula which is given by

$$
\begin{align*}
2 g\left(\nabla_{X} Y, Z\right)= & X g(Y, Z)+Y g(Z, X)-Z g(X, Y) \\
& -g(X,[Y, Z])-g(Y,[X, Z])+g(Z,[X, Y]) . \tag{7.1}
\end{align*}
$$

Taking $e_{1}=\xi$ and using (7.1), we get the following:

$$
\begin{aligned}
& \nabla_{e_{1}} e_{1}=0, \nabla_{e_{1}} e_{2}=0, \nabla_{e_{1}} e_{3}=0, \nabla_{e_{1}} e_{4}=0, \nabla_{e_{1}} e_{5}=0, \\
& \nabla_{e_{2}} e_{1}=e_{2}, \nabla_{e_{2}} e_{2}=-e_{1}, \nabla_{e_{2}} e_{3}=0, \nabla_{e_{2}} e_{4}=0, \nabla_{e_{2}} e_{5}=0, \\
& \nabla_{e_{3}} e_{1}=e_{3}, \nabla_{e_{3} e_{2}}=0, \nabla_{e_{3} e_{3}}=-e_{1}, \nabla_{e_{3} e_{4}}=0, \nabla_{e_{3}} e_{5}=0, \\
& \nabla_{e_{4}} e_{1}=e_{4}, \nabla_{e_{4}} e_{2}=0, \nabla_{e_{4} e_{3}} 0, \nabla_{e_{4} e_{4}}=-e_{1}, \nabla_{e_{4} e_{5}}=0, \\
& \nabla_{e_{5}} e_{1}=e_{5}, \nabla_{e_{5}} e_{2}=0, \nabla_{e_{5}} e_{3}=0, \nabla_{e_{5}} e_{4}=0, \nabla_{e_{5}} e_{5}=-e_{1} .
\end{aligned}
$$

Using the above equations in (3.6) yields

$$
\begin{aligned}
& \widetilde{\nabla}_{e_{1}} e_{1}=0, \widetilde{\nabla}_{e_{1}} e_{2}=0, \widetilde{\nabla}_{e_{1}} e_{3}=0, \widetilde{\nabla}_{e_{1}} e_{4}=0, \widetilde{\nabla}_{e_{1}} e_{5}=0, \\
& \widetilde{\nabla}_{e_{2}} e_{1}=2 e_{2}, \widetilde{\nabla}_{e_{2}} e_{2}=-2 e_{1}, \widetilde{\nabla}_{e_{2}} e_{3}=0, \widetilde{\nabla}_{e_{2}} e_{4}=0, \widetilde{\nabla}_{e_{2}} e_{5}=0, \\
& \widetilde{\nabla}_{e_{3}} e_{1}=2 e_{3}, \widetilde{\nabla}_{e_{3}} e_{2}=0, \widetilde{\nabla}_{e_{3}} e_{3}=-2 e_{1}, \widetilde{\nabla}_{e_{3}} e_{4}=0, \widetilde{\nabla}_{e_{3}} e_{5}=0, \\
& \widetilde{\nabla}_{e_{4}} e_{1}=2 e_{4}, \widetilde{\nabla}_{e_{4} e_{2}}=0, \widetilde{\nabla}_{e_{4} e_{3}}=0, \widetilde{\nabla}_{e_{4} e_{4}}=-2 e_{1}, \widetilde{\nabla}_{e_{4} e_{5}}=0, \\
& \widetilde{\nabla}_{e_{5}} e_{1}=2 e_{5}, \widetilde{\nabla}_{e_{5}} e_{2}=0, \widetilde{\nabla}_{e_{5}} e_{3}=0, \widetilde{\nabla}_{e_{5}} e_{4}=0, \nabla_{e_{5}} e_{5}=-2 e_{1} .
\end{aligned}
$$

By the above results, we can easily obtain the non-vanishing components of the curvature tensors as follows:

$$
\begin{aligned}
& R\left(e_{1}, e_{2}\right) e_{1}=e_{2}, R\left(e_{1}, e_{2}\right) e_{2}=-e_{1}, R\left(e_{1}, e_{3}\right) e_{1}=e_{3}, R\left(e_{1}, e_{3}\right) e_{3}=-e_{1}, \\
& R\left(e_{1}, e_{4}\right) e_{1}=e_{4}, R\left(e_{1}, e_{4}\right) e_{4}=-e_{1}, R\left(e_{1}, e_{5}\right) e_{1}=e_{5}, R\left(e_{1}, e_{5}\right) e_{5}=-e_{1}, \\
& R\left(e_{2}, e_{3}\right) e_{2}=e_{3}, R\left(e_{2}, e_{3}\right) e_{3}=-e_{2}, R\left(e_{2}, e_{4}\right) e_{2}=e_{4}, R\left(e_{2}, e_{4}\right) e_{4}=-e_{2}, \\
& R\left(e_{2}, e_{5}\right) e_{2}=e_{5}, R\left(e_{2}, e_{5}\right) e_{5}=-e_{2}, R\left(e_{3}, e_{4}\right) e_{3}=e_{4}, R\left(e_{3}, e_{4}\right) e_{4}=-e_{3}, \\
& R\left(e_{3}, e_{5}\right) e_{3}=e_{5}, R\left(e_{3}, e_{5}\right) e_{5}=-e_{3}, R\left(e_{4}, e_{5}\right) e_{4}=e_{5}, R\left(e_{4}, e_{5}\right) e_{5}=-e_{4},
\end{aligned}
$$

$$
\begin{aligned}
& \widetilde{R}\left(e_{1}, e_{2}\right) e_{1}=2 e_{2}, \widetilde{R}\left(e_{1}, e_{2}\right) e_{2}=-2 e_{1}, \widetilde{R}\left(e_{1}, e_{3}\right) e_{1}=2 e_{3}, \\
& \widetilde{R}\left(e_{1}, e_{3}\right) e_{3}=-2 e_{1}, \widetilde{R}\left(e_{1}, e_{4}\right) e_{1}=2 e_{4}, \widetilde{R}\left(e_{1}, e_{4}\right) e_{4}=-2 e_{1}, \\
& \widetilde{R}\left(e_{1}, e_{5}\right) e_{1}=2 e_{5}, \widetilde{R}\left(e_{1}, e_{5}\right) e_{5}=-2 e_{1}, \widetilde{R}\left(e_{2}, e_{3}\right) e_{2}=2 e_{3}, \\
& \widetilde{R}\left(e_{2}, e_{3}\right) e_{3}=-2 e_{2}, \widetilde{R}\left(e_{2}, e_{4}\right) e_{2}=2 e_{4}, \widetilde{R}\left(e_{2}, e_{4}\right) e_{4}=-2 e_{2}, \\
& \widetilde{R}\left(e_{2}, e_{5}\right) e_{2}=2 e_{5}, \widetilde{R}\left(e_{2}, e_{5}\right) e_{5}=-2 e_{2}, \widetilde{R}\left(e_{3}, e_{4}\right) e_{3}=2 e_{4}, \\
& \widetilde{R}\left(e_{3}, e_{4}\right) e_{4}=-2 e_{3}, \widetilde{R}\left(e_{3}, e_{5}\right) e_{3}=2 e_{5}, \widetilde{R}\left(e_{3}, e_{5}\right) e_{5}=-2 e_{3}, \\
& \widetilde{R}\left(e_{4}, e_{5}\right) e_{4}=2 e_{5}, \widetilde{R}\left(e_{4}, e_{5}\right) e_{5}=-2 e_{4} .
\end{aligned}
$$

From the expressions of the curvature tensor it follows that the manifold is a manifold of constant curvature -2 with respect to the quarter-symmetric metric connection. Hence the manifold is semisymmetric with respect to the
quarter-symmetric metric connection. Using the above expressions of the curvature tensor we get

$$
\widetilde{S}\left(e_{1}, e_{1}\right)=\widetilde{S}\left(e_{2}, e_{2}\right)=\widetilde{S}\left(e_{3}, e_{3}\right)=\widetilde{S}\left(e_{4}, e_{4}\right)=\widetilde{S}\left(e_{5}, e_{5}\right)=-8
$$

Hence the scalar curvature

$$
\widetilde{r}=-40 .
$$

It can be easily verified that the manifold is an Einstein manifold. Thus Theorem 4.1. is verified.

Acknowledgement

The authors are thankful to the referee for his valuable comments and suggestions towards the improvement of the paper.

References

[1] T. Adati and K. Matsumoto, On conformally recurrent and conformally symmetric P-Sasakian manifolds, TRU Math., 13, (1977), 25-32
[2] T. Adati and T. Miyazawa, Some properties of P-Sasakian manifolds, TRU Math., 13, (1977), 33-42
[3] S.C. Biswas and U.C. De, Quarter-symmetric metric connection in $S P$-Sasakian manifold, Common. Fac. Sci. Univ. Ank. Al., 46, (1997), 49-56
[4] M.C. Chaki, On pseudo symmetric manifolds, An. Stiint. Univ. Al. I. Cuza Iasi Sect. I a Mat., 33, (1987), 53-58
[5] U.C. De and A.K. Mondal, Quarter-symmetric metric connection on 3dimensional quasi-Sasakian manifolds, SUT J. of Math., 46, (2010), 35-52
[6] U.C. De and J.C. Ghosh, On a type of contact manifold, Note Mat., 14, (1994), 155-160
[7] U.C. De and N. Guha, On generalized recurrent manifolds, J. National Academy of Math. India., 9, (1991), 85-92
[8] U.C. De, C. Özgür, K. Arslan, C. Murathan, and A. Yildiz, On a type of P-Sasakian manifolds, Mathematica Balkanica, 22, (2008), 25-36
[9] S. Deshmukh and S. Ahmed, Para Sasakian manifolds isometrically immersed in spaces of constant curvature, Kyungpook J. Math., 20, (1980), 112-121
[10] S. Golab, On semi-symmetric and quarter-symmetric linear connections, Ten$\operatorname{sor}(N . S), 29,.(1975), 249-254$
[11] K.T.P. Kumar, Venkatesha, and C.S. Bagewadi, On ϕ-Recurrent Para-Sasakian manifold admitting quarter-symmetric metric connection, ISRN Geometry, 2012, (2012), 1-10
[12] K. Matsumoto, S. Ianus, and I. Mihai, On P-Sasakian manifolds which admit certain tensor fields, Publ. Math. Debrecen, 33, (1986), 61-65
[13] S. Mukhopadhyay, A.K. Roy, and B. Barua, Some properties of quartersymmetric metric connection on a Riemannian manifold, Soochow J. of Math., 17, (1991), 205-211
[14] C. Özgür, On a class of Para-Sasakian manifolds, Turkish J. Math., 29, (2005), 249-257
[15] S.C. Rastogi, On quarter-symmetric metric connection, C. R. Acad. Sci. Bulgar, 31, (1978), 811-814
[16] S.C. Rastogi, On quarter-symmetric metric connection, Tensor, N.S., 44, (1987), 133-141
[17] I. Sató, On a structure similar to the almost contact structure, Tensor (N.S.), 30, (1976), 219-224
[18] I. Sató and K. Matsumoto, On P-Sasakian manifolds satisfying certain conditions, Tensor, N. S., 33, (1979), 173-178
[19] S. Sular, C. Özgür, and U.C. De, Quarter-symmetric metric connection in a Kenmotsu manifold, SUT J. of Math., 44, (2008), 297-306
[20] Z.I. Szabó, Structure theorems on Riemannian spaces satisfying $R(X, Y) \cdot R=0$ I the local version, J. Diff. Geometry, 17, (1982), 531-582
[21] A.G. Walker, On Ruse's spaces of recurrent curvature, Proc. Lon. Math. Soc., 52, (1951), 36-64
[22] K. Yano, On semi-symmetric metric connection, Rev. Roumaine Math. Pures Appl., 15, (1970), 1579-1586
[23] K. Yano and T. Imai, Quarter-symmetric metric connections and their curvature tensors, Tensor (N.S.), 38, (1982), 13-18
[24] A. Yildiz, M. Turan, and B.E. Acet, On Para-Sasakian manifolds, Dumlupinar Üniversitesi, 24, (2011), 27-34

Krishanu Mandal

Department of Pure Mathematics, University of Calcutta, 35, Ballygunge Circular Road, Kolkata- 700019, West Bengal, INDIA
E-mail: krishanu.mandal013@gmail.com
Uday Chand De
Department of Pure Mathematics, University of Calcutta, 35, Ballygunge Circular Road, Kolkata- 700019, West Bengal, INDIA
E-mail: uc_de@yahoo.com
Received: 10.02.2015
Accepted: 14.03.2015

