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The object of the present paper is to study a quarter-symmetric nonmetric connection on a P-
Sasakian manifold. In this paper we consider the concircular curvature tensor and conformal
curvature tensor on a P-Sasakian manifold with respect to the quarter-symmetric nonmetric
connection. Next we consider second-order parallel tensor with respect to the quarter-symmetric
non-metric connection. Finally we consider submanifolds of an almost paracontact manifold with
respect to a quarter-symmetric non-metric connection.

1. Introduction

In 1975, Golab [1] defined and studied quarter-symmetric connection in a differentiable
manifold with affine connection.

A linear connection ∇̃ on an n-dimensional Riemannian manifold (M,g) is called a

quarter-symmetric connection [1] if its torsion tensor T of the connection ∇̃

T(X,Y ) = ∇̃XY − ∇̃YX − [X,Y ] (1.1)

satisfies

T(X,Y ) = η(Y )φX − η(X)φY, (1.2)

where η is a 1 form and φ is a (1, 1) tensor field.
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In particular, if φ(X) = X, then the quarter-symmetric connection reduces to a
semisymmetric connection [2]. Thus the notion of quarter-symmetric connection generalizes
the notion of the semisymmetric connection.

If, moreover, a quarter-symmetric connection ∇̃ satisfies the condition

(
∇̃Xg

)
(Y,Z) = 0 (1.3)

for all X,Y,Z ∈ T(M), where T(M) is the Lie algebra of vector fields of the manifoldM, then

∇̃ is said to be a quarter-symmetric metric connection; otherwise it is said to be a quarter-
symmetric nonmetric connection.

After Golab [1], Rastogi [3, 4] continued the systematic study of quarter-symmetric
metric connection.

In 1980, Mishra and Pandey [5] studied quarter-symmetric metric connection in
Riemannian, Kaehlerian, and Sasakian manifolds.

In 1982, Yano and Imai [6] studied quarter-symmetric metric connection in Hermitian
and Kaehlerian manifolds.

In 1991, Mukhopadhyay et al. [7] studied quarter-symmetric metric connection on a
Riemannian manifold (M,g) with an almost complex structure φ.

In 1997, Biswas and De [8] studied quarter-symmetric metric connection on a
SP -Sasakian manifold. In 2000, Ali and Nivas [9] studied quarter-symmetric connection on
submanifolds of a manifold. Also in 2008, Sular et al. [10] studied quarter-symmetric metric
connection in a Kenmotsu manifold.

Let M be a submanifold of an almost paracontact metric manifold M with a positive

definite metric g. Let the induced metric on M also be denoted by g. The usual Gauss and
Weingarten formulae are given, respectively, by

∇XY = ∇XY + h(X,Y ), X, Y ∈ T
(
M

)
, (1.4)

∇XN = −ANX +∇
⊥

XN, N ∈ T⊥
(
M

)
, (1.5)

where ∇ is the induced Riemannian connection on M, h is the second fundamental form of

the immersion, and −ANX and∇
⊥

XN are the tangential and normal parts of∇XN. From (1.4)
and (1.5) one gets

g(h(X,Y ),N) = g(ANX,Y ). (1.6)

The submanifold M of an almost paracontact manifold M is called invariant (resp.

anti-invariant) if for each point p ∈ M, φTp(M) ⊂ Tp(M) (resp., φTp (M) ⊂ T⊥
p (M). The

submanifold is called totally umbilical if h(X,Y ) = g(X,Y )H, for allX,Y ∈ T(M), whereH is
the mean curvature vector defined by H = (1/n)

∑
{h(ei, ei)}, where {ei} is an orthonormal

basis of T(M). The submanifold is called totally geodesic if h(X,Y ) = 0 for all X,Y ∈ T(M).
The paper is organized as follows. After recalling the basic properties of P -Sasakian

manifolds in Section 3, we establish the relation between the Riemannian connection and the
quarter-symmetric nonmetric connection. In Section 4, we study the curvature tensor, Ricci
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tensor, scalar curvature, and the first Bianchi identity with respect to the quarter-symmetric
nonmetric connection. Section 5 deals with concircular and conformal curvature tensor on a
P -Sasakian manifold with respect to the quarter-symmetric nonmetric connection and prove
that if in a P -Sasakian manifold the concircular curvature tensor is invariant under quarter-
symmetric nonmetric connection, then the Ricci tensors are equal with respect to the both
connections and also prove if a P -Sasakian manifold is conformally flat with respect to the
quarter-symmetric nonmetric connection, then the manifold is of quasiconstant curvature
with respect to the Levi-Civita connection. In the next section we consider second-order
parallel tensor with respect to the quarter-symmetric nonmetric connection. In the last section
we consider submanifolds of an almost paracontact manifold with respect to a quarter-
symmetric nonmetric connection and prove that on an anti-invariant submanifold of aa
almost paracontact manifold with a quarter-symmetric nonmetric connection the induced
quarter-symmetric non-connection and the induced Riemannian connection are equivalent.
Finally, we prove that a submanifold of a P -Sasakian manifold with a quarter-symmetric
nonmetric connection is also a P -Sasakian manifold with respect to the induced quarter-
symmetric nonmetric connection.

2. P-Sasakian Manifold

An n-dimensional differentiable manifold M is said to admit an almost paracontact
Riemannian structure (φ, ξ, η, g), [11] where φ is a (1, 1)-tensor field, ξ is a vector field, η
is a 1-form, and g is a Riemannian metric onM such that

φξ = 0, ηφ = 0, η(ξ) = 1, g(ξ, X) = η(X), (2.1)

φ2X = X − η(X)ξ, g
(
φX, φY

)
= g(X,Y ) − η(X)η(Y ), (2.2)

for all vector fields X,Y ∈ T(M). The equation η(ξ) = 1 is equivalent to |η| ≡ 1, and then ξ
is just the metric dual of η, where g is the Riemannian metric on M. If (φ, ξ, η, g) satisfy the
following equations:

dη = 0, ∇Xξ = φX, (2.3)

(
∇Xφ

)
Y = −g(X,Y )ξ − η(Y )X + 2η(X)η(Y )ξ, (2.4)

then M is called a para-Sasakian manifold or briefly a P -Sasakian manifold, [12, 13].
Especially, a P -Sasakian manifold M is called a special para-Sasakian manifold or briefly
a SP -Sasakian manifold if M admits a 1-form η satisfying

(
∇Xη

)
(Y ) = −g(X,Y ) + η(X)η(Y ). (2.5)

It is known that in a P -Sasakian manifold the following relation holds:

S(X, ξ) = (1 − n)η(X),

η(R(X,Y )Z) = g(X,Z)η(Y ) − g(Y,Z)η(X),
(2.6)

for any vector fields X,Y,Z ∈ T(M).
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Let (M,g) be an n-dimensional Riemannian manifold. Then the concircular curvature
tensor C∗ and the Weyl conformal curvature tensor C are defined by [14]

C∗(X,Y )Z = R(X,Y )Z −
r

n(n − 1)

(
g(Y,Z)X − g(X,Z)Y

)
, (2.7)

C(X,Y )Z = R(X,Y )Z −
1

n − 2

{
S(Y,Z)X − S(X,Z)Y + g(Y,Z)LX − g(X,Z)LY

}

+
r

(n − 1)(n − 2)

{
g(Y,Z)X − g(X,Z)Y

} (2.8)

for all X,Y,Z ∈ T(M), respectively, where r is the scalar curvature of M, and L is the
symmetric endomorphism of the tangent space at each point corresponding to the Ricci tensor
S.

We observe immediately from the definition of the concircular curvature tensor that
Riemannian manifolds with vanishing concircular curvature tensor are of constant curvature.
Thus one can think of the concircular curvature tensor as a measure of the failure of a
Riemannian manifold to be of constant curvature. Also necessary and sufficient condition
that a Riemannian manifold be reducible to a Euclidian space by a suitable concircular
transformation is that its concircular curvature tensor vanishes. Also conformal curvature
tensor plays an important role in differential geometry.

A Riemannian manifold of quasiconstant curvature was given by Chen and Yano [15]
as a conformally flat manifold with the curvature tensor R of type (0, 4) which satisfies the
condition

R(X,Y,Z,W) = a
{
g(Y,Z)g(X,W) − g(X,Z)g(Y,W)

}

+ b
{
g(Y,Z)T(X)T(W) − g(X,Z)T(Y )T(W)

+g(X,W)T(Y )T(Z) − g(Y,W)T(X)T(Z)
}
,

(2.9)

where R(X,Y,Z,W) = g(R(X,Y )Z,W), a, b are scalars, T is a nonzero 1-form defined by
T(X) = g(X, ρ), and ρ is a unit vector field.

It can be easily seen that if the curvature tensor is of the form (2.9), then the manifold
is conformally flat. If b = 0, then it reduces to a manifold of constant curvature.

An n-dimensional P -Sasakian manifold is said to be η-Einstein if the Ricci tensor S
satisfies

S = ag + bη ⊗ η, (2.10)

where a and b are smooth function on the manifold. If b = 0, then the manifold reduces to an
Einstein manifold.
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3. Relation between the Riemannian Connection and the
Quarter-Symmetric Nonmetric Connection

Let ∇̃ be a linear connection and ∇ be a Riemannian connection of a P -Sasakian manifold M
such that

∇̃XY = ∇XY +U(X,Y ), (3.1)

whereU is a tensor of type (1, 2). For ∇̃ to be a quarter-symmetric connection inM, we have
[1]

U(X,Y ) =
1

2

[
T(X,Y ) + T ′(X,Y ) + T ′(Y,X)

]
, (3.2)

where

g
(
T ′(X,Y ), Z

)
= g(T(Z,X), Y ). (3.3)

From (1.2) and (3.3) we get

T ′(X,Y ) = g
(
φY,X

)
ξ − η(X)φY (3.4)

and using (1.2) and (3.4) in (3.2) we obtain

U(X,Y ) = −η(X)φY. (3.5)

Hence a quarter-symmetric connection ∇̃ in a P -Sasakian manifold is given by

∇̃XY = ∇XY − η(X)φY. (3.6)

Conversely, we show that a linear connection ∇̃ on a P -Sasakian manifold defined by

∇̃XY = ∇XY − η(X)φY (3.7)

determines a quarter-symmetric connection.

Using (3.7) the torsion tensor of the connection ∇̃ is given by

T(X,Y ) = ∇̃XY − ∇̃YX − [X,Y ]

= η(Y )φX − η(X)φY.
(3.8)

The above equation shows that the connection ∇̃ is quarter-symmetric [1].
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Also we have

(
∇̃Xg

)
(Y,Z) = Xg(Y,Z) − g

(
∇̃XY,Z

)
− g

(
Y, ∇̃XZ

)

= η(X)
[
g
(
φY,Z

)
+ g

(
φZ, Y

)]

= 2η(X)g
(
φY,Z

)
.

(3.9)

In virtue of (3.8) and (3.9) we conclude that ∇̃ is a quarter-symmetric nonmetric
connection. Therefore (3.6) is the relation between the Riemannian connection and the
quarter-symmetric connection on a P -Sasakian manifold.

4. Curvature Tensor of a P-Sasakian Manifold with Respect to the
Quarter-Symmetric Nonmetric Connection

We define the curvature tensor of a P -Sasakian manifold with respect to the quarter-

symmetric nonmetric connection ∇̃ by

R̃(X,Y )Z = ∇̃X∇̃YZ − ∇̃Y ∇̃XZ − ∇̃[X,Y ]Z. (4.1)

Using (3.7) we obtain

R̃(X,Y )Z = R(X,Y )Z −
(
∇Xη

)
(Y )φZ +

(
∇Yη

)
(X)φZ

− η(Y )
(
∇Xφ

)
Z + η(X)

(
∇Yφ

)
Z,

(4.2)

which in view of (2.4) and (2.5) yields

R̃(X,Y )Z = R(X,Y )Z +
{
η(Y )g(X,Z) − η(X)g(Y,Z)

}
ξ

+
{
η(Y )X − η(X)Y

}
η(Z).

(4.3)

A relation between the curvature tensor of M with respect to the quarter-symmetric

nonmetric connection ∇̃ and the Riemannian connection ∇ is given by the relation (4.3). So
from (4.3) and (2.3)we have

R̃(X, ξ)Y = R(X, ξ)Y + g(X,Y ) − 2η(X)η(Y )ξ + η(Y )X, (4.4)

R̃(X,Y )ξ = 2
{
η(Y )X − η(X)Y

}
. (4.5)

Taking inner product of (4.3)withW we have

R̃(X,Y,Z,W) = R(X,Y,Z,W) +
{
η(Y )g(X,Z) − η(X)g(Y,Z)

}
η(W)

+
{
η(Y )g(X,W) − η(X)g(Y,W)

}
η(Z),

(4.6)

where R̃(X,Y,Z,W) = g(R̃(X,Y,Z),W).
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From (4.6) we can state the following.

Proposition 4.1. If the manifold is of constant curvature with respect to the Levi-Civita connection,
then the manifold is of quasiconstant curvature with respect to the quarter-symmetric nonmetric
connection.

Also from (4.6) clearly

R̃(X,Y,Z,W) = −R̃(Y,X,Z,W), (4.7)

but

R̃(X,Y,Z,W)/= − R̃(X,Y,W,Z). (4.8)

From (4.3) it is obvious that

R̃(X,Y )Z + R̃(Y,Z)X + R̃(Z,X)Y = 0. (4.9)

Hence we can state that the curvature tensor with respect to the quarter-symmetric
nonmetric connection satisfies first Bianchi identity.

Contracting (4.6) over X and W , we obtain

S̃(Y,Z) = S(Y,Z) − g(Y,Z) + nη(Y )η(Z), (4.10)

where S̃ and S is the Ricci tensors of the connection ∇̃ and ∇, respectively. So in a P -Sasakian
manifold the Ricci tensor with respect to the quarter-symmetric nonmetric connection is
symmetric. Also if M is Einstein or η-Einstein with respect to the Riemannian connection,
thenM is η-Einstein with respect to the quarter-symmetric nonmetric connection.

Again contracting (4.10) we have r̃ = r, where r̃ and r are the scalar curvature of the

connection ∇̃ and ∇, respectively. So we have the following.

Proposition 4.2. For a P -Sasakian manifold M with the quarter-symmetric metric connection ∇̃

(a) the curvature tensor R̃ is given by (4.6),

(b) the Ricci tensor S̃ is given by (4.10),

(c) the first Bianchi identity is given by (4.8),

(d) r̃ = r,

(e) the Ricci tensor S̃ is symmetric,

(f) if M is Einstein or η-Einstein with respect to the Riemannian connection, then M is η-
Einstein with respect to the quarter-symmetric nonmetric connection.
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5. Concircular and Conformal Curvature
Tensor on a P-Sasakian Manifold with Respect to
the Quarter-Symmetric Nonmetric Connection

We define the concircular curvature tensor C̃∗ and conformal curvature tensor C̃ on a P -
Sasakian manifold with respect to the quarter-symmetric nonmetric connection ∇̃ by

C̃∗(X,Y )Z = R̃(X,Y )Z −
r̃

n(n − 1)

(
g̃(Y,Z)X − g̃(X,Z)Y

)
, (5.1)

C̃(X,Y )Z = R̃(X,Y )Z −
1

n − 2

{
S̃(Y,Z)X − S̃(X,Z)Y + g(Y,Z)L̃X − g(X,Z)L̃Y

}

+
r̃

(n − 1)(n − 2)

{
g̃(Y,Z)X − g̃(X,Z)Y

} (5.2)

for all X,Y,Z ∈ T(M), respectively, where r̃ is the scalar curvature, and L̃ is the symmetric

endomorphism of the tangent space at each point corresponding to the Ricci tensor S̃ with
respect to quarter-symmetric nonmetric connection.

Using (2.7) and (4.2), (5.1) reduces to

C̃∗(X,Y )Z = C∗(X,Y )Z −
(
g(X,Z)η(Y ) − g(Y,Z)η(X)

)

+
(
η(Y )X − η(X)Y

)
η(Z).

(5.3)

Now if we consider C̃∗ = C∗, then from (5.3) we have

g(X,Y ) = nη(X)η(Y ). (5.4)

Using (5.4) in (4.10)we have

S̃(X,Y ) = S(X,Y ). (5.5)

So we can state the following.

Theorem 5.1. If in a P -Sasakian manifold the concircular curvature tensor is invariant under
quarter-symmetric nonmetric connection, then the Ricci tensors are equal with respect to both the
connections.

Let us suppose that C̃∗(ξ, X) · S̃ = 0, and then we get

S̃
(
C̃∗(ξ, X)Y,Z

)
+ S̃

(
Y, C̃∗(ξ, X)Z

)
= 0, (5.6)
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which in view of (5.3) gives

S̃(C∗(ξ, X)Y,Z) +
(
2η(X)η(Y ) − g(X,Y )

)
S̃(ξ, Z) − η(Y )S̃(X,Z)

+ S̃(Y,C∗(ξ, X)Z) +
(
2η(X)η(Z) − g(X,Z)

)
S̃(ξ, Y ) − η(Z)S̃(X,Y ) = 0.

(5.7)

So by the use of (2.6), (5.7) yields

r

n(n − 1)
S̃(X,Y ) = 0. (5.8)

From this either r = 0 or, S̃(X,Y ) = 0. Now S̃ = 0 implies

S(X,Y ) = g(X,Y ) − nη(X)η(Y ). (5.9)

The converse is trivial.
So we can state the following.

Theorem 5.2. An n-dimensional P -Sasakian manifold with nonzero scalar curvature satisfies the
condition C̃∗(ξ, X) · S̃ = 0 if and only if the manifold is an η-Einstein manifold of the form (5.9).

Also using (4.3) and (4.10), (5.2) reduces to

C̃(X,Y,Z,W) = R(X,Y,Z,W) +
(
g(X,Z)η(Y ) − g(Y,Z)η(X)

)
η(W)

+
(
η(Y )g(X,W) − η(X)g(Y,W)

)
η(Z) −

1

n − 2

×
{(

s(Y,Z) − g(Y,Z) + nη(Y )η(Z)
)
g(X,W)

−
(
S(X,Z) − g(X,Z) + nη(X)η(Z)

)
g(Y,W)

+
(
S(X,W) − g(X,W) + nη(X)η(W)

)
g(Y,Z)

−
(
S(Y,W) − g(Y,W) + nη(Y )η(W)

)
g(X,Z)

}

+
r̃

(n − 1)(n − 2)

{
g̃(Y,Z)X − g̃(X,Z)Y

}
.

(5.10)

Using (2.8) in (5.10)we obtain

C̃(X,Y,Z,W) = C(X,Y,Z,W) +
2

n − 2

(
g(Y,Z)g(X,W) − g(X,Z)g(Y,W)

)

+

(
1 +

n

n − 2

){
g(X,Z)η(Y )η(W) − g(Y,Z)η(X)η(W)

+g(X,W)η(Y )η(Z) − g(Y,W)η(X)η(Z)
}

(5.11)
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which is the relation between conformal curvature tensor C with respect to Riemannian

connection and C̃ with respect to the quarter-symmetric nonmetric connection.
Suppose that the P -Sasakian manifold is conformally flat with respect to the quarter-

symmetric nonmetric connection, that is, C̃(X,Y,Z,W) = 0. Now from (5.2) we get

R̃(X,Y )Z =
1

n − 2

{
S̃(Y,Z)X − S̃(X,Z)Y + g(Y,Z)L̃X − g(X,Z)L̃Y

}

−
r̃

(n − 1)(n − 2)

{
g̃(Y,Z)X − g̃(X,Z)Y

}
.

(5.12)

Putting Y = W = ξ in (5.12) and using (4.6)we obtain

S̃(X,Y ) =

(
r

n − 1
− n + 3

)
g(X,Y ) −

(
r

n − 1
+ 2

)
η(X)η(Y ). (5.13)

Putting this value in (5.12)we have

R̃(X,Y,Z,W) =
1

n − 2

(
r

n − 1
− 2n + 6

){
g(Y,Z)g(X,W) − g(X,Z)g(Y,W)

}

+
1

n − 2

(
−

r

n − 1
− 2

){
g(Y,Z)η(X)η(W) − g(X,Z)η(Y )η(W)

+g(X,W)η(Y )η(Z) − g(Y,W)η(X)η(Z)
}
.

(5.14)

From this we obtain the following.

Theorem 5.3. If a P -Sasakian manifold is conformally flat with respect to the quarter-symmetric
nonmetric connection, then the manifold is of quasiconstant curvature with respect to the Levi-Civita
connection.

6. Second-Order Parallel Tensor on P-Sasakian Manifold with Respect
to the Quarter-Symmetric Nonmetric Connection

Definition 6.1. A tensor α of second order is said to be a second-order parallel tensor if∇α = 0
where ∇ denotes the operator of covariant differentiation with respect to the Riemannian
connection.

In [16] De proves that on a P -Sasakian manifold a second-order symmetric parallel
tensor is a constant multiple of the associated metric tensor. In this section we consider
a second-order parallel tensor with respect to the quarter-symmetric nonmetric connection

defined as ∇̃α = 0.
Then it follows that

α
(
R̃(W,X)Y,Z

)
+ α

(
Y, R̃(W,X)Z

)
= 0, (6.1)

for arbitrary vector fields W,X, Y,Z on M.
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Substitution of W = Z = ξ in (6.1) which gives us

α
(
R̃(ξ, X)Y, ξ

)
+ α

(
Y, R̃(ξ, X)ξ

)
= 0. (6.2)

Using (4.4), (6.2) yields

α(X, ξ)η(Y ) = α(ξ, ξ)
{
g(X,Y ) − η(X)η(Y )

}
. (6.3)

Putting Y = ξ in the above we get

α(X, ξ) = 0. (6.4)

Differentiating (6.4) covariantly along Y , we get

α(∇YX, ξ) + α(X,∇Y ξ) = 0. (6.5)

From the help of (2.2) and (2.3)we get

α(X,Y ) = 0. (6.6)

Hence we can state the following.

Theorem 6.2. On a P -Sasakian manifold there is no nonzero second order parallel tensor with respect
to the quarter-symmetric nonmetric connection.

As an immediate corollary we can state the following.

Corollary 6.3. There does not exist a Ricci symmetric (∇S = 0) P -sasakian manifold with respect to
the quarter-symmetric nonmetric connection.

7. Submanifolds of an Almost Paracontact Manifold with Respect to a
Quarter-Symmetric Nonmetric Connection

We define quarter-symmetric nonmetric connection by (3.7). Now if ∇̃′ is the induced

connection on submanifold from the connection ∇̃, then we have

∇̃XY = ∇̃′
XY +m(X,Y ), (7.1)

where m is the second fundamental form of M̃ inM.
For X ∈ T(M) andN ∈ T⊥(M), we put

φX = PX +QX, PX ∈ T
(
M

)
, QX ∈ T⊥

(
M

)
, (7.2)

φN = tN + sN, tN ∈ T
(
M

)
, sN ∈ T⊥

(
M

)
. (7.3)
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Using (7.2), (1.4), and (3.7) from (7.1) we have

∇̃′
XY +m(X,Y ) = ∇XY + h(X,Y ) − η(X)PY − η(X)QY. (7.4)

Now equating tangential and normal parts, we have

∇̃′
XY = ∇XY − η(X)PY, (7.5)

m(X,Y ) = h(X,Y ) − η(X)QY. (7.6)

From (7.1) we obtain

∇̃XY = ∇̃′
XY + h(X,Y ) − η(X)QY. (7.7)

From (7.7) the torsion tensor with respect to the induced quarter-symmetric nonmetric
connection is given by

T(X,Y ) = η(Y )PX − η(X)PY. (7.8)

Also using (7.7) we have

(
∇̃′

Xg
)
(Y,Z) =

(
∇̃Xg

)
(Y,Z). (7.9)

Hence we have the following.

Theorem 7.1. The connection induced on a submanifold of an almost paracontact manifold with a
quarter-symmetric nonmetric connection is also a quarter-symmetric nonmetric connection.

From (7.5), it follows that if the submanifold is anti-invariant, that is, PY = 0, then we
have the following.

Corollary 7.2. On an anti-invariant submanifold of an almost paracontact manifold with a quarter-
symmetric nonmetric connection the induced quarter-symmetric non-connection and the induced
Riemannian connection are equivalent.

Let {e1, e2, ..., en} be an orthogonal basis of T(M), where en = ξ.
From (7.6), we obtain

m(ei, ei) = h(ei, ei) − η(ei)Q(ei). (7.10)

Since Q(ei) = 0, summing up for i = 1, 2, ..., n and dividing by n we obtain

H =
1

n

∑
{h(ei, ei)} =

1

n

∑
{m(ei, ei)}, (7.11)
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that is, the mean curvature of the submanifoldM with respect to the Riemannian connection

coincides with that ofM with respect to the quarter symmetric nonmetric connection.
From (7.6), we have

h(X,Y ) −m(X,Y ) = η(X)QY. (7.12)

If M is totally umbilical with respect to both the Riemannian connection and the quarter
symmetric nonmetric connection, then, with the hep of (7.11), from (7.12)we have

m(X,Y ) = g(X,Y )H = h(X,Y ). (7.13)

So, from (7.12) we get for all X,Y ∈ T(M),

η(X)QY = 0. (7.14)

Putting Y = ξ in (7.14) we obtain that QY = 0, for all X ∈ T(M), which implies that M is an
invariant submanifold. The converse is trivial. So we have the following.

Theorem 7.3. If M is totally umbilical with respect to both the connections, then M is invariant.

Conversely, if M is invariant, then M is totally umbilical (resp., totally geodesic) with respect to
quarter-symmetric connection if and only if M is totally umbilical (resp., totally geodesic) with respect
to the Riemannian connection.

Let us consider that the ambient manifoldM is a P -Sasakian manifold. Using (3.6)we
have

(
∇Xφ

)
Y = ∇XφY − φ

(
∇XY

)

= ∇X

(
φY

)
− η(X)φ

(
φY

)
− φ

(
∇XY − η(X)φY

)

=
(
∇Xφ

)
Y.

(7.15)

Therefore we have the following.

Proposition 7.4. If M is a P-Sasakian manifold admitting a quarter-symmetric nonmetric
connection, then M is also a P-Sasakian manifold with respect to the quarter-symmetric nonmetric
connection.
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Also induced quarter-symmetric connection is given by (7.5), and using this relation
we have

(
∇̃Xφ

)
Y = ∇̃XφY − φ

(
∇̃XY

)

= ∇̃
′

X

(
φY

)
− η(X)P

(
φ(Y )−

)
− φ

(
∇̃′

XY − η(X)PY
)

=
(
∇̃′

Xφ
)
Y − η(X)P 2Y + η(X)φ(PY )

=
(
∇̃′

Xφ
)
Y − η(X)P 2Y + η(X)P 2Y

=
(
∇̃′

Xφ
)
Y.

(7.16)

Therefore we have the following.

Theorem 7.5. A submanifold of a P -Sasakian manifold with a quarter-symmetric nonmetric
connection is also a P -Sasakian manifold with respect to the induced quarter-symmetric nonmetric
connection.

References

[1] S. Golab, “On semi-symmetric and quarter-symmetric linear connections,” Tensor: New Series, vol. 29,
no. 3, pp. 249–254, 1975.
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