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Quartic 3-Fold: Pfaffians, Vector Bundles,
and Half-Canonical Curves

A. ILIEV & D. MARKUSHEVICH

Introduction

This paper is a part of the study of moduli spaces of vector bundles with small
Chern classes on certain Fano 3-folds. We investigate the moduli component of
kernel bundles on a quartic 3-fold, defined similarly to that of [IM; MT] for the
case of a cubic 3-fold. Our work received a strong pulse with the publication of
Beauville’s paper [B], which allowed us to simplify some arguments and put our
results in a more general framework of Pfaffian hypersurfaces.

In [MT], it was proved that the Abel-Jacobi map of the family of normal ellip-
tic quintics lying on a general cubic 3-fold factors through a moduli component
of stable rank-2 vector bundles dhwith Chern numberg; = 0 andc, = 2
and whose general point represents a vector bundle obtained by Serre’s construc-
tion from an elliptic quintic. The elliptic quintics mapped to a point of the moduli
component vary in a 5-dimensional projective space inside the Hilbert scheme of
curves, and the map from the moduli component to the intermediate Jacobian is
qguasi-finite. In [IM], this moduli component was identified with the variety of
representations of as a linear section of the Pfaffian cubicid* and it was
proved that the degree of the quasi-finite map is 1, so the moduli component is bi-
rational to the intermediate Jacobidf(X ). According to [D], the moduli space
My (2; 0, 2) is irreducible, so its unique component is the one just described.

In the present paper, we prove that a generic quartic 3-¥olddmits a 7-
dimensional family of essentially different representations as the Pfaffian of an
8 x 8 skew-symmetric matrix of linear forms. Thanks to [B], this provides a 7-
dimensional family of arithmetically Cohen—Macaulay (ACM for short) vector
bundles onX, obtained as the bundles of kernels of the 8 skew-symmetric
matrices of rank 6 representing pointsXof We show that this family is a smooth
open setMy in the moduli space of stable vector bundlés (2; 3,14) ~
My (2; —1,6). The ACM property means the vanishing of the intermediate co-
homologyH (X, £(j)) foralli =1, 2 with j € Z.

We also give a precise geometric characterization of the ACM curves arising as
schemes of zeros of sections of the kernel vector bundles. According to Beauville,
they are half-canonical ACM curves of degree 12 we show that they are lin-
ear sections of the rank-4 locas c P(A2C7) in the projectivized space of the
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7 x 7 skew-symmetric matrices. Linear sectionZdfave already arisen in the lit-
erature: Rgdland [R] studied the sectid@fsN Z, which are Calabi—Yau 3-folds.
We show that such curves fill out open sets of smooth points of the Hilbert schemes
of X (of dimension 14) and df* (of dimension 56). We show also that the isomor-
phism classgs of smooth members of this family fill out a 32-dimensional moduli
componentM7; of curves of genus 15 with a theta-characteristic linear series of
dimension 4.

Next we study the Abel-Jacobi map of the ACM half-canonical curves of genus
15 in X. It factors throughMy via Serre’s construction: the fibers over points of
My areP’, and the resulting map fromy to J2(X) is quasi-finite and nonrami-
fied; hence its image is 7-dimensional. The role of these half-canonical curves is
similar to that of normal elliptic quintics in the case of the cubic 3-fgldvhere
the Abel-Jacobi map factors through the instanton moduli space with fitSers
and with a 5-dimensional image; since diff( V) = 5, the image is an open sub-
set of J2(V). The result for a quartic 3-fold is somewhat weaker: here we do not
know whether the degree of the quasi-finite map is 1 or whetheis irreducible.
Moreover, as 7= dimMy < 30 = dim J2(X), we cannot conclude (as in the
case of a cubic 3-fold) that the image Mf; is an open subset of an Abelian va-
riety; we can only state that every component of it, and hendé;oftself, has a
nonnegative Kodaira dimension.

In Section 1 we prove that a generic quartic 3-fold is Pfaffian with the same
method used by Adler in his Appendix to [AR] for a cubic 3-fold: Take a partic-
ular Pfaffian quartic and prove that the differential of the Pfaffian map from the
family of all the 8 x 8 skew-symmetric matrices of linear forms to the family of
quinary quartics is of maximal rank. We also prove basic facts aldqustability,
dimension 7, and smoothness.

Section 2 treats half-canonical ACM curves of genus 1X @md inP*. Section
3 applies the technique of the tangent bundle sequence of Clemens and Griffiths
[CG] and Welters [W] to the calculation of the differential of the Abel-Jacobi map
for the family of the above half-canonical curv@s It identifies the kernel of the
differential with Hl(/\/c/w(—l))v, and we prove that it has dimension 7.

ACKNOWLEDGMENTS. The second author acknowledges with pleasure the hos-
pitality of the Max-Planck-Institut fir Mathematik at Bonn, where he wrote this
paper.

1. Generic Quartic 3-Fold is Pfaffian

Let X be a smooth quartic 3-fold. It is well known that PX¢) is isomorphic
to Z and generated by the class of the hyperplane seéfioand that the group
of algebraic 1-cycles modulo topological equivalence is also isomorptidiat
generated by the class of a lihe X. For two integers, o we will denote by
My (2; k, @) the moduli space dftablerank-2 vector bundle§ on X with Chern
classeg1 = k[H] andc, = «[/]. We will identify the Chern classes with integers
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in using the generator#{] and [] of the corresponding groups of algebraic cycles.
We have H1? = 4[/].

By the definition of the Chern classes and by Riemann—Roch-Hirzebruch, for
£ € Mx(2; k, a) we have

c1(E(n)) = c1(€) + 2n[H] = (k + 2n)[H],
c2(E(n)) = ca(€) + n[Hler(€) + n?[H)? = (o + 4kn + 4n?)[1],
X)) =3k> = Jka + k* — o + Lk + 2.

A rank-2 torsion-free shed on X is normalizedf ¢1(€) = k[H] with k = 0
or k = —1. We can make& normalized by replacing it with a suitable twistn).
The following lemma is well known (see [Ha; Ko]).

LemMma 1.1. Let £ be a normalized rank-reflexive sheaf on a nonsingular pro-
jective varietyX with Pic(X) ~ Z. Then it is stable if and only (&) = 0.

Let now E be an 8-dimensional vector space olferFix a basisy, ..., ey for E;
thene;; = e; Ae;jfor0 <i < j < 7formabasis for the Pliicker spatid:. Letx;;
be the corresponding (Plicker) coordinates. The embedding of the Grassmannian
G = G(2, E) in P? = P(A’E) is precisely the locus of rank-2 skew-symmetric
8 x 8 matricesM with elements;; above the diagonal. Le¥ ¢ @ c E c P
be the filtration ofP?’ by the rank ofM, that is,Q = {M |tk M < 4} andE& =
{M |tk M < 6}). ThenG, Q\ G, E\ Q, andP?"\ E are orbits of PGK8), acting
viaA\? of its standard representation (see e.g. [KS]), and we GaveSing$2 with
dimG = 12 andQ2 = SingE with dim = 21 The equation foig is Pf(M) =
0, where Pf stands for the Pfaffian of a skew-symmetric matrix. We will Eall
the Pfaffian hypersurfacef P27

Let H c P?’ be a 4-dimensional linear subspace that is not contained in
E. Then the intersectiol N E will be called a Pfaffian quartic 3-fold. Since
codimg = 5, the linear sectiorf N E is nonsingular for generall. Suppose
that a quartic 3-fold¥ c P# has two different representationfs,: X => HiN E
and¢,: X = H, N g, as linear sections d&. We will call themequivalentif
p20p] Lis the restriction of a transformation from P&).

ProrosiTiON 1.2. A generic quartic3-fold admits a7-parameter family of non-
equivalent representations as linear sections of the Pfaffian hypersurf@.in

Proof. We use the same argument as in [AR, Thm. (47.3)]. The family of quartic
3-folds inP# is parameterized b§%° and that of the Pfaffian representations of
quartic 3-folds by an open set in the variety (tf, P27) of linear morphisms be-
tween the two projective spaces. We shall therefore specify one particular quartic
3-fold Xo = {Fo = 0} that admits a Pfaffian representatifp = Pf(Mp); then

we will show that the differential of the map: Lin(P4, P?7) --» P® at My is
surjective, and this will imply thaf is dominant.
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Let
r 0 X1 X2 X3 X4 X5 X1 0 7
—x1 0 0 X5 0 0 —x3 —x1
—x2 0 0 X1 X1 0 0 —xa4
Mo — —X3 —X5 —X1 0 X2 0 0 0
—X4 0 —X1 —X2 0 X3 X1 0
—x5 0 0 0 —x3 0 X4 X2
—X1 X3 0 0 —x3 —x4 O X5
L 0 X1 X4 0 0 —X2 —Xs5 0 n
and

3 3 3 2 2 2
Fo = Pf(Mo) = x7x2 — x7x3 + X5X3 — X1X2X5 — X1X5X4 + X{X3X4
3 2.2 2 3 2
+ X1X2X3X4 + X3X4 — X1 X4 + X1X2X 4 + X7X5 — X{ X2 X5
2 2 3
— X1X5X5 — X{ X3X5 + X1X3X4X5 + X2X3X4X5 + X X5
2 2 3
+ X2X3X5 — X1X4X5 + X1Xg.

A point M e Lin(P#, P?") is the proportionality class of an88 skew-symmetric
matrix of linear formg;; and is given by its 528 = 140 homogeneous coordi-
nates(a;x) such that;; = >, ajux; (0 <i < j <8,1<k <5). We have
af (M)/da;j = xi Pf;(M), where Pf;(M) denotes the Pfaffian of thex66 ma-
trix obtained by deleting th&h andjth rows and théth and;jth columns ofM.

Computation by the Macaulay 2 program [GS] shows that, for the mafsix
the 140 quartic forms; Pf;;(Mo) generate the whole 70-dimensional space of
quinary quartic forms; hencg is of maximal rank atMy. One can also easily
make Macaulay 2 verify thaX is in fact nonsingular, though this is not essential
for our proof.

It remains to verify that the generic fiber of the induced map

£ PGL®)\Lin(P*, P*)/ pGL(8) --» PGL(S)\P*

is 7-dimensional. By counting dimensions, one sees that this is equivalent to the
fact that the stabilizer of a generic point of the Grassmannian

G (5, 28) = PGL(5)\ Lin(P*, P*)

in PGL(8) is 0-dimensional.

Take a generic 4-dimensional linear subsplce P?’. Then the quartic 3-fold
X = H N E is generic and hence AW) is trivial. Thus the stabilizeGy of H
in PGL(8) acts trivially onX and hence orf. This implies the triviality ofGy
by (5.3) of [B]. O

Let now K be the kernel bundle oB whose fiber ak € E is kerx. ThusK is a
rank-2 vector subbundle of the trivial rank-8 vector bunlle= E ® ¢ Oz over
Eo= E\Q. Let¢p: X — H N E be a representation of a nhonsingular quar-
tic 3-fold X c P# as a linear section d. Giving ¢ is equivalent to specifying
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a skew-symmetric & 8 matrix M of linear forms such that the equation Xfis
Pf(M) = 0. Such a representation yields a rank-2 vector buéidie£, on X that
is defined byt = ¢*K. According to [B, Prop. 8.2], the scheme of zeros of any
sections # 0 of £ is an arithmetically Cohen—Macaulay 1-dimensional scheme
C of degree 14 that is not contained in any quadric hypersurface and such that its
canonical bundleoc >~ O¢(2). Varieties satisfying the latter condition are usu-
ally called half-canonical. Moreoveg, is also ACM and has a resolution of the
form

0— Opa(-18 % 08, > £ > 0. @)

This implies, in particular, that two Pfaffian representatighse, are equiva-
lent if and only if the corresponding vector bundig&s £, are isomorphic. By
(8.1) in [B], £ can be given also by Serre’s construction as the middle term of the
extension

0—-0O0x > &—ZIcx(3) — 0, (2)

whereZ . x denotes the ideal sheaf@fin X. Thus, the following assertion holds.

CoroLLARY 1.3. A generic quartic3-fold X ¢ P* has a7-dimensional family

of isomorphism classes of ral&ACM vector bundleg with det€ ~ O(3) and
h%€) = 8, and these bundles are characterized by one of the following equivalent
properties

(i) £ as a sheaf oriP* possesses a resolution of the forf) with a skew-
symmetric matrix of linear formaf;

(if) the scheme of zeros of any sectiog 0 of £ is an ACM half-canonical curve
C of degreel4 and arithmetic genu$5that is not contained in any quadric
hypersurface ifP4;

(iii) & can be obtained by Serre’s construction from a cutve X as in(ii).

In fact, the vector bundles under consideration are stable, so the 7-parameter fam-
ily just described is a part of the moduli space of vector bundles.

THEOREM 1.4. Let X be a generic quarti@-fold, and letM (2; —1, 6) be the
moduli space of stable rankvector bundles; on X with Chern classes; =
—[H] and¢, = 6[I], where[l] € H3(X, Z) is the class of a line. Then the iso-
morphism classes of the ACM vector bundles of the forn & (—2), wheref are
vector bundles introduced in Corollary 1.3, form an irreducible open subtet
of dimensiorv in the nonsingular locus afZy (2; —1, 6).

Proof.

Stability. If £ is given by the extension (2), then twisting &% (—2) and using
hO(Zc x(k)) = 0 fork < 2 ((ii) of Lemma 1.3) yields that®(£(—2)) = 0. The
stability follows from Lemmad.1.

Smoothness and dimensiofhe stability implies that is simple; that is,
h9(E¥®E) = 1 Hence the tangent spafg) Mx (2; —1, 6) at[€] is identified with
Ext}(&, &) = HYX, £Y®E). By[B, (8.9)], the vanishing ai?(Endy(€)) follows
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from the fact thatthe mapfi introduced in the proof of Proposition 1.2, is dominant.
HenceMx (2; —1, 6) is smooth at§] of local dimension dirfg; Mx(2; —1,6) =
h{EY ®E).

Since rk€ = 2, we havef' ~ £ ® (det€)~* ~ £(—3). By Serre duality,
RE® &) = h%E ® E(-D) = 0. By (1), ho(tf,’(—S)) = x(€(=3)) = 0.
Together with the ACM property fof, this givesh'(£(—3)) = O for all i € Z.
Now, from (2) tensored by (—3), we obtain the isomorphisms

H(E' QE)=HEQREI))=H(EQRI:) Viel. (3)

Further, the restriction sequence
0> ERIc—>E—E|,—0 4)
yields x(€ ® Zc) = x(€) — x(€|.) =8—14= —6, soh'(£¥ ® £) = 7 and we
are done. 0

2. Curves of Degree 14 and Genus 15 i&*

Let X = {F = 0} be a generic quartic 3-fold iR*, and letX = H N Z (so the
P is identified withH ) be a Pfaffian representation f&t For the sake of func-
toriality, we should have definedl as embedded iB(A\?(E")) so that the points
x € X could be interpreted as alternating bilinear forms of rank &onwhilst
G = G(2,8) c P(N\’E); to avoid this dichotomy, we will work in coordinates
and identifyE with EV. Let £ be the corresponding rank-2 vector bundle ahd
the scheme of zeros of a sectiogs 0 of £. Let Hia 15 (resp.,Hl’ius) denote the
union of the components of the Hibert scheme of curvéifresp., inX) whose
generic points represent a curgeas before. For generig the curveC is non-
singular.

Similarly to the previous section, introduce the rank filtration on ther skew-
symmetric matricesG’' = G(2,7) C Z c P?° = P(A%(C")). According to [R],
we have dinG’ = 10, degG’ = 42, wg' = Og/(=7), dimZ = 17, degZ = 14,
andwz; = Oz(—14). We will identify G’ with a subvariety of5 for the standard
inclusionC’ ¢ C8.

ProrosiTioN 2.1.  The following assertions hold.
(i) h°%(Neyx) = 14andh*(Nx) = 0; henceHy', ;5 is smooth afC] of local
dimensiori4.
(i) hO(NC/P4) =56 andhl(/\/c/w) = 0; henceH1415 is smooth a{C] of local
dimensiorb6.
(iii) C can be identified with a section of the raAdocus Z of 7 x 7 skew-
symmetric matrices by 4dimensional linear subspade c P?°.

Proof. (i) The restriction sequence (4) yield3(€ ® Z¢) = h*(&| ). We proved
in Theorem 1.4 the vanishing 6f (£ ® Z¢) = h?(Endo(E)). As C is the scheme
of zeros of a section of, we haveE|C ~ N¢/x. Thus we obtairk*(N¢/x) = 0.
By Riemann—Rocth(j\/c/X) = 14 and we are done.
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(i) We haveh (N¢/x) = 0. The normal bundle sequence
0— NC/X — NC/IP’4 — Oc(4) — 0

implies the vanishing of(\¢p4). By Riemann—-Roch;%(N p4) = 56.

(iii) The sections of are naturally identified with elements &f via the em-
bedding of€ into the trivial rank-8 vector bundlEy = E® Ox. LetCl: E\Q —
G = G(2, 8) be the classifying map that sends eachE \ Q2 to the projectivized
kernel ofx, considered as a point ¢f, with Cly the restriction of Cl toX. We can
choose the coordinates min such a way that = x7. HenceC = Cl}l(all(PG)),
whereP8 is the hyperplang¢x; = 0} in P” = P(E) andon(P® = G’ c G is
the Schubert subvariety of all the lines contained in the hyperplane. We can also
write C = CI7}(G’) N H. The closure of the 24-fold CHG’) in E is defined by
the seven cubic Pfaffians Ptx), 0 <r < 6.

As cubic forms, the Pfaffians P{x), 0 < r < 6, do not depend on the vari-
ablesx,7, 0 < p < 7. Therefore CtY(G’) is isomorphic to the con€(Z) with
vertex (or ridge)P® = (eq7, ..., es7) and base

Z = {)C/ . Pfo7)€/ =-..= Pf67x/ =0} C IF’(/\Z(eo, ..., €6));

herex’ = (xp4)0<p ¢<6 IS the eighth principal adjoint matrix of the matrix
(i.e., x’ is obtained fromx by deleting its last column and row). It is well
known that the vanishing of the principal minors of orderdt a skew-symmetric
(2n+1) x (2n + 1) matrix is equivalent to the vanishing of all its minors of order
2n, soZ is the locus of 7 7 skew-symmetric matrices of rank 4. The projection
7 P27 ——5 P2 with centerP® maps isomorphically (for generid ) the intersec-
tion HNC(Z)to L N Z, whereL = 7 (H). This finishes the proof. O

Let M, denote the moduli space of smooth curves of ggnasd letM; be the
subvariety oM, parameterizing half-canonical curves with a theta-characteristic
D such that dimD| = r.

CoroLLARY 2.2. The following assertions hold.

(i) Hiaasis irreducible of dimensioB6.

(i) For genericL € Lin(P4, P?9), the stabilizer of£ in PGL(7), acting on the
right, is finite; the natural mapin(P*.P*)/ pGL(7) --» Hi41s i generically
finite.

(i) The natural mag : PGLE)\Lin(P*. P*)/ pgL(7) --» M is generically finite,
and its image is &2-dimensional irreducible component{; of M3..

Proof. (i) Indeed,H141s5 is the image of LiiP4, P2°).
(i) This follows from the count of dimensions:

dim Lin(P*, P%) — dim PGL(7) = (5- 21— 1) — (7> — 1) = 56 = dim Hi41s.

(iii) According to Harris [H], if r < %(g — 1) then the codimension of any
component ofMy in M, is at most%r(r +1). Applying this to our case, we see
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that the dimension of every componentff;; is at least 32. Hence the compo-
nentMls, containing the image aff141s, is of dimension> 32. The dimension
of P(;L(s)\l-ln(IF>4 P?)/pGL(7) is 32, so it remains to show thatis dominant over
/\/l

Take a generi€ from the image of; C is a smooth ACM curve if?*. By the
definition of M, every small (analytic or étale) deformation®fs accompanied
by a deformation of the theta-characterigiiembeddingC into P*. Because the
ACM property is generic, any generic small deformatio@a$ again in the image
of g, and we are done. O

REMARK 2.32. In Corollary 2.2(ii), the stabilize% of £ might act by nontriv-
ial automorphisms of'. Since Aut(C) is finite, the subgroupl - fixing pointwise

C, and hencd. = L(P#), is of finite index inG. The first assertion of (ii) is
therefore equivalent to saying thé} is finite. One can strengthen this assertion:
The subgroup of PG{2x + 1) fixing pointwise a generic lined@? c P(A2C?"*)

for n > 2 is finite. This is easily reduced to the-2limensional case, stated in
[B, (5.3)].

PROPOSITION 2.4. LetH14 15 C H{} 15 be the locus of ACM half-canonical curves
C C X of degreel4 and arithmetic genus5 not contained in any quadric hyper-
surface inP4, and letMy C Mx(2; —1, 6) be the open set defined in Theorem 1.4.
Then the Serre construction defines a morphfp'srrH14 15 = My with fiber P,
Moreover H{il 15 1S isomorphic locally in the étale topology ovéfy to a projec-
tivized rank8 vector bundle o/ .

Proof. It is easily seen that dim EX{Z(3), Ox) = 1 and so, giverC, the Serre
construction determings uniquely. This yields as a set-theoretic map. An ob-
vious relativization of the Serre construction shows that it is indeed a morphism.
Further, we havé®(£ ® Z.) = 1 by stability of € and (3), so the projective
spaceP’ = P(H(&)) is injected mtoHl’ﬁ1 15 by sending each section# 0 of £
to its scheme of zeros. Hence the fibergpadre set-theoretically 7-dimensional
projective spaces. The proof of the last assertion of the proposition is completely
similar to that of Lemma 5.3 in [MT]. O

3. Abel-Jacobi Map

We shall review briefly the Clemens—Giriffiths technique for the calculation of the
differential of the Abel-Jacobi map, following Welters [W, Sec. 2]. Kdie a non-
singular projective 3-fold witth®® = 0, and letX ¢ W be an embedding in a non-
singular (possibly noncomplete) 4-fold. Lét B — J2(X) be the Abel-Jacobi
map, whereB is the base of a certain family of curves &h The differential
d®(z at a point £] € B, representing a curvE, factors into the composition

of the infinitesimal classifying ma@ , — H%(Z, Nz,x) and of the universal
“infinitesimal Abel-Jacobi map{y;: H%(Z, Nz;x) — HXX, Q2)" = Tx).0-

The adjointy;, is identified by the following commutative square:
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HOX, Nyjw ® wx) —> HYX,Q2)

rzl lw; (5)

B v
HYZ, Nxyw ® wx|,) —> H%Z,Nzx)".

Herer; is the map of restriction t&, and the whole square (upon natural identifi-
cations) is thed ® — H? part of the commutative diagram of the long exact coho-
mology sequences associated to the following commutative diagram of sheaves:

0 — Q2 — Q) @ Nyw —> Q3 @ Nyyw — 0

l l l ©

O e Q§(®NZ/X e 9)3(®NZ/W e Q;@NX/W®OZ e 0

Specifying all this to the case where (a)s a generic quartic 3-fold, (& = C C
X is a generic curve front, s, and (c)W = P*, we see that the dimensions

in (5) form the arra;( o ig), that R andrc are surjective, and that corapk =

corankyr/ = hl(NC/P4(—1)). Dualizing, we obtain the following.

Lemma 3.1. For C, X as beforedim keryc = h*(Npa(—1) anddimimyc =
14— hY(N¢pa(=1)).

We havex(N¢/pa(—1) = 14 and sti®( N pa(—1) = 14+ hY(N pa(=1)).
LemMa 3.2, hO(Npa(—1) =21

Proof. Obvious exact triples show that the assertion is equivalent to
W(T%pa3) =21 h(TZ;4(3)=0 Vi#2

The last equalities follow immediately from the resolutionﬂirw(B), obtained
from [R, (4)] by restriction tal = P* c P® and twisting byO(3):

0 — 21034(—5) — 480ps(—4) — 280p4(—3) — Z2,.(3) > 0. O

Lemmas 3.1and 3.2 imply that the Abel-Jacobi nidpas a 7-dimensional image

in the 30-dimensional intermediate JacohigiiX ) and 7-dimensional fibers. We

can easily identify the irreducible components of the fiber. Indeed, by Proposi-
tion 2.4, eactC is contained in @' = P(H(€)) C Hiy,s. Any rationally con-
nected variety is contracted by the Abel-Jacobi map, so each one of its fibers is a
union of theseéP’s. Since the dimension of the fiber is 7, fh&s are irreducible
components of the fiber. Because they are fibegs dlfie irreducible components

do not meet each other and so they are, in fact, connected components. Thus we
have proved the following theorem.

Tueorem 3.3.  LetX be a generic quartiG-fold. Letlfll’ik15 C Hj; 5 be defined
as in Proposition 2.4, and leb: H3, ;; — J?(X) be the Abel-Jacobi map. Then
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the dimension of any component@d‘flfﬁl’ls) is equal to7, and the fibers ofb are
the unions of finitely many disjoiftdimensional projective spaces. The natural
mapy: My — J2(X), defined byd = v o ¢, is quasi-finite and nonramified
onMy.

We may immediately derive the following obvious corollary.

CoroLLARY 3.4. Every component dffy has nonnegative Kodaira dimension.
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