Quartic 3-Fold: Pfaffians, Vector Bundles, and Half-Canonical Curves

A. ILIEV & D. MARKUSHEVICH

Introduction

This paper is a part of the study of moduli spaces of vector bundles with small Chern classes on certain Fano 3-folds. We investigate the moduli component of kernel bundles on a quartic 3-fold, defined similarly to that of [IM; MT] for the case of a cubic 3-fold. Our work received a strong pulse with the publication of Beauville's paper [B], which allowed us to simplify some arguments and put our results in a more general framework of Pfaffian hypersurfaces.

In [MT], it was proved that the Abel–Jacobi map of the family of normal elliptic quintics lying on a general cubic 3-fold V factors through a moduli component of stable rank-2 vector bundles on V with Chern numbers $c_1 = 0$ and $c_2 = 2$ and whose general point represents a vector bundle obtained by Serre's construction from an elliptic quintic. The elliptic quintics mapped to a point of the moduli component vary in a 5-dimensional projective space inside the Hilbert scheme of curves, and the map from the moduli component to the intermediate Jacobian is quasi-finite. In [IM], this moduli component was identified with the variety of representations of V as a linear section of the Pfaffian cubic in \mathbb{P}^{14} and it was proved that the degree of the quasi-finite map is 1, so the moduli component is birational to the intermediate Jacobian $J^2(X)$. According to [D], the moduli space $M_V(2; 0, 2)$ is irreducible, so its unique component is the one just described.

In the present paper, we prove that a generic quartic 3-fold X admits a 7dimensional family of essentially different representations as the Pfaffian of an 8×8 skew-symmetric matrix of linear forms. Thanks to [B], this provides a 7dimensional family of arithmetically Cohen–Macaulay (ACM for short) vector bundles on X, obtained as the bundles of kernels of the 8×8 skew-symmetric matrices of rank 6 representing points of X. We show that this family is a smooth open set M_X in the moduli space of stable vector bundles $M_X(2; 3, 14) \simeq$ $M_X(2; -1, 6)$. The ACM property means the vanishing of the intermediate cohomology $H^i(X, \mathcal{E}(j))$ for all i = 1, 2 with $j \in \mathbb{Z}$.

We also give a precise geometric characterization of the ACM curves arising as schemes of zeros of sections of the kernel vector bundles. According to Beauville, they are half-canonical ACM curves of degree 14 in \mathbb{P}^4 ; we show that they are linear sections of the rank-4 locus $Z \subset \mathbb{P}(\wedge^2 \mathbb{C}^7)$ in the projectivized space of the

Received December 20, 1999. Revision received May 1, 2000.

 7×7 skew-symmetric matrices. Linear sections of *Z* have already arisen in the literature: Rødland [R] studied the sections $\mathbb{P}^6 \cap Z$, which are Calabi–Yau 3-folds. We show that such curves fill out open sets of smooth points of the Hilbert schemes of *X* (of dimension 14) and of \mathbb{P}^4 (of dimension 56). We show also that the isomorphism classes of smooth members of this family fill out a 32-dimensional moduli component \mathcal{M}_{15}^4 of curves of genus 15 with a theta-characteristic linear series of dimension 4.

Next we study the Abel–Jacobi map of the ACM half-canonical curves of genus 15 in X. It factors through M_X via Serre's construction: the fibers over points of M_X are \mathbb{P}^7 , and the resulting map from M_X to $J^2(X)$ is quasi-finite and nonramified; hence its image is 7-dimensional. The role of these half-canonical curves is similar to that of normal elliptic quintics in the case of the cubic 3-fold V, where the Abel–Jacobi map factors through the instanton moduli space with fibers \mathbb{P}^5 and with a 5-dimensional image; since dim $J^2(V) = 5$, the image is an open subset of $J^2(V)$. The result for a quartic 3-fold is somewhat weaker: here we do not know whether the degree of the quasi-finite map is 1 or whether M_X is irreducible. Moreover, as $7 = \dim M_X < 30 = \dim J^2(X)$, we cannot conclude (as in the case of a cubic 3-fold) that the image of M_X is an open subset of an Abelian variety; we can only state that every component of it, and hence of M_X itself, has a nonnegative Kodaira dimension.

In Section 1 we prove that a generic quartic 3-fold is Pfaffian with the same method used by Adler in his Appendix to [AR] for a cubic 3-fold: Take a particular Pfaffian quartic and prove that the differential of the Pfaffian map from the family of all the 8×8 skew-symmetric matrices of linear forms to the family of quinary quartics is of maximal rank. We also prove basic facts about M_X : stability, dimension 7, and smoothness.

Section 2 treats half-canonical ACM curves of genus 15 on *X* and in \mathbb{P}^4 . Section 3 applies the technique of the tangent bundle sequence of Clemens and Griffiths [CG] and Welters [W] to the calculation of the differential of the Abel–Jacobi map for the family of the above half-canonical curves *C*. It identifies the kernel of the differential with $H^1(\mathcal{N}_{C/\mathbb{P}^4}(-1))^{\vee}$, and we prove that it has dimension 7.

ACKNOWLEDGMENTS. The second author acknowledges with pleasure the hospitality of the Max-Planck-Institut für Mathematik at Bonn, where he wrote this paper.

1. Generic Quartic 3-Fold is Pfaffian

Let *X* be a smooth quartic 3-fold. It is well known that Pic(X) is isomorphic to \mathbb{Z} and generated by the class of the hyperplane section *H*, and that the group of algebraic 1-cycles modulo topological equivalence is also isomorphic to \mathbb{Z} but generated by the class of a line $l \subset X$. For two integers k, α we will denote by $M_X(2; k, \alpha)$ the moduli space of *stable* rank-2 vector bundles \mathcal{E} on *X* with Chern classes $c_1 = k[H]$ and $c_2 = \alpha[l]$. We will identify the Chern classes with integers in using the generators [H] and [l] of the corresponding groups of algebraic cycles. We have $[H]^2 = 4[l]$.

By the definition of the Chern classes and by Riemann–Roch–Hirzebruch, for $\mathcal{E} \in M_X(2; k, \alpha)$ we have

$$c_1(\mathcal{E}(n)) = c_1(\mathcal{E}) + 2n[H] = (k+2n)[H],$$

$$c_2(\mathcal{E}(n)) = c_2(\mathcal{E}) + n[H]c_1(\mathcal{E}) + n^2[H]^2 = (\alpha + 4kn + 4n^2)[l],$$

$$\chi(\mathcal{E}) = \frac{2}{3}k^3 - \frac{1}{2}k\alpha + k^2 - \frac{1}{2}\alpha + \frac{7}{3}k + 2.$$

A rank-2 torsion-free sheaf \mathcal{E} on X is *normalized* if $c_1(\mathcal{E}) = k[H]$ with k = 0 or k = -1. We can make \mathcal{E} normalized by replacing it with a suitable twist $\mathcal{E}(n)$.

The following lemma is well known (see [Ha; Ko]).

LEMMA 1.1. Let \mathcal{E} be a normalized rank-2 reflexive sheaf on a nonsingular projective variety X with $\operatorname{Pic}(X) \simeq \mathbb{Z}$. Then it is stable if and only if $h^0(\mathcal{E}) = 0$.

Let now *E* be an 8-dimensional vector space over \mathbb{C} . Fix a basis e_0, \ldots, e_7 for *E*; then $e_{ij} = e_i \wedge e_j$ for $0 \leq i < j \leq 7$ form a basis for the Plücker space $\wedge^2 E$. Let x_{ij} be the corresponding (Plücker) coordinates. The embedding of the Grassmannian G = G(2, E) in $\mathbb{P}^{27} = \mathbb{P}(\wedge^2 E)$ is precisely the locus of rank-2 skew-symmetric 8×8 matrices *M* with elements x_{ij} above the diagonal. Let $G \subset \Omega \subset \Xi \subset \mathbb{P}^{27}$ be the filtration of \mathbb{P}^{27} by the rank of *M*, that is, $\Omega = \{M \mid \text{rk } M \leq 4\}$ and $\Xi = \{M \mid \text{rk } M \leq 6\}$. Then *G*, $\Omega \setminus G$, $\Xi \setminus \Omega$, and $\mathbb{P}^{27} \setminus \Xi$ are orbits of PGL(8), acting via \wedge^2 of its standard representation (see e.g. [KS]), and we have $G = \text{Sing }\Omega$ with dim G = 12 and $\Omega = \text{Sing }\Xi$ with dim $\Omega = 21$. The equation for Ξ is Pf(M) = 0, where Pf stands for the Pfaffian of a skew-symmetric matrix. We will call Ξ the *Pfaffian hypersurface* of \mathbb{P}^{27} .

Let $H \subset \mathbb{P}^{27}$ be a 4-dimensional linear subspace that is not contained in Ξ . Then the intersection $H \cap \Xi$ will be called a Pfaffian quartic 3-fold. Since $\operatorname{codim}_{\Xi} \Omega = 5$, the linear section $H \cap \Xi$ is nonsingular for general H. Suppose that a quartic 3-fold $X \subset \mathbb{P}^4$ has two different representations, $\phi_1 \colon X \xrightarrow{\sim} H_1 \cap \Xi$ and $\phi_2 \colon X \xrightarrow{\sim} H_2 \cap \Xi$, as linear sections of Ξ . We will call them *equivalent* if $\phi_2 \circ \phi_1^{-1}$ is the restriction of a transformation from PSL(8).

PROPOSITION 1.2. A generic quartic 3-fold admits a 7-parameter family of nonequivalent representations as linear sections of the Pfaffian hypersurface in \mathbb{P}^{27} .

Proof. We use the same argument as in [AR, Thm. (47.3)]. The family of quartic 3-folds in \mathbb{P}^4 is parameterized by \mathbb{P}^{69} and that of the Pfaffian representations of quartic 3-folds by an open set in the variety $\operatorname{Lin}(\mathbb{P}^4, \mathbb{P}^{27})$ of linear morphisms between the two projective spaces. We shall therefore specify one particular quartic 3-fold $X_0 = \{F_0 = 0\}$ that admits a Pfaffian representation $F_0 = \operatorname{Pf}(M_0)$; then we will show that the differential of the map $f : \operatorname{Lin}(\mathbb{P}^4, \mathbb{P}^{27}) \dashrightarrow \mathbb{P}^{69}$ at M_0 is surjective, and this will imply that f is dominant.

Let

$$M_{0} = \begin{bmatrix} 0 & x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & x_{1} & 0 \\ -x_{1} & 0 & 0 & x_{5} & 0 & 0 & -x_{3} & -x_{1} \\ -x_{2} & 0 & 0 & x_{1} & x_{1} & 0 & 0 & -x_{4} \\ -x_{3} & -x_{5} & -x_{1} & 0 & x_{2} & 0 & 0 & 0 \\ -x_{4} & 0 & -x_{1} & -x_{2} & 0 & x_{3} & x_{1} & 0 \\ -x_{5} & 0 & 0 & 0 & -x_{3} & 0 & x_{4} & x_{2} \\ -x_{1} & x_{3} & 0 & 0 & -x_{1} & -x_{4} & 0 & x_{5} \\ 0 & x_{1} & x_{4} & 0 & 0 & -x_{2} & -x_{5} & 0 \end{bmatrix}$$

and

$$F_{0} = Pf(M_{0}) = x_{1}^{3}x_{2} - x_{1}^{3}x_{3} + x_{2}^{3}x_{3} - x_{1}x_{2}x_{3}^{2} - x_{1}x_{2}^{2}x_{4} + x_{1}^{2}x_{3}x_{4}$$

+ $x_{1}x_{2}x_{3}x_{4} + x_{3}^{3}x_{4} - x_{1}^{2}x_{4}^{2} + x_{1}x_{2}x_{4}^{2} + x_{1}^{3}x_{5} - x_{1}^{2}x_{2}x_{5}$
- $x_{1}x_{2}^{2}x_{5} - x_{1}^{2}x_{3}x_{5} + x_{1}x_{3}x_{4}x_{5} + x_{2}x_{3}x_{4}x_{5} + x_{4}^{3}x_{5}$
+ $x_{2}x_{3}x_{5}^{2} - x_{1}x_{4}x_{5}^{2} + x_{1}x_{5}^{3}$.

A point $M \in \text{Lin}(\mathbb{P}^4, \mathbb{P}^{27})$ is the proportionality class of an 8×8 skew-symmetric matrix of linear forms l_{ij} and is given by its $5 \cdot 28 = 140$ homogeneous coordinates (a_{ijk}) such that $l_{ij} = \sum_k a_{ijk} x_k$ $(0 \le i < j \le 8, 1 \le k \le 5)$. We have $\partial f(M)/\partial a_{ijk} = x_k \operatorname{Pf}_{ij}(M)$, where $\operatorname{Pf}_{ij}(M)$ denotes the Pfaffian of the 6×6 matrix obtained by deleting the *i*th and *j*th rows and the *i*th and *j*th columns of *M*.

Computation by the Macaulay 2 program [GS] shows that, for the matrix M_0 , the 140 quartic forms $x_k \operatorname{Pf}_{ij}(M_0)$ generate the whole 70-dimensional space of quinary quartic forms; hence f is of maximal rank at M_0 . One can also easily make Macaulay 2 verify that X_0 is in fact nonsingular, though this is not essential for our proof.

It remains to verify that the generic fiber of the induced map

$$\overline{f}$$
: PGL(5) \Lin(\mathbb{P}^4 , \mathbb{P}^{27})/ PGL(8) --+ PGL(5) \ \mathbb{P}^{69}

is 7-dimensional. By counting dimensions, one sees that this is equivalent to the fact that the stabilizer of a generic point of the Grassmannian

$$G(5, 28) = \operatorname{PGL}(5) \setminus \operatorname{Lin}(\mathbb{P}^4, \mathbb{P}^{27})$$

in PGL(8) is 0-dimensional.

Take a generic 4-dimensional linear subspace $H \subset \mathbb{P}^{27}$. Then the quartic 3-fold $X = H \cap \Xi$ is generic and hence Aut(X) is trivial. Thus the stabilizer G_H of H in PGL(8) acts trivially on X and hence on H. This implies the triviality of G_H by (5.3) of [B].

Let now \mathcal{K} be the kernel bundle on Ξ whose fiber at $x \in \Xi$ is ker x. Thus \mathcal{K} is a rank-2 vector subbundle of the trivial rank-8 vector bundle $E_{\Xi} = E \otimes_{\mathbb{C}} \mathcal{O}_{\Xi}$ over $\Xi_0 = \Xi \setminus \Omega$. Let $\phi: X \to H \cap \Xi$ be a representation of a nonsingular quartic 3-fold $X \subset \mathbb{P}^4$ as a linear section of Ξ . Giving ϕ is equivalent to specifying

a skew-symmetric 8×8 matrix M of linear forms such that the equation of X is Pf(M) = 0. Such a representation yields a rank-2 vector bundle $\mathcal{E} = \mathcal{E}_{\phi}$ on X that is defined by $\mathcal{E} = \phi^* \mathcal{K}$. According to [B, Prop. 8.2], the scheme of zeros of any section $s \neq 0$ of \mathcal{E} is an arithmetically Cohen–Macaulay 1-dimensional scheme C of degree 14 that is not contained in any quadric hypersurface and such that its canonical bundle $\omega_C \simeq \mathcal{O}_C(2)$. Varieties satisfying the latter condition are usually called half-canonical. Moreover, \mathcal{E} is also ACM and has a resolution of the form

$$0 \to \mathcal{O}_{\mathbb{P}^4}(-1)^8 \xrightarrow{M} \mathcal{O}_{\mathbb{P}^4}^8 \to \mathcal{E} \to 0.$$
 (1)

This implies, in particular, that two Pfaffian representations ϕ_1, ϕ_2 are equivalent if and only if the corresponding vector bundles $\mathcal{E}_1, \mathcal{E}_2$ are isomorphic. By (8.1) in [B], \mathcal{E} can be given also by Serre's construction as the middle term of the extension

$$0 \to \mathcal{O}_X \to \mathcal{E} \to \mathcal{I}_{C,X}(3) \to 0, \tag{2}$$

where $\mathcal{I}_{C,X}$ denotes the ideal sheaf of C in X. Thus, the following assertion holds.

COROLLARY 1.3. A generic quartic 3-fold $X \subset \mathbb{P}^4$ has a 7-dimensional family of isomorphism classes of rank-2 ACM vector bundles \mathcal{E} with det $\mathcal{E} \simeq \mathcal{O}(3)$ and $h^0(\mathcal{E}) = 8$, and these bundles are characterized by one of the following equivalent properties:

- (i) \mathcal{E} as a sheaf on \mathbb{P}^4 possesses a resolution of the form (1) with a skew-symmetric matrix of linear forms M;
- (ii) the scheme of zeros of any section s ≠ 0 of E is an ACM half-canonical curve C of degree 14 and arithmetic genus 15 that is not contained in any quadric hypersurface in P⁴;
- (iii) \mathcal{E} can be obtained by Serre's construction from a curve $C \subset X$ as in (ii).

In fact, the vector bundles under consideration are stable, so the 7-parameter family just described is a part of the moduli space of vector bundles.

THEOREM 1.4. Let X be a generic quartic 3-fold, and let $M_X(2; -1, 6)$ be the moduli space of stable rank-2 vector bundles \mathcal{G} on X with Chern classes $c_1 = -[H]$ and $c_2 = 6[l]$, where $[l] \in H^2(X, \mathbb{Z})$ is the class of a line. Then the isomorphism classes of the ACM vector bundles of the form $\mathcal{G} = \mathcal{E}(-2)$, where \mathcal{E} are vector bundles introduced in Corollary 1.3, form an irreducible open subset M_X of dimension 7 in the nonsingular locus of $M_X(2; -1, 6)$.

Proof.

Stability. If \mathcal{E} is given by the extension (2), then twisting by $\mathcal{O}_X(-2)$ and using $h^0(\mathcal{I}_{C,X}(k)) = 0$ for $k \le 2$ ((ii) of Lemma 1.3) yields that $h^0(\mathcal{E}(-2)) = 0$. The stability follows from Lemma 1.1.

Smoothness and dimension. The stability implies that \mathcal{E} is simple; that is, $h^0(\mathcal{E}^{\vee} \otimes \mathcal{E}) = 1$. Hence the tangent space $T_{[\mathcal{E}]}M_X(2; -1, 6)$ at $[\mathcal{E}]$ is identified with $\operatorname{Ext}^1(\mathcal{E}, \mathcal{E}) = H^1(X, \mathcal{E}^{\vee} \otimes \mathcal{E})$. By [B, (8.9)], the vanishing of $h^2(\mathcal{E}nd_0(\mathcal{E}))$ follows from the fact that the map f, introduced in the proof of Proposition 1.2, is dominant. Hence $M_X(2; -1, 6)$ is smooth at $[\mathcal{E}]$ of local dimension $\dim_{[\mathcal{E}]} M_X(2; -1, 6) = h^1(\mathcal{E}^{\vee} \otimes \mathcal{E})$.

Since $\operatorname{rk} \mathcal{E} = 2$, we have $\mathcal{E}^{\vee} \simeq \mathcal{E} \otimes (\det \mathcal{E})^{-1} \simeq \mathcal{E}(-3)$. By Serre duality, $h^3(\mathcal{E}^{\vee} \otimes \mathcal{E}) = h^0(\mathcal{E}^{\vee} \otimes \mathcal{E}(-1)) = 0$. By (1), $h^0(\mathcal{E}(-3)) = \chi(\mathcal{E}(-3)) = 0$. Together with the ACM property for \mathcal{E} , this gives $h^i(\mathcal{E}(-3)) = 0$ for all $i \in \mathbb{Z}$. Now, from (2) tensored by $\mathcal{E}(-3)$, we obtain the isomorphisms

$$H^{i}(\mathcal{E}^{\vee}\otimes\mathcal{E}) = H^{i}(\mathcal{E}\otimes\mathcal{E}(-3)) = H^{i}(\mathcal{E}\otimes\mathcal{I}_{C}) \quad \forall i\in\mathbb{Z}.$$
 (3)

Further, the restriction sequence

$$0 \to \mathcal{E} \otimes \mathcal{I}_C \to \mathcal{E} \to \mathcal{E} \Big|_C \to 0 \tag{4}$$

yields $\chi(\mathcal{E} \otimes \mathcal{I}_C) = \chi(\mathcal{E}) - \chi(\mathcal{E}|_C) = 8 - 14 = -6$, so $h^1(\mathcal{E}^{\vee} \otimes \mathcal{E}) = 7$ and we are done.

2. Curves of Degree 14 and Genus 15 in \mathbb{P}^4

Let $X = \{F = 0\}$ be a generic quartic 3-fold in \mathbb{P}^4 , and let $X = H \cap \Xi$ (so the \mathbb{P}^4 is identified with H) be a Pfaffian representation for X. For the sake of functoriality, we should have defined Ξ as embedded in $\mathbb{P}(\wedge^2(E^{\vee}))$ so that the points $x \in X$ could be interpreted as alternating bilinear forms of rank 6 on E, whilst $G = G(2, 8) \subset \mathbb{P}(\wedge^2 E)$; to avoid this dichotomy, we will work in coordinates and identify E with E^{\vee} . Let \mathcal{E} be the corresponding rank-2 vector bundle and C the scheme of zeros of a section $s \neq 0$ of \mathcal{E} . Let $H_{14,15}$ (resp., $H_{14,15}^X$) denote the union of the components of the Hibert scheme of curves in \mathbb{P}^4 (resp., in X) whose generic points represent a curve C as before. For generic s, the curve C is non-singular.

Similarly to the previous section, introduce the rank filtration on the 7 × 7 skewsymmetric matrices: $G' = G(2, 7) \subset Z \subset \mathbb{P}^{20} = \mathbb{P}(\wedge^2(\mathbb{C}^7))$. According to [R], we have dim G' = 10, deg G' = 42, $\omega_{G'} = \mathcal{O}_{G'}(-7)$, dim Z = 17, deg Z = 14, and $\omega_Z = \mathcal{O}_Z(-14)$. We will identify G' with a subvariety of G for the standard inclusion $\mathbb{C}^7 \subset \mathbb{C}^8$.

PROPOSITION 2.1. The following assertions hold.

- (i) $h^0(\mathcal{N}_{C/X}) = 14$ and $h^1(\mathcal{N}_{C/X}) = 0$; hence $H^X_{14,15}$ is smooth at [C] of local dimension 14.
- (ii) $h^0(\mathcal{N}_{C/\mathbb{P}^4}) = 56$ and $h^1(\mathcal{N}_{C/\mathbb{P}^4}) = 0$; hence $H_{14,15}$ is smooth at [C] of local dimension 56.
- (iii) *C* can be identified with a section of the rank-4 locus *Z* of 7×7 skew-symmetric matrices by a 4-dimensional linear subspace $L \subset \mathbb{P}^{20}$.

Proof. (i) The restriction sequence (4) yields $h^2(\mathcal{E} \otimes \mathcal{I}_C) = h^1(\mathcal{E}|_C)$. We proved in Theorem 1.4 the vanishing of $h^2(\mathcal{E} \otimes \mathcal{I}_C) = h^2(\mathcal{E}nd_0(\mathcal{E}))$. As *C* is the scheme of zeros of a section of \mathcal{E} , we have $\mathcal{E}|_C \simeq \mathcal{N}_{C/X}$. Thus we obtain $h^1(\mathcal{N}_{C/X}) = 0$. By Riemann–Roch, $h^0(\mathcal{N}_{C/X}) = 14$ and we are done. (ii) We have $h^1(\mathcal{N}_{C/X}) = 0$. The normal bundle sequence

$$0 \to \mathcal{N}_{C/X} \to \mathcal{N}_{C/\mathbb{P}^4} \to \mathcal{O}_C(4) \to 0$$

implies the vanishing of $h^1(\mathcal{N}_{C/\mathbb{P}^4})$. By Riemann–Roch, $h^0(\mathcal{N}_{C/\mathbb{P}^4}) = 56$.

(iii) The sections of \mathcal{E} are naturally identified with elements of E^{\vee} via the embedding of \mathcal{E} into the trivial rank-8 vector bundle $E_X = E \otimes \mathcal{O}_X$. Let Cl: $\Xi \setminus \Omega \to G = G(2, 8)$ be the classifying map that sends each $x \in \Xi \setminus \Omega$ to the projectivized kernel of x, considered as a point of G, with Cl_X the restriction of Cl to X. We can choose the coordinates in E in such a way that $s = x_7$. Hence $C = \operatorname{Cl}_X^{-1}(\sigma_{11}(\mathbb{P}^6))$, where \mathbb{P}^6 is the hyperplane $\{x_7 = 0\}$ in $\mathbb{P}^7 = \mathbb{P}(E)$ and $\sigma_{11}(\mathbb{P}^6) = G' \subset G$ is the Schubert subvariety of all the lines contained in the hyperplane. We can also write $C = \operatorname{Cl}_1^{-1}(G') \cap H$. The closure of the 24-fold $\operatorname{Cl}^{-1}(G')$ in Ξ is defined by the seven cubic Pfaffians $\operatorname{Pf}_{r_7}(x), 0 \leq r \leq 6$.

As cubic forms, the Pfaffians $Pf_{r7}(x)$, $0 \le r \le 6$, do not depend on the variables x_{p7} , $0 \le p \le 7$. Therefore $Cl^{-1}(G')$ is isomorphic to the cone C(Z) with vertex (or ridge) $\overline{\mathbb{P}}^6 = \langle e_{07}, \ldots, e_{67} \rangle$ and base

$$Z = \{x' : \operatorname{Pf}_{07} x' = \dots = \operatorname{Pf}_{67} x' = 0\} \subset \mathbb{P}(\wedge^2 \langle e_0, \dots, e_6 \rangle);$$

here $x' = (x_{pq})_{0 \le p,q \le 6}$ is the eighth principal adjoint matrix of the matrix x (i.e., x' is obtained from x by deleting its last column and row). It is well known that the vanishing of the principal minors of order 2n of a skew-symmetric $(2n + 1) \times (2n + 1)$ matrix is equivalent to the vanishing of all its minors of order 2n, so Z is the locus of 7×7 skew-symmetric matrices of rank 4. The projection $\pi : \mathbb{P}^{27} \dashrightarrow \mathbb{P}^{20}$ with center \mathbb{P}^6 maps isomorphically (for generic H) the intersection $H \cap C(Z)$ to $L \cap Z$, where $L = \pi(H)$. This finishes the proof.

Let \mathcal{M}_g denote the moduli space of smooth curves of genus g and let \mathcal{M}_g^r be the subvariety of \mathcal{M}_g parameterizing half-canonical curves with a theta-characteristic D such that dim|D| = r.

COROLLARY 2.2. The following assertions hold.

- (i) $H_{14,15}$ is irreducible of dimension 56.
- (ii) For generic $\mathcal{L} \in \operatorname{Lin}(\mathbb{P}^4, \mathbb{P}^{20})$, the stabilizer of \mathcal{L} in PGL(7), acting on the right, is finite; the natural map $\operatorname{Lin}(\mathbb{P}^4, \mathbb{P}^{20})/\operatorname{PGL}(7) \dashrightarrow H_{14,15}$ is generically finite.
- (iii) The natural map $g: PGL(5) \setminus Lin(\mathbb{P}^4, \mathbb{P}^{20}) / PGL(7) \longrightarrow \mathcal{M}_{15}^4$ is generically finite, and its image is a 32-dimensional irreducible component \mathcal{M}_{15}^4 of \mathcal{M}_{15}^4 .
- *Proof.* (i) Indeed, $H_{14,15}$ is the image of Lin(\mathbb{P}^4 , \mathbb{P}^{20}). (ii) This follows from the count of dimensions:

dim Lin(\mathbb{P}^4 , \mathbb{P}^{20}) – dim PGL(7) = (5 · 21 – 1) – (7² – 1) = 56 = dim H_{14,15}.

(iii) According to Harris [H], if $r \leq \frac{1}{2}(g-1)$ then the codimension of any component of \mathcal{M}_{g}^{r} in \mathcal{M}_{g} is at most $\frac{1}{2}r(r+1)$. Applying this to our case, we see

that the dimension of every component of \mathcal{M}_{15}^4 is at least 32. Hence the component $\mathcal{\hat{M}}_{15}^4$, containing the image of $H_{14,15}$, is of dimension ≥ 32 . The dimension of PGL(5) \Lin(\mathbb{P}^4 , \mathbb{P}^{20})/PGL(7) is 32, so it remains to show that *g* is dominant over $\mathcal{\hat{M}}_{15}^4$.

Take a generic *C* from the image of *g*; *C* is a smooth ACM curve in \mathbb{P}^4 . By the definition of \mathcal{M}_g^r , every small (analytic or étale) deformation of *C* is accompanied by a deformation of the theta-characteristic *D* embedding *C* into \mathbb{P}^4 . Because the ACM property is generic, any generic small deformation of *C* is again in the image of *g*, and we are done.

REMARK 2.32. In Corollary 2.2(ii), the stabilizer $G_{\mathcal{L}}$ of \mathcal{L} might act by nontrivial automorphisms of C. Since Aut(C) is finite, the subgroup $H_{\mathcal{L}}$ fixing pointwise C, and hence $L = \mathcal{L}(\mathbb{P}^4)$, is of finite index in $G_{\mathcal{L}}$. The first assertion of (ii) is therefore equivalent to saying that $H_{\mathcal{L}}$ is finite. One can strengthen this assertion: The subgroup of PGL(2n + 1) fixing pointwise a generic linear $\mathbb{P}^2 \subset \mathbb{P}(\wedge^2 \mathbb{C}^{2n+1})$ for $n \geq 2$ is finite. This is easily reduced to the 2n-dimensional case, stated in [B, (5.3)].

PROPOSITION 2.4. Let $\mathring{H}_{14,15}^X \subset H_{14,15}^X$ be the locus of ACM half-canonical curves $C \subset X$ of degree 14 and arithmetic genus 15 not contained in any quadric hypersurface in \mathbb{P}^4 , and let $M_X \subset M_X(2; -1, 6)$ be the open set defined in Theorem 1.4. Then the Serre construction defines a morphism $\phi : \mathring{H}_{14,15}^X \to M_X$ with fiber \mathbb{P}^7 . Moreover, $\mathring{H}_{14,15}^X$ is isomorphic locally in the étale topology over M_X to a projectivized rank-8 vector bundle on M_X .

Proof. It is easily seen that dim $\text{Ext}^1(\mathcal{I}_C(3), \mathcal{O}_X) = 1$ and so, given *C*, the Serre construction determines \mathcal{E} uniquely. This yields ϕ as a set-theoretic map. An obvious relativization of the Serre construction shows that it is indeed a morphism.

Further, we have $h^0(\mathcal{E} \otimes \mathcal{I}_C) = 1$ by stability of \mathcal{E} and (3), so the projective space $\mathbb{P}^7 = \mathbb{P}(H^0(\mathcal{E}))$ is injected into $H^X_{14,15}$ by sending each section $s \neq 0$ of \mathcal{E} to its scheme of zeros. Hence the fibers of ϕ are set-theoretically 7-dimensional projective spaces. The proof of the last assertion of the proposition is completely similar to that of Lemma 5.3 in [MT].

3. Abel-Jacobi Map

We shall review briefly the Clemens–Griffiths technique for the calculation of the differential of the Abel–Jacobi map, following Welters [W, Sec. 2]. Let *X* be a nonsingular projective 3-fold with $h^{03} = 0$, and let $X \subset W$ be an embedding in a nonsingular (possibly noncomplete) 4-fold. Let $\Phi: B \to J^2(X)$ be the Abel–Jacobi map, where *B* is the base of a certain family of curves on *X*. The differential $d\Phi_{[Z]}$ at a point $[Z] \in B$, representing a curve *Z*, factors into the composition of the infinitesimal classifying map $T_{B,b} \to H^0(Z, \mathcal{N}_{Z/X})$ and of the universal "infinitesimal Abel–Jacobi map" $\psi_Z: H^0(Z, \mathcal{N}_{Z/X}) \to H^1(X, \Omega_X^2)^{\vee} = T_{J_1(X),0}$. The adjoint ψ_Z^{\vee} is identified by the following commutative square:

$$\begin{array}{cccc} H^{0}(X, \mathcal{N}_{X/W} \otimes \omega_{X}) & \xrightarrow{R} & H^{1}(X, \Omega_{X}^{2}) \\ & & & & \downarrow^{r_{Z}} & & \downarrow^{\psi_{Z}^{\vee}} \\ H^{0}(Z, \mathcal{N}_{X/W} \otimes \omega_{X}|_{Z}) & \xrightarrow{\beta_{Z}} & H^{0}(Z, \mathcal{N}_{Z/X})^{\vee}. \end{array}$$

$$(5)$$

Here r_Z is the map of restriction to Z, and the whole square (upon natural identifications) is the $H^0 \rightarrow H^1$ part of the commutative diagram of the long exact cohomology sequences associated to the following commutative diagram of sheaves:

$$0 \longrightarrow \Omega^3_X \otimes \mathcal{N}_{Z/X} \longrightarrow \Omega^3_X \otimes \mathcal{N}_{Z/W} \longrightarrow \Omega^3_X \otimes \mathcal{N}_{X/W} \otimes \mathcal{O}_Z \longrightarrow 0.$$

Specifying all this to the case where (a) *X* is a generic quartic 3-fold, (b) $Z = C \subset X$ is a generic curve from $H_{14,15}^X$, and (c) $W = \mathbb{P}^4$, we see that the dimensions in (5) form the array $\binom{35 \ 30}{28 \ 14}$, that *R* and r_C are surjective, and that corank $\beta_C = \operatorname{corank} \psi_C^{\vee} = h^1(\mathcal{N}_{C/\mathbb{P}^4}(-1))$. Dualizing, we obtain the following.

LEMMA 3.1. For *C*, *X* as before, dim ker $\psi_C = h^1(\mathcal{N}_{C/\mathbb{P}^4}(-1))$ and dim im $\psi_C = 14 - h^1(\mathcal{N}_{C/\mathbb{P}^4}(-1))$.

We have $\chi(\mathcal{N}_{C/\mathbb{P}^4}(-1)) = 14$ and so $h^0(\mathcal{N}_{C/\mathbb{P}^4}(-1)) = 14 + h^1(\mathcal{N}_{C/\mathbb{P}^4}(-1))$.

LEMMA 3.2. $h^0(\mathcal{N}_{C/\mathbb{P}^4}(-1)) = 21.$

Proof. Obvious exact triples show that the assertion is equivalent to

$$h^{2}(\mathcal{I}^{2}_{C,\mathbb{P}^{4}}(3)) = 21, \qquad h^{i}(\mathcal{I}^{2}_{C,\mathbb{P}^{4}}(3)) = 0 \quad \forall i \neq 2.$$

The last equalities follow immediately from the resolution for $\mathcal{I}^2_{C,\mathbb{P}^4}(3)$, obtained from [R, (4)] by restriction to $L = \mathbb{P}^4 \subset \mathbb{P}^6$ and twisting by $\mathcal{O}(3)$:

$$0 \to 21\mathcal{O}_{\mathbb{P}^4}(-5) \to 48\mathcal{O}_{\mathbb{P}^4}(-4) \to 28\mathcal{O}_{\mathbb{P}^4}(-3) \to \mathcal{I}^2_{\mathcal{C},\mathbb{P}^4}(3) \to 0.$$

Lemmas 3.1 and 3.2 imply that the Abel–Jacobi map Φ has a 7-dimensional image in the 30-dimensional intermediate Jacobian $J^2(X)$ and 7-dimensional fibers. We can easily identify the irreducible components of the fiber. Indeed, by Proposition 2.4, each *C* is contained in a $\mathbb{P}^7 = \mathbb{P}(H^0(\mathcal{E})) \subset H^X_{14,15}$. Any rationally connected variety is contracted by the Abel–Jacobi map, so each one of its fibers is a union of these \mathbb{P}^7 s. Since the dimension of the fiber is 7, the \mathbb{P}^7 s are irreducible components of the fiber. Because they are fibers of ϕ , the irreducible components do not meet each other and so they are, in fact, connected components. Thus we have proved the following theorem.

THEOREM 3.3. Let X be a generic quartic 3-fold. Let $\mathring{H}^X_{14,15} \subset H^X_{14,15}$ be defined as in Proposition 2.4, and let $\Phi : \mathring{H}^X_{14,15} \to J^2(X)$ be the Abel–Jacobi map. Then the dimension of any component of $\Phi(\mathring{H}_{14,15}^X)$ is equal to 7, and the fibers of Φ are the unions of finitely many disjoint 7-dimensional projective spaces. The natural map $\psi: M_X \to J^2(X)$, defined by $\Phi = \psi \circ \phi$, is quasi-finite and nonramified on M_X .

We may immediately derive the following obvious corollary.

COROLLARY 3.4. Every component of M_X has nonnegative Kodaira dimension.

References

- [AR] A. Adler and S. Ramanan, *Moduli of Abelien varieties*, Lecture Notes in Math., 1644, Springer-Verlag, Berlin, 1996.
 - [B] A. Beauville, Determinantal hypersurfaces, preprint, http://xxx.lanl.gov/abs/ math.AG/9910030.
- [CG] C. H. Clemens and P. A. Griffiths, *The intermediate Jacobian of the cubic threefold*, Ann. of Math. (2) 95 (1972), 281–356.
 - [D] S. Druel, *Espace des modules des faisceaux semi-stables de rang 2 et de classes de Chern* $c_1 = 0$, $c_2 = 2$ *et* $c_3 = 0$ *sur une hypersurface cubique lisse de* \mathbb{P}^4 , preprint, http://xxx.lanl.gov/abs/math.AG/0002058, 2000.
- [GS] D. R. Grayson and M. E. Stillman, *Macaulay 2*, version 0.8.52, http://www.math.uiuc.edu/Macaulay2.
- [H] J. Harris, *Theta characteristics on algebraic curves*, Trans. Amer. Math. Soc. 271 (1982), 611–638.
- [Ha] R. Hartshorne, Stable reflexive sheaves, Math. Ann. 254 (1980), 121-176.
- [IM] A. Iliev and D. Markushevich, The Abel–Jacobi map for a cubic threefold and periods of Fano threefolds of degree 14, Doc. Math. 5 (2000), 23–47.
- [KS] T. Kimura and M. Sato, A classification of irreducible prehomogeneous vector spaces and their relative invariants, Nagoya Math. J. 65 (1977), 1–155.
- [Ko] S. Kobayashi, Differential geometry of complex vector bundles, Princeton Univ. Press, Princeton, NJ, 1987.
- [MT] D. Markushevich and A. S. Tikhomirov, The Abel–Jacobi map of a moduli component of vector bundles on the cubic threefold, J. Algebraic Geom. (to appear).
- [Mu] S. Mukai, *Curves, K3 surfaces and Fano* 3-*folds of genus* \leq 10, Algebraic geometry and commutative algebra, pp. 357–387, Kinokuniya, Tokyo, 1987.
 - [R] E. A. Rødland, The Pfaffian Calabi–Yau, its mirror, and their link to the Grassmannian G(2, 7), preprint, http://xxx.lanl.gov/abs/math.AG/9801092.
 - [T] A. N. Tyurin, Non-abelian analogues of Abel's theorem, preprint, International Centre for Theoretical Physics, Trieste, 1997.
 - [W] G. E. Welters, Abel–Jacobi isogenies for certain types of Fano threefolds, Mathematical Centre Tracts 141, Mathematisch Centrum, Amsterdam, 1981.

A. IlievD. MarkushevichInstitute of MathematicsMathématiques – Bât. M2Bulgarian Academy of ScienceUniversité Lille 1Sofia 1113Villeneuve d'Ascq F-59655BulgariaFranceailiev@math.bas.bgmarkushe@gat.univ-lille1.fr