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Quartic spline solution of a third order
singularly perturbed boundary value problem
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Abstract

Singularly perturbed boundary value problems are solved using
various techniques. The spline of degree four is used for the approximate
solution of a third order self adjoint singularly perturbed boundary
value problem. Convergence analysis is given and the method is proved
to be second order convergent. Two examples numerically illustrate
the method.
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1 Introduction

The solution of a singularly perturbed boundary value problem exhibits a
multiscale character. There is a thin transition layer, where the solution
varies swiftly, while away from the layer the solution behaves regularly and
varies gradually, therefore many complications are faced in solving singularly
perturbed boundary value problems using standard numerical methods. In
recent years, a large number of special purpose methods have been established
to provide accurate results.

Consider the self adjoint singularly perturbed boundary value problem of the
form

Ly(x) = −εy(3)(x) + p(x)y(x) = f(x), p(x) > 0 ,

y(0) = α0 , y(1) = α1 , y(1)(0) = α2 , (1)

or

Ly(x) = −εy(3)(x) + p(x)y(x) = f(x), p(x) > 0 ,

y(0) = α0 , y(1) = α1 , y(2)(0) = α3 , (2)

where α0, α1, α2 and α3 are constants and ε is a small positive parameter
(0 < ε 6 1), also f(x) and p(x) are smooth functions. In this problem, we
take p(x) = p = constant. Singularly perturbed problems usually crop up
in chemical reactions, quantum mechanics, fluid mechanics, optical control,
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etc. Three principal approaches are available to solve such problems, namely,
finite difference methods, finite element methods and spline approximation
methods.

The existence and uniqueness of singularly perturbed boundary value prob-
lems (bvps) was discussed by Howers, Kelevedjiev, and Roos et al. [3, 5, 10].
A numerical method for a class of second order singularly perturbed two point
boundary value problems on a uniform mesh using a compressed spline was
proposed by Mohanty and Jha [8]. Quartic non-polynomial spline functions
were used to develop a class of numerical methods for solving self adjoint sec-
ond order singularly perturbed two point boundary value problems by Tirmizi
et al. [13]. Difference schemes were developed for the numerical solution of
second order two point singularly perturbed boundary value problems using a
tension spline by Kadalbajoo and Patidar [4]. A sextic spline has been used
to solve second order singularly perturbed boundary value problems by Khan
et al. [6] and the method proved to be fifth order accurate. The method has
been presented to solve a class of second order singularly perturbed two point
boundary value problems for certain ordinary differential equations having
singular coefficients [14]. A numerical technique has been derived for a class
of singularly perturbed two point boundary value problems on an uniform
mesh using polynomial cubic spline by Rashidinia [9] and was given to be
second order convergent. A fourth order finite difference scheme based on a
nonuniform mesh for a class of singular two point perturbed boundary value
problem was described by Kumar [7] and shown to be of order four. This
method has also solved a class of third order singularly perturbed boundary
value problems [1]. The singularly perturbed boundary value problem for
quasilinear third order ordinary differential equations involving two small pa-
rameters has been considered by Su-rang et al. [11] and asymptotic solutions
constructed by the method of two step expansions. The derivation of solutions
to a singular two point boundary value problem for third order nonlinear
differential systems by employing the method of descent has been discussed
by Du [2]. Numerical solutions of fifth order two point singularly perturbed
boundary value problems have been considered by Syam and Attili [12].
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This paper is organized in four sections. Section 2 determines the consistency
relation and end condition required for the solution of bvp (1) and (2).
Section 3 discusses the convergence analysis of the quartic spline method.
Finally, Section 4 discusses the results of two numerical examples.

2 Consistency relations

To develop the consistency relations the following fourth degree spline is
considered:

Qi(x) = ai(x− xi)
4 + bi(x− xi)

3 + ci(x− xi)
2 + di(x− xi) + ei (3)

defined on [a,b], where x ∈ [xi, xi+1] with equally spaced knots, xi = a+ ih ,
i = 0, 1, . . . ,N , and h = (b− a)/N . Using the following notations

Qi(xi) = yi , Qi(xi+1) = yi+1 ,

Q
(3)
i (xi) = mi , Q

(3)
i (xi+1) = mi+1 ,

Q
(1)
i (xi) = ni ,

the coefficients in (3) are determined to be

ai = (mi −mi+1)/24h ,

bi = mi/6 ,

ci = −(3h3mi + h
3mi+1 + 24hni + 24yi − 24yi+1)/24h

2,

di = ni ,

ei = yi .
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Applying the first and second derivative continuities at knots, that is,Q
(µ)
i−1(xi) =

Q
(µ)
i (xi), for µ = 1 and 2, the following relations are derived:

1

12h

[
h3mi−1 + h

3mi − 12(hni−1 + hni + 2yi−1 − 2yi)
]
= 0 ,

1

12h2

[
h3mi−1 + 8h

3mi + h
3mi+1 − 24hni−1 + 24hni

− 24yi−1 + 48yi − 24yi+1] = 0 ,

which leads the following consistency relation in terms of mi and yi

mi−2 + 11mi−1 + 11mi +mi+1 =
24

h3
(−yi−2 + 3yi−1 − 3yi + yi+1) , (4)

for i = 2, 3, . . . ,N− 1 . Using Equation (1), Equation (4) is

(24ε+ ph3)yi−2 + (−72ε+ 11ph3)yi−1 + (72ε+ 11ph3)yi

+ (−24ε+ ph3)yi+1 = h
3(fi−2 + 11fi−1 + 11fi + fi+1), (5)

for i = 2, 3, . . . ,N− 1 . Since the above system consists of (N− 2) equations
with (N−1) unknowns, one more equation is required. The following relation
describing truncation error is used in this regard:

T0 = −h3(a0m−1 + a1m0 + a2m1)

+
(
a3y−1 + a4y0 + a5y1 + a6y2 + a7hy

(1)
0

)
. (6)

Moreover, the values of y−1 and m−1 can be calculated and are

y−1 = (5y0 − 10y1 + 10y2 − 5y3 + y4),

m−1 = (5m0 − 10m1 + 10m2 − 5m3 +m4).

Using Taylor series of the right-hand side of Equation (6) along with the

coefficients of y0, hy
(1)
0 , h2y

(2)
0 , h3y

(3)
0 , h4y

(4)
0 , the value of ais are calculated

as

a0 = 1 , a1 = −
5

3
, a2 =

3

2
, a3 = −

1

2
,

a4 = 3 , a5 = −
7

2
, a6 = 1 , a7 = 1 .
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Using the values of ais, y−1 and m−1 in Equation (6), the required end
condition is(3

2
ε+

17

2
ph3

)
y1 − (4ε+ 10ph3)y2 +

(5
2
ε+ 5ph3

)
y3 −

(1
2
ε+ ph3

)
y4

− h3
(
−
10

3
f0 +

17

2
f1 − 10f2 + 5f3 − f4

)
−
(
−
1

2
ε+

10

3
ph3

)
α0

− εhα2 +O(h
5) = 0 . (7)

Similarly, the end condition for system (2) is(
16ε+

103

12
ph3

)
y1 − (19ε+ 10ph3)y2 + (10ε+ 5ph3)y3

− (2ε+ ph3)y4 − h
3
(
−
43

12
f0 +

103

12
f1 − 10f2 + 5f3 − f4

)
−
(
5ε+

43

12
ph3

)
α0 + εh

2α3 +O(h
5) = 0 . (8)

3 Convergence of the method

The system of Equations (5) and (7) provides the required quartic spline
solution of bvp (1), which can be written in the matrix form

AY − h3DF = C , (9)

where

A =



( 3
2
ε+ 17

2
ph3) −(4ε+ 10ph3) (5

2
ε+ 5ph3) −(1

2
ε+ ph3)

11ph3 − 72ε δ2 δ1
ph3 + 24ε 11ph3 − 72ε δ2 δ1

. . . . . . . . .

ph3 + 24ε 11ph3 − 72ε δ2 δ1
ph3 + 24ε 11ph3 − 72ε δ2


,
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with δ1 = ph
3 − 24ε , δ2 = 11ph

3 + 72ε ,

D =



17
2

−10 5 −1
11 11 1

1 11 11 1
. . . . . . . . . . . .

1 11 11 1

1 11 11


,

C = (c1, c2, . . . , cN−1)
T , Y = (y1,y2, . . . ,yN−1)

T and F = (f1, f2, . . . , fN−1)
T .

Also

c1 =
(
−
1

2
ε+

10

3
ph3

)
α0 −

10

3
h3f0 − εhy

(1)
0 ,

c2 = (−24ε− ph3)α0 + h
3f0 ,

ci = 0 , i = 3, 4, . . . ,N− 2 ,

cN−1 = (24ε− ph3)α1 + h
3fN .

The exact solution is defined as Ȳ = [y(x1),y(x2), . . . ,y(xN−1)], then Equa-
tion (9) is rewritten as

AȲ − h3DF = T + C , (10)

where T = [t1, t2, . . . , tN−1]
T with

t1 = −
181

120
εh5y(5) (ζ1), x0 < ζ1 < x4 ,

ti = 2εh5y(5) (ζi), xi−2 < ζi < xi+1 , i = 2, 3, . . . ,N− 1 . (11)

Moreover,

A(Ȳ − Y) = AE = T , (12)

E = Ȳ − Y = (e1, e2, . . . , eN−1)
T . (13)
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To determine the error bound the row sums S1,S2, . . . ,SN−1 of matrix A are
calculated:

S1 =
∑
j

a1,j = −
1

2
ε+

5

2
ph3,

S2 =
∑
j

a2,j = −24ε+ 23ph3,

Si =
∑
j

ai,j = 24ph
3, i = 2, 3, . . . ,N− 3 ,

SN−1 =
∑
j

aN−1,j = 24ε+ 23ph
3. (14)

Since the matrix A is irreducible and monotone, A−1 exists and its elements
are nonnegative. Hence, from Equation (12),

E = A−1T . (15)

Also, from the theory of matrices

A−1A = I(N−1)×(N−1) ,

where

A =


a1,1 a1,2 . . . a1,n−1
a2,1 a2,2 . . . a2,n−1

...
...

. . .
...

an−1,1 an−1,2 . . . an−1,n−1

 ,

A−1 =


a−1
1,1 a−1

1,2 . . . a−1
1,n−1

a−1
2,1 a−1

2,2 . . . a−1
2,n−1

...
...

. . .
...

a−1
n−1,1 a−1

n−1,2 . . . a−1
n−1,n−1



and I =


1 0 . . . 0

0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

 .
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Since each row sum of matrix I(N−1)×(N−1) = 1 and A−1A = I(N−1)×(N−1),
therefore each row sum of A−1A equals 1; that is,

a−1
1,1(a1,1 + a1,2 + · · ·+ a1,n−1) + a−1

1,2(a2,1 + a2,2 + a2,n−1)

+ · · ·+ a−1
1,n−1(an−1,1 + an−1,2 + · · ·+ an−1,n−1) = 1 ,

a−1
1,1S1 + a

−1
1,2S2 + · · ·+ a−1

1,n−1SN−1 = 1 ,

which is written in compact form as

N−1∑
i=1

a−1
k,iSi = 1 , k = 1, 2, . . . ,N− 1 . (16)

Defining Sj = minSi , then from Equation (16),

1 > Sj
(
a−1
k,1 + a

−1
k,2 + · · ·+ a−1

k,N−1

)
.

It follows that
N−1∑
i=1

a−1
k,i 6 1/Sj = 1/(h

3Bi0), (17)

where

Bi0 = (1/h3)Sj > 0 , 1 6 i0 6 N− 1 .

From Equation (12), the error terms can be written as

ej =

N−1∑
i=1

a−1
j,i Ti , j = 1, 2, . . . ,N− 1 .

From Equation (11) and Equation (17), it can be proved that

|ej| 6 Kh
2/Bi0 , j = 1, 2, . . . ,N− 1 ,

where K is constant and independent of h. It follows that

‖E‖ = O(h2).

Similarly, the method developed for the system (5) and (8) is also second
order convergent. The result is summarized in the following theorem
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Theorem 1. Let Ȳ(x) be the exact solution of the system (1) or (2) and
let yi, i = 0, 1, . . . ,N , be the exact solution of (9) then ‖E‖ = O(h2).

4 Numerical results

Example 2. The following boundary value problems are considered

−εy(3)(x) + y(x) = f(x), x ∈ [0, 1]

y(0) = 0 , y(1) = 0 , y(1)(0) = 0 , (18)

and

−εy(3)(x) + y(x) = f(x), x ∈ [0, 1]

y(0) = 0 , y(1) = 0 , y(2)(0) = 0 , (19)

where

f(x) = 6ε(1− x)5x3 − 6ε2
[
6(1− x)5 − 90(1− x)4x

+ 180(1− x)3x2 − 60(1− x)2x3
]

.

The analytic solution of system (18) or (19) is

y(x) = 6x3ε(1− x)5.

The maximum errors (in absolute values) associated with yi, for the sys-
tem (18) are summarized in Table 1.

The maximum errors (in absolute values) associated with yi, for the sys-
tem (19) using end condition (8) are summarized in Table 2.

Tables 1 and 2 confirm that if h is reduced by a factor 1/2, n doubled, then
‖E‖ is reduced by a factor 1/4, which indicates that the present method gives
second order results.
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Table 1: Maximum absolute errors of yi in problem (18).

ε n = 10 n = 20 n = 40
1/16 2.9× 10−3 1.2× 10−4 6.4× 10−6
1/32 9.2× 10−4 3.8× 10−5 2.1× 10−6
1/64 1.4× 10−4 6.8× 10−6 4.6× 10−7

Table 2: Maximum absolute errors of yi in problem (19).

ε n = 10 n = 20 n = 40
1/16 1.3× 10−2 1.1× 10−3 7.8× 10−5
1/32 3.2× 10−3 2.7× 10−4 1.8× 10−5
1/64 3.4× 10−4 2.2× 10−5 1.1× 10−6

Example 3. The following boundary value problems are considered:

−εy(3)(x) + y(x) = 81ε2 cos 3x+ 3ε sin 3x , x ∈ [0, 1],

y(0) = 0 , y(1) = 3ε sin 3 , y(1)(0) = 9ε , (20)

and

−εy(3)(x) + y(x) = 81ε2 cos 3x+ 3ε sin 3x , x ∈ [0, 1],

y(0) = 0 , y(1) = 3ε sin 3 , y(2)(0) = 0 . (21)

The analytic solution of the system (20) or (21) is

y(x) = 3ε sin 3x .

The maximum errors (in absolute values) associated with yi, for the sys-
tem (20) are summarized in Table 3.

The maximum errors (in absolute values) associated with yi, for the sys-
tem (21) using end condition (8) are summarized in Table 4.
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Table 3: Maximum absolute errors of yi in problem (20).

ε n = 10 n = 20 n = 40
1/16 6.9× 10−5 3.1× 10−5 5.4× 10−6
1/32 3.1× 10−5 1.8× 10−5 2.8× 10−6
1/64 4.9× 10−5 9.9× 10−6 1.4× 10−7

Table 4: Maximum absolute errors of yi in problem (21).

ε n = 10 n = 20 n = 40
1/16 2.5× 10−3 1.9 ×10−4 1.4× 10−5
1/32 6.8× 10−4 5.7× 10−5 5.0× 10−6
1/64 1.2× 10−4 1.3× 10−5 1.6× 10−6

Tables 3 and 4 confirm that if h is reduced by a factor 1/2, n doubled, then
‖E‖ is reduced by a factor 1/4, which indicates that the present method gives
second order results.

5 Conclusion

The quartic spline method is developed for the approximate solution of a
third order singularly perturbed boundary value problem. In addition to
the boundary conditions corresponding to the first derivatives, the boundary
conditions corresponding to the second derivatives are also considered. The
method has been proved to be second order convergent. Two examples are
considered for numerical illustration of the method. The results of these
examples preserve the second order convergence.
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