
Quasar Accretion Disk Sizes from Continuum Reverberation Mapping from the Dark
Energy Survey

D. Mudd
1,2

, P. Martini
2,3

, Y. Zu
2,3

, C. Kochanek
2

, B. M. Peterson
2,3,4

, R. Kessler
5

, T. M. Davis
6,7

,

J. K. Hoormann
6

, A. King
6

, C. Lidman
7,8

, N. E. Sommer
7,9
, B. E. Tucker

7,9
, J. Asorey

6,7,10
, S. Hinton

6,7
,

K. Glazebrook
10

, K. Kuehn
8
, G. Lewis

11
, E. Macaulay

12
, A. Moeller

7,9
, C. O’Neill

6,7
, B. Zhang

7,9
, T. M. C. Abbott

13
,

F. B. Abdalla
14,15

, S. Allam
16
, M. Banerji

17,18
, A. Benoit-Lévy

15,19,20
, E. Bertin

19,20
, D. Brooks

15
, A. Carnero Rosell

21,22
,

D. Carollo
7,23

, M. Carrasco Kind
24,25

, J. Carretero
26
, C. E. Cunha

27
, C. B. D’Andrea

28
, L. N. da Costa

21,22
, C. Davis

27
, S. Desai

29
,

P. Doel
15
, P. Fosalba

30
, J. García-Bellido

31
, E. Gaztanaga

30
, D. W. Gerdes

32,33
, D. Gruen

27,34
, R. A. Gruendl

24,25
,

J. Gschwend
21,22

, G. Gutierrez
16
, W. G. Hartley

15,35
, K. Honscheid

3,36
, D. J. James

37
, S. Kuhlmann

38
, N. Kuropatkin

16
,

M. Lima
21,39

, M. A. G. Maia
21,22

, J. L. Marshall
40
, R. G. McMahon

17,18
, F. Menanteau

24,25
, R. Miquel

26,41
, A. A. Plazas

42
,

A. K. Romer
43
, E. Sanchez

44
, R. Schindler

34
, M. Schubnell

32
, M. Smith

45
, R. C. Smith

13
, M. Soares-Santos

16
, F. Sobreira

21,46
,

E. Suchyta
47
, M. E. C. Swanson

25
, G. Tarle

32
, D. Thomas

48
, D. L. Tucker

16
, and A. R. Walker

13

DES Collaboration
1
Department of Physics and Astronomy, University of California, Irvine, Irvine, CA 92697, USA; dmmudd@uci.edu

2
Department of Astronomy, The Ohio State University, Columbus, OH 43210, USA

3
Center for Cosmology and Astro-Particle Physics, The Ohio State University, Columbus, OH 43210, USA

4
Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA

5
Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637, USA

6
School of Mathematics and Physics, University of Queensland, Brisbane, QLD 4072, Australia

7
ARC Centre of Excellence for All-sky Astrophysics (CAASTRO), Australia
8
Australian Astronomical Observatory, North Ryde, NSW 2113, Australia

9
The Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2601, Australia
10

Centre for Astrophysics & Supercomputing, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
11

Sydney Institute for Astronomy, School of Physics, A28, The University of Sydney, Sydney, NSW 2006, Australia
12

Institute of Cosmology & Gravitation, University of Portsmouth, Portsmouth PO1 3FX, UK
13

Cerro Tololo Inter-American Observatory, National Optical Astronomy Observatory, Casilla 603, La Serena, Chile
14

Department of Physics and Electronics, Rhodes University, P.O. Box 94, Grahamstown 6140, South Africa
15

Department of Physics & Astronomy, University College London, Gower Street, London WC1E 6BT, UK
16

Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510, USA
17

Kavli Institute for Cosmology, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK
18

Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK
19

Sorbonne Universités, UPMC Univ Paris 06, UMR 7095, Institut d’Astrophysique de Paris, F-75014 Paris, France
20

CNRS, UMR 7095, Institut d’Astrophysique de Paris, F-75014 Paris, France
21

Laboratório Interinstitucional de e-Astronomia—LIneA, Rua Gal. José Cristino 77, Rio de Janeiro, RJ-20921-400, Brazil
22

Observatório Nacional, Rua Gal. José Cristino 77, Rio de Janeiro, RJ-20921-400, Brazil
23

INAF—Osservatorio Astrofisico di Torino, Pino Torinese, Italy
24

Department of Astronomy, University of Illinois, 1002 W. Green Street, Urbana, IL 61801, USA
25

National Center for Supercomputing Applications, 1205 West Clark Street, Urbana, IL 61801, USA
26

Institut de Física d’Altes Energies (IFAE), The Barcelona Institute of Science and Technology, Campus UAB, E-08193 Bellaterra (Barcelona), Spain
27

Kavli Institute for Particle Astrophysics & Cosmology, P.O. Box 2450, Stanford University, Stanford, CA 94305, USA
28

Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA
29

Department of Physics, IIT Hyderabad, Kandi, Telangana 502285, India
30

Institute of Space Sciences, IEEC-CSIC, Campus UAB, Carrer de Can Magrans, s/n, E-08193 Barcelona, Spain
31

Instituto de Fisica Teorica UAM/CSIC, Universidad Autonoma de Madrid, E-28049 Madrid, Spain
32

Department of Physics, University of Michigan, Ann Arbor, MI 48109, USA
33

Department of Astronomy, University of Michigan, Ann Arbor, MI 48109, USA
34

SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
35

Department of Physics, ETH Zurich, Wolfgang-Pauli-Strasse 16, CH-8093 Zurich, Switzerland
36

Department of Physics, The Ohio State University, Columbus, OH 43210, USA
37

Astronomy Department, University of Washington, Box 351580, Seattle, WA 98195, USA
38

Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA
39

Departamento de Física Matemática, Instituto de Física, Universidade de São Paulo, CP 66318, São Paulo, SP 05314-970, Brazil
40

George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, and Department of Physics and Astronomy, Texas A&M University,
College Station, TX 77843, USA

41
Institució Catalana de Recerca i Estudis Avançats, E-08010 Barcelona, Spain

42
Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, USA
43

Department of Physics and Astronomy, Pevensey Building, University of Sussex, Brighton BN1 9QH, UK
44

Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
45

School of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ, UK
46

Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas, Campinas, SP 13083-859, Brazil
47

Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
48

Institute of Cosmology & Gravitation, University of Portsmouth, Portsmouth PO1 3FX, UK
Received 2017 November 26; revised 2018 May 28; accepted 2018 May 30; published 2018 July 30

The Astrophysical Journal, 862:123 (13pp), 2018 August 1 https://doi.org/10.3847/1538-4357/aac9bb

© 2018. The American Astronomical Society. All rights reserved.

1

https://orcid.org/0000-0003-2371-4121
https://orcid.org/0000-0003-2371-4121
https://orcid.org/0000-0003-2371-4121
https://orcid.org/0000-0002-4279-4182
https://orcid.org/0000-0002-4279-4182
https://orcid.org/0000-0002-4279-4182
https://orcid.org/0000-0001-6966-6925
https://orcid.org/0000-0001-6966-6925
https://orcid.org/0000-0001-6966-6925
https://orcid.org/0000-0001-6017-2961
https://orcid.org/0000-0001-6017-2961
https://orcid.org/0000-0001-6017-2961
https://orcid.org/0000-0001-6481-5397
https://orcid.org/0000-0001-6481-5397
https://orcid.org/0000-0001-6481-5397
https://orcid.org/0000-0003-3221-0419
https://orcid.org/0000-0003-3221-0419
https://orcid.org/0000-0003-3221-0419
https://orcid.org/0000-0002-4213-8783
https://orcid.org/0000-0002-4213-8783
https://orcid.org/0000-0002-4213-8783
https://orcid.org/0000-0002-6356-4669
https://orcid.org/0000-0002-6356-4669
https://orcid.org/0000-0002-6356-4669
https://orcid.org/0000-0001-5352-0550
https://orcid.org/0000-0001-5352-0550
https://orcid.org/0000-0001-5352-0550
https://orcid.org/0000-0003-1731-0497
https://orcid.org/0000-0003-1731-0497
https://orcid.org/0000-0003-1731-0497
https://orcid.org/0000-0002-6211-499X
https://orcid.org/0000-0002-6211-499X
https://orcid.org/0000-0002-6211-499X
https://orcid.org/0000-0002-3254-9044
https://orcid.org/0000-0002-3254-9044
https://orcid.org/0000-0002-3254-9044
https://orcid.org/0000-0003-3044-5150
https://orcid.org/0000-0003-3044-5150
https://orcid.org/0000-0003-3044-5150
https://orcid.org/0000-0002-4588-6517
https://orcid.org/0000-0002-4588-6517
https://orcid.org/0000-0002-4588-6517
https://orcid.org/0000-0001-5303-6830
https://orcid.org/0000-0001-5303-6830
https://orcid.org/0000-0001-5303-6830
mailto:dmmudd@uci.edu
https://doi.org/10.3847/1538-4357/aac9bb
http://crossmark.crossref.org/dialog/?doi=10.3847/1538-4357/aac9bb&domain=pdf&date_stamp=2018-07-30
http://crossmark.crossref.org/dialog/?doi=10.3847/1538-4357/aac9bb&domain=pdf&date_stamp=2018-07-30


Abstract

We present accretion disk size measurements for 15 luminous quasars at 0.7�z�1.9 derived from griz light
curves from the Dark Energy Survey. We measure the disk sizes with continuum reverberation mapping using two
methods, both of which are derived from the expectation that accretion disks have a radial temperature gradient and
the continuum emission at a given radius is well described by a single blackbody. In the first method we measure
the relative lags between the multiband light curves, which provides the relative time lag between shorter and
longer wavelength variations. From this, we are only able to constrain upper limits on disk sizes, as many are
consistent with no lag the 2σ level. The second method fits the model parameters for the canonical thin disk
directly rather than solving for the individual time lags between the light curves. Our measurements demonstrate
good agreement with the sizes predicted by this model for accretion rates between 0.3 and 1 times the Eddington
rate. Given our large uncertainties, our measurements are also consistent with disk size measurements from
gravitational microlensing studies of strongly lensed quasars, as well as other photometric reverberation mapping
results, that find disk sizes that are a factor of a few (∼3) larger than predictions.

Key words: accretion, accretion disks – galaxies: active – quasars: general

Supporting material: figure set, machine-readable table

1. Introduction

The spectra of quasars and less-luminous active galactic
nuclei (AGNs) are characterized by the presence of both
narrow emission lines that originate far from the central engine
and broad ones that originate close to the supermassive black
hole (SMBH). These lines are superposed on a continuum
mostly due to thermal radiation from the accretion disk that
peaks in the ultraviolet. Understanding the size and structure of
this accretion disk is important because it is energetically
dominant, drives most of the other emission, and probes the
growth of the central SMBH.

The canonical quasar accretion disk model is the optically
thick, geometrically thin disk (Lynden-Bell 1969; Shakura &
Sunyaev 1973). The disk emission is a combination of the local
thermal emission of the viscously dissipated energy and
reprocessing of emission from the inner regions. Thin disks
are stable at low to moderate accretion rates compared to the
Eddington rate. There are also stable slim accretion disks
(Abramowicz et al. 1988; Narayan & Yi 1995), where the
optically thin disks are no longer geometrically thin and the
accretion rates are near or super-Eddington. Hall et al. (2018)
propose an extension to the thin-disk model for the accretion
where the emission is modified by a low-density disk
atmosphere to be non-thermal, making disks appear to be
larger than would be inferred from a blackbody.

Viscously heated material moving through the accretion disk at
radii larger than the innermost stable circular orbit emits photons as
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where T is the temperature of the material, M is the mass of black

hole, ṁ is the accretion rate onto the black hole, and R is the orbital

radius of the material (Collier et al. 1998). The size, R, of this

standard thin disk at an effective emitting wavelength λ0, defined

by the region where the disk temperature is kT=hc/λ0, and
assuming the annulus is emitting as a blackbody (Collier

et al. 1998; Morgan et al. 2010), can be rewritten as
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where M is again the black hole mass, ṁ is the accretion rate, κ is

the ratio of external to local radiative heating, LE is the Eddington

luminosity, and β is the power-law index on λ, which would be

4/3 from Equation (2). We introduce this β here as we will use it

throughout the paper. The above scaling relationship assumes that

κ = 0. The accretion rate can be related to the luminosity by

L mc2h= ˙ , where η is the radiative efficiency of converting the

accreted mass into energy. From Equation (2), we find that the

accretion disk size should scale as λ4/3. Given the blackbody

emission assumption that kT=hc/λ0, this predicts that the

temperature also goes as T R R
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where the standard thin disk has R
0l as given in Equation (2) and

β=4/3 is the prediction for infalling viscously heated material.
If the temporal variability of the disk is driven by

fluctuations in the irradiated flux from a central source, such
as in the “lamppost” model (see Cackett et al. 2007 and
references therein), then the time delay for light to reach any
radius in the disk implies that there should be delays in the
response at different wavelengths. If the size–wavelength
relation is given by Equation (3), then the lag τ between
emission from different annuli in the disk with effective
emitting wavelengths λ0 and λ should be of the form
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The above derivations all assume (by making kT=hc/λ0)
that the observed emission is tied uniquely to a single emitting
annulus. In reality, each annulus emits as a blackbody, not at a
single wavelength, so one observed wavelength corresponds to
the combined emission from a suite of annuli. To get the
effective flux-weighted mean emitting radius for any given
wavelength, integrating over the surface brightness profile of
the disk B T R( ( )) at R from some inner edge R0 gives
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We account for this overlapping of fluxes by stating that the

effective temperature at λ0 is given by kT=Xhc/λ0, where X

takes into account the range of different annuli sizes that

contribute to the emission at wavelength λ0. Propagating this

change through the analysis above and allowing for κ to be

nonzero, we have
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where now Rλ is this flux-weighted emitting radius. By

performing the integral in Equation (5) and dividing this radius

by the prediction from Equation (2), one finds
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This corrective X factor depends on both the wavelength of

emission and the black hole mass. It is typically of order unity

and was 2.49 for NGC 5548 for λ0=1367Å (Fausnaugh

et al. 2016).
A number of quasar accretion disk sizes have been measured

using gravitational microlensing. In quasar microlensing, the
amplitude of the variability encodes the disk size (see, e.g., the
review by Wambsganss 2001). At optical wavelengths, disk

sizes appear to follow the MBH
2 3 scaling expected for thin disks,

but are larger in absolute size than predicted from Equation (2)
by a factor of 2–3 in some cases (Morgan et al. 2010). There is
also evidence from lensed quasars that the temperature profile β
may be smaller than the thin-disk prediction. Jiménez-Vicente
et al. (2014) found that the best-fit profile was 0.8. While it will
be feasible to expand these studies to hundreds of lenses in the
era of the Large Synoptic Survey Telescope, lensed systems
will always be a relatively rare subset of quasars.

An alternative technique for measuring accretion disk sizes
is reverberation mapping (Blandford & McKee 1982; Peterson
1993; Wanders et al. 1997; Collier et al. 1998; Kriss et al.
2000; Sergeev et al. 2005). This was developed to measure the
distance to the broad-line region by observing the time delay
between variability in the continuum emission (as a proxy for
the ionizing radiation from the innermost regions of the disk)
and the response of the broad emission lines. This method can
also be adapted to measure the relative time lag between the
continuum emission at two wavelengths, e.g., two photometric
bandpasses, which is then a proxy for the difference in the
disk radii contributing to the emission (Equation (3)). This
allows for estimating effective accretion disk sizes at those
emitting wavelengths in unlensed quasars, and thus can be
done on a much larger sample of objects. The primary
challenge is that quasars show little variability on the short
timescales corresponding to light travel times across the disk
(e.g., MacLeod et al. 2010).

Early attempts at disk reverberation mapping include
Wanders et al. (1997) and Collier et al. (1998) for NGC
7469 and Peterson et al. (1998) for NGC 4151. More recently,
Sergeev et al. (2005) measured continuum lags at 2σ or upper
limits for approximately a dozen objects. Interpreting the lags
as light travel delays across the disk, the lags implied disk sizes
growing as L0.4 0.5- , close to their prediction of L0.5 from lags
due to simple radiative propagation of variability (Sergeev
et al. 2005). Shappee et al. (2014) and Fausnaugh et al. (2016)
observed a wide range of wavelengths tracking the broadband

variability of NGC 2617 and NGC 5548 (respectively) from the
X-rays through the infrared. Both of these studies found the
wavelength dependence of their accretion disk fits to be
consistent with the thin-disk prediction of β = 4/3, with
evidence that it may be closer to β = 1. Like some of the
microlensing results, the accretion disk size estimates from
these two studies were larger than predicted given the black
hole mass estimates for these objects. In particular, the Space
Telescope and Optical Reverberation Mapping (AGN STORM)

campaign for NGC 5548 (e.g., De Rosa et al. 2015) is the
highest-quality variability data set for a single object, and
Edelson et al. (2015) and Fausnaugh et al. (2016) conclude that
the accretion disk is roughly three times larger than expected
from Equation (6), assuming an accretion at 10% of the
Eddington rate. The Pan-STARRS collaboration performed a
similar analysis for the griz bands on a sample of higher-
luminosity quasars. They restricted their work to two redshift
bins that minimized broad emission line contamination to the
optical filters and consistently find that the accretion disks are
larger than expected from thin-disk theory (Jiang et al. 2017).
In this paper, we use data from the Dark Energy Survey

(DES; Flaugher 2005; Dark Energy Survey Collaboration
et al. 2016) to detect continuum time delays and study accretion
disks in a sample of z�0.7 quasars. In Section 2, we briefly
describe the DES survey and data. In Section 3, we describe the
analysis of our data and our methodologies. We conclude in
Section 4.

2. Observations

DES is a five-year, five-band, optical, photometric survey
covering 5000 square degrees of the southern sky, starting in
2013, using the Dark Energy Camera (Flaugher et al. 2015) on
the Victor M. Blanco 4 m telescope near the Cerro Tololo Inter-
American Observatory near La Serena, Chile. The primary goal
of the survey is to investigate the expansion of the universe
using weak lensing, baryon acoustic oscillations, galaxy
clusters, and SNe Ia (Flaugher 2005; Flaugher et al. 2015).
As part of the supernova search, 30 square degrees are be
repeatedly observed on an approximately weekly cadence in
the g, r, i, and z filters for the duration of DES, amounting to
20–30 epochs per filter per year (Kessler et al. 2015). In these
fields, we also have a set of spectroscopically verified quasars
from the OzDES program (Australian DES/optical redshifts for
DES; Yuan et al. 2015; Childress et al. 2017) as part of the
DES and OzDES reverberation mapping project. This project
photometrically and spectroscopically monitors 771 quasars in
order to measure the masses of their SMBHs (King et al. 2015).
These quasars are as faint as 23.6 in g and were selected
heterogeneously with a broad range of quasar detection
techniques (e.g., Banerji et al. 2015; Tie et al. 2017). From
the combination of these two surveys, we use the first three
years of photometry and spectra for the 771 quasars that we
continue to monitor (Diehl et al. 2016; Childress et al. 2017).

3. Analysis

We used the image subtraction pipeline developed for the
analysis of supernova light curves (Goldstein et al. 2015;
Kessler et al. 2015) to create our quasar light curves. We
visually inspected the light curves for each of the approxi-
mately 800 reverberation mapping quasars in the DES SN
fields that are part of the spectroscopic reverberation mapping

3
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project to look for good continuum variability candidates. We
constructed our final list of 15 candidates as the subset of all
quasars that had a substantial flux variation (�5 times the
photometric errors) on a timescale of weeks in both the g and
z bands, excluding the first or last few data points of each
observing season. This was to avoid variations that would
occur in other bands that would require data before or after the
DES observing season. These bands provide the longest
wavelength baseline and represent the maximum (g) and
minimum (z) levels of expected variability. Significant
variability in both bands gives the best indication that we can
recover a time delay.

Table 1 summarizes the general properties of the quasars in
this final sample of 15 quasars that were classified as our best
photometric lag candidates for having the highest photometric
variability and multiband cadence around the feature(s). We
derive lag results from the observations in the season in which
the highest amplitude variability was observed. Five of the
quasars exhibited strong variability in more than one season,
and three showed it in all three seasons. For these sources, we
analyze each season independently. The light curves, shown in
Figures 1 and 2, and as Table 2, have on average 30 epochs per
season per band and an average cadence of 6–8 nights between
observations. All four bands are typically observed on the same
night. We also note that one of our quasars, DES J024854.79
+001054.12, is separated from a FIRST radio source by 0 9,
and therefore some of its variability may arise from a jet rather
than changes in the accretion disk. In some cases, we do not
analyze multiple seasons because individual seasons show no
evidence of variability.

3.1. Lag Measurements

We use two separate analysis techniques to measure the time
delays between the continuum bands. The first is the
interpolated cross-correlation function (ICCF) method (Gaskell
& Sparke 1986; Peterson et al. 2004), where two light curves
are shifted along a grid of time lags and the cross-correlation
coefficient r is calculated at each spacing (see Figure 1 of
Gaskell & Sparke 1986). This method linearly interpolates
between epochs to fill in missing data. A series of 1000 Monte

Carlo runs re-sampling (with replacement) the light curves
provide the uncertainty on the lag detection using the flux
randomization/random subset replacement method, where the
lag distribution is given by the mean of the distribution of
cross-correlation centroids for which r r0.8 max> .
For the second method, we used JAVELIN,49 which models

quasar variability as a damped random walk (DRW; Zu et al.
2013). The DRW models quasar light curve behavior quite well
on timescales of months to years (Gaskell & Peterson 1987;
MacLeod et al. 2010; Zu et al. 2013), although there may be
extra variability power on the much shorter timescales (tens of
minutes compared to days) as seen in a group of quasars
sampled by Kepler (Edelson et al. 2014; Kasliwal et al. 2015).
JAVELIN has been used in previous emission line (e.g., Grier
et al. 2012a, 2012b; Zu et al. 2013; Pei et al. 2017) and
continuum (Shappee et al. 2014; Fausnaugh et al. 2016)
reverberation mapping campaigns.
JAVELIN assumes that all light curves are shifted, scaled,

and smoothed versions of the driving light curve. It uses the
DRW model to carry out the interpolation between epochs. For
this purpose, it is not essential that the DRW model exactly
describes the true variability of the quasar—it needs only to be
a reasonable approximation. The model has five parameters if
fitting two light curves, a driver and shifted version: the DRW
amplitude and timescale, the relative flux scale factor, the top-
hat smoothing timescale, and the time lag. For relatively short,
sparsely sampled light curves, it is not possible, either
statistically or physically, to determine all of these parameters.
Therefore, we restrict the damping timescale to 100–300 days,
as has been found for a larger sample of quasars from the Sloan
Digital Sky Survey (MacLeod et al. 2010).
JAVELIN also assumes that the measurement errors are well

characterized and Gaussian, which can lead to underestimation
of the uncertainties if either of these assumptions is incorrect.
This has been noted in other studies (e.g., Fausnaugh et al.
2016), and we compare our lag distributions from JAVELIN to
those obtained through the ICCF in Figure 3. The general trend
is that the two methods are consistent with one another, with

Table 1

Sample Description

Quasar Name R.A. Decl. z SN BH Mass

Field M109 

DES J025318.76+000414.20 43.32817 0.07061 1.56 S1 0.49

DES J024753.20–002137.69 41.97167 −0.36047 1.44 S1 1.17

DES J021500.22–043007.49 33.75092 −4.50208 1.01 X1 0.38

DES J022440.70–043657.60 36.16960 −4.61600 0.91 X3 0.20

DES J022436.17–065912.30 36.15071 −6.98675 1.36 X2 0.52

DES J022108.60–061753.20 35.28583 −6.29811 1.22 X2 0.77

DES J022344.56–064039.00 35.93568 −6.67750 0.98 X2 0.06

DES J033719.99–262418.83 54.33328 −26.40523 1.17 C1 1.01

DES J024918.24–001730.98 42.32600 −0.29194 1.24 S1 0.49

DES J024854.79+001054.12 42.22830 0.18170 1.15 S1 0.90

DES J024133.65–010724.20 40.39021 −1.12339 1.87 S2 0.79

DES J024159.74–010512.41 40.49892 −1.08678 0.90 S2 0.61

DES J021514.27–053321.31 33.80946 −5.55592 0.70 X1 0.04

DES J024357.90–011330.40 40.99125 −1.22511 0.90 S2 0.14

DES J021952.14–040919.91 34.96725 −4.15553 0.69 X1 0.66

Note. DES quasar sample analyzed in this work. “SN Field” denotes the supernova field in which the quasar resides (Flaugher 2005; Flaugher et al. 2015). Note that

all masses have an uncertainty of 0.4 dex, calculated using the McLure & Jarvis (2002) relationship for Mg II.
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the centroids of the distributions for which r r0.8 max> for the

ICCF uncertainties that are generally larger. This has been

noted in other works (e.g., Fausnaugh et al. 2016). Jiang et al.

(2017) perform several tests on JAVELIN with one of their

quasars by creating mock light curves with a known δ-function

shift from the original Pan-STARRS data and find that
JAVELIN is able to recover the input delays below the
cadence of the light curves, whereas the ICCF method does not.
We report JAVELIN lags for the remainder of the paper.
We provide a summary of our lag posterior distributions in

Table 3. Most of these lags are consistent with no time delay in
the continuum emission at the 1σ–2σ level, but the wavelength-
dependent offsets in many cases strongly suggest that an upper
limit on the lag has been observed. We use these upper limits,
based on the 2σ positive tail of the lag distributions, in all
following analyses that use the individual JAVELIN lag data.

3.2. JAVELIN Thin-disk Model

We created an extension to JAVELIN, hereafter the
JAVELIN thin-disk model, that directly fits the parameters of
the thin-disk model, R

0l and β, rather than getting these from
an optimized fit to the individual time lags. This thin-disk
model is now available for public use through the regular
JAVELIN distribution. We note that this is the flux-weighted
radius R

0l from Equation (6). To achieve this, we adapted
JAVELIN to fit all of the continuum light curves simulta-
neously and find which R

0l and β values best reproduce the

Figure 1. DES light curves for the 15 quasars in our sample. All of these objects show strong variability in at least one observing season. The DES Y1, Y2, and Y3
data are in the left, middle, and right columns, respectively. The photometry uses the DES supernova search image subtraction pipeline (Kessler et al. 2015).

Table 2

DES Quasar Light Curves

Quasar Name MJD Mag MagErr Band

DES J024133.65–010724.20 56534.283 20.89 0.02 g

DES J024133.65–010724.20 56538.325 20.91 0.02 g

DES J024133.65–010724.20 56543.296 20.86 0.02 g

DES J024133.65–010724.20 56547.226 20.93 0.02 g

DES J024133.65–010724.20 56550.246 20.78 0.06 g

DES J024133.65–010724.20 56559.205 20.96 0.05 g

DES J024133.65–010724.20 56567.171 21.13 0.03 g

DES J024133.65–010724.20 56579.139 21.06 0.04 g

Note. Photometry for the DES quasars on which we perform our analyses. All

magnitudes are in the AB system.

(This table is available in its entirety in machine-readable form.)
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lagged light curves from the driving light curve. The benefit of

this approach is that it reduces the number of parameters and

uses all of the photometric data to essentially produce a better

sampled light curve. In the case where β = 4/3, the R
0l

parameter from Equation (3) or (6) sets the absolute size of the

disk and depends on the quasar properties (mass, mass

accretion rate, radiative efficiency, etc.), while β corresponds

to the temperature profile of the disk as a function of radius. If

4 3b ¹ , this means that there is some heating term that does

not scale as 1/R.
We tested these modifications to JAVELIN in two ways.

First, the JAVELIN website provides a simulated 5-year quasar

light curve, with an 8-day cadence and 180-day seasonal gaps

to account for realistic seasonable inaccessibility, similar to

what we expect at the end of DES. We used a grid of R
0l and β

values to generate new light curves based on these simulated

data with known lags between the bands. We then analyzed

these simulated light curves to determine how well these values

were recovered in several regimes. Most critically, we were

interested in the performance when the light curve sampling

rate was greater than, comparable to, and less than the shifts we

applied using our known input thin-disk parameters for R
0l

and β. Recovery of these values works well in many cases,

although it has some trouble recovering the model parameters

in the instances with steep temperature profiles ( 3b > ) or

disk light-crossing times R c
0l that are small compared to the

sampling timescale (<1/10th of the cadence). Figure 4 shows

the results of a test with R 3.9
0
=l lt-day and β=1.5. In this

test, the parameters are recovered for a temperature profile

close to what is predicted by thin-disk theory and with a disk

size of the driving light curve at slightly under half the

sampling cadence of the data.
We also reanalyzed the data from Fausnaugh et al. (2016) on

NGC 5548. Fausnaugh et al. (2016) performed pairwise lag

analyses on sets of Hubble Space Telescope (HST), Swift, and

ground-based light curves to detect lags with respect to the HST

1367Å light curve and then fit for R
1367l Å

(α in that paper) and

β. Those authors experimented with various subsets of the data,

particularly subsets that excluded bands that may be con-

taminated by emission from other physical processes (e.g.,

broad emission lines or the Balmer continuum). We reanalyzed

their data with our modified code and simultaneously fit a a

total of 17 light curves excluding the U and u bands due to

Balmer continuum contamination and fixing the damping

Figure 2. DES quasar light curves.
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timescale at 164 days. The u- and U-band exclusions were
adopted by Fausnaugh et al. (2016), and the damping timescale
is based on previous, longer time baseline studies of NGC 5548
by Zu et al. (2011). Our result on the NGC 5548 data is
consistent with the Fausnaugh et al. (2016) values with tighter
constraints on R

1367l Å
and β from fitting them directly, albeit

now with a double solution, shown in Figures 5 and 6. The two
solutions have a similar likelihood to one another and prefer
smaller R

1367l Å
and β values compared to those found in

Fausnaugh et al. (2016). One of the two solutions is within the
1σ error contours from Fausnaugh et al. (2016). The double-
peaked nature of our solution may be a product of the high
dimensionality of parameter space in our model, and it is
encouraging that we find a similar result as a different method.

3.2.1. DES Results

We then used this algorithm for the DES quasars that had
yielded tentative r, i, and/or z lag measurements relative to the
g band. We still restrict the DRW damping timescale to fall
between 100 and 300 days for this analysis. We also fixed β=
4/3, as we found we were unable to provide good constraints on
both R

0l and β simultaneously for any object. This assumption is
well motivated from theory, but we note that observations have
shown evidence for a smaller β value closer to 0.8–1. If β is
smaller than our assumption, this would inflate the final disk
sizes somewhat. Figure 7 shows an example posterior distribu-
tion for R

0l for DES J024918.24–001730.98 whose full posterior
distributions for all model parameters is in Figure 8. Fits for the
remainder of our objects can be found in the figure set.

As stated in Section 3, five objects in our current quasar
sample have large amplitude variability in more than one DES
observing season, and we compare their disk sizes with this
method to check its performance. Two of these objects have
disk sizes from three DES seasons, while the other three have

only two analyzed seasons of variability. Figure 9 illustrates the
R

0l values for each of these objects, and we see that they are all
consistent at the 1σ–1.5σ level between the observing seasons.
Different disk sizes between seasons could imply that the size
uncertainties are underestimated, that the disk has undergone
some structural change, or that the time delays are being
influenced by emission that is not a simple reprocessing of
emission from the inner regions of the disk.
One possible concern is contamination of the photometric

bandpasses by emission line flux from larger scales. For the
redshift range of our source DES (0.7 < z < 1.6), the Mg II

emission line is present in the g, r, or i band, along with
surrounding blends of Fe emission. The equivalent widths of
the C IV line for luminous quasars like those in our sample are
lower than for less-luminous Seyferts like NGC 5548 (the well-
known Baldwin Effect; Baldwin 1977). We therefore expect
emission line contamination to be less important for our
quasars that have C IV emission within the DES bandpass
(a small fraction of our sample) compared to AGN like NGC
5548. For the sample of Pan-STARRS quasars, with similarly
high luminosity to those presented here, Jiang et al. (2017) find
that the emission line contamination to continuum flux for their
highest-confidence subsample is less than 6% and makes a
negligible contribution to the lag signals. Using the OzDES
coadded spectra, we find that the Mg II line contribution to the
total flux in the DES bandpasses is roughly the same as was
found in Jiang et al. (2017), about 1%–3% with a maximum of
7%. What matters for lag measurements for the accretion disk
is that the strength of any line variability in the bandpass is
much smaller than that of the continuum on short timescales.
The line to continuum flux ratio is a reasonable proxy for this
effect, although the relative line variability is often larger than
the relative continuum variability.

3.3. Correlation with Black Hole Masses

To compare our disk sizes with previous studies, we require
an estimate of the black hole mass. A reverberation mapping
campaign is currently underway for these sources (see King
et al. 2015 for a simulation of the DES reverberation mapping
survey), which will provide the most accurate masses. For now,
we use single-epoch mass estimates using the Mg II broad
emission line from the OzDES coadded spectra and the
relationship from McLure & Jarvis (2002). The OzDES spectra
were calibrated using the DES photometry, and the emission
line full-width half-maxima (FWHM) were measured using the
IRAF splot package. The resulting masses span more than an
order of magnitude.
We compare our results to other studies in Figure 10. To

meaningfully compare all objects at the same rest wavelength
of 2500Å, we assume that the effective accretion disk size
scales as the predicted β=4/3. Since the microlensing models

output the radius where
hc

k TB
l = and our photometric data are

sensitive to the flux-weighted radius that we have parameter-

ized as
Xhc

k TB
l = in Equation (6), we inflate the microlensing

results by X4/3, calculated from Equation (7) for each object
individually, such that all of the quasar radii between the two
methods are probing the same disk scale. Despite presenting
our redshift-corrected individual lags results as upper limits
derived from the 2σ positive tail of their lag distributions
because the negative tails are consistent with no lag at the 1σ

Figure 3. Comparison of the JAVELIN and r r0.8 max> cross-correlation
centroid lag distribution for DES J024918.24–001730.98 relative to the g-band
light curve. The two distributions are consistent with one another, although
JAVELIN is much more centrally peaked than the ICCF in the z-band
distribution. The lag distributions are given in the rest frame of the quasar.
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level, they are fairly similar to measurements reported by other

studies.
We then compared these R

0l constraints from our JAVELIN

model to those derived from fitting the lags alone. Figure 11

shows these new size measurements alongside both literature
values and those shown in Figure 10, and we provide a

summary of these disk sizes in Table 3. Many of our quasar

disk sizes are consistent with moderate (∼0.3) to super-

Eddington accretion rates as well as the larger disk sizes of the

previous literature given our uncertainties. While many of our
measurements are on the lower end of previous disk sizes, the

DES sample spans the same range of disk sizes as those found

in the Pan-STARRS survey (Jiang et al. 2017). Both sets of

disk sizes assume a temperature profile β=4/3. The principle
difference is that our method assumes a thin-disk structure from

the outset and fits all light curves simultaneously. We sample
the thin-disk parameters and use them to produce lagged light

curves that are matched to the observed light curves and then

evaluated on how well they reproduce the observations. This

method does not fit for lags directly, instead they are produced

from Equation (4) given our observed wavelengths and MCMC
sampled model parameters. Previous works have instead fit for

the lags first, pairwise with respect to the continuum, and then

used the ensemble of lags with respect to the continuum to fit

for a disk size. There is no immediately obvious reason why

one method would produce systematically larger or smaller
accretion disks than the other.

From Equation (2), we expect that the disk size should scale

as R MBH
2 3

0
µl in traditional thin-disk theory for a roughly

fixed L LE, as has been found for luminous quasars (Kollmeier
et al. 2006). We note, however, that X-ray studies (e.g., Aird

et al. 2012), optical studies with well-characterized selection
functions (e.g., Schulze & Wisotzki 2010), and phenomen-

ological modeling (e.g., Weigel et al. 2017) argue that the
Eddington ratio distribution of quasars is more power-law-like.
There appears to be a weak trend with mass in Figure 11, albeit

with a large scatter. It should be noted again that the
uncertainties in the mass measurements for all of these quasars

is roughly 0.4 dex. Prior accretion disk measurements, both
through microlensing and photometric reverberation mapping,
have found that many disks larger than expected from the thin-

disk theory by a factor of a few (Morgan et al. 2010; Fausnaugh
et al. 2016; Jiang et al. 2017). Given our large uncertainties, our

objects are consistent with both these larger disk sizes as well
as thin disks with moderate-to-high accretion rates. A small
subset of our JAVELIN thin-disk models require Eddington

ratios greater than unity, but our sample on the whole shows a
large scatter around a thin disk with a moderate accretion rate.
One explanation for larger disk sizes is higher accretion rates

for the black holes closer to the Eddington limit (Fausnaugh
et al. 2016), but at these rates the disks would no longer remain

thin. Another explanation provided by Hall et al. (2018) for large
disks is that there could be a low-density atmosphere around the
thin disk that modifies the optical and UV regions of the disk to

Table 3
R2500 Å and Lags

Object Name τr τi τz R2500 Å
a

R2500 Å
b

(Season) (Days) (Days) (Days) (lt-day) (lt-day)

DES J0224–0436 (Y1) 2.3 11.1
7.8

-
+ 2.9 4.7

4.5
-
+ 3.4 5.4

4.5
-
+ 8.6 2.3 0.8

1.6
-
+

DES J0243–0113 (Y1) 0.1 1.9
1.7

-
+ 0.8 1.9

2.2
-
+ 1.2 2.3

2.2
-
+ 1.8 0.8 0.8

1.5
-
+

DES J0253+0004 (Y1) 2.0 2.7
5.4

-
+ 2.3 7.2

7.6
-
+ 5.0 5.4

7.6
-
+ 10.8 7.3 5.4

5.8
-
+

DES J0253+0004 (Y2) 1.0 1.8
2.5

-
+ 0.9 1.8

2.5
-
+ 1.3 2.1

2.5
-
+ 4.4 1.3 1.6

1.4
-
+

DES J0249–0017 (Y1) 1.0 1.1
1.2

-
+ 0.4 0.9

5.5
-
+ 1.0 1.2

5.5
-
+ 2.4 0.9 0.7

1.6
-
+

DES J0249–0017 (Y3) 1.3 1.3
1.8

-
+ 1.6 1.4

1.9
-
+ 3.2 1.4

1.9
-
+ 4.5 3.0 1.2

1.8
-
+

DES J0224–0659 (Y1) 1.2 1.3
1.8

-
+ 1.5 1.5

2.7
-
+ 2.2 1.9

2.7
-
+ 4.3 7.8 6.4

5.7
-
+

DES J0224–0659 (Y2) 0.5 1.2
1.1

-
+ 0.6 1.1

1.6
-
+ 2.1 1.5

1.6
-
+ 2.6 2.4 1.4

1.6
-
+

DES J0224–0659 (Y3) 3.3 4.9
3.5

-
+

−1.3 4.5
4.1

-
+ 4.9 11.5

4.1
-
+ 8.3 5.3 3.0

3.0
-
+

DES J0221–0617 (Y1) 1.6 2.4
5.4

-
+ 4.7 5.6

3.5
-
+ 3.9 5.0

3.5
-
+ 8.6 2.7 2.1

6.8
-
+

DES J0221–0617 (Y2) 2.4 3.9
2.2

-
+ 3.4 4.5

2.1
-
+ 2.3 2.0

2.1
-
+ 5.9 3.1 2.7

8.5
-
+

DES J0221–0617 (Y3) 0.1 2.1
8.3

-
+ 0.9 1.9

8.8
-
+

−0.6 1.8
8.8

-
+ 6.6 1.0 0.9

1.7
-
+

DES J0219–0409 (Y2) 0.6 0.9
1.1

-
+ 0.7 1.0

0.9
-
+ 0.7 1.1

0.9
-
+ 1.4 0.5 0.6

1.0
-
+

DES J0248+0010 (Y1) 1.5 1.9
1.0

-
+ 1.7 1.1

0.6
-
+ 1.5 2.5

0.6
-
+ 3.1 1.1 0.7

0.8
-
+

DES J0223–0640 (Y1) 0.5 1.8
1.4

-
+ 0.9 1.8

1.4
-
+ 1.4 2.2

1.4
-
+ 2.1 0.9 0.9

8.9
-
+

DES J0215–0533 (Y1) 1.2 2.7
1.6

-
+ 1.4 2.8

1.9
-
+ 2.6 3.7

1.9
-
+ 2.7 1.2 1.4

2.0
-
+

DES J0215–0533 (Y2) 3.2 1.7
3.3

-
+ 3.7 2.2

3.1
-
+ 3.8 0.7

3.1
-
+ 5.7 2.6 1.7

1.6
-
+

DES J0241–0105 (Y3) 1.4 2.5
2.7

-
+ 2.3 3.5

3.0
-
+ 3.3 3.6

3.0
-
+ 4.5 2.2 2.0

2.2
-
+

DES J0241–0105 (Y2) 0.8 1.7
1.7

-
+ 1.0 1.5

2.2
-
+

−0.2 2.3
2.2

-
+ 1.8 1.2 1.2

1.4
-
+

DES J0241–0107 (Y1) 0.0 1.1
1.8

-
+ 0.9 1.5

1.7
-
+ 1.9 2.5

1.7
-
+ 3.6 2.9 1.5

2.4
-
+

DES J0247–0021 (Y1) 0.7 1.6
2.5

-
+ 1.0 2.5

1.7
-
+ 1.7 2.6

1.7
-
+ 4.1 1.7 0.9

1.7
-
+

DES J0247–0021 (Y2) −1.1 1.6
2.9

-
+

−0.2 2.7
2.3

-
+ 0.5 2.8

2.3
-
+ 1.7 1.7 1.3

1.6
-
+

DES J0215–0430 (Y2) 2.9 2.0
3.8

-
+ 3.4 4.7

2.8
-
+ 3.3 6.3

2.8
-
+ 7.0 7.6 7.5

6.4
-
+

DES J0337–2624 (Y2) 1.3 1.0
1.0

-
+ 2.0 1.4

0.9
-
+ 2.4 1.9

0.9
-
+ 3.5 3.4 1.7

1.7
-
+

Notes. JAVELIN time lags and disk sizes (β=4/3) in the quasar rest frame.
a
Disk size 2σ upper limits from riz lags.

b
Disk sizes from the new thin-disk model with 2σ error bars. Note that these are flux-weighted radii from Equation (6).
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appear larger than they would as a blackbody spectrum. A third

possibility is that quasars have high intrinsic reddening that has

not been taken into account (Gaskell et al. 2004). This would

make the quasars more luminous and naturally increase the

expected disk sizes by a factor of a few. Depending on the exact

magnitude of this correction, it could completely remove the

discrepancy of the previously too large disk sizes (Gaskell 2017)

and move the DES quasars to Eddington accretion rates of 0.1 or

less. Gaskell et al. (2004) also find that the intrinsic reddening is

greater for lower-luminosity objects, which would produce the

largest discrepancy at the lowest luminosities. While Figure 11

plots the size versus black hole mass, the x-axis is a fair proxy

for the luminosity. The objects on the left of the plot are those

Figure 6. Corner plot for the R
0l and β parameters of NGC 5548 using our

JAVELIN thin-disk model. These histograms clearly show the double-valued
nature of the fits presented in Figure 5. The top and bottom right panels show
histograms for R

0l and β individually, and the bottom left panel illustrates the
covariance between the two. As with the previous figure, black, dark gray, and
light gray correspond to values that fall within the 1σ, 2σ, and 3σ likelihood
distributions. The dashed lines give the best-fit values found in Fausnaugh
et al. (2016).

Figure 5. Comparison of the accretion disk size at 1367 Å for NGC 5548 using
our new JAVELIN thin-disk model (colored points) vs. the results reported in
Fausnaugh et al. (2016; black contours). The black contours correspond to their
1σ, 2σ, and 3σ constraints on these accretion disk parameters based on a fit to

the lags measured relative to 1357 Å, whereas the colored points represent the
relative posterior MCMC probability distribution for these same parameters.
We find two families of solutions of approximately equal likelihood, one of
which is within the 1σ contours of the previous NGC 5548 analysis. We are
consistent in finding a disk profile that is slightly shallower and disk size much
larger than predicted based on the mass and luminosity of NGC 5548, which is
given by the intersection of the red dashed lines.

Figure 4. Test of our JAVELIN thin-disk model’s ability to recover input R
0l

and β values from simulated light curves. The dashed lines correspond to the
input values used to created the lagged light curves. Black, dark gray, and light
gray correspond to values that fall within the 1σ, 2σ, and 3σ posterior
likelihood distributions. The cadence for these data is roughly 8 days, similar to
the cadence we have with DES, and we successfully recover a disk size of light
travel time that is comparable to half the simulated cadence.

Figure 7. Example R
0l posterior distribution after fitting with our new

JAVELIN thin-disk model and fixing β=4/3 for DES J024918.24–001730.98,
the same object from Figure 3. The x-axis is the quasar accretion disk size (in
light-days) at the wavelength corresponding to the emitting region of the

observed DES g band, which runs from approximately 2000–3000 Å rest frame
for our sample given its redshift distribution.
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that would have the largest reddening correction and are
currently the most discrepant from the prediction without it.

3.4. Stacking Analysis

After analyzing the individual lag distributions, we investi-
gated whether a stronger signal could be found by combining

the posterior distributions for quasars of similar properties. In

the standard thin-disk model, the absolute size of the disk

depends on the quasar properties. Thus, we expect that quasars

with similar properties should have similar accretion disk sizes,

and by combining their size distributions we may amplify the

total signal. We divided our sample into two bins split at a mass

of M6 108´ . This value gives approximately equal numbers

Figure 8. Corner plot for the full parameters for the quasar presented in Figure 3, DES J024918.24–001730.98 (Y1), in the JAVELIN thin-disk model analysis. As
mentioned in the text, strong priors were placed on both the damping timescale τ and wavelength dependence β. The contours progress from 1σ to 3σ as they
transition from black to lighter gray. The R

0l parameter is in units of light-days, whereas τ and all of the widths are in days. Note that all parameters are in the observed
frame. Similar corner plots of the other quasars in the sample are available in the figure set.

(The complete figure set (24 images) is available.)
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of objects in each bin (7 and 8), albeit with different dynamic

ranges of masses. The small mass bin covers an order of

magnitude in mass, while the larger bin only a factor of two.

Given the large systematic uncertainties in the single-epoch

mass measurements, several of the objects could move between

the bins with their mass errors, which could bias the stacked
distributions. We rerun our JAVELIN thin-disk object again on
each quasar individually without any priors on the parameters
and then sum the accretion disk size likelihoods for all the
quasars in the same bin after putting them in the rest frame and
scaling them to the same reference wavelength (2500Å)

assuming β = 4/3. Figure 12 shows the final distributions for
our mass bins, which are consistent with one another given the
uncertainties. We expect lower-mass objects to have a smaller
accretion disk size for a given effective wavelength, and the
fact that the two are consistent could be due to the rather large
mass uncertainties for all of these SMBHs, the small number of
SMBHs at the lowest masses, or the unequal dynamic range
probed by the mass bins due to our total sample size.

4. Conclusion

We report quasar accretion disk size measurements using
time delays between the DES photometric bandpasses as a

Figure 9. Comparison of the JAVELIN disk model results for objects that have
detections in multiple years. The three square blue points are the three quasars
that have strong enough variability in two DES seasons to get two separate R

0l
measurements, whereas the black points are measurements for two quasars that
have variability in all three seasons. Both of these quasars thus have two points
on the plot, one comparing year 1 to year 2, and then another comparing year 1
to year 3. The diagonal dashed line is a 1:1 relation. The error bars represent the
1σ limits on the parameter distributions and show that the multiple years are
roughly consistent with one another.

Figure 10. Accretion disk size distribution at 2500 Å as a function of black hole
mass. The two slanted lines correspond to the predictions from the thin-disk
theory for an accretion disk inflated by a factor of X4/3 per the prescription in
Fausnaugh et al. (2016) and found in Equation (6) at three different accretion rates
relative to Eddington-0.1, 0.3, and 1. The DES sample is shown as upper limits
based on the 95th percentile of the JAVELIN lag distributions as a conservative
estimate given that several of our g–r and g–i lags were 2σ consistent with no lag.
The black points are taken from gravitational lensing measurements of quasar
accretion disk sizes (Morgan et al. 2010). As these were reported in units of the

radius where
hc

kT
l = , they are similarly inflated to match the flux-weighted radius

that is measured by the time-delay reverberation mapping data. The green points
are the result of photometric reverberation mapping of NGC 5548 from the
STORM campaign (Edelson et al. 2015; Fausnaugh et al. 2016) and NGC 2617
(Shappee et al. 2014), and the magenta for Pan-STARRS (Jiang et al. 2017). Note
that we assumed that the disk’s size scaling as a function of wavelength, β, is 4/3
to put all the objects at the same rest wavelength.

Figure 11. Disk size as a function of black hole mass, similar to Figure 10, but
now with our disk sizes obtained from our new thin-disk JAVELIN extension
as cyan squares. As before, all objects have been scaled to the flux-weighted

radius in Equation (6) rather than the radius where
hc

k TB
l = .

Figure 12. Stacked distribution of disk sizes at rest-frame 2500 Å assuming

that β=4/3. The two mass bins are divided at M6 107´  to give roughly
equal numbers in each bin, although the dynamic range of the higher-mass bin
is smaller than the overall mass scaling uncertainties. We expect a larger disk
for higher-mass black holes, but the two distributions are roughly the same.
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proxy for different radii in the disk. In addition to modeling the
individual pairs of photometric bands, we present a new
JAVELIN tool that fits a thin-disk model directly rather than to
all of the available light curves simultaneously, which we test
on both NGC 5548 and our DES quasars. Our results are as
follows:

1. Even with the long cadence of the DES supernova
pointings (∼1 week) compared to the few light-day
expected size of the accretion disk, we are able to place
meaningful upper limits on lags between continuum
bands using JAVELIN for many of our objects. These
limits are comparable to the sizes found for accretion
disks through the gravitational lensing technique as well
as other AGNs and quasars that have disk sizes derived in
photometric reverberation mapping studies.

2. Our new extension of JAVELIN,50 a thin-disk model, is
able to reproduce the AGN STORM result for NGC 5548
(Fausnaugh et al. 2016) by fitting for the thin-disk
parameters directly rather than each lag individually. This
new extension is publicly available as part of the
JAVELIN software package and should have many
applications to future, multiwavelength time domain
studies.

3. When we fix the β parameter at 4/3, we measure sizes for
15 DES quasars with this thin-disk model. The quasar
sample spans almost two orders of magnitude in mass,
and several of our measurements are of comparable
precision to the disk lensing sizes. Given our large
uncertainties for most of our sample, the disk size
measurements are consistent with both the larger disks of
previous results (Morgan et al. 2010; Shappee et al. 2014;
Fausnaugh et al. 2016; Jiang et al. 2017) and with a thin
disk accreting at a moderate rate compared to Edding-
ton (∼0.3).

4. If quasars have a high intrinsic reddening, the larger disk
sizes than those expected from thin-disk predictions can
be accounted for as in Gaskell (2017).

5. We have five quasars with variability in multiple DES
observing seasons and analyze each season of data
independently with our thin-disk model extension to
JAVELIN. In two of these quasars, we have variability in
all three seasons. The accretion disk sizes are consistent
with each other in all of these cases.
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