
Quasar: Resource-Efficient and QoS-Aware Cluster Management

Christina Delimitrou and Christos Kozyrakis

Stanford University

{cdel, kozyraki}@stanford.edu

Abstract

Cloud computing promises flexibility and high performance

for users and high cost-efficiency for operators. Neverthe-

less, most cloud facilities operate at very low utilization,

hurting both cost effectiveness and future scalability.

We present Quasar, a cluster management system that

increases resource utilization while providing consistently

high application performance. Quasar employs three tech-

niques. First, it does not rely on resource reservations,

which lead to underutilization as users do not necessarily

understand workload dynamics and physical resource re-

quirements of complex codebases. Instead, users express

performance constraints for each workload, letting Quasar

determine the right amount of resources to meet these con-

straints at any point. Second, Quasar uses classification tech-

niques to quickly and accurately determine the impact of

the amount of resources (scale-out and scale-up), type of

resources, and interference on performance for each work-

load and dataset. Third, it uses the classification results to

jointly perform resource allocation and assignment, quickly

exploring the large space of options for an efficient way

to pack workloads on available resources. Quasar monitors

workload performance and adjusts resource allocation and

assignment when needed. We evaluate Quasar over a wide

range of workload scenarios, including combinations of dis-

tributed analytics frameworks and low-latency, stateful ser-

vices, both on a local cluster and a cluster of dedicated EC2

servers. At steady state, Quasar improves resource utiliza-

tion by 47% in the 200-server EC2 cluster, while meeting

performance constraints for workloads of all types.

Categories and Subject Descriptors C.5.1 [Computer Sys-

tem Implementation]: Super (very large) computers; D.4.1

[Process Management]: Scheduling

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ASPLOS ’14, March 1–5, 2014, Salt Lake City, Utah, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2305-5/14/03. . . $15.00.
http://dx.doi.org/10.1145/http://dx.doi.org/10.1145/2541940.2541941

Keywords Cloud computing, datacenters, resource effi-

ciency, quality of service, cluster management, resource al-

location and assignment.

1. Introduction

An increasing amount of computing is now hosted on pub-

lic clouds, such as Amazon’s EC2 [2], Windows Azure [65]

and Google Compute Engine [25], or on private clouds man-

aged by frameworks such as VMware vCloud [61], Open-

Stack [48], and Mesos [32]. Cloud platforms provide two

major advantages for end-users and cloud operators: flexibil-

ity and cost efficiency [9, 10, 31]. Users can quickly launch

jobs that range from short, single-process applications to

large, multi-tier services, only paying for the resources used

at each point. Cloud operators can achieve economies of

scale by building large-scale datacenters (DCs) and by shar-

ing their resources between multiple users and workloads.

Nevertheless, most cloud facilities operate at very low

utilization which greatly adheres cost effectiveness [9, 51].

This is the case even for cloud facilities that use cluster

management frameworks that enable cluster sharing across

workloads. In Figure 1, we present a utilization analysis for

a production cluster at Twitter with thousands of servers,

managed by Mesos [32] over one month. The cluster mostly

hosts user-facing services. The aggregate CPU utilization

is consistently below 20%, even though reservations reach

up to 80% of total capacity (Fig. 1.a). Even when looking

at individual servers, their majority does not exceed 50%

utilization on any week (Fig. 1.c). Typical memory use is

higher (40-50%) but still differs from the reserved capac-

ity. Figure 1.d shows that very few workloads reserve the

right amount of resources (compute resources shown here,

similar for memory); most workloads (70%) overestimate

reservations by up to 10x, while many (20%) underestimate

reservations by up to 5x. Similarly, Reiss et al. showed that a

12,000-server Google cluster managed with the more mature

Borg system consistently achieves aggregate CPU utilization

of 25-35% and aggregate memory utilization of 40% [51]. In

contrast, reserved resources exceed 75% and 60% of avail-

able capacity for CPU and memory respectively.

Twitter and Google are in the high end of the utilization

spectrum. Utilization estimates are even lower for cloud fa-

cilities that do not co-locate workloads the way Google and

0 100 200 300 400 500 600
Time (hr)

0

20

40

60

80

100
CPU used vs. reserved

Used Reserved

A
g

g
re

g
a

te
 C

P
U

 (
%

)

0 100 200 300 400 500 600 700
Time (hr)

0

20

40

60

80

100
Memory used vs. reserved

Used Reserved

A
g

g
re

g
a

te
 M

e
m

o
ry

 (
%

)

0 20 40 60 80 100
CPU Utilization (%)

0

20

40

60

80

100

Se
rv

er
s

(%
)

1st week

2nd week

3rd week

4th week

5th week

0 20 40 60 80 100
Workloads (%)

0

2

4

6

8

10

12

Re
se

rv
ed

/U
se

d
Ra

tio
 (

·x)
un

de
r-s

ize
d

rig
ht

-s
iz

ed over-sized

Figure 1: Resource utilization over 30 days for a large production cluster at Twitter managed with Mesos. (a) and (b): utilization

vs reservation for the aggregate CPU and memory capacity of the cluster; (c) CDF of CPU utilization for individual servers for

each week in the 30 day period; (d) ratio of reserved vs used CPU resources for each of the thousands of workloads that ran on

the cluster during this period.

Twitter do with Borg and Mesos respectively. Various anal-

yses estimate industry-wide utilization between 6% [15] and

12% [24, 59]. A recent study estimated server utilization on

Amazon EC2 in the 3% to 17% range [38]. Overall, low uti-

lization is a major challenge for cloud facilities. Underuti-

lized servers contribute to capital expenses and, since they

are not energy proportional [36, 42], to operational expenses

as well. Even if a company can afford the cost, low utiliza-

tion is still a scaling limitation. With many cloud DCs con-

suming 10s of megawatts, it is difficult to add more servers

without running into the limits of what the nearby electricity

facility can deliver.

In this work, we increase resource utilization in data-

centers through better cluster management. The manager

is responsible for providing resources to various workloads

in a manner that achieves their performance goals, while

maximizing the utilization of available resources. The man-

ager must make two major decisions; first allocate the right

amount of resources for each workload (resource allocation)

and then select the specific servers that will satisfy a given al-

location (resource assignment). While there has been signifi-

cant progress in cluster management frameworks [21, 32, 54,

63], there are still major challenges that limit their effective-

ness in concurrently meeting application performance and

resource utilization goals. First, it is particularly difficult to

determine the resources needed for each workload. The load

of user-facing services varies widely within a day, while the

load of analytics tasks depends on their complexity and their

dataset size. Most existing cluster managers side-step allo-

cation altogether, requiring users or workloads to express

their requirements in the form of a reservation. Neverthe-

less, the workload developer does not necessarily understand

the physical resource requirements of complex codebases or

the variations in load and dataset size. As shown in Fig-

ure 1.d, only a small fraction of the workloads submitted

to the Twitter cluster provided a right-sized reservation. Un-

dersized reservations lead to poor application performance,

while oversized reservations lead to low resource utilization.

Equally important, resource allocation and resource as-

signment are fundamentally linked. The first reason is het-

erogeneity of resources, which is quite high as servers get

installed and replaced over the typical 15-year lifetime of

a DC [9, 20]. A workload may be able to achieve its cur-

rent performance goals with ten high-end or twenty low-

end servers. Similarly, a workload may be able to use low-

end CPUs if the memory allocation is high or vice versa.

The second reason is interference between co-located work-

loads that can lead to severe performance losses [41, 69].

This is particularly problematic for user-facing services that

must meet strict, tail-latency requirements (e.g., low 99th

percentile latency) under a wide range of traffic scenarios

ranging from low load to unexpected spikes [16]. Naı̈vely

co-locating these services with low-priority, batch tasks that

consume any idling resources can lead to unacceptable la-

tencies, even at low load [41]. This is the reason why cloud

operators deploy low-latency services on dedicated servers

that operate at low utilization most of the time. In facili-

ties that share resources between workloads, users often ex-

aggerate resource reservations to side-step performance un-

predictability due to interference. Finally, most cloud facil-

ities are large and involve thousands of servers and work-

loads, putting tight constraints on the complexity and time

that can be spent making decisions [54]. As new, unknown

workloads are submitted, old workloads get updated, new

datasets arise, and new server configurations are installed, it

is impractical for the cluster manager to analyze all possible

combinations of resource allocations and assignments.

We present Quasar, a cluster manager that maximizes

resource utilization while meeting performance and QoS

constraints for each workload. Quasar includes three key

features. First, it shifts from a reservation-centric to a

performance-centric approach for cluster management. In-

stead of users expressing low-level resource requests to the

manager, Quasar allows users to communicate the perfor-

mance constraints of the application in terms of through-

put and/or latency, depending on the application type. This

high-level specification allows Quasar to determine the least

amount of the available resources needed to meet perfor-

mance constraints at any point, given the current state of

the cluster in terms of available servers and active work-

loads. The allocation varies over time to adjust to changes in

the workload or system state. The performance-centric ap-

proach simplifies both the user and cloud manager’s roles

as it removes the need for exaggerated reservations, al-

lows transparent handling of unknown, evolving, or irreg-

ular workloads, and provides additional flexibility towards

cost-efficient allocation.

Second, Quasar uses fast classification techniques to de-

termine the impact of different resource allocations and as-

signments on workload performance. By combining a small

amount of profiling information from the workload itself

with the large amount of data from previously-scheduled

workloads, Quasar can quickly and accurately generate the

information needed for efficient resource assignment and al-

location without the need for a priori analysis of the applica-

tion and its dataset. Specifically, Quasar performs four par-

allel classifications on each application to evaluate the four

main aspects of resource allocation and assignment: the im-

pact of scale-up (amount of resources per server), the impact

of scale-out (number of servers per workload), the impact of

server configuration, and the impact of interference (which

workloads can be co-located).

Third, Quasar performs resource allocation and assign-

ment jointly. The classification results are used to determine

the right amount and specific set of resources assigned to

the workload. Hence, Quasar avoids overprovisioning work-

loads that are currently at low load and can compensate

for increased interference or the unavailability of high-end

servers by assigning fewer or lower-quality resources to

them. Moreover, Quasar monitors performance throughout

the workload’s execution. If performance deviates from the

expressed constraints, Quasar reclassifies the workload and

adjusts the allocation and/or assignment decisions to meet

the performance constraints or minimize the resources used.

We have implemented and evaluated a prototype for

Quasar managing a local 40-server cluster and a 200-node

cluster of dedicated EC2 servers. We use a wide range of

workloads including analytics frameworks (Hadoop, Storm,

Spark), latency-critical and stateful services (memcached,

Cassandra), and batch workloads. We compare Quasar to

reservation-based resource allocation coupled with resource

assignment based on load or similar classification tech-

niques. Quasar improves server utilization at steady state

by 47% on average at high load in the 200-server cluster,

while also improving performance of individual workloads

compared to the alternative schemes. We show that Quasar

can right-size the allocation of analytics and latency-critical

workloads better than built-in schedulers of frameworks like

Hadoop, or auto-scaling systems. It can also select assign-

ments that take heterogeneity and interference into account

so that throughput and latency constraints are closely met.

2. Motivation

2.1 Cluster Management Overview

A cluster management framework provides various services

including security, fault tolerance, and monitoring. This pa-

per focuses on the two tasks most relevant to resource ef-

ficiency: resource allocation and resource assignment of in-

coming workloads. Previous work has mostly treated the two

separately.

Resource allocation: Allocation refers to determining the

amount of resources used by a workload: number of servers,

number of cores and amount of memory and bandwidth re-

sources per server. Managers like Mesos [32], Torque [58],

and Omega [54] expect workloads to make resource reser-

vations. Mesos processes these requests and, based on avail-

ability and fairness issues [27], makes resource offers to in-

dividual frameworks (e.g., Hadoop) that the framework can

accept or reject. Dejavu identifies a few workload classes

and reuses previous resource allocations for each class

to minimize reallocation overheads [60]. CloudScale [56],

PRESS [29], AGILE [46] and the work by Gmach et al. [28]

perform online prediction of resource needs, often without

a priori workload knowledge. Finally, auto-scaling systems

such as Rightscale [52] automatically scale the number of

physical or virtual instances used by webserving workloads

to react to observed changes in server load.

Resource assignment: Assignment refers to selecting the

specific resources that satisfy an allocation. The two biggest

challenges of assignment are server heterogeneity and in-

terference between colocated workloads [41, 44, 69], when

servers are shared to improve utilization. The most closely

related work to this paper is Paragon [20]. Given a resource

allocation for an unknown, incoming workload, Paragon

uses classification techniques to quickly estimate the impact

of heterogeneity and interference on performance. Paragon

uses this information to assign each workload to server

type(s) that provide the best performance and colocate work-

loads that do not interfere with each other. Nathuji et al. [45]

developed a feedback-based scheme that tunes resource as-

signment to mitigate interference effects. Yang et al. devel-

oped an online scheme that detects memory pressure and

finds colocations that avoid interference on latency-sensitive

workloads [69]. Similarly, DeepDive detects and manages

interference between co-scheduled applications in a VM

system [47]. Finally, CPI2 [73] throttles low-priority work-

loads that induce interference to important services. In terms

of managing heterogeneity, Nathuji et al. [44] and Mars et

al. [40] quantified its impact on conventional benchmarks

and Google services and designed schemes to predict the

most appropriate server type for each workload.

2.2 The Case for Coordinated Cluster Management

Despite the progress in cluster management technology, re-

source utilization is quite low in most private and public

clouds (see Figure 1 and [15, 24, 38, 51, 59]). There are two

A B C D E F G H I J
Server Configurations

0

1

2

3

4

5

6

7

S
p
e
e
d
u
p

Heterogeneity Impact

A B C D E F G H I
Interference Pattern

0.0

0.2

0.4

0.6

0.8

1.0

S
p
e
e
d
u
p

Interference Impact (Server A)

1 2 3 4 5 6 7 8
Number of Nodes

0

5

10

15

20

25

S
p
e
e
d
u
p

Scale-out Impact (Server A)

A B C
Input Dataset

0.0

0.5

1.0

1.5

2.0

S
p
e
e
d
u
p

Dataset Impact (Server A)

0 50 100 150 200 250 300 350 400 450

Achieved kQPS

0

500

1000

1500

2000

2500

3000

L
a
te

n
c
y

(u
s
)

Heterogeneity Impact

B

D

E

F

G

I

J

0 50 100 150 200 250 300 350 400

Achieved kQPS

0

500

1000

1500

2000

2500

3000

L
a
te

n
c
y

(u
s
)

Interference Impact (Server D)

A

B

C

D

E

F

0 100 200 300 400 500 600 700 800 900

Achieved kQPS

0

500

1000

1500

2000

2500

3000

3500

4000

L
a
te

n
c
y

(u
s
)

Scale-up Impact (Server D)

2 cores

4 cores

8 cores

16 cores

24 cores

0 50 100 150 200 250 300 350 400

Achieved kQPS

0

500

1000

1500

2000

2500

3000

L
a
te

n
c
y

(u
s
)

Dataset Impact (Server D)

A

B

C

Figure 2: The impact of heterogeneity, interference, scale-out, scale-up, and dataset on the performance of Hadoop (top

row) and memcached (bottom row). Server configurations, interference patterns, and datasets are summarized in Table 1. For

Hadoop, the variability in the violin plots is due to scaling-up the resource allocations within a server (cores and/or memory).

platforms A B C D E F G H I J

cores 2 4 8 8 8 8 12 12 16 24

memory(GB) 4 8 12 16 20 24 16 24 48 48

interference A B C D E F G H I

pattern - memory L1I cache LL cache disk I/O network L2 cache CPU prefetch

input dataset A B C

hadoop netflix: 2.1GB mahout: 10GB wikipedia: 55GB

memcached 100B reads 2KB reads 100B reads-100B writes

Table 1: Server platforms (A-J), interference patterns (A-I) and input datasets (A-C) used for the analysis in Figure 2.

major shortcomings current cluster managers have. First, it

is particularly difficult for a user or workload to understand

its resource needs and express them as a reservation. Sec-

ond, resource allocation and assignment are fundamentally

linked. An efficient allocation depends on the amount and

type of resources available and the behavior of other work-

loads running on the cluster.

Figure 2 illustrates these issues by analyzing the im-

pact of various allocations, assignments, and workload as-

pects on two representative applications, one batch and one

latency-critical: a large Hadoop job running a recommen-

dation algorithm on the Netflix dataset [11] and a mem-

cached service under a read-intensive load. For Hadoop, we

report speedup over a single node of server configuration

A using all available cores and memory. Server configu-

rations, interference settings and datasets are summarized

in Table 1. The variability in each violin plot is due to

the different amounts of resources (cores and memory) al-

located within each server. For memcached, we report the

latency-throughput graphs. Real-world memcached deploy-

ments limit throughput to achieve 99th-percentile latencies

between 0.2ms and 1ms.

The first row of Figure 2 illustrates the behavior of

Hadoop. The heterogeneity graph shows that the choice of

server configuration introduces performance variability of

up to 7x, while the amount of resources allocated within each

server introduces variability of up to 10x. The interference

graph shows that for server A, depending on the amount of

resources used, Hadoop may be insensitive to certain types

of interference or slowdown by up to 10x. Similarly, the

scale-out graph shows that depending on the amount of re-

sources per server, scaling may be sublinear or superlinear.

Finally, the dataset graph shows that the dataset complexity

and size can have 3x impact on Hadoop’s performance. Note

that in addition to high variability, the violin plots show that

the probability distributions change significantly across dif-

ferent allocations. The results are similar for memcached, as

shown in the second row of Figure 2. The position of the

knee of the throughput-latency curve depends heavily on the

type of server used (3x variability), the interference patterns

(7x variability), the amount of resources used per server (8x

variability), and workload characteristics such as data size

and read/write mixes (3x variability).

It is clear from Figure 2 that it is quite difficult for a user

or workload to translate a performance goal to a resource

reservation. To right-size an allocation, we need to under-

stand how scale-out, scale-up, heterogeneity in the currently

available servers, and interference from the currently run-

ning jobs affect a workload with a specific dataset. Hence,

separating resource allocation and assignment through reser-

vations is bound to be suboptimal, either in terms of resource

efficiency or in terms of workload performance (see Fig-

ure 1). Similarly, performing first allocation and then assign-

ment in two separate steps is also suboptimal. Cluster man-

agement must handle both tasks in an integrated manner.

3. Quasar

3.1 Overview

Quasar differs from previous work in three ways. First,

it shifts away from resource reservations and adopts a

performance-centric approach. Quasar exports a high-level

interface that allows users or the schedulers integrated in

some frameworks (e.g., Hadoop or Spark) to express the per-

formance constraint the workload should meet. The interface

differentiates across workload types. For latency-critical

workloads, constraints are expressed as a queries per second

(QPS) target and a latency QoS constraint. For distributed

frameworks like Hadoop, the constraint is execution time.

For single node, single-threaded or multi-threaded work-

loads the constraint is a low-level metric of instructions-per-

second (IPS). Once performance constraints are specified, it

is up to Quasar to find a resource allocation and assignment

that satisfies them.

Second, Quasar uses fast classification techniques to

quickly and accurately estimate the impact different resource

allocation and resource assignment decisions have on work-

load performance. Upon admission, an incoming workload

and dataset is profiled on a few servers for a short period of

time (a few seconds up to a few minutes - see Sec. 3.2). This

limited profiling information is combined with information

from the few workloads characterized offline and the many

workloads that have been previously scheduled in the sys-

tem using classification techniques. The result of classifica-

tion is accurate estimates of application performance as we

vary the type or number of servers, the amount of resources

within a server, and the interference from other workloads.

In other words, we estimate graphs similar to those shown in

Figure 2. This classification-based approach eliminates the

need for exhaustive online characterization and allows ef-

ficient scheduling of unknown or evolving workloads, or

new datasets. Even with classification, exhaustively esti-

mating performance for all allocation-assignment combi-

nations would be infeasible. Instead, Quasar decomposes

the problem to the four main components of allocation and

assignment: resources per node and number of nodes for

allocation, and server type and degree of interference for as-

signment. This dramatically reduces the complexity of the

classification problem.

Third, Quasar uses the result of classification to jointly

perform resource allocation and assignment, eliminating

the inherent inefficiencies of performing allocation with-

out knowing the assignment challenges. A greedy algorithm

combines the result of the four independent classifications

to select the number and specific set of resources that will

meet (or get as close as possible to) the performance con-

straints. Quasar also monitors workload performance. If the

constraint is not met at some point or resources are idling,

either the workload changed (load or phase change), classi-

fication was incorrect, or the greedy scheme led to subop-

timal results. In any case, Quasar adjusts the allocation and

assignment if possible, or reclassifies and reschedules the

workload from scratch.

Quasar uses similar classification techniques as those in-

troduced in Paragon [20]. Paragon handles only resource as-

signment. Hence, its classification step can only characterize

workloads with respect to heterogeneity (server type) and

interference. In contrast, Quasar handles both resource al-

location and assignment. Hence, its classification step also

characterizes scale-out and scale-up issues for each work-

load. Moreover, the space of allocations and assignments

that Quasar must explore is significantly larger than the

space of assignments explored by Paragon. Finally, Quasar

introduces an interface for performance constraints in order

to decouple user goals from resource allocation and assign-

ment. In Section 6, we compare Quasar to Paragon coupled

with current resource allocation approaches to showcase the

advantages of Quasar.

3.2 Fast and Accurate Classification

Collaborative filtering techniques are often used in recom-

mendation systems with extremely sparse inputs [50]. One

of their most publicized use was the Netflix Challenge [11],

where techniques such as Singular Value Decomposition

(SVD) and PQ-reconstruction [13, 35, 50, 66] were used to

provide movie recommendations to users that had only rated

a few movies themselves, by exploiting the large number of

ratings from other users. The input to SVD in this case is a

very sparse matrix A with users as rows, movies as columns

and ratings as elements. SVD decomposes A to the prod-

uct of the matrix of singular values Σ that represents sim-

ilarity concepts in A, the matrix of left singular vectors U

that represents correlation between rows of A and similar-

ity concepts, and the matrix of right singular vectors V that

represents the correlation between columns of A and simi-

larity concepts (A = U ·Σ·V T). A similarity concept can be

that users that liked “Lord of the Rings 1” also liked “Lord

of the Rings 2”. PQ-reconstruction with Stochastic Gradient

Descent (SGD), a simple latent-factor model [13, 66], uses

Σ, U , and V to reconstruct the missing entries in A. Starting

with the SVD output, PT is initialized to ΣV T and Q to U

which provides an initial reconstruction of A. Subsequently,

SGD iterates over all elements of the reconstructed matrix

R=Q·PT until convergence.

For each element rui of R:

ǫui = rui − µ− bu − qi · pu
T

qi ← qi + η(ǫuipu − λqi)
pu ← pu + η(ǫuiqi − λpu)

until |ǫ|L2
=

√

∑

u,i |ǫui|
2 becomes marginal. η is the learn-

ing rate and λ the regularization factor of SGD and their val-

ues are determined empirically. In the above model, we also

include the average rating µ and a user bias bu that account

for the divergence of specific users from the norm. Once the

matrix is reconstructed, SVD is applied once again to gener-

ate movie recommendations by quantifying the correlation

between new and existing users. The complexity of SVD

is O(min(N2M,M2N)), where M , N the dimensions of

A, and the complexity of PQ-reconstruction with SGD is

O(N ·M).
In Paragon [20], collaborative filtering was used to quickly

classify workloads with respect to interference and hetero-

geneity. A few applications are profiled exhaustively offline

to derive their performance on different servers and with

varying amounts of interference. An incoming application is

profiled for one minute on two of the many server configura-

tions, with and without interference in two shared resources.

SVD and PQ-reconstruction are used to accurately estimate

the performance of the workload on the remaining server

configurations and with interference on the remaining types

of resources. Paragon showed that collaborative filtering can

quickly and accurately classify unknown applications with

respect to tens of server configurations and tens of sources

of interference.

The classification engine in Quasar extends the one in

Paragon in two ways. First, it uses collaborative filtering

to estimate the impact of resource scale-out (more servers)

and scale-up (more resources per server) on application per-

formance. These additional classifications are necessary for

resource allocation. Second, it tailors classifications to dif-

ferent workload types. This is necessary because different

types for workloads have different constraints and alloca-

tion knobs. For instance, in a webserver we can apply both

scale-out and scale-up and we must monitor queries per sec-

ond (QPS) and latency. For Hadoop, we can also configure

workload parameters such as the number of mappers per

node, heapsize, and compression. For a single-node work-

load, scaling up might be the only option while the metric

of interest can be instructions per second. The performance

constraints interface of Quasar allows users to specify the

type of submitted applications.

Overall, Quasar classifies for scale-up, scale-out, hetero-

geneity, and interference. The four classifications are done

independently and in parallel to reduce complexity and over-

heads. The greedy scheduler combines information from all

four. Because of the decomposition of the problem the ma-

trix dimensions decrease, and classification becomes fast

enough that it can be applied on every workload submis-

sion, even if the same workload is submitted multiple times

with different datasets. Hence there is no need to classify for

dataset sensitivity.

Scale-up classification: This classification explores how

performance varies with the amount of resources used within

a server. We currently focus on compute cores, memory and

storage capacity. We will address network bandwidth in fu-

ture work. We perform scale-up classification on the highest-

end platform, which offers the largest number of scale-up

options. When a workload is submitted, we profile it briefly

with two randomly-selected scale-up allocations. The pa-

rameters and duration of profiling depend on workload type.

Latency-critical services, like memcached are profiled for 5-

10 seconds under live traffic, with two different core/thread

counts and memory allocations (see the validation section

for a sensitivity analysis on the number of profiling runs).

For workloads like Hadoop, we profile a small subset (2-6)

of map tasks with two different allocations and configu-

rations of the most important framework parameters (e.g.,

mappers per node, JVM heapsize, block size, memory per

task, replication factor, and compression). Profiling lasts un-

til the map tasks reach at least 20% of completion, which

is typically sufficient to estimate the job’s completion time

using its progress rate [70] and assuming uniform task du-

ration [32]. Section 4.3 addresses the issue of non-uniform

task duration distribution and stragglers. Finally, for stateful

services like Cassandra [14], Quasar waits until the service’s

setup is complete before profiling the input load with the

different allocations. This takes at most 3-5 minutes, which

is tolerable for long-running services. Section 4.2 discusses

how Quasar guarantees side-effect free application copies

for profiling runs.

Profiling collects performance measurements in the for-

mat of each application’s performance goal (e.g., expected

completion time or QPS) and inserts them into a matrix

A with workloads as rows and scale-up configurations as

columns. A configuration includes compute, memory, and

storage allocations or the values of the framework param-

eters for a workload like Hadoop. To constrain the num-

ber of columns, we quantize the vectors to integer multi-

ples of cores and blocks of memory and storage. This may

result into somewhat suboptimal decisions, but the devia-

tions are small in practice. Classification using SVD and

PQ-reconstruction then derive the workload’s performance

across all scale-up allocations.

Scale-out classification: This type of classification is only

applicable to workloads that can use multiple servers, such

as distributed frameworks (e.g., Hadoop or Spark), stateless

(e.g., webserving) or stateful (e.g., memcached or Cassan-

dra) distributed services, and distributed computations (e.g.,

MPI jobs). Scale-out classification requires one more run in

Default density constraint: 2 entries per row, per classification 8 entries per row

scale-up scale-out heterogeneity interference exhaustive

Classification err. avg 90 %ile max avg 90 %ile max avg 90 %ile max avg 90 %ile max avg 90 %ile max

Hadoop (10 Jobs) 5.2% 9.8% 11% 5.0% 14.5% 17% 4.1% 4.6% 5.0% 1.8% 5.1% 6% 14.1% 15.8% 16%

Memcached (10) 6.3% 9.2% 11% 6.6% 10.5% 12% 5.2% 5.7% 6.5% 7.2% 9.1% 10% 14.1% 16.5% 18%

Webserver (10) 8.0% 10.1% 13% 7.5% 11.6% 14% 4.1% 5.1% 5.2% 3.2% 8.1% 9% 16.5% 17.6% 18%

Single-node (413) 4.0% 8.1% 9% - - - 3.5% 6.9% 8.0% 4.4% 9.2% 10% 11.6% 12.1% 13%

Table 2: Validation of Quasar’s classification engine. We present average, 90th percentile and maximum errors between

estimated values and actual values obtained with detailed characterization. We also compare the classification errors of the

four parallel classification to a single, exhaustive classification that accounts for all combinations of resource allocation and

resource assignment jointly.

100 101 102
Input Matrix Density (%)

0

20

40

60

80

100

9
0
 %

ile
 C

la
s
s
if
ic

a
ti
o
n
 E

rr
o
r

(%
) Scale-Up

Hadoop

Memcached

Single node

100 101 102
Input Matrix Density (%)

0

20

40

60

80

100

9
0
 %

ile
 C

la
s
s
if
ic

a
ti
o
n
 E

rr
o
r

(%
) Scale-Out

Hadoop

Memcached

101 102
Input Matrix Density (%)

0

20

40

60

80

100

9
0
 %

ile
 C

la
s
s
if
ic

a
ti
o
n
 E

rr
o
r

(%
) Heterogeneity

Hadoop

Memcached

Single node

100 101 102
Input Matrix Density (%)

0

20

40

60

80

100

9
0
 %

ile
 C

la
s
s
if
ic

a
ti
o
n
 E

rr
o
r

(%
) Interference

Hadoop

Memcached

Single node

100 101 102
Input Matrix Density (%)

10-3
10-2
10-1
100
101
102
103

9
0
 %

ile
 O

v
e
rh

e
a
d
 (

s
e
c
)

Overhead

Hadoop

Memcached

Single node

4p

exh.

Figure 3: Sensitivity of classification accuracy to input matrix density constraints (Fig. 3(a-d)). Fig. 3e shows the profiling and

decision overheads for different density constraints of the input matrices, assuming constant hardware resources for profiling.

addition to single-node runs done for scale-up classification.

To get consistent results, profiling is done with the same pa-

rameters as one of the scale-up runs (e.g., JVM heapsize)

and the same application load. This produces two entries

for matrix A, where rows are again workloads and columns

are scale-out allocations (numbers of servers). Collaborative

filtering then recovers the missing entries of performance

across all node counts. Scale-out classification requires ad-

ditional servers for profiling. To avoid increasing the clas-

sification overheads when the system is online, applications

are only profiled on one to four nodes for scale-out classi-

fication. To accurately estimate the performance of incom-

ing workloads for larger node counts, in offline mode, we

have exhaustively profiled a small number of different work-

load types (20-30) against node counts 1 to 100. These runs

provide the classification engine with dense information on

workload behavior for larger node counts. This step does not

need to repeat unless there are major changes in the cluster’s

hardware or application structure.

Heterogeneity classification: This classification requires

one more profiling run on a different and randomly-chosen

server type using the same workload parameters and for the

same duration as a scale-up run. Collaborative filtering esti-

mates workload performance across all other server types.

Interference classification: This classification quantifies

the sensitivity of the workload to interference caused and tol-

erated in various shared resources, including the CPU, cache

hierarchy, memory capacity and bandwidth, and storage and

network bandwidth. This classification does not require an

extra profiling run. Instead, it leverages the first copy of

the scale-up classification to inject, one at a time, two mi-

crobenchmarks that create contention in a specific shared re-

source [19]. Once the microbenchmark is injected, Quasar

tunes up its intensity until the workload performance drops

below an acceptable level of QoS (typically 5%). This point

is recorded as the workload’s sensitivity to this type of in-

terference in a new row in the corresponding matrix A. The

columns of the matrix are the different sources of interfer-

ence. Classification is then applied to derive the sensitivities

to the remaining sources of interference. Once the profil-

ing runs are complete the different types of classification re-

construct the missing entries and provide recommendations

on efficient allocations and assignments for each workload.

Classification typically takes a few msec even for thousands

of applications and servers.

Multiple parallel versus single exhaustive classification:

Classification is decomposed to the four components pre-

viously described for both accuracy and efficiency reasons.

The alternative design would consist of a single classifica-

tion that examines all combinations of resource allocations

and resource assignments at the same time. Each row in

this case is an incoming workload, and each column is an

allocation-assignment vector. Exhaustive classification ad-

dresses pathological cases that the four simpler classifica-

tions estimate poorly. For example, if TCP incast occurs for

a specific allocation, only on a specific server platform that

is not used for profiling, its performance impact will not be

identified by classification. Although these cases are rare,

they can result in unexpected performance results. On the

other hand, the exponential increase in the column count in

the exhaustive scheme increases the time required to per-

form classification [35, 50, 66] (note that this occurs at ev-

ery application arrival). Moreover, because the number of

columns now exceeds the number of rows, classification ac-

curacy decreases, as SVD finds fewer similarities with high

confidence [26, 49, 64].

To address this issue without resorting to exhaustive clas-

sification, we introduce a simple feedback loop that updates

the matrix entries when the performance measured at run-

time deviates from the one estimated through classification.

This loop addresses such misclassifications, and additionally

assists with scaling to server counts that exceed the capabil-

ities of profiling, i.e., more than 100 nodes.

Validation: Table 2 summarizes a validation of the accu-

racy of the classification engine in Quasar. We use a 40-

server cluster and applications from Hadoop (10 data-mining

jobs), latency-critical services (10 memcached jobs, and 10

Apache webserver loads), and 413 single-node benchmarks

from SPEC, PARSEC, SPLASH-2, BioParallel, Minebench

and SpecJbb. The memcached and webserving jobs differ in

their query distribution, input dataset and/or incoming load.

Hadoop jobs additionally differ in terms of the application

logic. Details on the applications and systems can be found

in Section 5. We show average, 90th percentile and maxi-

mum errors for each application and classification type. The

errors show the deviation between estimated and measured

performance or sensitivity to interference. On average, clas-

sification errors are less than 8% across all application types,

while maximum errors are less than 17%, guaranteeing that

the information that drives cluster management decisions is

accurate. Table 2 also shows the corresponding errors for

the exhaustive classification. In this case, average errors are

slightly higher, especially for applications arriving early in

the system [49], however, the deviation between average and

maximum errors is now lower, as the exhaustive classifica-

tion can accurately predict performance for the pathological

cases that the four parallel classifications miss.

We also validate the selected number of profiling runs,

i.e., how classification accuracy changes with the density of

the input matrices. Figure 3(a-d) shows how the 90th per-

centile of errors from classification changes as the density

of the corresponding input matrix increases. For clarity, we

omit the plots for Webserver, which has similar patterns to

memcached. For all four classification types, a single profil-

ing run per classification results in high errors. Two or more

entries per input row result in decreased errors, although the

benefits reach the point of diminishing returns after 4-5 en-

tries. This behavior is consistent across application types,

although the exact values of errors may differ. Unless other-

wise specified, we use 2 entries per row in subsequent exper-

iments. Figure 3e shows the overheads (profiling and clas-

sification) for the three application classes (Hadoop, mem-

cached, single node) as input matrix density increases. We

assume that the hardware resources used towards profiling

and classification are kept constant. Obviously as the num-

ber of profiling runs increases the overheads increase signif-

icantly, without equally important accuracy improvements.

The figure also shows the overheads from classification only

(excluding profiling) for the four parallel classifications (4p)

and the exhaustive scheme (exh.). As expected, the increase

in column count corresponds in an increase in decision time,

often by two orders of magnitude.

3.3 Greedy Allocation and Assignment

The classification output is given to a greedy scheduler that

jointly determines the amount, type, and exact set of allo-

cated resources. The scheduler’s objective is to allocate the

least amount of resources needed to satisfy a workload’s per-

formance target. This greatly reduces the space the scheduler

traverses, allowing it to examine higher quality resources

first, as smaller quantities of them will meet the performance

constraint. This approach also scales well to many servers.

The scheduler uses the classification output, to first rank

the available servers by decreasing resource quality, i.e., high

performing platforms with minimal interference first. Next,

it sizes the allocation based on available resources until the

performance constraint is met. For example, if a webserver

must meet a throughput of 100K QPS with 10msec 99th per-

centile latency and the highest-ranked servers can achieve

at most 20K QPS, the workload would need five servers to

meet the constraints. If the number of highest-ranked servers

available is not sufficient, the scheduler will also allocate

lower-ranked servers and increase their number. The feed-

back between allocation and assignment ensures that the

amount and quality of resources are accounted for jointly.

When sizing the allocation, the algorithm first increases the

per-node resources (scale-up) to better pack work in few

servers, and then distributes the load across machines (scale-

out). Nevertheless, alternative heuristics can be used based

on the workload’s locality properties or to address fault tol-

erance concerns.

The greedy algorithm has O(M · logM + S) complex-

ity, where the first component accounts for the sorting over-

head and the second for the examination of the top S servers,

and in practice takes a few msec to determine an alloca-

tion/assignment even for systems with thousands of servers.

Despite its greedy nature, we show in Section 6 that the deci-

sion quality is quite high, leading to both high workload per-

formance and high resource utilization. This is primarily due

to the accuracy of the information available after classifica-

tion. A potential source of inefficiency is that the scheduler

allocates resources on a per-application basis in the order

workloads arrive. Suboptimal assignments can be detected

by sampling a few workloads (e.g., based on job priorities if

they are available) and adjusting their assignment later on as

resources become available when other workloads terminate.

Finally, the scheduler employs admission control to prevent

oversubscription when no resources are available.

Quasar

A

QoS

cgroup

B

cgroup

A

cgroup

A

cgroup

P
ro

fi
li

n
g

S

p
a

rs
e

 i
n

p
u

t

 d
a

ta

1 3

1 5

2 3
3 5

2 3
3 4

2 4

5 4

C
la

ss
if

ic
a

ti
o

n

4

U ∑ V

1 3

1 5
2 3
3 5

2 3
3 4

2 4

5 4

1 5

5 5 5 1

1 2 5 4

3 5 5 3
4 2

1

5 3

5

3

5

1 3 2

4 4 2

1 5 5 1

1 3

1 5

2 3
3 5

2 3
3 4

2 4

5 4

U ∑ V

1 3

1 5
2 3
3 5

2 3
3 4

2 4

5 4

1 5

5 5 5 1

1 2 5 4

3 5 5 3
4 2

1

5 3

5

3

5
1 3 2

4 4 2

1 5 5 1

1 3

1 5

2 3
3 5

2 3
3 4

2 4

5 4

U ∑ V

1 3

1 5
2 3
3 5

2 3
3 4

2 4

5 4

1 5

5 5 5 1

1 2 5 4

3 5 5 3
4 2

1

5 3

5

3

5
1 3 2

4 4 2

1 5 5 1

1 3

1 5

2 3
3 5

2 3
3 4

2 4

5 4

U ∑ V

1 3

1 5
2 3
3 5

2 3
3 4

2 4

5 4

1 5

5 5 5 1

1 2 5 4

3 5 5 3
4 2

1

5 3

5

3

5

1 3 2

4 4 2

1 5 5 1

Select best available

G
re

e
d

y
 S

e
le

ct
io

n

D
e

n
se

 o
u

tp
u

t

QoS

In
cr

e
a

se
 u

n
ti

l
Q

o
S

In
cr

e
a

se
 u

n
ti

l
Q

o
S

(optional)

Figure 4: The steps for cluster management with Quasar.

Starting from the top, short runs using sandboxed work-

load copies produce the initial profiling signal that classi-

fication techniques expand to information about relationship

between performance and scale-up, scale-out, heterogeneity,

and interference. Finally, the greedy scheduler uses the clas-

sification output to find the number and type of resources

that maximize utilization and application performance.

3.4 Putting it All Together

Figure 4 shows the different steps of cluster management in

Quasar. Upon arrival of a workload, Quasar collects profil-

ing data for scale-out and scale-up allocations, heterogene-

ity, and interference. This requires up to four profiling runs

that happen in parallel. All profiling copies are sandboxed

(as explained in Section 4.2), the two platforms used are A

and B (two nodes of A are used for the scale-out classifi-

cation) and each profiling type produces two points in the

corresponding speedup graph of the workload. The profiling

runs happen with the actual dataset of the workload. The to-

tal profiling overhead depends on the workload type and is

less than 5 min in all cases we examined. For non-stateful

services, e.g., small batch workloads that are a large frac-

tion of DC workloads [54], the complete profiling takes 10-

15 seconds. Note that for stateful services, e.g., Cassandra,

where setup is necessary, it only affects one of the profil-

ing runs. Once the service is warmed-up, subsequent pro-

filing only requires a few seconds to complete. Once the

profiling results are available, classification provides the full

workload characterization (speedup graph). Next, the greedy

scheduler assigns specific servers to the workload. Overall,

Quasar’s overheads are quite low even for short-running ap-

plications (batch, analytics) or long running online services.

Quasar maintains per-workload and per-server state. Per-

workload state includes the classification output. For a clus-

ter with 10 server types and 10 sources of interference, we

need roughly 256 bytes per workload. The per-server state

includes information on scheduled applications and their cu-

mulative resource interference, roughly 128B in total. The

per-server state is updated on each workload assignment.

Quasar also needs some storage for the intermediate clas-

sification results and for server ranking during assignment.

Overall, state overheads are marginal and scale linearly with

the number of workloads and servers. In our experiments,

a single server was sufficient to handle the total state and

computation of cluster management. Additional servers can

be used for fault-tolerance.

4. Implementation

We implemented a prototype for Quasar in about 6KLOC of

C, C++, and Python. It runs on Linux and OS X and currently

supports applications written in C/C++, Java, and Python.

The API includes functions to express the performance con-

straints and type of submitted workloads, and functions to

check job status, revoke it, or update the constraints. We

have used Quasar to manage analytics frameworks such as

Hadoop, Storm, and Spark, latency-critical services such

as NoSQL workloads, and conventional single-node work-

loads. There was no need to change any applications or

frameworks. The framework-specific code in Quasar is 100-

600 LOC per framework. In the future, we plan to merge the

Quasar classification and scheduling algorithms in a cluster

management framework like OpenStack or Mesos.

4.1 Dynamic Adaptation

Some workloads change behavior during their runtime, ei-

ther due to phase changes or due to variation in user traffic.

Quasar detects such changes and adjusts resource allocation

and/or assignment to preserve the performance constraints.

Phase detection: Quasar continuously monitors the per-

formance of all active workloads in the cluster. If a work-

load runs below its performance constraint, it either went

through a phase change or was incorrectly classified or as-

signed. In any case, Quasar reclassifies the application at its

current state and adjusts its resources as needed (see discus-

sion below). We also proactively test for phase changes and

misclassifications/misscheduling by periodically sampling a

few active workloads and injecting interfering microbench-

marks to them. This enables partial interference classifica-

tion in place. If there is a significant change compared to the

original classification results, Quasar signals a phase change.

Proactive detection is particularly useful for long-running

workloads that may affect co-located workloads when enter-

ing a phase change. We have validated the phase detection

schemes with workloads from SPECCPU2006, PARSEC,

Hadoop and memcached. With the reactive-only scheme,

Quasar detects 94% of phase changes. By sampling 20%

of active workloads every 10 minutes, we detect 78% of

changes proactively with 8% probability of false positives.

Allocation adjustment: Once the phase has been detected

or load increases significantly for a user-facing workload,

Quasar changes the allocation to provide more resources or

reclaim unused resources. Quasar adjusts allocations in a

conservative manner. It first scales up or down the resources

given to the workload in each of the servers it currently oc-

cupies. If needed, best-effort (low priority) workloads are

evicted from these servers. If possible, a scale-up adjustment

is the simplest option as it typically requires no state migra-

tion. If scale-up is not possible or cannot address the per-

formance needs, scale-out and/or migration to other servers

is used. For stateless services (e.g., adding/removing work-

ers to Hadoop or scaling a webserver), scale-out is straight-

forward. For stateful workloads, migration and scale-out

can be expensive. If the application is organized in mi-

croshards [16], Quasar will migrate a fraction of the load

from each server to add capacity at minimum overhead. At

the moment, Quasar does not employ load prediction for

user-facing services [29, 46]. In future work, we will use

such predictors as an additional signal to trigger adjustments

for user-facing workloads.

4.2 Side Effect Free Profiling

To acquire the profiling data needed for classification, we

must launch multiple copies of the incoming application.

This may cause inconsistencies with intermediate results,

duplicate entries in databases, or data corruption on file sys-

tems. To eliminate such issues, Quasar uses sandboxing for

the training copies during profiling. We use Linux contain-

ers [8] with chroot to sandbox profiling runs and create

a copy-on-write filesystem snapshot so that files (including

framework libraries) can be read and written as usual [72].

Containers enable full control over how training runs interact

with the rest of the system, including limiting resource us-

age through cgroups. Using virtual machines (VMs) for the

same purpose is also possible [47, 62, 63, 68], but we chose

containers as they incur lower overheads for launching.

4.3 Stragglers

In frameworks like Hadoop or Spark, individual tasks may

take much longer to complete for reasons that range from

poor work partitioning to network interference and machine

instability [4]. These straggling tasks are typically identi-

fied and relaunched by the framework to ensure timely job

completion [1, 3, 4, 17, 23, 37, 70]. We improve straggler

detection in Hadoop in the following manner. Quasar calls

the TaskTracker API in Hadoop and checks for under-

performing tasks (at least 50% slower than the median). For

such tasks, Quasar injects two contentious microbenchmarks

in the corresponding servers and reclassifies them with re-

spect to interference caused and tolerated. If the results of the

in-place classification differ from the original by more than

20%, we signal the task as a straggler and notify the Hadoop

JobTracker to relaunch it on a newly assigned server. This

allows Quasar to detect stragglers 19% earlier than Hadoop,

and 8% earlier than LATE [70] for the Hadoop applications

described in the first scenario in Section 5.

4.4 Discussion

Cost target: Apart from a performance target, a user could

also specify a cost constraint, priorities, and utility functions

for a workload [55]. These can either serve as a limit for

resource allocation or to prioritize allocations during very

high load. We will consider these issues in future work.

Resource partitioning: Quasar does not explicitly parti-

tion hardware resources. Instead, it reduces interference by

co-locating workloads that do not contend on the shared re-

sources. Resource partitioning is orthogonal. If mechanisms

like cache partitioning or rate limiting at the NIC are used,

interference can be reduced and more workload colocations

will be possible using Quasar. In that case, Quasar will have

to determine the settings for partitioning mechanisms, in the

same way it determines the number of cores to use for each

workload. We will consider these issues in future work.

Fault tolerance: We use master-slave mirroring to provide

fault-tolerance for the server that runs the Quasar scheduler.

All system state (list of active applications, allocations, QoS

guarantees) is continuously replicated and can be used by

hot-standby masters. Quasar can also leverage frameworks

like ZooKeeper [5] for more scalable schemes with multiple

active schedulers. Quasar does not explicitly add to the fault

tolerance of frameworks like MapReduce. In the event of a

failure, the cluster manager relies on the individual frame-

works to recover missing worker data. Our current resource

assignment does not account for fault zones. However, this

is a straight forward extension for the greedy algorithm.

5. Methodology

Clusters: We evaluated Quasar on a 40-server local cluster

and a 200-server cluster on EC2. The ten platforms of the lo-

cal cluster range from dual core Atom boards to dual socket

24 core Xeon servers with 48GB of RAM. The EC2 cluster

has 14 server types ranging from small to x-large instances.

All servers are dedicated and managed only by Quasar, i.e.,

there is no interference from external workloads.

The following paragraphs summarize the workload sce-

narios used to evaluate Quasar. Scenarios include batch and

latency-critical workloads and progressively evaluate differ-

ent aspects of allocation and assignment. Unless otherwise

specified experiments are run 7 times for consistency and

we report the average and standard deviation.

H1 H2 H3 H4 H5 H6 H7 H8 H9H10
Hadoop Job

0

10

20

30

40

50

60

70

S
p
e
e
d
u
p
 (

%
)

Figure 5: Performance of

the ten Hadoop jobs.

Parameter Quasar Hadoop

Block size 64MB 64MB

Compression

rate

7.6(gzip) 5.1(lzo)

Heapsize 0.75GB 1GB

Replication 2 2

Mappers

per node

12 8

Server type E-F A-E

Table 3: Parameters setting

for Hadoop job H8 by Quasar

and the Hadoop scheduler.

Single Batch Job: Analytics frameworks like Hadoop [30],

Storm [57], and Spark [71] are large consumers of resources

on private and public clouds. Such frameworks have indi-

vidual schedulers that set the various framework parame-

ters (e.g., mappers per node and block size) and determine

resource allocation (number of servers used). The alloca-

tions made by each scheduler are suboptimal for two rea-

sons. First, the scheduler does not have full understanding

of the complexity of the submitted job and dataset. Second,

the scheduler is not aware of the details of available servers

(e.g., heterogeneity), resulting in undersized or overprovi-

sioned allocations. In this first scenario, a single Hadoop job

is running at a time on the small cluster. This simple sce-

nario allows us to compare the resource allocation selected

by Hadoop to the allocation/assignment of Quasar on a sin-

gle job basis. We use ten Hadoop jobs from the Mahout

library [39] that represent data mining and machine learn-

ing analyses. The input datasets vary between 1 and 900GB.

Note that there is no workload co-location in this scenario.

Multiple Batch Jobs: The second scenario represents a

realistic setup for batch processing clusters. The cluster is

shared between jobs from multiple analytics frameworks

(Hadoop, Storm, and Spark). We use 16 Hadoop applications

running on top of the Mahout library, four workloads for

real-time text and image processing in Storm, and four work-

loads for logical regression, text processing and machine

learning in Spark. These jobs arrive in the cluster with 5

sec inter-arrival times. Apart from the analytics jobs, a num-

ber of single-server jobs are submitted to the cluster. We use

workloads from SPECCPU2006, PARSEC [12], SPLASH-

2 [67], BioParallel [34], Minebench [43] and 350 multipro-

grammed 4-app mixes from SPEC [53]. These single-server

workloads arrive with 1 second inter-arrival times and are

treated as best-effort (low priority) load that fills any cluster

capacity unused by analytics jobs. There are not guarantees

on performance of best-effort tasks, which may be migrated

or killed at any point to provide resources for analytics tasks.

We compare Quasar to allocations done by the frame-

works themselves (Hadoop, Spark, Storm schedulers) and

assignments by a least-loaded scheduler that accounts for

core and memory use but not heterogeneity or interference.

1 2 3 4 5 6 7 8 9 10111213141516 1 2 3 4 1 2 3 4
0

10

20

30

40

50

60

70

80

S
p

e
e

d
u

p
 (

%
)

Mahout Storm Spark

Figure 6: Performance speedup for the Hadoop, Storm and

Spark jobs with Quasar.

0

5

10

15

20

25

30

35

40

S
e
rv

e
rs

0

10

20

30

40

50

60

70

80

90

100

S
e
rv

e
r

U
ti
liz

a
ti
o
n
 (

%
)

Time (s)
3600 7200 10800 14400 18000 0

5

10

15

20

25

30

35

40

S
e
rv

e
rs

0

10

20

30

40

50

60

70

80

90

100

S
e
rv

e
r

U
ti
liz

a
ti
o
n
 (

%
)

Time (s)
3600 7200 10800 14400 18000

Figure 7: Cluster utilization with Quasar (left) and the

framework schedulers (right).

Low-Latency Service: Latency-critical services are also

major tenants in cloud facilities. We constructed a webserv-

ing scenario using the HotCRP conference management sys-

tem [33], which includes the Apache webserver, application

logic in PHP, and data stored in MySQL. The front- and

back-end run on the same machine, and the installation is

replicated across several machines. The database is kept pur-

posefully small (5GB) so that it is cached in memory and

emphasis is placed on compute, cache, memory and net-

working issues, and not on disk performance. HotCRP traffic

includes requests to fill in paper abstracts, update author in-

formation, and upload or read papers. Apart from throughput

constraints, HotCRP requires a 100msec per-request latency.

We use three traffic scenarios: flat, fluctuating, and large

spike. Apart from satisfying HotCRP constraints, we want

to use any remaining cluster capacity for single-node, best-

effort tasks (see description in previous scenario). We com-

pare Quasar to a system that uses an auto-scaling approach to

scale HotCRP between 1 and 8 servers based on the observed

load of the servers used [6]. Auto-scale allocates an addi-

tional, least-loaded server for HotCRP when current load ex-

ceeds 70% [7] and redirects a fair share of the traffic to the

new server instance. Load balancing happens on the work-

load generator side. Best-effort jobs are assigned by a least-

loaded (LL) scheduler. Quasar deals with load changes in

HotCRP by either scaling-up existing allocations or scaling-

out (more servers) based on how the two affect performance.

Stateful Latency-Critical Services: This scenario extends

the one above in two ways. First, there are multiple low-

latency services. Second, these services involve significant

volumes of state. Specifically, we examine the deployment

0 50 100 150 200 250 300 350 400
Time (min)

0

20

40

60

80

100

120
Flat Load

Target Load

Autoscale

QuasarQ
u

e
ri
e

s
 p

e
r

S
e

c
o

n
d

 (
Q

P
S

)

0 50 100 150 200 250 300 350 400
Time (min)

0

100

200

300

400

500

Q
u

e
ri
e

s
 p

e
r

S
e

c
o

n
d

 (
Q

P
S

)

Fluctuating Load

Target Load

Autoscale

Quasar

0 50 100 150 200 250 300 350 400
Time (min)

0

10

20

30

40

50

60

70

A
llo

c
a

te
d

 C
o

re
s

HotCrp

Best Effort

0 50 100 150 200 250 300 350 400
Time (min)

0

100

200

300

400

500
Load Spike

Target Load

Autoscale

Quasar

Q
u

e
ri
e

s
 p

e
r

S
e

c
o

n
d

 (
Q

P
S

)

0 50 100 150 200 250 300 350 400
Time (min)

50

60

70

80

90

100

Target

Autoscale

Quasar

Qu
er

ie
s

m
ee

tin
g

Qo
S

(%
)

Figure 8: Throughput for HotCRP under (a) flat, (b) fluctuating and (d) spiking load. Fig. 8 (c) shows the core allocation in

Quasar for the fluctuating load, and (e) shows the fraction of queries meeting the latency constraint for the load with spike.

of memory-based memcached [22] and disk-based Cassan-

dra [14], two latency-critical NoSQL services. Memcached

(1TB state) is presented with load that fluctuates following

a diurnal pattern with maximum aggregate throughput target

of 2.4M QPS and a 200usec latency constraint. The disk-

bound Cassandra (4TB state) has a lower load of 60K QPS of

maximum aggregate throughput and a 30 msec latency con-

straint. Any cluster capacity unused by the two services is

utilized for best-effort workloads which are submitted with

10sec inter-arrival times. To show the fluctuation of utiliza-

tion with load, and since scaling now involves state migra-

tion, this scenario runs over 24 hours and is repeated 3 times

for consistency. Similarly to the previous scenario, we com-

pare Quasar with the auto-scaling approach and measure per-

formance (throughput and latency) for the two services and

overall resource utilization. Scale-out in this case involves

migrating one (64MB) or more microshards to a new in-

stance, which typically takes a few msec.

Large-Scale Cloud Provider: Finally, we bring everything

together in a general case where 1200 workloads of all types

(analytics batch, latency-critical, and single-server jobs) are

submitted in random order to a 200-node cluster of dedicated

EC2 servers with 1 sec inter-arrival time. All applications

have the same priority and no workload is considered best-

effort (i.e., all paying customers have equal importance).

The scenario is designed to use almost all system cores at

steady-state, without causing oversubscription, under ideal

resource allocation. We do, however, employ admission con-

trol to prevent machine oversubscription, when allocation is

imperfect [18]. Wait time due to admission control counts

towards scheduling overheads. Quasar handles allocation

and assignment for all workloads. For comparison, we use

an auto-scale approach for resource allocation of latency-

critical workloads. For frameworks like Hadoop and Storm,

the framework estimates its resource needs and we treat that

as a reservation. For resource assignment, we use two sched-

ulers: a least-loaded scheduler that simply accounts for core

and memory availability and Paragon that, given a resource

allocation, can do heterogeneity- and interference-aware as-

signment. The latter allows us to demonstrate the benefits of

jointly solving allocation and assignment over separate (al-

though optimized) treatment of the two.

6. Evaluation

6.1 Single Batch Job

Performance: Fig. 5 shows the reduction in execution time

of ten Hadoop jobs when resources are allocated by Quasar

instead of Hadoop itself. We account for all overheads, in-

cluding classification and scheduling. Quasar improves per-

formance for all jobs by an average of 29% and up to 58%.

This is significant given that these Hadoop jobs take two to

twenty hours to complete. The yellow dots show the execu-

tion time improvement needed to meet the performance tar-

get the job specified at submission. Targets are set to the best

performance achieved after a parameter sweep on the differ-

ent server platforms. Quasar achieves performance within

5.8% of the constraint on average, leveraging the informa-

tion of how resource allocation and assignment impact per-

formance. When resources are allocated by Hadoop, perfor-

mance deviates from the target by 23% on average.

Efficiency: Table 3 shows the different parameter settings

selected by Quasar and by Hadoop for the H8 Hadoop job,

a recommendation system that uses Mahout with a 20GB

dataset [39]. Apart from the block size and replication factor,

the two frameworks set job parameters differently. Quasar

detects that interference between mappers is low and in-

creases the mappers per node to 12. Similarly, it detects that

heap size is not critical for this job and reduces its size, free-

ing resources for other workloads. Moreover, Quasar allo-

cates tasks to the two most suitable server types (E and F),

while Hadoop chooses from all available server types.

6.2 Multiple Batch Frameworks

Performance: Fig. 6 shows the reduction in execution times

for Hadoop, Storm, and Spark jobs when Quasar manages

resource allocation and assignment. On average, perfor-

mance improves by 27% and comes within 5.3% of the pro-

vided constraint, a significant improvement over the base-

line. Apart from sizing and configuring jobs better, Quasar

can aggressively co-locate them. For example, it can detect

when two memory-intensive Storm and Spark jobs inter-

fere and when they can efficiently share a system. Quasar

allows the remaining cluster capacity to be used for best-

effort jobs without disturbing the primary jobs because it is

interference-aware. Best-effort jobs come within 7.8% on

0 5 10 15 20
Time (hr)

0

500

1000

1500

2000

2500
Memcached

Target Load

Autoscale

Quasar

Q
u

e
ri
e

s
 p

e
r

S
e

c
o

n
d

 (
k
Q

P
S

)

0 20 40 60 80 100
Queries (%)

0

500

1000

1500

2000

2500

3000

3500

L
a

te
n

c
y
 (

u
s
e

c
)

Memcached

Autoscale

Quasar

0 5 10 15 20
Time (hr)

0

10

20

30

40

50

60

Q
u

e
ri
e

s
 p

e
r

S
e

c
o

n
d

 (
k
Q

P
S

) Cassandra

Target Load

Autoscale

Quasar

0 20 40 60 80 100
Queries (%)

0

10

20

30

40

50

60

L
a

te
n

c
y
 (

m
s
e

c
)

Cassandra

Autoscale

Quasar

Figure 9: Throughput and latency for memcached and Cassandra in a cluster managed by Quasar or an auto-scaling system.

0 5 10 15 20 25 30 35 40
Servers

0

20

40

60

80

100
0:00-06:00

CP
U

Ut
il.

 %

0 5 10 15 20 25 30 35 40
Servers

0

20

40

60

80

100
06:00-12:00

CP
U

Ut
il.

 %

0 5 10 15 20 25 30 35 40
Servers

0

20

40

60

80

100
12:00-18:00

CP
U

Ut
il.

 %

0 5 10 15 20 25 30 35 40
Servers

0

20

40

60

80

100
18:00-24:00

CP
U

Ut
il.

 %

0 5 10 15 20 25 30 35 40
0

20

40

60

80

100
0:00-06:00

M
em

or
y

Ut
il.

 %

Servers
0 5 10 15 20 25 30 35 40

0

20

40

60

80

100
06:00-12:00

M
em

or
y

Ut
il.

 %

Servers
0 5 10 15 20 25 30 35 40

0

20

40

60

80

100
12:00-18:00

M
em

or
y

Ut
il.

 %

Servers
0 5 10 15 20 25 30 35 40

0

20

40

60

80

100
18:00-24:00

M
em

or
y

Ut
il.

 %

Servers

0 5 10 15 20 25 30 35 40
0

20

40

60

80

100
0:00-06:00

St
or

ag
e

Ut
il.

 %

Servers
0 5 10 15 20 25 30 35 40

0

20

40

60

80

100
06:00-12:00

St
or

ag
e

Ut
il.

 %

Servers
0 5 10 15 20 25 30 35 40

0

20

40

60

80

100
12:00-18:00

St
or

ag
e

Ut
il.

 %

Servers
0 5 10 15 20 25 30 35 40

0

20

40

60

80

100
18:00-24:00

St
or

ag
e

Ut
il.

 %

Servers

Figure 10: Average resource usage across all servers for

four 6-hour snapshots. The cluster is running memcached

(green), Cassandra (blue), and best-effort tasks (yellow) and

is managed by Quasar.

average of the peak performance each job could achieve if it

was running alone on the highest performing server type.

Utilization: Fig. 7 shows the per-server CPU utilization (av-

erage across all cores) over time in the form of a heatmap.

Utilization is sampled every 5 sec. In addition to improv-

ing individual job performance, Quasar increases utilization,

achieving 62% on average versus 34% with the individ-

ual framework schedulers (right heatmap). Because perfor-

mance is now higher the whole experiment completes faster.

Workloads after t = 14400 are mostly best-effort jobs that

take longer than the main analytics workloads to complete.

6.3 Low-Latency Service

Performance: Fig. 8a shows the aggregate throughput for

HotCRP achieved with Quasar and the auto-scaling system

when the input traffic is flat. While the absolute differences

are small, it is important to note that the auto-scaling man-

ager causes frequent QPS drops due to interference from

best-effort workloads using idling resources. With Quasar,

HotCRP runs undisturbed and the best-effort jobs achieve

runtimes within 5% of minimum, while with auto-scale,

they achieve runtimes within 24% of minimum. When traffic

varies (Fig. 8b), Quasar tracks target QPS closely, while au-

toscale provides 18% lower QPS on average, both due to in-

terference and suboptimal scale-up configuration. Quasar’s

smooth behavior is due to the use of both scale-out and scale-

up to best meet the new QPS target, leaving the highest num-

ber of cores possible for best-effort jobs (Fig. 8c). For the

load with the sharp spike, Quasar tracks QPS within 4% on

average (Fig. 8d) and meets the latency QoS for nearly all re-

quests (Fig. 8e). When the spike arrives, Quasar first scales

up each existing allocation, and then only uses two extra

servers of suitable type to handle remaining traffic. The auto-

scaling system observes the load increase when the spike

arrives and allocates four more servers. Due to the higher la-

tency of scale-out and the fact that auto-scaling is not aware

of heterogeneity or interference, it fails to meet the latency

guarantees for over 20% of requests around the spike arrival.

6.4 Stateful Latency-Critical Services

Performance: Fig. 9 shows the throughput of memcached

and Cassandra over time and the distribution of query la-

tencies. Quasar tracks throughput targets closely for both

services, while the auto-scaling manager degrades through-

put by 24% and 12% on average for memcached and Cas-

sandra respectively. The differences in latency are larger

between the two managers. Quasar meets latency QoS for

memcached for 98.8% of requests, while auto-scaling only

for 80% of requests. For Cassandra, Quasar meets the la-

tency QoS for 98.6% of requests, while the auto-scaling for

93% of requests. Memcached is memory-based and has an

aggressive latency QoS, making it more sensitive to subopti-

mal resource allocation and assignment on a shared cluster.

Utilization: Fig. 10 shows the utilization of CPU, memory

capacity, and disk bandwidth across the cluster servers when

managed by Quasar over 24h. Each column is a snapshot

of average utilization over 6 hours. Since memcached and

Cassandra have low CPU requirements, excluding the period

18:00-24:00 when Cassandra performs garbage collection,

most of the CPU capacity is allocated to best-effort jobs. The

number of best-effort jobs varies over time because the exact

load of memcached and Cassandra changes. Most memory

is used to satisfy the requirements of memcached, with small

amounts needed for Cassandra and best-effort jobs. Cassan-

dra is the nearly exclusive user of disk I/O. Some servers do

not exceed 40-50% utilization for most of the experiment’s

0 200 400 600 800 1000 1200
Workload

0.0

0.2

0.4

0.6

0.8

1.0

S
p

e
e

d
u

p
 n

o
rm

 t
o

 T
a

rg
e

t

Target Performance

Reservation+LL

Reservation+Paragon

Quasar

0

50

100

150

200

S
e

rv
e

rs

Quasar

0

10

20

30

40

50

60

70

80

90

100

S
e

rv
e

r
U

ti
liz

a
ti
o

n
 (

%
)

Time (sec)
5000 10000 15000 20000 25000 0

50

100

150

200

S
e

rv
e

rs

Reservation+LL

0

10

20

30

40

50

60

70

80

90

100

S
e

rv
e

r
U

ti
liz

a
ti
o

n
 (

%
)

Time (sec)
5000 10000 15000 20000 25000 0 50 100 150 200 250 300 350

Time (min)

0

20

40

60

80

100

used Quasar alloc Quasar Reservation

CP
U

Us
ag

e
(%

)

Figure 11: (a) Performance and cluster utilization for 1200 workloads on 200 EC2 servers with (b) Quasar and (c) the

reservation+LL system. Fig. 11(d) shows the allocated versus used resources for Quasar and allocated for reservation+LL.

duration. These are low-end machines, for which higher uti-

lization dramatically increases the probability of violating

QoS constraints for latency-critical services. In general, the

cluster utilization is significantly higher than if each service

was running in dedicated machines.

6.5 Large-Scale Cloud Provider

Performance: Figure 11 presents the overall evaluation of

Quasar managing a 200-node cluster running all previously-

discussed types of workloads. We compare to resource allo-

cation based on reservations (e.g., expressed by the Hadoop

scheduler or an auto-scaling system) and resource assign-

ment on least-loaded machines (LL) or based on the inter-

ference and heterogeneity-aware Paragon. Figure 11a shows

the performance of the 1,200 workloads ordered from worst-

to best-performing, normalized to their performance target.

Quasar achieves 98% of the target on average, while the

reservation-based system with Paragon achieves 83%. This

shows the need to perform allocation and assignment to-

gether; the intelligent resource assignment by Paragon is not

sufficient. Using reservations and LL assignment performs

quite poorly, only achieving 62% of the target on average.

Utilization: Figures 11b-c show the per-server CPU uti-

lization throughout the scenario’s execution for Quasar and

the reservation+LL system. Average utilization is 62% with

Quasar, while meeting performance constraints for both

batch and latency-critical workloads. The reservation+LL

manager achieves average utilization of 15%, 47% lower

than Quasar. Figure 11d shows the allocated and used re-

sources for Quasar compared to the resources reserved by

the reservation+LL manager over time. Overprovisioning

with Quasar is low, with the difference between allocated

and used being roughly 10%. This is significantly lower

than the resources reserved by the reservation-based man-

ager, which exceed the capacity of the cluster during most

of the scenario. Because Quasar has detailed information on

how different allocations/assignments affect performance, it

can rightsize the allocations more aggressively, while meet-

ing the performance constraints without QoS violations.

Cluster management overheads: For most applications

the overheads of Quasar from profiling, classification, greedy

selection and adaptation are low, 4.1% of execution time on

average. For short-lived batch workloads, overheads are up

to 9%. The overheads are negligible for any long-running

service, and even for jobs lasting a few seconds, they only

induce single-digit increases in execution time. In contrast

with reservation+LL, Quasar does not introduce any wait

time overheads due to oversubscription.

7. Conclusions

We have presented Quasar, a cluster management system

that performs coordinated resource allocation and assign-

ment. Quasar moves away from the reservation-based stan-

dard for cluster management. Instead of users requesting raw

resources, they specify a performance target the application

should meet and let the manager size resource allocations

appropriately. Quasar leverages robust classification tech-

niques to quickly analyze the impact of resource allocation

(scale-up and scale-out), resource type (heterogeneity), and

interference on performance. A greedy algorithm uses this

information to allocate the least amount of resources neces-

sary to meet performance constraints. Quasar currently sup-

ports distributed analytics frameworks, web-serving applica-

tions, NoSQL datastores, and single-node batch workloads.

We evaluated Quasar over a variety of workload scenarios

and compared it to reservation/auto-scaling-based resource

allocation systems and schedulers that use similar classifica-

tion techniques for resource assignment (but not resource al-

location). We showed that Quasar improves aggregate clus-

ter utilization and individual application performance.

Acknowledgements

We sincerely thank Rob Benson, Jonathan Blandford,

Chris Lambert, Brian Wickman, Ben Hindman and the entire

Mesos and Aurora teams at Twitter for allowing us to include

data from their production system and for helping with the

collection of the measurements. We would also like to thank

John Ousterhout, Mendel Rosenblum, Daniel Sanchez, Ja-

cob Leverich, David Lo, and the anonymous reviewers for

their feedback on earlier versions of this manuscript. This

work was partially supported by a Google directed research

grant on energy proportional computing. Christina Delim-

itrou was supported by a Stanford Graduate Fellowship.

References

[1] Faraz Ahmad, Srimat T. Chakradhar, Anand Raghunathan,

and T. N. Vijaykumar. Tarazu: optimizing mapreduce on het-

erogeneous clusters. In Proc. of the International Confer-

ence on Architectural Support for Programming Languages

and Operating Systems (ASPLOS). London, UK, 2012.

[2] Amazon ec2. http://aws.amazon.com/ec2/.

[3] Ganesh Ananthanarayanan, Ali Ghodsi, Scott Shenker, and

Ion Stoica. Effective straggler mitigation: Attack of the

clones. In Proc. of the USENIX Symposium on Networked Sys-

tems Design and Implementation (NSDI). Lombard, IL, 2013.

[4] Ganesh Ananthanarayanan, Srikanth Kandula, Albert Green-

berg, Ion Stoica, Yi Lu, Bikas Saha, and Edward Harris. Rein-

ing in the outliers in map-reduce clusters using mantri. In

Proc. of the 9th USENIX conference on Operating Systems

Design and Implementation (OSDI). Vancouver, CA, 2010.

[5] Apache zookeeper. http://zookeeper.apache.

org/.

[6] Autoscale. https://cwiki.apache.org/

CLOUDSTACK/autoscaling.html.

[7] AWS Autoscaling. http://aws.amazon.com/

autoscaling/.

[8] Gaurav Banga, Peter Druschel, and Jeffrey C. Mogul. Re-

source containers: a new facility for resource management in

server systems. OSDI, 1999.

[9] L. Barroso. Warehouse-scale computing: Entering the teenage

decade. ISCA Keynote, SJ, June 2011.

[10] Luiz Barroso and Urs Hoelzle. The Datacenter as a Com-

puter: An Introduction to the Design of Warehouse-Scale Ma-

chines. Morgan and Claypool Publishers, 2009.

[11] R. Bell, M. Koren, and C. Volinsky. The BellKor 2008 Solu-

tion to the Netflix Prize. Technical report, AT&T Labs, 2008.

[12] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and

Kai Li. The parsec benchmark suite: Characterization and ar-

chitectural implications. In Proc. of the 17th International

Conference on Parallel Architectures and Compilation Tech-

niques (PACT). Toronto, CA, October, 2008.

[13] Leon Bottou. Large-scale machine learning with stochastic

gradient descent. In Proc. of the International Conference on

Computational Statistics (COMPSTAT). Paris, France, 2010.

[14] Apache cassandra. http://cassandra.apache.

org/.

[15] McKinsey & Company. Revolutionizing data center effi-

ciency. In Uptime Institute Symposium, 2008.

[16] Jeffrey Dean and Luiz Andre Barroso. The tail at scale. In

Communications of the ACM, Vol. 56 No. 2, Pages 74-80.

[17] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified

data processing on large clusters. In Proc. of OSDI, pages

10–10, 2004.

[18] Christina Delimitrou, Nick Bambos, and Christos Kozyrakis.

QoS-Aware Admission Control in Heterogeneous Datacen-

ters. In Proceedings of the International Conference on Auto-

nomic Computing (ICAC). San Jose, June 2013.

[19] Christina Delimitrou and Christos Kozyrakis. iBench: Quan-

tifying Interference for Datacenter Workloads. In Proceed-

ings of the 2013 IEEE International Symposium on Workload

Characterization (IISWC). Portland, OR, September 2013.

[20] Christina Delimitrou and Christos Kozyrakis. Paragon: QoS-

Aware Scheduling for Heterogeneous Datacenters. In Proc.

of the Eighteenth International Conference on Architectural

Support for Programming Languages and Operating Systems

(ASPLOS). Houston, TX, USA, 2013.

[21] Eucalyptus cloud services. http://www.eucalyptus.

com/.

[22] Brad Fitzpatrick. Distributed caching with memcached. In

Linux Journal, Volume 2004, Issue 124, 2004.

[23] R. Gandhi and A. Sabne. Finding stragglers in hadoop. In

Tech. Report. 2011.

[24] Gartner says efficient data center design can lead to 300

percent capacity growth in 60 percent less space. http:

//www.gartner.com/newsroom/id/1472714.

[25] Google compute engine. http://cloud.google.com/

products/compute-engine.html.

[26] Z. Ghahramani and M. Jordan. Learning from incomplete

data. In Lab Memo No. 1509, CBCL Paper No. 108, MIT AI

Lab.

[27] Ali Ghodsi, Matei Zaharia, Benjamin Hindman, Andy Kon-

winski, Scott Shenker, and Ion Stoica. Dominant resource

fairness: fair allocation of multiple resource types. In Proc.

of the 8th USENIX conference on Networked systems design

and implementation (NSDI). Boston, MA, 2011.

[28] Daniel Gmach, Jerry Rolia, Ludmila Cherkasova, and Alfons

Kemper. Workload analysis and demand prediction of enter-

prise data center applications. In Proc. of the 10th IEEE Inter-

national Symposium on Workload Characterization. Boston,

2007.

[29] Zhenhuan Gong, Xiaohui Gu, and John Wilkes. Press: Pre-

dictive elastic resource scaling for cloud systems. In Proc. of

the International Conference on Network and Service Man-

agement (CNSM). Niagara Falls, ON, 2010.

[30] Apache hadoop. http://hadoop.apache.org/.

[31] J Hamilton. Cost of power in large-scale data centers. http:

//perspectives.mvdirona.com.

[32] Ben Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A.D.

Joseph, R. Katz, S. Shenker, and I. Stoica. Mesos: A platform

for fine-grained resource sharing in the data center. In Proc.

of the 8th USENIX Symposium on Networked Systems Design

and Implementation (NSDI). Boston, MA, 2011.

[33] Hotcrp conference management system. http://read.

seas.harvard.edu/˜kohler/hotcrp/.

[34] Aamer Jaleel, Matthew Mattina, and Bruce L. Jacob. Last

level cache (llc) performance of data mining workloads

on a cmp - a case study of parallel bioinformatics work-

loads. In Proc. of the 12th International Symposium

on High-Performance Computer Architecture (HPCA-12).

Austin, Texas, 2006.

[35] K.C. Kiwiel. Convergence and efficiency of subgradient

methods for quasiconvex minimization. In Mathematical Pro-

gramming (Series A) (Berlin, Heidelberg: Springer) 90 (1):

pp. 1-25, 2001.

http://aws.amazon.com/ec2/
http://zookeeper.apache.org/
http://zookeeper.apache.org/
https://cwiki.apache.org/CLOUDSTACK/autoscaling.html
https://cwiki.apache.org/CLOUDSTACK/autoscaling.html
http://aws.amazon.com/autoscaling/
http://aws.amazon.com/autoscaling/
http://cassandra.apache.org/
http://cassandra.apache.org/
http://www.eucalyptus.com/
http://www.eucalyptus.com/
http://www.gartner.com/newsroom/id/1472714
http://www.gartner.com/newsroom/id/1472714
http://cloud.google.com/products/compute-engine.html
http://cloud.google.com/products/compute-engine.html
http://hadoop.apache.org/
http://perspectives.mvdirona.com
http://perspectives.mvdirona.com
http://read.seas.harvard.edu/~kohler/hotcrp/
http://read.seas.harvard.edu/~kohler/hotcrp/

[36] Jacob Leverich and Christos Kozyrakis. On the energy

(in)efficiency of hadoop clusters. In Proc. of HotPower. Big

Sky, MT, 2009.

[37] J. Lin. The curse of zipf and limits to parallelization: A look

at the stragglers problem in mapreduce. In Proc. of LSDS-IR

Workshop. Boston, MA, 2009.

[38] Host server cpu utilization in amazon ec2 cloud.

http://huanliu.wordpress.com/2012/02/17/

host-server-cpu-utilization-in-amazon-\

ec2-cloud/.

[39] Mahout. http://mahout.apache.org/.

[40] Jason Mars and Lingjia Tang. Whare-map: heterogeneity in

”homogeneous” warehouse-scale computers. In Proc. of the

40th Annual International Symposium on Computer Architec-

ture (ISCA). Tel-Aviv, Israel, 2013.

[41] Jason Mars, Lingjia Tang, Robert Hundt, Kevin Skadron, and

Mary Lou Soffa. Bubble-up: increasing utilization in modern

warehouse scale computers via sensible co-locations. In Proc.

of the 44th Annual IEEE/ACM International Symposium on

Microarchitecture, pages 248–259, 2011.

[42] David Meisner, Christopher M. Sadler, Luiz André Barroso,

Wolf-Dietrich Weber, and Thomas F. Wenisch. Power man-

agement of online data-intensive services. In Proceedings of

the 38th annual international symposium on Computer archi-

tecture, pages 319–330, 2011.

[43] Ramanathan Narayanan, Berkin Ozisikyilmaz, Joseph Zam-

breno, Gokhan Memik, and Alok N. Choudhary. Minebench:

A benchmark suite for data mining workloads. In Proceed-

ings of the 9th IEEE International Symposium on Workload

Characterization (IISWC). San Jose, California, 2006.

[44] R. Nathuji, C. Isci, and E. Gorbatov. Exploiting platform

heterogeneity for power efficient data centers. In Proc. of

ICAC’07, FL, 2007.

[45] R. Nathuji, A. Kansal, and A. Ghaffarkhah. Q-clouds: Man-

aging performance interference effects for qos-aware clouds.

In Proc. of EuroSys France, 2010, 2010.

[46] Hiep Nguyen, Zhiming Shen, Xiaohui Gu, Sethuraman Sub-

biah, and John Wilkes. Agile: Elastic distributed resource

scaling for infrastructure-as-a-service. In Proc. of the

USENIX International Conference on Automated Computing

(ICAC’13). San Jose, CA, 2013.

[47] Dejan Novakovic, Nedeljko Vasic, Novakovic, Stanko, Dejan

Kostic, and Ricardo Bianchini. Deepdive: Transparently iden-

tifying and managing performance interference in virtualized

environments. In Proc. of the USENIX Annual Technical Con-

ference (ATC’13). San Jose, CA, 2013.

[48] Openstack cloud software. http://www.openstack.

org/.

[49] Nathan Parrish, Hyrum Anderson, Maya Gupta, and Dun Yu

Hsaio. Classifying with confidence from incomplete infor-

mation. In Proc. of the Journal Machine Learning Research

(JMLR). 2013.

[50] A. Rajaraman and J. Ullman. Textbook on Mining of Massive

Datasets. 2011.

[51] Charles Reiss, Alexey Tumanov, Gregory Ganger, Randy

Katz, and Michael Kozych. Heterogeneity and dynamicity

of clouds at scale: Google trace analysis. In Proc. of the

Third ACM Symposium on Cloud Computing (SOCC). San

Jose, CA, 2012.

[52] Rightscale. https://aws.amazon.com/

solution-providers/isv/rightscale.

[53] Daniel Sanchez and Christos Kozyrakis. Vantage: Scalable

and Efficient Fine-Grain Cache Partitioning. In Proc. of the

38th annual International Symposium in Computer Architec-

ture (ISCA-38). San Jose, CA, June, 2011.

[54] Malte Schwarzkopf, Andy Konwinski, Michael Abd-El-

Malek, and John Wilkes. Omega: flexible, scalable schedulers

for large compute clusters. In Proc. of the 8th ACM European

Conference on Computer Systems (EuroSys). Prague, Czech

Republic, April 2013.

[55] Upendra Sharma, Prashant Shenoy, Sambit Sahu, and Anees

Shaikh. A cost-aware elasticity provisioning system for the

cloud. In Proc. of the 2011 31st International Conference on

Distributed Computing Systems (ICDCS). Minneapolis, MN,

2011.

[56] Zhiming Shen, Sethuraman Subbiah, Xiaohui Gu, and John

Wilkes. Cloudscale: elastic resource scaling for multi-tenant

cloud systems. In Proc. of the 2nd ACM Symposium on Cloud

Computing (SOCC). Cascais, Portugal, 2011.

[57] Storm. https://github.com/nathanmarz/

storm/.

[58] Torque resource manager. http://www.

adaptivecomputing.com/products/

open-source/torque/.

[59] Arunchandar Vasan, Anand Sivasubramaniam, Vikrant

Shimpi, T. Sivabalan, and Rajesh Subbiah. Worth their watts?

an empirical study of datacenter servers. In Proc. of the 16th

International Symposium on High Performance Computer

Architecture (HPCA). Bangalore, India, 2010.

[60] Nedeljko Vasić, Dejan Novaković, Svetozar Miučin, Dejan

Kostić, and Ricardo Bianchini. Dejavu: accelerating resource

allocation in virtualized environments. In Proc. of the seven-

teenth international conference on Architectural Support for

Programming Languages and Operating Systems (ASPLOS).

London, UK, 2012.

[61] Vmware vcloud suite. http://www.vmware.com/

products/vcloud.

[62] Virtualbox. https://www.virtualbox.org/.

[63] Vmware virtual machines. http://www.vmware.com/.

[64] C. Wang, X. Liao, L. Carin, and D. B. Dunson. Classification

with incomplete data using dirichlet process priors. In Journal

of Machine Learning Research (JMLR), 2010.

[65] Windows azure. http://www.windowsazure.com/.

[66] Ian H. Witten, Eibe Frank, and Geoffrey Holmes. Data Min-

ing: Practical Machine Learning Tools and Techniques. 3rd

Edition.

[67] Steven Cameron Woo, Moriyoshi Ohara, Evan Torrie,

Jaswinder Pal Singh, and Anoop Gupta. The splash-2 pro-

grams: characterization and methodological considerations.

In Proc. of the 22nd International Symposium on Computer

Architecture (ISCA). Santa Margherita Ligure, Italy, 1995.

http://huanliu.wordpress.com/2012/02/17/host-server-cpu-utilization-in-amazon-\ec2-cloud/
http://huanliu.wordpress.com/2012/02/17/host-server-cpu-utilization-in-amazon-\ec2-cloud/
http://huanliu.wordpress.com/2012/02/17/host-server-cpu-utilization-in-amazon-\ec2-cloud/
http://mahout.apache.org/
http://www.openstack.org/
http://www.openstack.org/
https://aws.amazon.com/solution-providers/isv/rightscale
https://aws.amazon.com/solution-providers/isv/rightscale
https://github.com/nathanmarz/storm/
https://github.com/nathanmarz/storm/
http://www.adaptivecomputing.com/products/open-source/torque/
http://www.adaptivecomputing.com/products/open-source/torque/
http://www.adaptivecomputing.com/products/open-source/torque/
http://www.vmware.com/products/vcloud
http://www.vmware.com/products/vcloud
https://www.virtualbox.org/
http://www.vmware.com/
http://www.windowsazure.com/

[68] The xen project. http://www.xen.org/.

[69] Hailong Yang, Alex Breslow, Jason Mars, and Lingjia Tang.

Bubble-flux: precise online qos management for increased

utilization in warehouse scale computers. In Proc. of the 40th

Annual International Symposium on Computer Architecture

(ISCA). Tel-Aviv, Israel, 2013.

[70] M Zaharia, A Konwinski, A.D Joseph, R Katz, and I Stoica.

Improving mapreduce performance in heterogeneous environ-

ments. In Proc. of the 8th USENIX Symposium on Operating

Systems Design and Implementation (OSDI). San Diego, CA,

2008.

[71] Matei Zaharia, M Chowdhury, T Das, A Dave, J Ma, M Mc-

Cauley, M.J Franklin, S Shenker, and I Stoica. Spark: Cluster

computing with working sets. In Proc. of the 9th USENIX

Symposium on Networked Systems Design and Implementa-

tion (NSDI). San Jose, CA, 2012.

[72] Zfs. http://www.freebsd.org/doc/handbook/

filesystems-zfs.html.

[73] Xiao Zhang, Eric Tune, Robert Hagmann, Rohit Jnagal, Vrigo

Gokhale, and John Wilkes. Cpi2: Cpu performance isolation

for shared compute clusters. In Proc. of the 8th ACM Eu-

ropean Conference on Computer Systems (EuroSys). Prague,

Czech Republic, 2013.

http://www.xen.org/
http://www.freebsd.org/doc/handbook/filesystems-zfs.html
http://www.freebsd.org/doc/handbook/filesystems-zfs.html

	Introduction
	Motivation
	Cluster Management Overview
	The Case for Coordinated Cluster Management

	Quasar
	Overview
	Fast and Accurate Classification
	Greedy Allocation and Assignment
	Putting it All Together

	Implementation
	Dynamic Adaptation
	Side Effect Free Profiling
	Stragglers
	Discussion

	Methodology
	Evaluation
	Single Batch Job
	Multiple Batch Frameworks
	Low-Latency Service
	Stateful Latency-Critical Services
	Large-Scale Cloud Provider

	Conclusions

