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ABSTRACT
We use the observed distribution of Eddington ratios as a function of supermassive black hole (BH) mass to

constrain models of quasar/AGN lifetimes and lightcurves.Given the observed (well constrained) AGN lumi-
nosity function, a particular model for AGN lightcurvesL(t) or, equivalently, the distribution of AGN lifetimes
(time above a given luminosityt(> L)) translates directly and uniquely (without further assumptions) to a pre-
dicted distribution of Eddington ratios at each BH mass. Models for self-regulated BH growth, in which feed-
back produces a self-regulating “decay” or “blowout” phaseafter the AGN reaches some peak luminosity/BH
mass and begins to expel gas and shut down accretion, make specific predictions for the lightcurves/lifetimes,
distinct from e.g. the expected distribution if AGN simply shut down by gas starvation (without feedback) and
very different from the prediction of simple phenomenological “light bulb” scenarios. We show that the present
observations of the Eddington ratio distribution, spanning nearly 5 orders of magnitude in Eddington ratio, 3
orders of magnitude in BH mass, and redshiftsz= 0−1, agree well with the predictions of self-regulated mod-
els, and rule out phenomenological “light bulb” or pure exponential models, as well as gas starvation models,
at high significance (∼ 5σ). We also compare with observations of the distribution of Eddington ratios at a
given AGN luminosity, and find similar good agreement (but show that these observations are much less con-
straining). We fit the functional form of the quasar lifetimedistribution and provide these fits for use, and show
how the Eddington ratio distributions place precise, tightlimits on the AGN lifetimes at various luminosities, in
agreement with model predictions. We compare with independent estimates of episodic lifetimes and use this
to constrain the shape of the typical AGN lightcurve, and provide simple analytic fits to these for use in other
analyses. Given these constraints, the average local BH must have gained its mass in no more than a couple
of bright, near peak-luminosity episodes, in agreement with models of accretion triggering in interactions and
mergers.
Subject headings:galaxies: evolution — cosmology: theory — galaxies: active— quasars: general

1. INTRODUCTION

Quasars and active galactic nuclei (AGN) are among the
most luminous, energetic, and distant objects in the Uni-
verse. Simple integral arguments (Soltan 1982) make it
clear that the supermassive black hole (BH) population was
grown primarily through accretion in luminous AGN phases,
and that the accretion luminosity released in these phases
dominates the X-ray background and constitutes a large
fraction of the bolometric energy production of the Uni-
verse. Comparison of e.g. the clustering (Croom et al. 2005;
Porciani et al. 2004; Hopkins et al. 2007d) and host galaxy
properties (Bahcall et al. 1997; Canalizo & Stockton 2001;
Dunlop et al. 2003; Hopkins et al. 2006c; Zakamska et al.
2006, 2008) of high and low redshift AGN and galaxies
demonstrates that AGN are the progenitors of modern-day
spheroids.

Moreover, with the discovery of tight correlations be-
tween the masses of black holes and the velocity dis-
persion (Ferrarese & Merritt 2000; Gebhardt et al. 2000),
masses (Magorrian et al. 1998), and perhaps most fundamen-
tally binding energy or potential well depth (Hopkins et al.
2007c,b; Aller & Richstone 2007) of the host demonstrates
a fundamental link between the growth of supermassive
black holes and galaxy formation. A number of mod-
els have been developed arguing that the energy or mo-
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mentum released from an accreting supermassive black
hole, even if only a small fraction couples to the sur-
rounding ISM, is sufficient to halt further accretion onto
the black hole and drive away gas, self-regulating growth
by shutting off the quasar3 and quenching star formation
in the galaxy and therefore allowing it to redden rapidly
(see e.g. Ciotti & Ostriker 1997, 2001; Silk & Rees 1998;
Burkert & Silk 2001; Di Matteo et al. 2005; Hopkins et al.
2005d, 2006a; Murray et al. 2005; Sazonov et al. 2005;
Springel et al. 2005b,a).

One of the most basic aspects of black hole growth, and a
powerful test of these self-regulating models for AGN evolu-
tion, is the quasar/AGN lifetime. Given a sufficiently well-
known lifetime distribution (lifetime as a function of e.g.lu-
minosity, black hole mass, and other properties), the well-
constrained quasar luminosity function (QLF) can be empir-
ically translated (without invoking any models or additional
assumptions) into the triggering rate of AGN as a function of
e.g. luminosity, BH/host galaxy/dark matter halo mass, red-
shift, and other properties, as well as the active BH mass func-
tion, Eddington ratio and duty cycle distributions, and differ-
ential (mass-dependent) rate of buildup of the BH mass func-
tion.

Observations generally constrainquasar lifetimes to the
range≈ 107−108 yr (for a review, see Martini 2004). These
estimates are primarily based on demographic or integral

3 In what follows, we use the term “quasar” somewhat loosely, as a proxy
for high-Eddington ratio accretion activity, rather than as a reference to spe-
cific optical properties. We use the term AGN to refer to BH accretion at all
levels.
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arguments which combine observations of the present-day
population of supermassive black holes and accretion by
the high-redshift quasar population (e.g., Soltan 1982;
Haehnelt et al. 1998; Yu & Tremaine 2002; Yu & Lu 2004;
Haiman et al. 2004; Marconi et al. 2004; Shankar et al.
2004), or incorporate quasars into models of galaxy evolution
(e.g., Kauffmann & Haehnelt 2000; Wyithe & Loeb 2002;
Di Matteo et al. 2003, 2004, 2008; Granato et al. 2004;
Scannapieco & Oh 2004; Lapi et al. 2006; Hopkins et al.
2006a, 2008d; Sijacki et al. 2007) or reionization of HeII
(Sokasian et al. 2002, 2003; Faucher-Giguère et al. 2008a,b;
McQuinn et al. 2009). Results from clustering in quasar
surveys (e.g., Porciani et al. 2004; Grazian et al. 2004;
Croom et al. 2005; Myers et al. 2006, 2007; Lidz et al. 2006;
Porciani & Norberg 2006; Shen et al. 2007; da Angela et al.
2008; Hopkins et al. 2007d), the proximity effect in the Lyα
forest (Bajtlik et al. 1988; Haiman & Cen 2002; Yu & Lu
2005; Faucher-Giguère et al. 2008c) (but see also Lidz et al.
2007), and the transverse proximity effect (Jakobsen et al.
2003; Schirber et al. 2004; Worseck & Wisotzki 2006;
Worseck et al. 2007; Gonçalves et al. 2008) similarly suggest
lifetimes∼ a few×107yr.

These observations, however, pertain in particular to the
quasar lifetime – i.e. the characteristic time spent at high
Eddington ratios/accretion rates, where much of the mass
of a BH is accreted. Unsurprisingly, the observations sug-
gest a lifetime similar to the Salpeter (1964) time (thee-
folding time for Eddington-limited black hole growth)tS =
4.2× 107(ǫr/0.1)yr for accretion with radiative efficiency
ǫr = L/ṀBHc2 ∼ 0.1. AGN, however, are not a homogeneous
population, and so the lifetime is not a single number – in gen-
eral, it should be a function of luminosity and other parame-
ters such as BH or host mass and (possibly) various phys-
ical effects. As advocated by Hopkins et al. (2005d,a), the
AGN lifetime should properly be thought of as aluminosity-
dependent lifetimedistribution – i.e. some timet(> L) as a
function ofL or differential dt/dlogL.

Hopkins et al. (2005d,a, 2006a,b); Hopkins & Hernquist
(2006) study this luminosity-dependent lifetime/duty cycle
distribution in hydrodynamic simulations and analytic mod-
els of feedback-regulated BH growth, and show that such
self-regulation leads to a generic and unique predicted form
for the lifetime distribution. After some initial trigger that
fuels gas inflows (such as e.g. major and minor mergers or
disk instabilities; for discussion see Di Matteo et al. 2005;
Hopkins & Hernquist 2006; Hopkins et al. 2008c, 2009a,e,
2008a, 2009c,b; Hopkins & Hernquist 2009; Younger et al.
2008), AGN grow in approximately Eddington-limited fash-
ion until reaching some critical mass where, if some small
fraction of the radiant energy/momentum can couple to the
surrounding ISM, the feedback is sufficient to halt inflows
and/or expel gas and shut down future accretion. This “up-
per limit” to growth is essentially an Eddington limit effective
at the scales where the host galaxy, rather than the BH, dom-
inates the gravitational potential, and therefore is set not by
the details of fueling mechanisms, but instead by (relatively
generic) global parameters of the accretion physics such as
the host galaxy mass and AGN luminosity.

That the resulting lifetime distribution is independent of
fueling mechanism (i.e. is not specifically related to, for ex-
ample, merger-induced fueling, but is a generic consequence
of models where BH growth is self-regulated by feedback)
has been demonstrated in the nearly identical lifetime dis-

tributions obtained by models of fueling in major merg-
ers, minor mergers, flyby events, bar instabilities, and ran-
dom “stochastic” encounters with nuclear molecular clouds,
under similar feedback-regulated conditions (Hopkins et al.
2006a,b; Hopkins & Hernquist 2006; Johansson et al. 2009;
Younger et al. 2008). These various fueling mechanisms do
result in other important differences (in e.g. host proper-
ties and spectral properties of observed AGN), and they will
lead to different evolution of BHs in a cosmological sense
(global triggering rates and their evolution varying signifi-
cantly for the mechanisms above) and produce BHs of dif-
ferent masses (to the extent that they produce bulges across
a large range of masses, their self-regulating nature and the
existence of the BH-host correlations ensures this to be the
case). These are discussed in more detail in other papers (see
e.g. Hopkins & Hernquist 2009), but the important point is
that, for a given triggering rate at some redshift and BH mass
interval (set by some cosmological or galactic processes),
self-regulated models predict a similar effective Eddington
limit and lightcurve.

Just as growth at the traditional Eddington limit leads to
a self-similar solution for the AGN lightcurve – exponential
growth – the expulsion of gas in this analogous limit leads to
a self-similar lightcurve once the gas begins to be removed
from the vicinity of the BH – a power-law decay of the form
L ∝ t−(1.5−2.0). In turn, this translates into a lifetime distribu-
tion dt/dlogL with a characteristic faint-end (low-L) power-
law like behavior: i.e. the time spent above a given luminos-
ity/Eddington ratio (at fixed final BH mass) scales∝ L−β with
aβ∼ 0.6 at low-L, with a cutoff near the Eddington limit/peak
luminosity of the system. The normalization is set by the char-
acteristic timescales of the system – the Salpeter time and the
(very similar) characteristic dynamical times in the central re-
gions of the galaxy – naturally yielding a robust prediction
of the observed quasar lifetime as well as the complete AGN
lifetime distribution.

This is significantly different from what is assumed in com-
monly adopted phenomenological models, as well as other
physical prescriptions. Quasars are often treated crudelyas
“light-bulbs” – i.e. assumed to be “on” for a fixed time (the
“quasar lifetime”) at fixed luminosity or Eddington ratio, and
otherwise “off.” In such a case, the lifetime/Eddington ra-
tio distribution does not increase towards lower luminosities,
but instead is strongly peaked about a characteristic high Ed-
dington ratio/luminosity (strictly speaking, aδ-function; or
in a Schechter-function parameterization with some scatter,
β ≪ 0). Similar results are obtained if one assumes that
quasar lightcurves are pure exponentials (corresponding to
growth at fixed Eddington ratio with either an instantaneous
cutoff or time-mirrored exponential luminosity decay), which
yields equal time spent per logarithmic interval in luminos-
ity (i.e. a luminosity-independent lifetime, orβ = 0 Schechter
function).

More physically motivated but distinct models make their
own predictions for the lifetime distribution. For example, if
one assumes that the quasar accretion is regulated by a stan-
dard Shakura & Sunyaev (1973) thin disk, and the fuel sup-
ply is immediately removed but there is no feedback (i.e. a
gas starvation scenario), one obtains a similarity solution for
the accretion rate versus time that yields a lifetime distribution
more akin to, but still significantly distinct from that predicted
in self-regulated models (see e.g. Yu et al. 2005).

A number of indirect tests have been proposed to break the
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degeneracies between these models and constrain the quasar
lifetime distribution, and the observations in these scenarios
have thus far supported the predictions of self-regulated mod-
els. These include: the dependence of quasar clustering on lu-
minosity (Lidz et al. 2006; Hopkins et al. 2007d), where ob-
servations finding e.g. a weak dependence of clustering am-
plitude on luminosity (at fixed redshift) support lifetime mod-
els with more time spent at lowerL (Adelberger & Steidel
2005; Coil et al. 2007; Myers et al. 2007; da Angela et al.
2008); the shape of the active BH mass function in various
luminosity-selected samples (Hopkins et al. 2005b, 2006a,
2008d), including more massive systems at lowerL (in ex-
treme cases even being peaked) rather than tracing an iden-
tical shape to the QLF (Heckman et al. 2004; Greene & Ho
2007); the evolution in the faint-end QLF slope with red-
shift (Hopkins et al. 2006b), flattening (weakly) with redshift
(Ueda et al. 2003; Hasinger et al. 2005; La Franca et al. 2005;
Silverman et al. 2005; Hopkins et al. 2007e; Fontanot et al.
2007; Silverman et al. 2008b; Siana et al. 2008) as predicted
in some self-regulated models owing to a (weak) depen-
dence of quasar lifetime distributions on BH mass/peak lu-
minosity; the shape of the distribution in quasar host galaxy
masses/luminosities (Hamilton et al. 2002; Hopkins et al.
2006e), similar in nature to the active BH mass function as a
test of lifetime models; the mass functions and clustering as a
function of mass of quasar “remnants” (i.e. bulges/spheroids,
given the observedMBH − σ relation; see Hopkins et al.
2006c, 2008b, 2007a; Bundy et al. 2006; Haiman et al. 2007;
Shankar et al. 2009a; Yu & Lu 2008); and the relation be-
tween observed luminosity functions in different bands
and active BH masses (Hopkins et al. 2005c; Shankar et al.
2009b; Merloni & Heinz 2008; Bundy et al. 2008; Yu & Lu
2008).

Although these observations are consistent with the pre-
dictions from self-regulated models, they are indirect, and as
such are not able to rule out alternative interpretations (in the
case of e.g. clustering or the evolution of the faint-end QLF
slope) or depend on additional (albeit observationally and
physically-motivated) assumptions. Moreover, many are re-
stricted to relatively bright Seyfert/quasar populations, where
the models are all similar (near these luminosities, they all
predict that the entire population must be dominated by rel-
atively massive BHs at high Eddington ratios∼ 0.1−1, and
given the rapid growth at these Eddington ratios, the lifetime
in this regime must be similar, comparable to the Salpeter
(1964) time). Biases introduced (selecting for specific Ed-
dington ratios, for example) will also be important in samples
selected by e.g. broad emission lines or optical/UV/IR col-
ors/spectral shape (see Hopkins et al. 2009d).

The observed Eddington ratio distributions – specifically,
the complete distribution of Eddington ratios forall BHs of
a given mass (obscured or unobscured, luminous or under-
luminous), however, represent a direct and powerful test of
these models, with the predicted behavior at lower Eddington
ratios/luminosities being strongly divergent. Given the QLF,
a lifetime model directly and uniquely translates (withoutany
additional assumptions) into a distribution of Eddington ratios
at each BH mass, and vice versa. The requirements are de-
manding: breaking these degeneracies necessitates large sam-
ples, complete to all objects of a given BH mass, in a large
volume (to constrain rare high-Eddington ratio objects), but
sufficiently deep to measure even faint levels of AGN activity
in those objects. Furthermore, a probe of AGN activity such
as X-ray or narrow-line emission, robust to obscuration ef-

fects (or the possible disappearance of the broad-emissionline
region and/or thin disk at low Eddington ratios) is important
both to obtain a complete census of AGN activity and to avoid
biases from e.g. luminosity or Eddington ratio-dependent ob-
scuration/dilution/SED shapes. Fortunately, with the advent
of wide area spectroscopic surveys such as the SDSS, it has
become possible to constrain the Eddington ratio distribution
at low redshifts, over a sufficiently large dynamic range to
break the degeneracies between these models, as a function
of various AGN and galaxy properties.

Here, we combine a large number of observations of AGN
Eddington ratio distributions as a function of BH and host
galaxy mass, AGN luminosity, and redshift, in order to test
these models and tightly constrain critical quantities such as
the quasar lifetime as a function of luminosity, and show
how the present observations are already sufficient to rule
out, at high significance, a wide variety of alternative, simpli-
fied physical and phenomenological AGN lifetime/lightcurve
models.

In § 2 we compare these model predictions with observa-
tions of the Eddington ratio distribution measured directly at
z = 0 over a range of BH mass, and inferred indirectly at
z= 0−1. In § 3 we similarly compare with Eddington ratio
distributions measured not at fixed BH mass, but at fixed AGN
luminosity, again over the rangez= 0−1. In § 4 we show
how these observations tightly constrain physical and phe-
nomenological models for the quasar lifetime/accretion rate
distribution, relate to a possible dependence of quasar feed-
back efficiency on mass, and rule out a number of alternative
lifetime/lightcurve models. We show how the observations
tightly constrain even general, parameterized lifetime models
to a narrow range about the physical models, and can directly
be converted to yield the cosmologically integrated AGN life-
time andz= 0 duty cycles as a function of Eddington ratio.
In § 6 we translate these Eddington ratio/lifetime distribu-
tion constraints to limits on the form of the “typical” AGN
lightcurve, and discuss constraints on the “episodic” quasar
lifetime and how, combined with the duty cycle constraints,
this can give a bound on the number of accretion episodes per
AGN and shape of the typical lightcurve. In § 8 we demon-
strate the constraints from these observations on how much
mass present-day BHs accreted in various intervals in Edding-
ton ratio and luminosity. Finally, in § 9 we discuss our results,
the implications of the observations for a broad range of AGN
properties, and the prospects for future observational tests.

For ease of comparison, we convert all observations to bolo-
metric luminosities given the appropriate bolometric correc-
tions from Hopkins et al. (2007e) (see also Elvis et al. 1994;
Richards et al. 2006). We adopt aΩM = 0.3, ΩΛ = 0.7,
H0 = 70kms−1Mpc−1 cosmology and normalize all obser-
vations and models appropriately (note that this generallyaf-
fects only the exact normalization of quantities here, not the
qualitative conclusions, and differences are negligible within
the range of cosmologies allowed by present constraints; e.g.
Komatsu et al. 2009).

2. COMPARING WITH COMPLETE EDDINGTON RATIO
DISTRIBUTIONS

Given the QLFΦ(L |z) and some model for the quasar life-
time or differential time at different Eddington ratios:

dt
dlogL

(L |MBH)≡
d

dlogL

[

t(L′ > L |MBH)
]

, (1)

it is straightforward to de-convolve and determine the Edding-
ton ratio distribution. For example, if quasars were “light
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bulbs” that shine either at some fixed high Eddington ratio

λ≡
L

LEdd
=

Lbol

1.3×1038ergs−1(MBH/M⊙)
(2)

with λon ∼ 1 in an “on” state for a timetQ andλ ≪ 1 in an
“off” state at other times, then the implied lifetime distribu-
tion dt/dlogL is a delta-function atλon. The observed QLF
in such a case is, of course, a linear translation of the active
BH mass function (withλon determining the re-normalization
or shift in the horizontal axis, fromMBH to L, and the ab-
solute value of the quasar lifetimetQ determining the abun-
dance/vertical axis). So, at a givenMBH, the Eddington ratio
distribution will be a delta-function atλon with a normaliza-
tion/fractional abundance at thisλon determined by the num-
ber of active quasars (of the corresponding luminosity) at the
observed redshift.

In general, in fact, so long as the quasar lifetime at a givenL
is short compared to the Hubble time (i.e. cosmological evo-
lution in e.g. triggering rates can be ignored in the constraint),
then the Eddington ratio distribution at a givenMBH will be
dt/dlogL (modulo a normalization reflecting the “on” frac-
tion ortQ/tH , wheretH is the Hubble time at the given redshift)
– i.e. we can trivially translate to a “duty cycle” distribution
(fractional population at eachL or λ):4

dδ
dlogλ

=
dδ

dlogL
≈

1
tH(z)

dt
dlogL

(t ≪ tH). (3)

By definition of the duty cycle, of course, this directly relates
to the actual number density function of BHs at a given mass
and luminosity or accretion rate

Φ(λ |MBH)≡
dn(λ, MBH)

dlogλ
= n(MBH)

dδ
dlogλ

. (4)

The shape of the observed Eddington ratio distribution, there-
fore, contains information about the shape of dt/dlogL in-
dependent of either normalization, and vice versa. Such ob-
servations hence provide a useful and direct probe of quasar
accretion rate distributions.

If the AGN population (e.g. triggering rates or number of
bright objects) is relatively constant for systems of a given
mass over the redshift range of interest (i.e. if the popula-
tion is still growing, at least in a statistical sense, around
the observed redshifts) and the lifetime is short relative to
the Hubble time, then Equation 3 is applicable, and the ob-
served Eddington ratio distribution, independent of any other
constraints, can be directly translated to the lifetime distri-
bution. When the triggering rate evolves strongly with red-
shift and/or the characteristic lifetime is long compared to
the Hubble time (e.g. for massive systems at low redshift,
where their growth is dominated by higher-redshift periods),
the Eddington ratio distribution at a givenz is still uniquely
predicted by a given dt/dlogL model, but this must be con-
volved over the redshift distribution of activity (i.e. given the
observed QLF and dt/dlogL, we integrate over time to de-
termine the predicted dδ/dlogλ). Even this, in practice, does

4 The translation between the distribution in logL and logλ is trivial in
terms of observations at a given BH mass; in terms of converting model pre-
dictions between one and the other, although the relation isnot completely
trivial, we find in practice that the two are nearly equivalent, especially at
Eddington ratios. 0.2 where most of the data with which we will compare
lie, since some initialMBH does not change much as a model system moves
through a low Eddington ratio phase. We will therefore use the two inter-
changeably in this paper as is proper for the observations, but have converted
all physical models to the appropriate representation.

not significantly change the direct mapping between the shape
of the observed Eddington ratio distribution and dt/dlogL; it
mainly amounts to deriving a more correct effective “duty cy-
cle” (normalization) than multiplying by∼ 1/tH . For more
discussion and details of the relevant equations, we refer to
Yu & Lu (2004); Hopkins et al. (2005a, 2006a,b); for now, we
note that the observed QLFΦ(L |z) is well-constrained at all
the luminosities and redshifts of interest (since the relevant
observations are primarily at low redshiftsz. 1), and so any
given model for dt/dlogL uniquelytranslates to an Eddington
ratio distribution as a function of BH mass or AGN luminos-
ity. We wish to compare these distributions to the observa-
tions.

In order to do so, we want to begin with a complete distri-
bution of BH accretion rates at a given BH mass. It is impor-
tant to do so – in models where e.g. systems of a given mass
can have a broad range of Eddington ratios, the distributionof
Eddington ratios at a given BH mass can bequalitativelyvery
different from the distribution at a given luminosity (see §3).
Moreover, if what is desired is a distribution at all possible
Eddington ratios, then there is no useful definition of an “ac-
tive” AGN: what we really desire is to begin with a complete
census of all BHs of a given mass (active or inactive at any
level), and to measure the Eddington ratio distribution within
this sample.

Fortunately, the existence of a tight correlation between
host galaxy luminosity/stellar mass/velocity dispersionand
BH mass makes this possible: Heckman et al. (2004) and
Yu et al. (2005) select complete samples of all SDSS galax-
ies with a narrow range in velocity dispersionσ (and cor-
responding narrow range in BH mass), and then examine
this sample to a limiting depth for narrow equivalent width
AGN features (following the methodology and classifications
in Kauffmann et al. 2003; Kewley et al. 2006). Given a bolo-
metric correction, this allows a complete census of all activity
at a given BH mass down to some well-known limit inλ.

Moreover, the use of narrow lines is helpful for three rea-
sons, as opposed to e.g. use of optical broad lines or an op-
tical/IR color cut in identification of AGN and determination
of their bolometric luminosities. First, it can probe very faint
AGN and does not introduce much bias in terms of e.g. the
risk of the host light in brighter systems diluting the AGN.
Second, it allows us to include the obscured/Type 2 popula-
tion (the abundance of which may depend on luminosity; see
e.g. Ueda et al. 2003; Simpson 2005; La Franca et al. 2005;
Barger & Cowie 2005; Beckmann et al. 2006; Bassani et al.
2006; Gilli et al. 2007; Hasinger 2008). Third, it should en-
able us to identify quasars even in states of moderate radiative
inefficiency: there is growing evidence that AGN at low Ed-
dington ratios may transition to a radiatively inefficient state
characterized by the absence of a thin disk. Such objects
are still accreting but appear primarily as X-ray (because a
hot corona survives this transition) and narrow-line sources,
rather than broad-line or optical continuum sources (see e.g.
Narayan & Yi 1994; Narayan et al. 1995, 1996; Meier 2001;
Maccarone et al. 2003; Yuan & Narayan 2004; Jester 2005;
McClintock & Remillard 2006; Cao & Xu 2007). We dis-
cuss these distinctions in more detail in a companion pa-
per (Hopkins et al. 2009d), and outline how they can in-
fluence e.g. the Eddington ratio distribution determined via
various selection criteria. For our purposes here, however,
the data adopted either avoid these uncertainties owing to
their selection/identification methodology, or cover a lumi-
nosity range where these concerns are not important (see also
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Heckman et al. 2004; Kauffmann et al. 2003).
Figures 1-2 show this analysis. We plot the Eddington ratio

distribution determined in Yu et al. (2005) and Heckman et al.
(2004) (see also Kauffmann & Heckman 2008), and compare
to the theory of Hopkins et al. (2006a,b, 2007e). We consider
three versions of the estimates to show the range of theoreti-
cal uncertainty inherent in the model, but the differences are,
for the most part, minimal. First, we plot the Hopkins et al.
(2006b) fitted dt/dlogL distribution to their typical∼ M∗ BH
simulations, multiplied by the number density of active BHs
at each mass (the effective duty cycle, discussed in § 4) and
divided by the Hubble time (since we are considering the frac-
tion of active BHs at eachλ; this is shown as a the solid red
line). This is an accurate approximation to a much more com-
plete cosmological calculation so long as the quasar lifetime
is short compared to the Hubble time and provided that there
is not some strong feature in the redshift history of triggering
(i.e. so long as the cosmological evolution around the red-
shift of interest is relatively weak). At lowλ, this is simply a
power-law; inevitably, the point where the lifetime nears the
Hubble time will be reached, and more ful cosmological mod-
els will turn over.

Second, we adopt the fits from Hopkins et al. (2007e) to
the observed bolometric QLF as a function of redshift, us-
ing the lifetime distributions as a function of BH mass fitted
in Hopkins et al. (2006b), and integrate these over redshift.
In Hopkins et al. (2007e) the authors quantify the range of
fits allowed given both the uncertainty in the lifetime model
and the observed QLF; we show two lines that bracket this
range (the dotted and dashed lines in Figures 1-2). Again,
these use the same model lightcurves (the power-law like
fits to the lightcurve shape as a function of BH mass, from
Hopkins et al. 2006b) and are matched to the same QLF (the
data compiled in Hopkins et al. 2007e). However, there re-
main uncertainties in the data and degeneracies in the fit – the
models shown bracket the range in theλ distribution allowed
by this set of models and data. The predicted distributions
turn over at lowλ in both cases (albeit at slightly different
λ, reflecting these degeneracies in fitting the low-luminosity
population), as the lifetime nears the Hubble time (obviously,
in a full cosmological model, they must turn over, so that the
“duty cycle” of a given BH across all Eddington ratios inte-
grates to unity).

The theoretical predictions all agree well, and agree re-
markably well with the observations. We stress that these are
predictions; no quantity has been fitted to the data points (both
the shape and normalization of the model curves are entirely
predicted by the papers above).

The theoretical curves also agree with one another. This is
because, at most of the luminosities of interest, the lifetime
is well below the Hubble time and the (especially low-mass)
BHs are still growing as a population (see e.g. Hasinger et al.
2005), so subtleties of cosmological evolution are irrelevant
(the only quantity of interest is dt/dlogL). Moreover at low
redshiftsz. 2 the observed QLF is well-constrained, so there
is little freedom given a dt/dlogL model in what the distri-
bution can be. The only differences appear at the highest
masses – this is because, in a complete cosmological calcu-
lation, most of the triggering of these systems occurred pref-
erentially at high redshifts, so there is some pile-up at lowEd-
dington ratios (precisely below where the condition oftQ ∼ tH
begins to be satisfied, as expected).

Figure 2 also compares the Eddington ratio distribution de-
termined in Hopkins et al. (2006d) from the combined ob-

served samples of Marchesini et al. (2004) and Ho (2002).
The range in BH mass in this sample is less narrowly con-
strained,MBH ∼ 107.5 − 108.5M⊙, but the data survey ex-
tremely faint systems in the radio and X-rays, and allow
us to extend the observed Eddington ratio distribution from
the already deepλ ∼ 10−4 − 10−3 in the Yu et al. (2005)
and Heckman et al. (2004) samples by another two orders of
magnitude. (Note in Hopkins et al. (2006d) the authors con-
sider possible corrections for varying radiative efficiencies
and bolometric corrections at these luminosities, but the re-
sulting change is for our purposes here within the error bars
shown.) Again, the agreement is good over the entire range.

At higher redshifts, analogous measurements are not,
at present, available. However, we can compare with
an alternative, albeit indirect, observational estimator. It
has been argued that the combination of radio, X-ray,
and optical luminosities can be used to constrain the
Eddington ratios of BHs, in a manner like that well-
established for accreting X-ray binaries. Indeed, it is
increasingly established that radio-loudness of AGN ap-
pears to be a function (on average) of Eddington ratio
(Narayan et al. 1995, 1996; Falcke & Biermann 1996; Meier
2001; Ho 2002; Merloni et al. 2003; Marchesini et al. 2004;
Maccarone et al. 2003; Falcke et al. 2004; Merloni & Heinz
2007; Greene et al. 2006, for a review see Fender et al.
(2007)), so if this is true at higher redshift it can be
used as at least a statistical estimator of Eddington ratio.
Merloni & Heinz (2008) adopt these observations, combined
with the measured X-ray, radio, and optical luminosity distri-
butions of observed quasars, to constrain the Eddington ratio
distribution as a bivariate function of BH mass and redshift.
Their methodology allows for intrinsic scatter in these corre-
lations, so it should be reasonably robust as long as there is
some physical relationship between Eddington ratio and X-
ray-radio-optical spectral shape over a wide baseline in Ed-
dington ratio (from∼ 10−5−1).

Figure 3 compares their inferred Eddington ratio distri-
butions (A. Merloni, private communication; for details see
Merloni & Heinz 2009) to the same predictions, atz= 0 and
z= 1 (at higher redshifts, Merloni & Heinz (2008, 2009) do
infer Eddington ratio distributions, but the radio luminosity
function is not directly measured and the X-ray luminosity
function is increasingly unconstrained as well, so this re-
lies on extrapolation of the low-redshift trends, and is not
a direct measurement/estimate). Note that the kink in the
Merloni & Heinz (2008) Eddington ratio distributions around
λ ∼ 10−2 is sensitive to the particular assumptions about the
form of the QLF shape and SED shape as a function of lumi-
nosity; other attempts to infer this distribution have, however,
seen similar features (e.g. Marchesini et al. 2004), so it may
reflect a real change in accretion properties not modeled here.
In any case, the inferred distributions, where they overlapwith
the measurements from the observations above, agree reason-
ably well, giving some confidence in this methodology, and
the agreement with theoretical predictions is good.

As discussed in § 1, although the particular models shown
were fitted from simulations of galaxy mergers, the results are
comparable regardless of fueling mechanism, given a similar
self-regulation from local AGN feedback. In fact, the pre-
dictions and their agreement with observations in Figures 1-3
rely onno information regarding fueling mechanisms – they
simply follow from assuming a given lightcurve shape and
matching the observed quasar luminosity function.
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FIG. 1.— Distribution of Eddington ratios at a given BH mass (atz< 0.2). We compare the observed distribution from SDSS narrow-line objects (Yu et al.
2005; Heckman et al. 2004, black circles with error bars and orange diamonds, respectively) to the distribution predicted by the lightcurve/lifetime models in
Hopkins et al. (2006a,b, 2007e, lines). Solid red line is thesimplest model prediction for a population of single triggers with tQ ≪ tH ; black lines integrate over a
complete cosmological history of triggering events in the model (constrained to match the observed AGN luminosity functions). Dashed and dotted lines bracket
the model uncertainty. The lines arepredictions– there areno free parameters fitted or tuned to match the observedλ distributions.
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FIG. 2.— As Figure 1, continued to higher BH masses. The lower right panel shows the Eddington ratio distribution calculatedin Hopkins et al. (2006d) from
the observed samples of Marchesini et al. (2004) and Ho (2002), with a less tightly constrained BH mass range (MBH ∼ 107.5

−108.5 M⊙) but extending to lower
Eddington ratios. Corrections for various changes in radiative efficiency with Eddington ratio change the observed points and models within the plotted error
bars (see Hopkins et al. 2006d). Note that the apparent discrepancy in the models at the highest masses comes from extrapolation to unobservably small space
densities.

3. EDDINGTON RATIO DISTRIBUTIONS AS A FUNCTION OF
LUMINOSITY

At a given luminosity (as opposed to a given BH mass), the
differences in the Eddington ratio distribution between vari-
ous models are greatly suppressed. The reasons for this are
obvious: at a givenL andMBH, there is only a narrow range

of λ, and given the declining number density of high-mass
BHs, at high-L, one will increasingly be limited to the popula-
tion of near-Eddington systems. However, over a sufficiently
large baseline inL, differences are apparent, and (especially
at high redshifts) luminosity-limited samples are more easily
constructed thanMBH-limited samples. We therefore consider
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FIG. 4.— Predicted distribution of Eddington ratios atz∼ 1 in a narrow
range of bolometric luminosity. Note that, because of the cut at a given lumi-
nosity (as opposed to reflecting allλ at a givenMBH as in Figure 1), the dis-
tributions are much more narrow and turn over at lowLbol. The distributions
are reasonably approximated as log-normal, with some weakly luminosity-
dependent skewness.

the Eddington ratio distribution predicted as a function oflu-
minosity at different redshifts.

Figures 4 & 5 shows the results. Figure 4 demonstrates
that at a given luminosity (unlike at a given BH mass), the
Eddington ratio distribution is expected to be something like a
lognormal distribution (more so if typical observational errors
are included), albeit with some non-negligible skewness (as
seen in e.g. Fine et al. 2008).5 This is because, at extremely
low λ, arbitrarily high-MBH BHs would be implied (in a bin

5 The skewness originates because the distribution of host BHs is not flat in
mass, but increases to lower masses (following the Schechter galaxy/spheroid
mass function). With respect to the median Eddington ratio/BH mass con-
tributing to the observed population at a given luminosity,one therefore ex-
pects (if Eddington ratio distributions at a given BH mass donot change
rapidly with mass) that there will be a somewhat larger population of low-

of fixed L), but the possible population of such systems is
vanishing. We therefore find it convenient to approximate the
predicted distributions as lognormal, and quantify the median
λ and 1σ dispersion (technically based on the IPV width to
prevent bias from outliers or skewness) in the lognormal as a
function of luminosity, at redshiftsz= 0−2.

We compare these with several observational estimates. In
Fine et al. (2008), the authors consider the Type 1 quasar pop-
ulation nearz≈ 1 in the 2dF survey, and estimate the distri-
bution of BH masses in narrow bins of luminosity employing
the commonly adopted virial BH mass estimators (based on
the broad-line widths and the radius-luminosity relationsin-
ferred from reverberation mapping of nearby AGN; see e.g.
Vestergaard & Peterson 2006, and references therein). This
allows them to consider the distribution of BH masses via this
proxy as a function of luminosity down to near Seyfert lumi-
nosities. Because the width of the distribution can be deter-
mined without relying on the (systematically still uncertain)
absolute normalizations of these calibrators, the authorsde-
cline to estimate absolute Eddington ratios (although a rough
estimate suggests they lie between∼ 0.1− 1, as predicted
here). Kollmeier et al. (2006) use the same technique over a
narrow luminosity range of Type 1 AGN in the AGES survey.

At lower luminosities, these indicators are less useful (and
the observations suggest the population is both more obscured
and diluted by host galaxy light, making the virial mass esti-
mators inaccessible). However, X-ray observations can probe
Type 2 objects in this regime, where the optical light is dom-
inated by the host galaxy and therefore a host galaxy stel-
lar mass (and corresponding BH mass, adopting the observed
MBH −M∗ relation from Marconi & Hunt 2003) can be esti-
mated. It is well-established that in this regime the optical
luminosity/stellar mass of the galaxy is approximately con-

mass BHs at high Eddington ratio rather than high-mass BHs (an exponen-
tially vanishing population) at low Eddington ratio.
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FIG. 5.— Median Eddington ratioλ and 1σ dispersion in Eddington ratios at a given narrow range in bolometric AGN luminosity (as in Figure 4, assuming
a lognormal distribution). We compare the Hopkins et al. (2006a,b, 2007e) model predictions (solid lines; colors denote redshift as labeled) with the observed
distributions inferred from the distribution of X-ray to host luminosities in optically obscured AGN (Fiore et al. 2003; Hasinger 2008; Hickox et al. 2007, 2009,
red diamonds) (translating host luminosity to average BH mass given the observed correlations), and from the distribution fitted to broad-line optical samples
in Fine et al. (2008) from the 2dF and Kollmeier et al. (2006) from AGES, using the optical virial (line-width) BH mass estimators. We also compare with the
predictions for pure exponential AGN lightcurves (constant Eddington ratio or exponential decay inL after some peak) and “light-bulb” models (where AGN
are “on” or “off” with a mass-independent narrowλ distribution when on), forced to obey the (necessary) constraint of matching the observed AGN luminosity
functions. The Hopkins et al. (2006b) models agree well withthe observations, the other models are ruled out at low-L. High-L optical samples are not ideal for
breaking the degeneracies between these models, although with sufficiently large dynamic range such as that in Fine et al. (2008) the distinction can be seen.

stant while the X-ray luminosity changes, implying that at
lower-L the X-ray luminosity function becomes increasingly
a sequence in Eddington ratio.

We plot the implied Eddington ratios and distribution in Ed-
dington ratios as a function of luminosity from the sample of
Hasinger (2008), where the opticalR-band luminosity is con-
verted to a stellar mass based on the age and mass-dependent
observed meanM/L ratios in Bell & de Jong (2000) and
Bell et al. (2003). We have re-calculated these comparisons
using e.g. the samples of Fiore et al. (2003) and Hickox et al.
(2007, 2009) and obtain the same result (various multiwave-
length surveys have reached similar conclusions regarding
this correlation), and find that changing the assumed hostM/L
within uncertainties makes little difference (for more discus-
sion, see Hopkins et al. 2009d). For convenience to the com-
parison here, we convert all the observed AGN luminosities
to bolometric luminosities using the bolometric corrections
in Hopkins et al. (2007e) (using instead those in Elvis et al.
1994; Marconi et al. 2004; Richards et al. 2006, makes no dif-
ference).

In addition to the theoretical predictions from the models
in § 2, we contrast the results from a simple light-bulb AGN
lifetime (in which both the mean Eddington ratio and disper-
sion are constant) and a pure exponential model (in which
dt/dlogL is constant atλ ≪ 1, which, when the sample is
cut by luminosity, does introduce some dependence onL,

but much weaker than that predicted by the models in § 2).
The observations clearly prefer the steeper dependence of the
more realistic lifetime models. Note that a large baseline in
luminosity is needed to see the difference at high significance
– at least∼ 2−3 orders of magnitude inL belowL∗ (ideally
more like∼ 4− 5 orders of magnitude). This explains e.g.
the weak dependence seen in the sample of Kollmeier et al.
(2006), who note the weak dependence of mean Eddington
ratio and width of the distribution onL, but have a relatively
narrow range inL and are concentrated near and above∼ L∗.
Their observations are in fact entirely consistent with the
model predictions and other observations (over larger base-
lines) that do see such a dependence.

4. COMPARISON WITH MODELS: WHAT DEGENERACIES ARE
BROKEN?

We now ask how unique these predictions are: in other
words, can the observations distinguish between different
models for the Eddington ratio/quasar lifetime distribution?

Figure 6 compares the data and several simple models for
the lifetime distribution. There are a number of commonly
adopted forms for quasar lifetimes and lightcurves in the liter-
ature, including the light-bulb, pure exponential growth (cor-
responding to growth at fixed Eddington ratio and then either
instantaneous decline or similar decay), and self-regulated de-
cay models. The range of possibilities can be generally ap-
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FIG. 6.— As Figure 1, but comparing the consequences of different lightcurve/lifetime models for the observed Eddington ratio distribution (generally
parameterized by Equation 6, with power-law like slope−β at low λ). We compare our previous model examples (red solid, with medianβ ∼ 0.6) and the
exponential (green dot-dashed,β = 0) and light-bulb (blue dotted,β ≪ 0, reflecting a log-normal orδ-function distribution) models. We also show the effective
physical upper limit (dark blue dashed,β = 1; β > 1 would result in BH growth that is divergent towards low-λ). The models are all normalized to give the
same number of objects atλ & 0.1; this is required in order to match the observed quasar luminosity function where it is well-constrained (L & 1045ergs−1).
Even freeing this normalization (i.e. allowing the AGN luminosity function to be significantly different from that observed), however, still does not allow the
exponential or light-bulb models to match the observations.

proximated by a Schechter fitting function:

dt
dlogL

= t0
( L

Lpeak

)−β

exp(−L/Lpeak) (5)

whereLpeak≡ ηLEdd with someη ∼ 1. Equivalently, we can
fit:

dt
dlogλ

(MBH) = t0
(λ

η

)−β

exp(−λ/η). (6)

This allows for the fact that there must be some physi-
cal (and observed) cutoff in the Eddington ratio distribution
aboveλ= 1, but permits an arbitrary power-law like behavior
at lower Eddington ratios (which can approximate any near-
similarity solution for self-regulated lightcurve decay,or a
power-law-like spectrum of triggering activity, as well asa
rapid/exponential rise fall and even sufficiently rapid rise sim-
ilar to a light-bulb). In practice, we find that fitting an equa-
tion of the form of Equation 6 to the data in e.g. Figures 1-3
provides a useful and statistically good description of thedata.

In all mass intervals, we find a similar best-fitη ≈ 0.2−0.4
– the exact value reflects the particular choice of functional
form, but the general value describes the observed and ex-
pected cutoff in theλ distribution atλ ∼ 1. We discuss
variations inη below, but find that it cannot vary widely:
much lowerη exponentially suppresses the number of bright
sources, and much higherη implies no Eddington limit, both
in conflict with AGN luminosity functions and direct observa-
tions of the distribution of accretion rates in bright, broad-line
systems (see e.g. Kollmeier et al. 2006; Greene & Ho 2007).
In what follows, we find statistically identical results fitting
the observations with a freeη or fixedη = 0.4 (the degener-
acy between e.g.η andβ, within the range allowed by obser-
vations, is not strong).

As a consequence, the shape of the distribution is primarily
contained in the slopeβ. Various lightcurve models make

differing specific predictions for this slope:

• Light-Bulb Models: Strictly speaking, in such a model
dt/dlogL is a delta function at the characteristicλon; allowing
for some finite width or measurement errors inλ, this can be
approximated as e.g. a lognormal distribution or a Schechter
distribution withβ ≪ 0 (i.e. a largenegativeβ).
• Exponential Models: For pure exponential models (e.g.

accretion at a constant Eddington ratio or exponential decay),
one obtains dt/dlogL ≈constant, orβ = 0.
• Maximal low-λ Accretion: At the opposite extreme,

there is a physical limitβ < 1; because the fractional con-
tribution to BH mass growth from a range in log(λ) goes
roughly asλ× dt/dlogL. For β ≥ 1, the total growth is
both formally divergent and (even if there is some cutoff at
low-λ) weighted towards the lowest-λ values. Constraints
from the observed BH mass function and the Soltan (1982)
argument (see e.g. Yu & Tremaine 2002; Salucci et al. 1999;
Shankar et al. 2004; Marconi et al. 2004), as well as other in-
direct constraints (Hopkins et al. 2006d) imply that most BH
growth cannot occur in extremely low Eddington ratio states.
• Self-Regulated Models:In feedback-regulated models,

the energy coupled to the ISM which halts quasar accretion
leads to a nearly self-similar power-law like decay of the
quasar lightcurve,L ∝ t−1/β. Hydrodynamic simulations of
quasars in galaxy mergers (Hopkins et al. 2006b) suggest val-
uesβ ∼ 0.6 for typical ∼ L∗ galaxies, with a weak mass
dependence. Analytic calculations in Hopkins & Hernquist
(2006) demonstrate that for a range of assumptions regard-
ing the fueling mechanisms (for e.g. stochastic or secular
AGN fueling mechanisms), feedback coupling mechanism,
timescale, efficiency, and gas properties around the BH, a
range ofβ ≈ 0.3− 0.8 is possible; but simulations of these
non-merger scenarios (Younger et al. 2008) suggest a similar,
relatively narrow range ofβ independent of fueling mecha-
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nism.
• Isolated Accretion Disk/Gas Starvation Models:

Yu et al. (2005); Yu & Lu (2008) show that a similar power-
law decay is expected for a thinα-disk (Shakura & Sunyaev
1973) abruptly cut off from any future fuel supply, when there
is no feedback. The disk therefore slowly starves as gas ex-
hausts by a combination of accretion and (possibly) star for-
mation. The solution should be mass and host galaxy inde-
pendent, withβ ≈ 0.80− 0.84. The exact solution depends
(weakly) in detail on e.g. how the opacity and viscosity of the
disk vary as a function of density and temperature, but the au-
thors show that the entire set of solutions (corresponding to
the allowed range for observationally reasonableα-disks) lie
within this narrow interval inβ. In Figure 6, we omit this
model for clarity, but the result lies between the self-regulated
model and the physically maximal (β = 1) model.
• BHs Trace Stellar Evolution: It is possible that

many low-luminosity systems are fueled by stellar mass
loss from aging nuclear stellar populations. If the BH
simply linearly traced this evolution (i.e. grew in this
fueling-limited background with no feedback), the late-time
accretion rate evolution would follow the stellar mass loss
rate, giving a similar power-law solution with a steeper
β ≈ 0.9−1.0 (e.g. Norman & Scoville 1988; Leitherer et al.
1999; Bruzual & Charlot 2003; Ciotti & Ostriker 2007).

Fitting each BH mass bin in Figures 1-2 to an arbitrary
function of the form in Equation 6 (freet0, η, β), we obtain the
constraints onβ shown in Figure 7. In fact, the constraints can
be made stronger. Any fittedλ distribution, convolved with
the BH mass function (implicit in Figures 1-2, or taken from
observations following e.g. Marconi et al. 2004) must repro-
duce the observed AGN luminosity functions. In practice, this
“anchors” the number density at highλ & 0.1 (which dom-
inate the QLF). Re-fitting the observedλ distribution, with
the fit constrained to also reproduce the observed QLF (taken
here from the compilation of a large number of observations
in Hopkins et al. 2007e, but the results are not sensitive to the
specific choice), we obtain the constraints in the top panel of
Figure 7 (note that the errors shown in this case are not inde-
pendent).

Parametrically, if we assumeβ is independent ofMBH (or
consider a range near∼L∗), we obtainβ≈ 0.6±0.05, in good
agreement with the theoretical predictions from the simula-
tions of Hopkins et al. (2006b). If we allow for a dependence
of β onMBH, parameterized for convenience as

β = β7.5+β′ log(MBH/107.5M⊙), (7)

we obtainβ7.5 = 0.63± 0.04 andβ′ = −0.29± 0.08 if we
include the constraints from the observed QLF, andβ7.5 =
0.63±0.04 andβ′ =−0.11±0.09 if we do not (the observed
λ distributions themselves are insufficient to determine ifβ
depends weakly on BH mass).

Figure 8 summarizes the predictions of the different models
above. The observations prefer a narrow range of slopes: it is
not possible to match the observed Eddington ratio distribu-
tion in light-bulb or exponential models (ruled out at≫ 5σ),
and simple stellar wind models are ruled out at∼ 4σ.

The isolated accretion disk model fares somewhat better:
Yu et al. (2005) show that it is consistent with theλ distri-
bution observed for low-mass BHs, a result we confirm here,
but it is inconsistent with the observations of typical∼ L∗ and
more massive BHs at> 4σ. Yu & Lu (2008) show that such
a model does improve upon the light-bulb model in simulta-
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FIG. 7.— Slopeβ of the lifetime/lightcurve/Eddington ratio distribution
fitted to the observations in Figures 1-2 with a general Schechter-function
parameterization (Equation 6).Top: Points are the maximum likelihood fit
results for each mass bin, where the fits are constrained suchthat the observed
quasar luminosity function must be reproduced. We repeat our fits using the
quoted error bars in the observed Eddington ratio distributions (black) and
allowing for an additional∼ 0.3 dex intrinsic uncertainty (red). We compare
with the model predictions from Hopkins et al. (2006b), determined from
simulations allowing for a mass-dependent typical lifetime distribution or as-
suming a constant (mass-independent) lifetime distribution (β ≈ 0.6). Bot-
tom: Fits repeated, but removing the constraint that the observed luminosity
function must be reproduced (magenta star is the fit to the observations in
the lower-right panel of Figure 2, which span a wider mass andλ interval).
The results are consistent, but less constrained. The results agree well with
the model predictions, and if a match to the observed luminosity function is
required, specifically favor the full mass-dependent model. In either case, an
exponential (β = 0) or light-bulb (β ≪ 0) model is ruled out at high signifi-
cance.

neously reproducing the observed QLF and BH mass func-
tion. However, as noted before, the QLF is primarily a tracer
of high-λ activity, and given that such activity dominates the
accretion history of BHs (Soltan 1982), these observational
constraints alone cannot break the degeneracy between simi-
lar, but slightly different lightcurve modelsL∝ t−1/β (β∼ 0.6
andβ ∼ 0.8 corresponding to the self-regulated and isolated
accretion disk models, respectively). Hopkins et al. (2006a,
2007e, 2008d,b) demonstrate that similar solutions for the
QLF and BH mass function exist for the self-regulated model
(unsurprisingly, the two yield very similar growth histories
andλ & 0.1 activity). As a consequence the low-λ distri-
bution represents an important means to break these degen-
eracies, and disfavor the isolated accretion disk models. We
do emphasize, however, that while the isolated disk model is
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FIG. 8.— Illustration of how the observational constraints onβ can dis-
criminate between different physical and phenomenological quasar lifetime
models. Blue shaded range shows the allowed slopeβ from the fits to the
observations taken cumulatively, either assuming it is invariant (independent
of MBH) or allowing it to depend onMBH as in Figure 7. Black lines com-
pare different models for the self-regulating growth seen in hydrodynamic
simulations (where e.g. the gas density profiles, ISM equation of state and
phase breakdown, and prescriptions for feedback and BH accretion are var-
ied; for details see Hopkins et al. 2006b; Hopkins & Hernquist 2006); these
predictions agree well with the observations and are relatively independent
of the detailed assumptions. If we include the constraint that the QLF must
be reproduced simultaneously, the observations rule out mass-independentβ
(corresponding to slightly more simplified analytic self-regulated models, de-
scribed in the text). Theβ corresponding to pure exponential or phenomeno-
logical “light-bulb” models are also shown, as is the regionruled out by the
Soltan (1982) and other physical arguments. An alternativephysical model,
of a thinα-disk where the entire fuel supply is instantaneously provided from
larger radii then cut off (i.e. large-scale gas inflows and feedback are ex-
cluded), is shown (this yieldsβ ≈ 0.8 as the accretion disk consumes gas;
see Yu et al. 2005). Although a better description than the simplified phe-
nomenological models, the observations can rule out such strictly “isolated”
accretion disk exhaustion at&3σ (the constraints are even stronger,∼ 5σ at
high masses, if we also force the solution to match the observed QLF). Like-
wise, assuming BH accretion simply traces stellar mass lossfrom evolving
stellar populations (without feedback to regulate growth more efficiently) is
ruled out (β ≈ 0.9−1.0).

ruled out at high formal significance, the absolute difference
between it and self-regulated models is not large. That modest
difference may reflect the inclusion of a small, but physically
important term, for example outflows or winds from the ac-
cretion disk that cause it to gas-exhaust slightly more steeply
in time than otherwise.

Feedback-regulated models agree well with observations.
Distinguishing between feedback-regulated models, however,
is difficult. In Figure 8 we compare several sub-classes:
all follow a similar behavior and reflect the basic scal-
ings in Silk & Rees (1998). The models are derived in
Hopkins & Hernquist (2006) treating feedback-driven out-
flows as similarity solutions for expanding winds/blastwaves;
the solutions adopt various equations of state and make differ-
ent assumptions for the feedback coupling (whether e.g. feed-
back instantaneously couples to the ISM or continues to cou-
ple continuously throughout the event). Others (Menci et al.
2003; Granato et al. 2004) have obtained similar conclusions
in different feedback models. We also compare the fits
to the hydrodynamic simulations in Hopkins et al. (2006b)
and Younger et al. (2008) – the simulations give similar re-
sults for typical spheroids, but break the strict (analytically
assumed) self-similarity: they predict a weak mass depen-
dence (more massive galaxies being more gas poor and bulge-
dominated, and having somewhat more violent resonant angu-
lar momentum transport and therefore more sharply peaked

quasar/starburst activity as a consequence). The mass depen-
dence amounts to a predictedβ′ ≈−0.25 in Equation 7. The
observations favor the self-regulated class of models, andmay
weakly favor the mass dependence predicted in simulations.

Some space of self-regulated models is ruled out. For exam-
ple, Hopkins & Hernquist (2006) argue that if accretion grows
primarily out of cold instabilities “falling out of” the ex-
panding feedback-driven blastwave (in an adiabatic gas with
Bondi-like spherical accretion), then very steepβ ∼ 31/19 at
early times is expected (only decaying to theβ ∼ 0.5− 0.6
seen in simulations in the late-time limit). Such a steepβ
(shallow lightcurve decay) is not allowed.

5. CONSTRAINTS ON AGN LIFETIMES

These fits also allow us to quantify the quasar lifetime.
There are, in fact, three different “quasar lifetimes” to which
we could refer, which are constrained to varying degrees by
the observations.

(1) “Effective” Lifetimes : This is the lifetime defined in
terms of the duty cycle – i.e. we define the effective quasar
lifetime (at a given Eddington ratioλ at a given BH mass
MBH) by the duty cycle dδ(λ |MBH)/dlogλ. Specifically, we
invert Equation 3 to obtain

dteff(λ |MBH)

dlogλ
≡ tH(z)

dδ
dlogλ

, (8)

or in terms of the integrated duty cycle aboveλ (δ[> λ]), we
haveteff(> λ) ≡ tH(z)δ(> λ). This is directly determined by
the observed Eddington ratio distributions at any redshiftz,
and is what is often referred to as the implied “AGN lifetime”
from various observed statistics.6

(2) “Integrated” Lifetimes : Recall, Equation 3 is only ap-
proximate. If one could view a BH or appropriate BH sub-
population of final (remnantz= 0) massMBH over its com-
plete history, then thetrue “integrated” lifetime or duty cycle
at a given Eddington ratio or luminosity would be given by
the appropriate integral

tint(> λ) =

∫

δ(> λ |z)
dt
dz

dz. (9)

It is immediately clear by comparison with Equation 8 that
the integrated lifetime is equal to the effective lifetime if the
duty cycleδ(> λ |z) is relatively constant over the redshift
range of interest. In practice, so long asδ(> λ |z) has evolved
relatively weakly between the time when most BHs of mass
MBH were formed and the observed redshift, one will ob-
tain teff ≈ tint. This is seen to be the situation for relatively
low-mass BHs corresponding to e.g. low-luminosity broad-
line AGN (which both are observed to have relatively con-
stant number densities and duty cycles and are still grow-
ing, so their observed growth corresponds to that during their
“growth epoch”; see e.g. Ueda et al. 2003; Hasinger et al.
2005; Hopkins et al. 2007e; Shankar et al. 2009b, and refer-
ences therein). For more massive BHs, however, whereδ is
significantly lower today than at high redshift, the two will
not be the same.

6 In standard parlance,teff is definedin terms of the Hubble timetH . How-
ever, strictly speakingteff has physical meaning (i.e. represents the time sys-
tems spend “on” at someλ at a given redshift) only if two conditions are
met: teff ≪ tH (the duty cycleδ ≪ 1) and host properties/triggering rates are
varying on a timescale≫ teff (of ordertH ). Both of these are satisfied at low
redshift, for all but the lowest-λ populations, but may not be true at high red-
shifts (imagine, for example, all hosts are “just formed” atsome high redshift
and are also all “on” – thenteff = tH , but the real lifetime can be significantly
shorter).
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Nevertheless, the integrated lifetime is completely deter-
mined by thez= 0 Eddington ratio distributions for most rea-
sonable physical models. The reason is that this is an integral
constraint, and the total accretion needs to sum appropriately
to produce az= 0 BH of massMBH. This is trivial to see
if we temporarily consider the differential lifetime in terms
of luminosity (rather than Eddington ratio) for a BH of final
massMBH: if we have some reasonable approximation to the
shapeof the lifetime function (Equation 5) – then the total
MBH must be given by the integral:

MBH =

∫

Ldt =
∫

L
dt

dlogL
dlogL. (10)

In detail, we should truncate the lifetime function in Equa-
tion 5 at some minimumL where the integrated lifetimet → tH
– we do so but note in practice for the typicalβ ≈ 0.6 this
lowerL is sufficiently small that the integral has already con-
verged. If we assumeβ(MBH) andη are relatively constant
(and whatever physics sets them appears, at least in simula-
tions, to be local to the AGN and redshift independent), then
solving this equation yields a normalizationt0 appropriate for
determining theintegratedquasar lifetime above eachL (for
a more detailed derivation, see Hopkins et al. 2006a).

It is straightforward (although the continuity equations be-
come somewhat more cumbersome and have to be solved nu-
merically) to rewrite this derivation in terms of the Eddington
ratio distribution (Equation 6), and the solution is similar7.
Performing this exercise, we can approximate the integrated
lifetimes at each logarithmic range inλ by the same Equa-
tion 6 (with η ≈ 0.4), but with an “integrated” normalization
t0 whose constrained value can be roughly approximated as
1.26(1−1.8[β−0.6])×108yr (near a constant∼ 108yr, i.e.
≈ 2−3 Salpeter times, appropriate for growing a BH by an or-
der of magnitude in mass). Integrating Equation 6 from some
minimumλ to λ = 1 with this normalization, we obtain the
required integrated lifetime in eachλ range.

(3) “Episodic” Lifetimes : This is the lifetime of an indi-
vidual AGN/quasar “event” or some effective width in each
peak in the quasar lightcurve. If AGN are excited to high Ed-
dington ratio by some sort of trigger, then the time they spend
in a given range ofL or λ as a consequence of just that trig-
ger is the appropriate episodic lifetime. The duty cycle at a
given redshift is (to lowest order) the product of the trigger-
ing rate and episodic lifetime: for a fixed episodic lifetime, if
the triggering rate is doubled, the effective lifetime doubles as
well. Recall, it is the duty cycle (volume-averaged fraction) of
BHs at a given Eddington ratio/luminosity that is observation-
ally constrained by what we consider here. Therefore, based
on the observations discussed thus far, we can only place an
upper limit on the episodic lifetime (it cannot, of course, be
longer than the integrated lifetime). We discuss the degen-
eracies this implies and possibilities for direct constraints and
complimentary lower limits to the episodic lifetime in § 6.

Figure 9 compares the effective and integrated lifetimes de-
termined from our fitting as a function of BH mass and mini-
mumλ. The effective lifetime, being essentially a duty cycle,

7 In doing so, one is implicitly referring to the time spent at agiven Ed-
dington rationear the final BH massas observed at the appropriate redshift.
There is no way to determine from the observations here, for example, if
a 109 M⊙ BH spent many Salpeter times growing in near-Eddington lim-
ited fashion from a small∼ 1M⊙ seed at very high redshifts, or formed
directly as a∼ 105 M⊙ seed BH. More rigorously we could write this as
t[> L/LEdd(MBH, f)]. However in terms of the Eddington ratio distribution
that would be measured at any epoch in a relatively narrow range of BH
mass, the two are identical.
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FIG. 9.— Effective quasar lifetime (black circles) above a given Edding-
ton ratioλ, i.e. the duty cycleδ(> λ) times the Hubble time, fitted as a
function of BH mass to the data in Figures 1-2. The data are at low red-
shift, so this should be thought of as the average lifetime for objects whose
luminosity function is similar to that observed at low-z (see text). Dashed
blue lines compare the model predictions, integrating overthe cosmologi-
cal history of triggering. The integrated quasar lifetime (red squares) deter-
mined by integrating over the best-fit lifetime distribution to the observations
in each bin ofMBH (applying the appropriate mass conservation equation)
is shown for comparison. Dotted orange lines are the predicted integrated
quasar lifetimes – reflecting the total time at eachλ (integrated over any
arbitrary cosmological history) required by continuity toproduce a BH at
z= 0 with the observed mass. The two lifetimes are similar for BHs at lower
massesMBH .107.5 M⊙ (at which masses observations suggest the duty cy-
cle/volume density of quasars has been relatively constantsincez∼ 1− 2),
but different at the highest masses (where there has been a steep drop-off in
quasar activity sincez∼ 2; i.e. the systems did most of their growth preferen-
tially at high redshifts and have lower average integrated lifetimes at higher
λ today).

can be determined directly from the Eddington ratio distribu-
tions where they cover the necessary dynamic range. The re-
sults are as expected – roughly constant at low BH masses,
with a steep fall in duty cycles/effective lifetimes at high-
MBH. The integrated lifetimes are determined from the fit-
ted lifetime distributions (Equation 6), given the continuity
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requirement. They are also as expected – forλ & 0.1, for
example, this gives an expectation that most BHs spent∼ a
few Salpeter times at high Eddington ratio, a requirement in
any self-consistent Eddington-limited model. They are much
more weakly mass-dependent – sinceλ is dimensionless and
BH growth at fixedλ exponential, we would expect that (to
lowest order) systems of different masses should have spent
similar time atλ over the course of their evolution. At highλ,
this is true by definition; as noted above the time at a givenλ
refers to time near thatλ near the final BH mass – if the Ed-
dington limit is applicable, all systems must spend a similar
time in this regime.

Comparing the integrated and effective lifetimes yields an
effective ratio of duty cycles:

teff

tint
=

δ(> λ |zobs)

〈δ(> λ |z> zobs)〉
, (11)

where〈δ(> λ |z> zobs)〉 is an appropriate weighted averageδ
(weighting over the time integral in Equation 9 and by the rel-
ative fraction of systems with massMBH atzobs formed around
eachz). Roughly speaking, this yields the ratio of the duty
cycle at the observed redshiftzobs to that during the epoch
in which most BHs of the given mass were actively growing.
For local low-mass BHs, this ratio is near unity; for high-mass
BHs, is falls steeply to somewhere between∼ 1−10% of its
high-redshift value, consistent with the now-standard picture
of “downsizing” in BH growth.

Note that the lifetimes in Figure 9 are not directly analo-
gous to those in previous works (e.g. Yu & Tremaine 2002;
Salucci et al. 1999; Shankar et al. 2004; Marconi et al. 2004),
because those assume a simplified light-bulb model, rather
than a continuous distribution of accretion rates.

Also, these models usually quote the total time at high Ed-
dington ratio at all BH masses since some adopted initial con-
dition (not the time at some Eddington ratio in a narrow range
of BH mass, constrained directly by observations here); as
such, the comparison requires matching the boundary condi-
tions for seed BHs in the light-bulb models.8 Also, δ here is
the duty cycle above someλ, and is not directly comparable
to the “AGN fraction” often defined observationally.

For example, Heckman et al. (2004) point out (as seen here
in the same data) thatδ(> λ) decreases strongly withMBH;
however, Kauffmann et al. (2003) and Kewley et al. (2006)
argue from the same data that the “AGN fraction” increases
with galaxy mass. This apparent contradiction owes to a num-
ber of well-known trends: bulge-to-disk ratios and velocity
dispersions drop rapidly in low-mass galaxies, so the span of
BH mass and galaxy mass are not the same at low masses;
specific star formation rates also increase rapidly in low-mass
galaxies, so for the same fractional Eddington luminosity low-
mass systems will be less AGN-dominated; and most such
samples are AGN luminosity-limited, and so probe more mas-
sive hosts to lower Eddington ratios. Modeling these selec-
tion effects is non-trivial and quite sensitive to the specific
selection effects and wavelengths of each observed sample –
we therefore do not attempt a direct comparison here. We
do note, however, that the comparison of the Heckman et al.

8 Specifically, we show in Figure 9 the average time spend in a given λ
range for individual BHs with a givenz= 0 mass. Some other definitions
adopted in the literature reflect thetotal time for all BHs that are in or passed
through a given BH mass interval (e.g. massivez= 0 BHs when they were,
earlier, at this mass). The latter lifetime definition will be higher at lower
masses, since it includes the time local, more massive systems spent “on” at
earlier times getting to their present-day masses.

(2004); Kauffmann & Heckman (2008) and Kauffmann et al.
(2003); Kewley et al. (2006) samples indicates the consis-
tency of these different indicators; in Hopkins et al. (2008d)
the authors attempt to model similar selection effects to com-
pare the self-regulated lightcurves considered here with AGN
fractions in the samples observed by Kauffmann et al. (2003)
at low redshift and Erb et al. (2006); Kriek et al. (2007) at
high redshift (see also Silverman et al. 2008a, and references
therein), and find consistent results.

6. TRANSLATION TO AGN LIGHTCURVES: EPISODIC VERSUS
INTEGRATED LIFETIMES

Given the quasar lifetime distribution, we can ask how this
relates to some “average” quasar lightcurveL(t |MBH). If
the average lightcurve were monotonic, this would be triv-
ial: inverting dt/dlogL and integrating definesL(t). For the
Schechter function in Equation 6 this is numerically straight-
forward but tedious; we find a statistically identical answer
with the convenient analytic representation of the lightcurve

λ=
[

1+(t/tQ)
1/2

]−2/β
(12)

whereβ is the same fitted to the lifetime distribution in Equa-
tion 6 and

tQ = tmax
Q ≡ t0

ηβ

β ln10
(13)

relative to thet0 fitted in Equation 6 (the zero-point int in
Equation 12 is obviously arbitrary and here is fixed to the time
when the lightcurve is at maximum). For the medianβ ≈ 0.6,
this givestQ ≈ 5.3× 107yr, similar to the Salpeter time and
characteristic dynamical times in the central regions of galax-
ies. It is straightforward to see that the lifetime distribution
yielded by this lightcurve is statistically a good match to the
Schechter function fits and observations in § 2, and it is conve-
nient for analytic models of quasar evolution. IftQ → tQ/2 and
t → |t|, it is trivial to treat this as time-symmetric about some
peak, and a nearly identical lifetime distribution is obtained
if one assumes exponential growth up to a peak luminosity
followed by a “decay phase” given by Equation 12.

Equation 12 is a good match to the decline or blowout
phase of quasar evolution in feedback-regulated simulations
(Hopkins et al. 2006b). The assumption of monotonicity need
not be exact, provided that the (average) fractional amplitude
of variation in the quasar luminosity is small (factor. 2−3)
on timescales shorter than the integrated quasar lifetime at the
luminosity of interest. At some point as the quasar lifetime
approaches the Hubble time this is almost certainly not true;
however, for the short, high-L periods this is reasonable.

What if, however, there were two such episodes (each com-
pressed in duration and separated by a cosmological inter-
val &Gyr)? Figure 10 shows a few such models (arbitrarily
re-normalized to produce the same final BH mass). First, a
monotonic or single event case (for convenience, we assume
the rise and fall about each “event” are symmetric). Second,
a superposition of three such events, each with shorter dura-
tion so that the sum dt/dlogL is conserved. Third, a super-
position of a couple of bright events and a larger number of
lower-peak luminosity events, with a power spectrum follow-
ing dt/dlogL. And fourth, a superposition of such events with
effectively short episodic lifetimes (tQ ≪ teff), or equivalently
large-amplitude variability on short timescales added accord-
ing to a power-law spectrum with slopeβ.

All of these model lightcurves reproduce the same lifetime
distribution dt/dlogL, and given dt/dlogL and the observed
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FIG. 10.— Examples of different quasar lightcurves that match the ob-
served quasar lifetime distribution (Equation 6). The models are distin-
guished by differentepisodicquasar lifetimes and frequency of triggering.
The integrated quasar lifetime/duty cycle and average post-peak decay are
the same (required to match the observedλ distributions) – the events decay
after each peak following Equation 12. Different observations, for example
probing the transverse proximity effect, are required to break the degeneracies
between these models. Constraints from these observationsat present appear
to rule out the model in the lower right panel, but the others,with an episodic
lifetime ∼ 0.3−1 times the effective/integrated lifetime, are allowed.

Eddington ratio distribution, the observed QLF will neces-
sarily be the same. Moreover, they can all be normalized to
give the same final BH mass (although for this final BH mass,
they may correspond to different initial BH masses; but this
is much smaller than the final mass and so not constrained by
the observations considered). Measurements of the Edding-
ton ratio distribution cannot uniquely determine the average
lightcurve; only dt/dlogL.

In physical and observable terms, this is because the Ed-
dington ratio distribution and corresponding dt/dlogL yield
only the effectiveand integratedquasar lifetimes – i.e. the
duty cycle and total lifetime – at someL, not theepisodic
lifetime. Averaged over some redshift interval, the timet(L)
determined from dt/dlogL(L) is thetotal time that an object
will be active at thatL in the interval. Whether that time came
continuously – in a single episode – or in some large number
of shorter episodes, cannot be inferred from the observations
considered thus far.

The episodic lifetime is of particular interest because it re-
lates to the triggering rate of quasars. If quasars are triggered
at a ratėn and have an episodic lifetime (i.e. a duration around
luminosityL per peak or triggering episode) ofti (∼ tQ if the
event is similar to the description of Equation 12), then the
number density observed isn= ṅ ti . If we know the observed
number density and the effective lifetimeteff, then attempting
to infer the triggering rate we can only obtain

ṅ≈
n

teff

( teff

ti

)

, (14)

i.e. we are limited by some guess for the ratioti/teff. The
statement thatti = teff is equivalent to the assumption that ev-
ery object at a givenL has had only one triggering episode
in recent time. But ifti were smaller thanteff by some ratio
N (ti = teff/N), then the implied triggering rate for the same
number of observed systems is higher by a factorN.

Assuming a physical model for what triggers quasars, we
can use observations of quantities such as e.g. the galaxy
merger rate to determineṅ, and doing so for the case of galaxy

mergers gives the result thatti ∼ teff (i.e. there are typically
∼ 1 triggers per unit Hubble time). If we wish to determineṅ
without reference to a specific quasar fueling model, then we
need the episodic lifetimeti .

The observed rate of evolution of the quasar luminosity
function places an upper limitti . 109yr at high luminosities
(Martini 2004), but this is already larger than the integrated
lifetime at these luminosities. Lower limits can be derived
from the sizes of narrow line regions (Bennert et al. 2002),
but these are short (ti > 3× 104yr), so are not especially
constraining (ti ≪ teff is unlikely, as it requires extremely
high rates of triggering, on timescales faster than the rele-
vant dynamical times). Indirect measures relying on match-
ing the observed BH mass function and QLF (Yu & Tremaine
2002; Salucci et al. 1999; Shankar et al. 2004; Marconi et al.
2004) and halo occupation models which compare cluster-
ing data (Porciani et al. 2004; Croom et al. 2005; Fine et al.
2006; Porciani & Norberg 2006; da Angela et al. 2008) con-
strain only the effective lifetimes.

One probe of episodic lifetimes is the transverse proxim-
ity effect – if individual episodes are short, the sizes of ion-
ized bubbles around quasars should be smaller than if indi-
vidual episodes are long. Preliminary constraints from non-
detections (see e.g. Schirber et al. 2004; Martini 2004, for
a review) suggest lifetimesti > 107yr (with a strong limit
ti ≫ 106yr) at high luminosities (λ & 0.1) where the ob-
servations are possible. More recently, potential detections
(Jakobsen et al. 2003; Gonçalves et al. 2008) and indirect
proximity effects (Worseck & Wisotzki 2006; Worseck et al.
2007) in a few objects suggestti ≈ 2.5− 5× 107yr (almost
exactly ti = teff ∼ tmax

Q for λ & 0.1− 0.2). Similar analy-
sis of the Gunn-Peterson effect around high-redshift (z> 6)
quasars suggests comparable episodic lifetimes (Bajtlik et al.
1988; Haiman & Cen 2002; Yu & Lu 2005), but is more sub-
ject to uncertainties in the structure of the surrounding gas
(Lidz et al. 2007).

The lengths of relativistic jets and radio lobes also imply
episodic lifetimes, but it is not clear that the lifetime of ra-
dio loud activity or large-scale jet formation is the same as
(or even correlated with) the lifetime for specific bolometri-
cally luminous activity. These observations (see e.g. Scheuer
1995; Blundell et al. 1999) suggest lower-limits forti & a few
108yr, but it is important to note that the observed systems
with large jets in these samples are primarily at lower Edding-
ton ratio∼ 0.01, so this is comparable to or a factor of a few
smaller than the total lifetime at these luminosities. For more
luminous FR II sources, a lifetime similar to that from the
transverse proximity effect,≈ 2×107yr, has been estimated
(Bird et al. 2008) (although see also Reynolds & Begelman
1997; Merloni & Heinz 2007).

These observations, although tentative, seem to suggest an
episodic lifetime similar to the total lifetime, in the range
ti/teff ≈ 0.3− 1 over reasonably high luminosity rangesλ ∼
0.01− 1. This is consistent with simulations and cosmo-
logical models, and similar to the characteristic timescales
of the problem (the Salpeter time for the growth of the BH,
4.2× 107yr, and characteristic dynamical/free-fall times in
galaxy centers,∼ 107−108 yr). Improved constraints would
permit the extension of this comparison to lower Eddington
ratios and enable observations to uniquely determine thetrig-
gering ratesof AGN as a function of BH mass, luminosity,
and redshift.

7. REDSHIFT EVOLUTION: QUENCHING AND DOWNSIZING
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Most of the observations considered here are at low red-
shift. Some redshift evolution in Eddington ratio distributions
mustoccur, as indicated in Figure 9:teff ≪ tint for massive
BHs at low redshift, so there must have been some point at
higher redshift where the duty-cycle of high-mass BHs was
greater (when they accreted most of their mass, aroundz∼ 2).
Constraints on this evolution can be obtained from the evolu-
tion of the quasar luminosity function – however, as discussed
above, the QLF is primarily sensitive (especially at high red-
shifts, where the faint end is less well-constrained) to high
luminositiesλ & 0.1; likewise integral constraints from the
shape of the BH mass function (and the requirement that the
integrated luminosity yield the appropriate final BH mass) pri-
marily relate to these Eddington ratios, where most mass is
gained.

As a consequence, the QLF constrains only the appropri-
ate combination ofβ, t0, andη in Equation 6 such that the
duty cycle at high Eddington ratio is reproduced. As noted
earlier, the duty cycle is equivalent to the effective lifetimeteff
(teff(λ > 0.1)/tH(z) being the high-λ duty cycle). If the life-
time/duty cycle is parameterized in the form of Equation 6,
then it is straightforward to show that this duty cycle of inter-
est is

teff(λ > 0.1)≈ t0η exp(−0.1/η), (15)

essentially independent of the slope parameterβ (that affect-
ing the lifetime only at lowerλ) and only weakly depen-
dent onη; for the reasonable physical rangeη ∼ 0.4−1, teff
changes by a factor∼ 2− 3 (η cannot decrease much be-
low this with redshift, or the number density of bright ob-
jects, observed to rise, would be exponentially suppressed).
Various observations and synthesis models have been used
to constrain this duty cycle – since this is just the high-λ
duty cycle, “light bulb” and more sophisticated models yield
nearly identical results here (see e.g. Haehnelt et al. 1998;
Yu & Tremaine 2002; Yu & Lu 2004; Haiman et al. 2004;
Marconi et al. 2004; Shankar et al. 2004). From the fits of
these synthesis models to the QLF, or from constructing an
analogous simple model (assuming the lightcurves here, but
fitting to the observed QLF from Hopkins et al. (2007e) and
integrating the continuity equations as in the synthesis models
above), it can be seen that the duty cycle at fixed BH mass in-
creases with redshift (at least fromz∼ 0−2) in approximate
power-law fashion, i.e. as

teff(λ > 0.1)∝ (1+ z)α (16)

with a maximumteff = tint ≈ 108yr for this λ (obviouslyteff
cannot increase beyond this point – and indeed this reproduces
the “flattening” in duty cycles atz& 2).

Clearly, the duty cycle of high-mass systems must increase
more quickly with redshift than that of low-mass systems.
From the comparison with observations in the various syn-
thesis models above, we note that the needed evolution can be
crudely approximated as

α= ln
[

1+
MBH

107M⊙

]

. (17)

This is not a rigorous derivation; it simply provides a use-
ful interpolation formula that approximately reproduces the
QLF evolution. At lowest order, this power-law increase in
the duty cycle of high-λ activity simply reflects the evolu-
tion in the observed number density of quasars at a given
L = LEdd(MBH) (see e.g. Hasinger et al. 2005). Second order
corrections come from e.g. the evolving number density of

BHs, but these depend only weakly on the lightcurve model
in thisλ range.

Given this, the simplest possible model is indeed consistent
with the observations: a model in which quasar lightcurves (β
andtQ, in Equation 12) are redshift-independent. Effectively
this meansβ andη in Equation 6 are fixed, as is the episodic
lifetime of quasars – all physics local to AGN evolution are
redshift-independent, only the triggering rate (hence theduty
cycle and correspondingteff and t0 in Equation 6) evolve.
This is demonstrated in models that adopt this assumption
(Hopkins et al. 2006a, 2007e, 2008d,b), but the form of the
constraints in Equation 16 makes it implicit.

It is clearly important to obtain direct constraints on the Ed-
dington ratio distributions at high redshift, particularly con-
straints on the low-λ population, in order to break the de-
generacies between this redshift-independent model and one
in which quasar lightcurves evolve. If there is some evo-
lution, it may indicate a difference in fueling or feedback
modes: one could imagine different lightcurves resulting if
the bright, high-redshift population is fueled by violent merg-
ers where the low-redshift population is fueled by stochas-
tic mechanisms, bar-induced inflows, or minor mergers; or if
feedback is not important in some populations – at high red-
shift, feedback may act efficiently as the systems of interest
are more bulge-dominated (leading to more sharply peaked
lightcurves), whereas at low redshift, with activity in primar-
ily low-MBH systems with large, gas-rich disks, feedback may
be ineffective at expelling gas content and suppressing inflows
on large scales.

There are some constraints onβ andtQ that can be obtained
from low-redshift observations. As discussed above, if a pop-
ulation is still growing (i.e. there is no sharp feature in the
redshift history of triggering/growth) then theλ distribution
today simply reflects typical low-redshift lightcurves. How-
ever, if there are distinct differences in the redshift history
of triggering – if one population (at the same BH mass) is
“quenched” (ceases growth/new triggering) at a different time
than another – then the resulting Eddington ratio distribution
(for the same quasar lightcurves) will not be the same atz= 0.

Figure 11 demonstrates this with a very simple toy model.
Assume that AGN lightcurves are universal and redshift-
independent, given by Equation 12 withtQ = 5×107yr and
β = 0.6. Objects have luminosityL = 0 until “triggered”
at some time, then follow this simple lightcurve decay (t in
Equation 12 is the time since the trigger). The probability of a
“trigger” as a function of time we arbitrarily parameterizeas
a Gaussian in cosmic time, rising from high redshift (z∼ 6)
to some peak at the “quenching redshift”zQuenchand then de-
clining toz= 0 Specifically,

P(trigger|z) ∝ exp
{ tH(z)

tH(z= 6)
−
[ tH(z)
tH(zQuench)

]2}

. (18)

This is roughly chosen to correspond to the shape of the evolu-
tion in the observed AGN luminosity density, but we empha-
size that it is just for illustrative purposes. Figure 11 shows
the resultingz= 0 distribution inλ, for a set of Monte Carlo
populations evolved in this toy model, but with a different
quenching redshiftzQuenchfor each.

Populations that quench early (highzQuench) have all de-
cayed for a long time, to pile up at lowλ and form a power-
law distribution inλ above some very low minimumλ. (The
power-lawmustturn over at some sufficiently lowλ, such that
the duty cycle integrated over all Eddington ratios is unity; the
specific turnover aroundλ ∼ 10−4 in Figure 11 reflects the



16 Hopkins & Hernquist

     
 

-2

 

-1

 

0

f(
λ 

| A
ge

) 
 [l

og
-1
λ]

3.0 2.0 1.5 1.0 0.5 0.3 0.1 0.0zQuench = 

-4 -3 -2 -1 0
log( λ = L/LEdd )

 

-2

 

-1

 

0

1.101.351.551.651.751.851.952.05Dn = 

FIG. 11.—Top: Distribution of Eddington ratios (arbitrary units) predicted
for populations with the same lightcurve (Equation 12, withβ = 0.6) but dif-
ferent toy model triggering histories. Triggering rises with time in the same
manner until a redshiftzQuench, when the systems are shut down (a roughly
Gaussian rise/fall motivated by observations). For all still-active/young sys-
tems (lowzQuench), the distributions asymptote to a single distribution given
by the ratio oft(> L)/tH for a single lightcurve/event (Equations 1-3; with
a turnover oncet(> L)∼ tH ). For quenched/inactive systems (highzQuench),
the distributions “pile up” in the long power-law tail of decayed luminosi-
ties since the epoch of triggering.Bottom: Observed distributions from
Kauffmann & Heckman (2008) at fixed BH mass (∼ 107

− 108 M⊙) as a
function of stellar population age (the parameterDn; Dn . 1.5− 1.6 cor-
responding to star-forming/still active systems,Dn ∼ 2 corresponding to “red
and dead” systems with stellar population ages∼ tH ). The observed distribu-
tion reflects the predicted trend: a single (redshift-independent) lightcurve is
consistent with the observed dependence ofλ on age/star-forming classifica-
tion. The “log-normal” behavior in young populations simply reflects the uni-
versal nature of the lightcurve and inevitable turnover when teff(> λ) ∼ tH ;
allowed to decay after quenching, this becomes the power-law-like tail in old
populations.

specific lightcurve and triggering functional forms assumed
here, together with the age of the Universe. Adjusting the
late-time lightcurve behavior or early-time triggering rates
can shift this to lowerλ.)

Populations that quench late (lowzQuench) – i.e. approach
the limit of continuous growth still occurring today – show a
power-law behavior at high-λ that directly traces the quasar
lightcurve (as discussed above, with duty cycles simply given
by teff ∼ tint), with a turnover whereteff → tH . The resulting
distribution looks roughly log-normal, and asymptotes to the
same distribution for all low-zQuench (all still-active popula-
tions).

Note that the details in Figure 11 are somewhat arbitrary –
we have just chosen a toy model triggering history to high-
light the dependence on models with strong features in that
history; it is easy to construct others. It is possible to tune

these histories such that, for example, the high-zQuench pre-
dictions continue their power-law like behavior to lowerλ or
shift the “turnover” in the lognormal (low-zQuench) regime. But
thequalitativeresults are insensitive to the precise parameter-
ization of the triggering history, provided there is a significant
feature/shutdown after a given time.

Recently, Kauffmann & Heckman (2008) expanded upon
the Eddington ratio distributions measured by Heckman et al.
(2004) and Yu et al. (2005), and quantified theλ distribution
as a function of stellar population age (specifically the ob-
servable parameterDn, which is a tracer of activity:Dn . 1.5
systems being still active or. 3Gyr old, in mean stellar pop-
ulation age, whereasDn → 2 systems are quenched with ages
∼ tH). Figure 11 compares theλ distribution measured as a
function of stellar population properties (for BHs with fixed
mass 107−108M⊙) at z= 0. The trends are very similar to
those predicted (and it is not hard to imagine more detailed
star formation history models, more precisely tuned to yield
quantitative agreement).

This is already interesting: Kauffmann & Heckman (2008)
interpret the observed trend as an indicator of two indepen-
dent accretion modes (a “power-law” mode, in old systems,
and a “log-normal” mode, in young ones). This could still
be the case, but the comparison here demonstrates that the
observed trend is also the natural expectation of a model in
which all AGN lightcurves are identical, but there are simply
differences in the triggering rate corresponding to when dif-
ferent galaxies/BH populations were “quenched” or slowed
their growth. The uniformity of the Eddington ratio distribu-
tion in the “log-normal” regime is not surprising in this case
– it simply reflects the fact that quasar lightcurves are simi-
lar and that all populations in this regime of stellar popula-
tion age are “still active” (i.e. are continuously growing,in
a population-averaged sense; they do not have a sharp fea-
ture of higher-redshift activity that dominated their growth);
the “power-law” regime is simply the “log-normal” popula-
tion allowed to decay to lower luminosities as triggering rates
decline with redshift.

Moreover, these observed trends place significant con-
straints on lightcurve evolution. Figure 12 considers the
same model predictions, but in models where the lightcurve
parameters in Equation 12 evolve with the “triggering red-
shift.” For convenience we parameterize the evolution sim-
ply asβ ∝ (1+ z)β

′

z and tQ ∝ (1+ z)t′z , wherez here refers
to the redshift where a given trigger occurs. Forβ′

z = −0.5
or t ′z = −0.5, the predictions are similar to the no-evolution
case, consistent with the observations. Again, we stress that
the exact mapping to observations depends on the precise red-
shift evolution of the triggering distribution, and more impor-
tantly on how star formation histories in detail evolve relative
to AGN triggering histories, needed to predict observed quan-
tities such asDn – however, as long as the observed qualitative
features are intact, it is always possible to find models where
those assumptions are adjusted to give a more precise quan-
titative match to the observations. However, forβ′

z = 0.2 or
t ′z = 0.5, the results are qualitatively much different – they
do not resemble the observations. The sense of the implied
evolution in this case would be that lightcurves become more
shallow/extended with redshift: as a consequence, quenched
systems would not decay sufficiently relative to observations.
In these cases, where the features of the predicted distribu-
tions are qualitatively different from the observations, we find
that no tuning of the triggering rate distributions is able to
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FIG. 12.— As Figure 11, but in models where the median lightcurve
(parameterized by lifetime slopeβ and episodic lifetimetQ; Equation 12)
evolves with redshift. Top: Lightcurves become more shallow/extended
with increasing redshift (β ∝ (1+ z)0.2, tQ ∝ (1+ z)0.5). It is not pos-
sible to match the observed trends from Figure 11 with such evolution.
Bottom: Lightcurves become more sharply peaked with increasing redshift
(β ∝ (1+ z)−0.5, tQ ∝ (1+ z)−0.5). Such evolution is consistent with the
observed trends (andz∼ 1 observations in Figure 3). The trend ofλ distribu-
tion with age/triggering history puts significant constraints on lightcurve evo-
lution: evolution towards more “quiescent” models (including stellar wind or
isolated accretion disk modes) is disallowed; no evolutionor weak evolution
towards more violent/efficient feedback modes are consistent with observa-
tions.

“fix” the disagreement with observations.
This comparison constrains the allowed range:

−0.5≤ β′
z ≤0.05

−0.7 ≤ t ′z ≤ 0.25 . (19)

These are not error bars; rather, they represent the allowed
range in which solutions exist that can reproduce the observed
trends from Kauffmann & Heckman (2008). Within this
range, the results are also consistent with the observationally
inferred Eddington ratio distributions from Merloni & Heinz
(2009) atz= 1. The constraints are non-trivial: redshift evo-
lution must be relatively mild, and the form of evolution al-
lowed is such that lightcurves become more sharply peaked at
higher redshifts – the sense that might be expected if trigger-
ing events are more violent and/or feedback is more efficient.
Evolution in the opposite sense (evolution towards the pre-
dictions of the stellar wind fueling or isolated accretion disk
models discussed in § 4, or towards less efficient feedback)
is ruled out. Together with the constraints above regarding
evolution in the duty cycle,δ ≡ teff/tH ∼ tQ×dN/dt, the con-
straints on evolution intQ imply corresponding constraints on
the triggering rate of independent AGN events, dN/dt.

8. IMPLICATIONS FOR THE INTEGRATED GROWTH OF BLACK
HOLES

Given the observationally constrained AGN lifetime distri-
bution, Figure 13 uses it to infer how different Eddington ra-
tios contribute to integrated black hole growth. Essentially
this amounts to assuming that the shape of the Eddington ratio
distribution is well-described by Equation 6, and integrating
over the time at each Eddington ratio to determine the frac-
tional contribution to the final BH mass from each range in
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FIG. 13.— Contribution from different Eddington ratios to the integrated
BH growth, given the observationally constrained typical quasar lifetime dis-
tribution (Equation 6).Top: Differential contribution to the integrated BH
mass from each logarithmic interval in Eddington ratioλ, shown with a lin-
ear (left) and logarithmic (right) y-axis scale.Bottom: Cumulative contribu-
tion from all Eddington ratios less than the givenλ. From the observations,
the BH growth is dominated by moderate/large Eddington ratios∼ 0.2. The
contribution from low Eddington ratios that may be radiatively inefficient
(λ . 0.01) is small (∼ 20%), but non-negligible, in agreement with various
independent constraints (see Hopkins et al. 2006d).

λ. Recall from § 4, the total mass accreted must add to the
total BH mass, and so in fractional terms the absolute nor-
malization of the lifetimes can be factored out. Also as noted
above, it makes little difference (because little mass growth is
contributed by such low accretion rates) whether we truncate
the distribution at some sufficiently lowλ or integrate down
to λ→ 0. For simplicity, we consider the median best-fit life-
time distribution withβ ≈ 0.6, the dependence on mass that
may be present is sufficiently weak that the results are similar
in the observed range.

Figure 13 shows the fractional contribution to the final BH
mass from each logarithmic interval inλ (as well as the cu-
mulative contribution from all Eddington ratios< λ). Given
the observations, BH growth is dominated by moderate/large
Eddington ratios∼ 0.2. The contribution from low Edding-
ton ratios that may be radiatively inefficient (λ . 0.01) is
small (∼ 20%), but it is worth noting that it is not entirely
negligible, and this fraction is sufficient that such populations
could be a significant contributor to the growth in some low-
luminosity AGN populations (for more detailed comparison,
we refer to Hopkins et al. 2009d). These expectations are in
good agreement with various independent constraints, integral
arguments (Soltan 1982), and models for the fueling of AGN
and buildup of the BH mass function (for a review of these
constraints and discussion of the contribution of radiatively
inefficient sources, see Hopkins et al. 2006d, and references
therein).

For this reason, it is easy to construct models matching both
the observed QLF and thez= 0 BH mass function with a “uni-
versal” lightcurve within the constraints developed here.For
the specific lightcurve models discussed here, Hopkins et al.
(2007e) show this explicitly (see their Figure 10, compar-
ing the predicted BH mass function from fitting the compiled
QLF data with the same set of light curves as those considered
here). Similar conclusions are reached by Yu & Lu (2008).

9. DISCUSSION AND CONCLUSIONS

9.1. Overview
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We have compared observations of the Eddington ratio dis-
tribution as a function of BH mass, redshift, and luminosity
with various theories. We find good agreement between the
observations and the predictions of the self-regulated feed-
back models for BH growth and evolution from Hopkins et al.
(2005d,a,b, 2006a,b); Hopkins & Hernquist (2006). The
agreement covers the entire observed dynamic range, with ob-
servations extending down 5−6 orders of magnitude in Ed-
dington ratio (L/LEdd∼ 10−6−1), over three orders of mag-
nitude in BH mass (MBH ∼ 106−109M⊙), corresponding to
∼ 8 orders of magnitude in luminosity, and (given indirect ob-
servational constraints) from redshiftsz∼ 0−1. The models
are not fitted to these observations – there are no free parame-
ters adjustable, and the range of uncertainty between different
versions of the models constrained to reproduce the observed
quasar luminosity function is small (within the observational
error bars).

The lifetime – already as constrained in a purely empirical
sense from the observations, is clearlynot a delta function –
i.e. quasars are not “light bulbs” – rather, it is a smooth, con-
tinuous, and relatively steep function of luminosity/Eddington
ratio, with more time spent at lower luminosities/Eddington
ratios.

We also show agreement with observed Eddington ratio dis-
tributions as a function of AGN luminosity, but these are less
constraining, because of the inherent Eddington ratio lim-
its implied by the selection (wavelength-dependent effects
further complicate comparisons; discussed in Hopkins et al.
2009d).

9.2. Implied AGN Lifetimes and Growth Histories

The observationally implied lifetime distribution can be
generally parameterized (in model-independent fashion) as a
Schechter function, with a characteristic normalization life-
time, a turnover at Eddington ratios near∼ 1 (reflecting
a physical limit around the Eddington limit), and a faint-
end slopeβ (such that the luminosity-dependent lifetime
t(> λ) ∝ λ−β at smallλ). The observations favor a best-fit
β≈ 0.6±0.05 (in agreement with feedback-regulatedmodels,
discussed below) for typical∼ L∗ galaxies and BHs. Com-
bined with constraints from the quasar luminosity function,
there is evidence for weak BH mass-dependence ofβ, as pre-
dicted by hydrodynamic simulations (Hopkins et al. 2006b).

The observations directly yield quasar duty cycles and life-
times as a function of Eddington ratio and BH mass. In
terms of the integrated time at a given Eddington ratio in-
terval (around some final BH mass), the “quasar” lifetime –
i.e. lifetime at high Eddington ratios& 0.1, is similar to that
expected from the Salpeter (1964) time and other observa-
tional constraints,∼ 108yr. However, the time at lower Ed-
dington ratios rises rapidly – witht(λ & 0.01)∼ 0.5−1 Gyr
andt(λ& 0.001)∼ 1−5Gyr.

This allows us to quantify the fractional contribution to
present-day BH mass from various intervals inλ; growth is
dominated by largeλ∼ 0.2, with a small – but non-negligible
– contribution∼ 20% from accretion at low Eddington ratios
λ. 0.01, in agreement with integral arguments (Soltan 1982)
and various independent constraints (Hopkins et al. 2006d,
and references therein).

Comparison of these integral constraints with thez= 0 ob-
servations (comparing “integrated” and “effective” AGN life-
times/duty cycles) reflects the increasingly established AGN
downsizing trend: the low-mass BH population is still grow-
ing today, the high-mass population has shut down since its

earlier epoch of peak activity.

9.3. Constraints on Models of Lightcurves and Lifetimes

There is enormous constraining power in the Eddington ra-
tio distribution at lowλ in BH mass-limited samples. Already,
the observations atz= 0 are sufficient to limit the Edding-
ton ratio/quasar lifetime distribution to a narrow range around
the theoretical predictions from recent hydrodynamic simula-
tions incorporating a self-consistent model for accretionand
feedback. Those models predict that the self-regulated nature
of BH accretion should lead to a relatively self-similar de-
cay phase in AGN luminosity or Eddington ratio (regardless
of e.g. triggering mechanisms, or the exact details of feed-
back physics),L∝ t−(1.5−2.0), which gives rise to the observed
power-law-like faint behavior in the lifetime distribution with
predicted slopeβ ≈ 0.6.

The observations strongly rule out (at> 5σ significance)
simplified models for quasar lightcurves, including: “light-
bulb” models in which quasars turn “on” for some time at a
fixed or relatively narrow range of accretion rates, or “expo-
nential” models in which AGN grow at fixed Eddington ratio
and then “shut off” rapidly.

Models where BH accretion simply traces stellar mass loss
are also ruled out (& 4σ). Stellar mass loss may still be a
fuel source; however, the observations argue that some pro-
cess must further regulate AGN activity, shutting down accre-
tion more efficiently than the simple slow starvation expected
if BH growth directly traced stellar mass loss.

At ∼ 3−5σ significance, the observations also rule out iso-
lated accretion disk models (Yu et al. 2005, and references
therein) - i.e. accretion disks fueled rapidly but then cut off
from a future gas supply, without feedback (such that they
evolve by gas exhaustion). These are a considerable improve-
ment on the light bulb model, but are still ruled out formally–
with the sense again that some process must shut down growth
more efficiently (possibly the addition of even mild outflows
to the isolated disk solution) – especially for high-mass BH
populations.

Local observations of the Eddington ratio distribution alone
do not strongly constrain the mass or redshift dependence of
these properties. Combining the observations here with con-
straints from the quasar luminosity function, observations do
favor a weak mass-dependence in the shape of the lifetime dis-
tribution, with the sense thatβ decreases with increasing BH
mass (β ∼ 0.6−0.2{log[MBH/107M⊙]}). This is equivalent
to the statement that more massive systems “shut off” more
abruptly than low-mass systems; a trend predicted by hydro-
dynamic models, as quasar feedback becomes relatively more
dominant (and bulge-to-disk ratios increase while global disk
gas fractions decrease) in more massive systems.

Recently, Kauffmann & Heckman (2008) have shown that
theλ distribution depends on the stellar population age of the
system. We show that the observed trends naturally arise from
a single lightcurve of the form constrained here, as a conse-
quence of different triggering histories. Systems which are
still active/growing (i.e. have not “quenched” their gas supply,
BH growth, or star formation) remain at higher accretion rates
reflecting the median lightcurve directly, while systems which
quenched at some earlier epoch have decayed down to the
lowerλ power-law-like tail of the lightcurve distribution. The
existence of these trends, and observational constraints on the
Eddington ratio distribution atz= 1 (Merloni & Heinz 2009),
set some constraints on the evolution of typical lightcurves
with redshift.
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We find thatβ and the episodic quasar lifetimetQ cannot
evolve strongly (parameterized asβ ∝ (1+z)β

′

z andtQ ∝ (1+
z)t′z ; the allowed range is−0.5≤ β′

z≤0.05,−0.7≤ t ′z≤ 0.25).
Evolution towards a stellar wind or isolated accretion diskso-
lution is strongly ruled out – rather, the sense of (mild) evo-
lution allowed is towards more sharply peaked lightcurves at
higher redshift, which may be expected if fueling is more vio-
lent and/or feedback is more efficient in this regime. The evo-
lution of duty cycles (and correspondingly “effective” AGN
lifetimes) at the high-luminosity end (λ& 0.1) is directly con-
strained by evolution of the quasar luminosity function – this
limits the combination oft0 andη (but not the faint-end slope
β), and (given some constraint on the evolution of episodic
lifetimestQ) the triggering rate of quasars to evolve according
to Equations 16-17, increasing with redshift more rapidly in
higher-mass BHs.

These constraints on the AGN can be transformed into con-
straints on the average AGN lightcurve, suggesting a charac-
teristic power-law like decay (L ∝ t−(1.5−2.0)) similar to that
predicted in models, after rapid growth to some peak lumi-
nosity. The observations of the Eddington ratio distribution
tightly limit the shape of such lightcurves, but only weakly
constrain the characteristic timescale for a single such “event”
(i.e. the width in time of a single “peak”) – the episodic AGN
lifetime – by setting an upper limit.

Observational constraints from e.g. the proximity effect
in bright quasars can independently set lower limits on the
episodic lifetime, however, and suggest that (at least over
the observed range for the proximity effect, namely quasar
activity with λ ∼ 0.1− 1) the episodic lifetime is compara-
ble to the integrated lifetime, in the rangetQ ∼ 0.3− 1.0tint.
This implies thatthe typical massive BH has experienced no
more than∼ a couple of bright, high Eddington ratio quasar
episodes while near its current (z= 0) mass. This is in agree-
ment with predictions from cosmological models that asso-
ciate the brightest quasar activity with fueling in violentma-
jor mergers (Hopkins et al. 2008d), for which there are only a
couple of events expected since high redshift. Improved con-
straints on the episodic lifetime will allow the observed quasar
luminosity function to be more robustly translated into thedis-
tribution of AGN triggering rates as a function of BH and host
mass. Extending the observational constraints on the episodic
lifetime to lower luminosities/Eddington ratios is also impor-
tant, as one might expect that although a typical object only
experiences a couple of triggers to near-peak activity, it could
have many more triggers for lower-level activity.

9.4. Other Tests and Future Work

Our findings agree with other (less direct) independent con-
straints. Recently, for example, Yu & Lu (2008) showed that
the joint evolution of AGN luminosity functions with redshift
favors similar lightcurves. These results (from the QLF and/or
BH mass function and integral/continuity arguments) provide
independent support for the constraints here, but are primar-
ily sensitive to luminous (high-λ) behavior and cannot dis-
tinguish between similar lightcurves (with slightly different
β), such as the isolated accretion disk or feedback-regulated
predictions. The lightcurve shape can also be probed by the
dependence of AGN clustering on luminosity and shape of
the QLF or “active” BH mass function in deep samples; the
observations at present appear to favor feedback-regulated
models over simplified light-bulb or exponential lightcurve
models (see Adelberger & Steidel 2005; Myers et al. 2007;
Greene & Ho 2007; da Angela et al. 2008), but again deeper
observations are needed to distinguish between the proposed
physically motivated models.

Extending the observations of the Eddington ratio distribu-
tion to higher redshift will greatly improve these constraints as
well as limit possible redshift evolution in quasar light curves.
More massive black holes will be closer to their peak growth
at higher redshifts, allowing observations to probe the times
of greatest interest. Atz∼ 1−3, theλ& 0.1 end of the distri-
bution, in broad-line luminous quasars, is already constrained
by the observed QLF and application of the virial BH mass es-
timators (Kollmeier et al. 2006; Fine et al. 2008). Combined
with these constraints, smaller volume but deep redshift sur-
veys can be used to construct samples which are complete
to a given BH/bulge mass, and similar narrow-line searches
in these hosts could limit the Eddington ratio distributionat
much lower ratios. If coverage is sufficient, X-ray data can be
used in the same manner. Atz≥ 2, complete, large-volume
spectroscopic or X-ray samples are not available at present.
Here, indirect tests will remain important for the near future,
but improved constraints on what (if any) evolution is seen at
lower redshifts in the shape of the lifetime distributions will
considerably inform future models and observational efforts.
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