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ABSTRACT QUasi-Affine TRansformation Evolutionary algorithm (QUATRE) is a new optimization
algorithm based on population for complex multiple real parameter optimization problems in real world.
In this paper, a novel multi-group multi-choice communication strategy algorithm for QUasi-Affine
TRansformation Evolutionary (MM-QUATRE) algorithm is proposed to solve the disadvantage that the
original QUATRE is always easily to fall into local optimization in the strategy of updating bad nodes
with multiple groups and multiple choices. We compared it with other intelligent algorithms, the most
advanced PSO variant, parallel PSO (P-PSO) variant, native QUATRE and parallel QUATRE (P-PSO) under
CEC2013 large-scale optimization test suite. Thus, the performance of MM-QUATRE was verified. The
conclusion that the MM-QUATRE algorithm is superior to other intelligent algorithms is proved by the
experimental results. In addition, the application results of MM-QUATRE algorithm (MM-QUATRE-RSSI)
based on RSSI in WSN node localization were analyzed and studied. The results appear that this method has

higher localization accuracy than other similar algorithms.

INDEX TERMS PSO, P-PSO, QUATRE, RSSI, WSN, MM-QUATRE, bad point update.

I. INTRODUCTION

In the past decades, the problem of global optimization has
attracted the attention of many scholars. These scholars have
resarched various bionic intelligent optimization algorithms,
and evolutionary computing (EC) techniques [1]-[3]. In gen-
eral, by using the gradient of the objective function, the maxi-
mum or minimum value of the objective function is obtained,
but the multiple dimensional function is extremely time-
consuming and always trapped into the poor local optimiza-
tion. The development of evolutionary computing technology
makes it possible to solve these complex problems. Moreover,
Some functions are nondifferentiable, so evolutionary com-
puting technology comes into being. Optimization problem
not only exists in the field of science, but are also found in
our daily lives [4]. Different objective function must be used
for different optimization problems. Therefore, in the process
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of optimization designing the appropriate objective function
is the primary step. Although in some specific optimization,
the objective function usually contains a series of constraints,
the unconditional constrained optimization method plays a
fundamental role in various optimization applications, which
will affect the performance and direction of the constrained
optimization method. In this article, the main focus is on
unconstrained optimization in the search field. In addition,
there are many ways to deal with unconstrained optimiza-
tion. Computational intelligence (CI) [5]-[11] provides a
new thinking for these optimization problems, especially if
the problem is related to uncertain or noisy. Evolutionary
computing (EC) [12], [13] consists of many simple and
efficient algorithms, and proposes an evolutionary optimiza-
tion method that can be reduced to a subset of CI. It has
many other branches, such as bionic intelligent algorithm,
neural network, quantum computing, meme computing and
so on. For example, by simulating the foraging behavior of
birds in a certain area, a simple and effective particle swarm
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optimization(PSO) algorithm is generated [14]-[16]. In addi-
tion, many researchers have studied and improved the opti-
mization ability of native PSO by improving PSO algorithms
search strategies. Differential evolution (DE) is a new algo-
rithm inspired by genetic annealing algorithm, it is formed
by a mixture of genetic algorithm and simulated annealing
algorithm. By simulating the release of pheromones during
foraging, the ant optimization algorithm is generated. The
artificial bee colony (ABC) algorithm was developed by sim-
ulating the communication behavior between bee [17]-[19].
Differential Evolution Algorithm (DE) [20] is an effi-
cient global optimization algorithm. It is also a group-
based heuristic search algorithm. Each individual in the
group corresponds to a solution vector. The evolutionary
process of the differential evolution algorithm is very
similar to the genetic algorithm, including mutation,
hybridization and selection operations, but the specific def-
inition of these operations is different from the genetic
algorithm.

QUATRE [21]-[24] is a novel proposed global optimiza-
tion algorithm for evolutionary structure. It overcomes the
disadvantages of DE algorithm, such as the decrease of pop-
ulation diversity, premature convergence to the local optimal
point, or stagnation of the algorithm with the increase of the
number of evolutionary evolution iterations. QUATRE also
has the abiliy to converge very fast, even in the optimization
process of solving high-dimensional Multi-modal problems.
For purpose of enhance the global optimization performance
of QUATRE and avoid falling into the local optimal posi-
tion, we propose a new improved strategy of Multi-group
and Multi-choice in this paper. It is called MM-QUATRE.
The algorithm optimizes the performance of the native
QUATRE algorithm by selecting a random communication
strategy between subgroups to update the lower state points
in each group. Therefore, compared with other algorithms,
MM-QUATRE algorithm has obvious advantages in global
optimization.

Node location information is very important and plays a
key role in WSN [25], [26], [28], [29], navigation, tracking,
monitoring and other applications. According to whether
the distance between nodes needs to be measured or not,
the positions can be divided into those based on dis-
tance measurement and those without distance measure-
ment [30]-[32]. According to the occasion of deployment
can be divided into outdoor positioning and indoor posi-
tioning. In general, the positioning accuracy of range-based
positioning algorithm is higher than that of rangeless posi-
tioning algorithm. The common methods based on distance
measurement include angle orientation, three-face orientation
and maximum likelihood estimation [27]. Common ranging
methods include RSSI, TOA/TDOA/RTOF, phase difference,
near-field electromagnetic ranging (NFER), etc. Because
RSSI-based ranging method does not need additional equip-
ment, simple and easy to operate, in recent years, published
research results have been widely used. In recent years, many
scholars have applied intelligent algorithm to the positioning
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algorithm of wireless sensor network based on distance mea-
surement [22], [30], [33], [34].

The remain of this paper deals with the following.
In Section 2, we briefly introduces QUATRE algorithm
and RSSI based wireless sensor network node location.
Section 3 the proposed MM-QUATRE algorithm is intro-
duced in detail. Section 4 shows the experimental results of
the single objective real parameter optimization under the
CEC2013 [35]-[37] test suite and compares them with other
EC algorithms and the results of application in RSSI-based
wireless sensor network. Finally, the newly proposed
MM-QUATRE algorithm is summarized in section 5.

Il. RELATED WORKS

A. QUATRE ALGORITHM

In geometry, affine transformation is the transformation pro-
cess from one affine space to another affine space [21], [24].
The accurate evolutionary formula of QUATRE is shown
ineq.l.

X<M®X+M®B (D

The operator ® represents the multiplication by compo-
nents, and its meaning is the same as the ’.* *operator in Mat-
lab. The matrix X represents the position matrix of the particle
swarm, then X = [x_], X2, ... ,x;,S]T. The vector X; represents
the position of the ith particle in the population, which can be
expressed as X; = [x;1, X2, . . . , Xip]. ps represents the number
of particles in the population. Matrix B represents the muta-
tion matrix of particles between populations, which can be
generated in various ways. ¢ represents the difference matrix
coefficient factor. Where, the difference matrix is the result of
X1 — X;2. TABLE 1 lists seven mutation schemes for matrix
B [22]. X1, X2, Xi3, X14, Xps represent the random matrix
generated by random permutation of the matrix X. Xgpes,G
denote the position vector of the globally optimal particle at
the Gth iteration. Xgpest, G = [xgb;sty(;, Xgbest,Gos -« - » xgb;st,g]
global optimal particle position vector form the first iteration
to the current iteration [21], [22], [24].

fl Xgbest,G
X2 Xgbest,G

X= ngest,G = & 2)
Xps Xgbest,G

M is the evolutionary matrix, made up of 0 and 1.
M represents a matrix of binary inverse operations about M.
Binary inversion means taking the inverse of a matrix. The
0 element inverts the contravariant to 1, 1 element inverts the
contravariant to 0 [21], [22], [24]. As shown in eq.3.

1 1 0 0 0 0 1 1
1 1 0 0 — lo o 1 1
M=1, 171 o M=15 o o 1| @
0 1 1 1 1 0 0 0

The evolution matrix M is diverse in QUATRE algorithm.
The generation of the evolutionary matrix M requires first
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TABLE 1. Seven schemes of mutation matrix B calculation.

No. QUATRE/x/y Equation
T QUATRE/rand/T B=XuctF Xizc-Xs.G)
2 QUATRE/best/1 B = Xgbest.c + F - (Xor.G — Xr2.G)
3 QUATRE/target/1 B=X+F (Xr1.G — Xr2.G)
4 QUATRE/target-to-best/1 B=X+F- (Xgpest,c — X)+ F - (Xr1,c — Xr2,@)
5 QUATRE/rand/2 B=Xmc+F Xe2c - Xe3.g) + F - (Xrac — Xes.G)
6 QUATRE/best/2 B = Xgpest,a + I+ (Xr1,6 — Xr2) + F - (Xr3,c — Xra,G)
7 QUATRE/target/2 B=X+F (Xp1.c - Xr2.¢) + F - (Xp3.G — Xra.3)

initializing a Mgynp matrix of the lower triangle, and then
randomly permutation the row vectors of Mmp [21], [22],
[24]. When ps = D, the transformation formula of M is shown
as eq.4.

thp = 4

—
— == O
— -0 O
- o O O
—
O = = =
SO = =
(e )

When the total number of particle population ps is much
larger than the individual dimension D, the evolution matrix
M needs to expand according to ps. In general, when ps =
i X D+ K, the first i x D rows of matrix M are composed
of i lower triangular matrices of D x D, and the last K rows
are composed of the first K rows of D x D lower triangular
matrices [21], [22], [24]. For example, when ps =2 x D + 2,
is shown in eq.5.

1 1 ... 1
11 .. 1
111 .. 11 .11
111 .1 1 1
1 1.1

Momp = | M=1, )
111 1 1
111 .1 1
1 1 1.1
11 | 11 1 1

B. NETWORK NODE LOCATION OF RSSI

Suppose there are a total of K = M + N nodes in a two-
dimensional region, with M anchor nodes and N unknown
nodes. The coordinates of anchor node are B;(u;, v;) (i =
1,2,...,N), and the coordinates of the unknown node are
S¢(us, vi) (t = 1,2..., M). RSSI value can be obtained when
the node communicates, and the distance d,; between the
anchor node and the unknown node can be calculated by
eq.6. d; represents the distance from the point located using
the DV_hop method to the i-th anchor node. In wireless
sensor networks, the main purpose of the positioning problem
is to minimize the positioning error. Considering that the
distance estimation error also increases with the number of
hops. Therefore, the error function can be weighted by the
reciprocal of the hop square [22]. The fitness function of
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MM-QUATRE can be defined as eq.7.

dui = — wi? + (v —vi)? (6)
" 1 n
fl,y) = min(;( hopm_)z(dm —d)?) ©)

1) CALCULATION OF WEIGHTED HOPS BASED ON RSSI

The model of RSSIis shown in eq.8, which takes into account
the complexity of the transmission environment and the influ-
ence of noise on the ranging results in the transmission pro-
cess. In eq.8, p,(dp) represents the power received when the
distance between two nodes is dy, while p,(d) represents the
power received when the distance between two nodes is d,
and n represents the path loss constant of the signal in the path
transmission process (the actual measured value is between
1.5 and 5) [38], [39]. x, is an uncertainty factor determined
by multipath fading and occlusion.

d
P(d) = pr(do) — 107 log(%) + X5 ®)

When the distance between two nodes is so far, the final
positioning error is also so larger. Hence, the RSSI error
should be given according to this rule. First, RSSI; needs to
be added to the broadcast message, which contains the signal
received after the jth broadcast from the ith anchor node B;
to the kth unknown node Si. If the number of hops corre-
sponding to the message received is larger than the number
of hops of the previous message, the anchor node discards
the message with a larger number of hops [39]. Then find the
path proportionality coefficient A from one anchor node B; to
all anchor nodes, as shown in eq.9.

A

m
D:
M= DL g ©

j=vj#

where bi, j represents the connection distance from the i-th
anchor node to the j-th anchor node through the relay of
multiple nodes, and d;; represents the Euclidean distance
from the i-th anchor node to the j-th anchor node.

Finally, the path scale factor A of the i-th anchor node
obtained by eq.9 and the relay distance D, of the unknown
node to the anchor node i obtained by eq.8 are used to estimate
the true distance from the unknown node to the anchor node i
according to eq.10.

1.

d= =Dy,

3 (10)
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FIGURE 1. Schematic diagram of three side measurement method.

2) LOCATION NODE CALCULATION BASED ON RSSI

If the anchor node consists of more than two, the location is
conducted by the method of trilateral measurement or maxi-
mum likelihood estimation [40], as shown in FIGURE 1.
where, the coordinates of anchor nodes Bi, B, and B3 are
(u1, v1), (u2, v2) and (u3, v3), respectively. S represents the
unknown node, and its coordinates are assumed as (u, v).
When there are three or more anchor nodes, the coordinates
(u, v) of unknown node S; can be obtained through the solu-
tioneq.11.

(1 —w? + 1 —v)? =d}
(r —uy +(va —v)? =dj

(11)
(tm — u)* + (v — v)* = d?

Formula (11) can be firstly expanded to formula (12), and
then each equation can be obtained by subtracting the last
equation, as shown below.

2 2 2.2
uy =y, + 2(up — wpu +vi — vy,

—2(vi — vy =d} —d?

u% — 12, + 2(uy — )+ v% -2
—2(vy — vy =d;5 — dp, (12)

2 2 2
Wy | — Uy + 21 — Up)u + v,
2 2 2
Vi = 200m—1 — Vv =d,;,_| —d,,

Then the eq.12 is written as a matrix form of AX = B.
Finally, the unknown anchor node position matrix X can be
expressed as eq.16.

u
X=L} (13)
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[ 2(uy — ) 2(0v1 — Vi)
A= | 2w2—up) 202 =) (14)
_Z(Mm—l — Up) 2Vip—1 — Vi)
B ui+vi—u§n—v,§,+dé—d§
B = Uy +vy =ty = vy +dy —d; (15)
Lty Vi~ Uy — Vi T —d |
AX=B = X=(ATA)'ATB (16)

Ill. MM-QUATRE ALGORITHM AND ITS APPLICATION IN
WSN LOCALIZATION BASED ON RSSI

A. MM-QUATRE ALGORITHM

The original QUATRE algorithm has certain limitations, that
is to say, it is very easy to fall into the local optimal,
so it is necessary to avoid all individuals of the population
falling into the local optimal solution through the idea of
group communication. MM-QUATRE algorithm divides to
multiple subgroups and enables them to communicate after
a certain number of iterations. By exchanging information
among groups and selecting different strategies, the positions
of some particles with bad states in each subgroup can be
changed, so that they have a stronger optimization ability.
The specific idea is to carry out inter-group communication
after iterating ifer times. Each group selects s worst points
and uses the global optimization of other groups to evolve
these bad points. For purpose of further realizing the diversity
in the process of evolution and improve the ability of global
optimization, one of the strategies was selected randomly for
updating evolution. The evolutionary strategy is shown in
TABLE 2 (assuming there are four groups).

In TABLE 2, Xbadfj represents the position of the jth
bad point in the ith subgroup after iterating G times.
Xbad,fl; represents the globally optimal particle position of
the mth subgroup after iterating G times. ry,r» and r3 are
uniformly distributed values ranging from 0 to 0.3, 0.3 to 0.7,
and 0.7 to 1, respectively.

The concrete implementation of the algorithm consists of
the following steps.

Step 1, initialize the parameters required by the algorithm,
such as the number of groups ps, the number of subgroups ¢
(this paper takes four groups as examples), the maximum iter-
ation times iferMax, and the step size GenCS among groups.

Step 2, initialize the positions of all particles in the four
subgroups and form the position matrix Xj, X2, X3, and X4
of particles in all subgroups according to eq.2.

Step 3, generate evolution matrix M and mutation matrix
B according to eq.5 and TABLE 1.

Step 4, according to eq.1, each subgroup evolves inde-
pendently, and intergroup communication is carried out for
many of GenCS iterations and a communication strategy is
randomly selected from TABLE 2 to update the points with
poor status of each subgroup.

Step 5, repeat step 4 until the maximum number of itera-
tions is satisfied.
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TABLE 2. Three species communication strategies.

No. Equation
1 XbadZ; = wXbadGJ +r1(XbestT, — Xbad))
2 XbadG = wXbad i+ ro((XbestG, + Xbest$)/2 — XbadG )
3 XbadG- = wXbadG + m((XbestG + XbestS + Xbest&)/3 — XbadG )

The pseudo-code of the algorithm is shown below.

Algorithm 1 Shows the Pseudo Code of MM-QUATRE
Algorithm

1: //initialization Initialize the searching space V, dimen-
sion D, Set the generation counter Gen = 1, the ps
individuals are randomly divided into four subgroups X1,
X35, X3 and X4 on average, and evaluate fitness values of
all individuals, and intergroup communication step size
GenCS.

2: //MainLoop Four subgroups are randomly generated
and the position matrix of the particles in the four sub-
groups is initialized(X1, X3, X3, X4).

3: Evaluate fitness values of all individuals.

4: while (The number of iterations is not satisfied) do

Generate the evolution matrix M, mutation matrix B

and matrix M.

6 Evolve individuals in each group using Equation 1.

7: Evaluate fitness values of all individuals.

8

9

W

for(i=1;i<4;i++)do
: for j=1;j <ps;j++)do
10: if £ (X; j)<f(Xpbest; ;) then

11: Xpbest; ;=X ;
12: end if

13: end for

14: end for

15: X = Xppest,j» Xgbet = opt(Xpbest; ;).
16: while Gen % GenCS==0 do

17: Select a random strategy from TABLE 2 to update
the bad point.
18: end while

19: end while
Output: The global optimum Xgp., global best fitness
value f(Xgpesr ).

B. OUR PROPOSED ALGORITHM APPLIED IN WSN
LOCALIZATION BASED ON RSSI

In this section, the scheme of using MM-QUATRE localiza-
tion in RSSI-based wireless sensor network node localiza-
tion [38] is introduced. We know that the hop number of two
anchor nodes is obtained by broadcasting information, and
the distance between two nodes is estimated by RSSI value.
Then the average distance of each hop between anchor nodes
is calculated and the position of unknown node is estimated
by least square method or maximum likelihood estimation.
The estimated distance between the nodes is obtained by mul-
tiplying the hop value by the average hop of the anchor node.
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However, when the number of hops between anchor node and
unknown node is greater than 2, this method has the problem
of poor distance estimation, which leads to the decrease of
positioning accuracy. The main purpose of the positioning
problem is to minimize the estimation error and improve
the positioning accuracy. To reduce the estimation error,
an improved RSSI algorithm based on genetic algorithm
is proposed for MM-QUATRE node localization in WSN.
The algorithm first calculates the minimum hop number and
distance between anchor nodes through the communication
between them, and then calculates the average step length
of each hop. Then the hops received by all anchor nodes
are weighted to calculate the hops of unknown nodes [22].
Finally, the location of unknown nodes is estimated by the
proposed MM-QUATRE algorithm.

For each unknown node, we use a step optimized by a com-
pletely independent MM-QUATRE algorithm to locate. The
specific optimization process includes the following steps.

Step 1, calculate the distance between anchor nodes and
jump out through RSSI value.

Step 2, then weighted the path received by all anchor nodes
to calculate the location of unknown nodes.

Step 3, initializes the parameters used by MM-QUATRE
(For example, population number ps, dimension D, etc.).

Step 4, initialize the position matrix (X1, X3, X3, Xy),
mutation matrix B and evolution matrix M for all popula-
tions. Step 5, the best individual optimal position is selected
to enter the next generation for the next evolution in each
iteration. Repeat steps 2 through 4 until the stop condition
is met.

IV. EXPERIMENTAL ANALYSIS

In this section, we verify the performance of the newly pro-
posed MM-QUATRE algorithm and its application in WSN
node localization based on RSSI respectively through two
groups of experimental data.

A. SIMULATION RESULTS ON A STANDARD BOUNDED
CONSTRAINT BENCHMARK
The following experimental results we used the CEC2013 ref-
erence function set to verify the performance of our newly
proposed MM-QUATRE algorithm. CEC2013 benchmark
set [35]-[37] contains 28 test functions, including 5 single-
peak functions (f; — f5), 15 multi-peak functions (fg — f20),
and 8 conforming functions (f21 —f>g). All of these benchmark
functions are moved to the same global minimum.

The proposed MM-QUATRE was compared with
QUATRE, PSO [14], P-PSO [41], DE, and P-QUATRE
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algorithms. These algorithms set the dimension as 10, variance of errors are shown in TABLE 3 - 4. The bolded
the search area as 10 dimensions [—100, 100], and the swarm value is the minimum error obtained by the six algorithms.

is composed of 200 particles. There are 28 test functions in According to the data shown in TABLE 3 - 4, from
total, and each test function is run 51 times. The mean and the perspective of optimization accuracy, MM-QUATRE is

8588 VOLUME 8, 2020



Z.-G. Du et al.: QUATRE With Communication Schemes for Application of RSSI in Wireless Sensor Networks IEEE ACCGSS

.
S Teee e
R o 3 0
= ST s = ST
ssft S t S
A —e—DE 75 —e—DE
#“\ —opPso 4 —o—prso b
AR |

QUATRE

—e— pQUATRE
MVLQUATRE
PSO

—e—DE 5
| —o—pPso |
3sk ¢!
o

—
H

Logarithm of optimum erfor

Logarithm of optimum erfor
Logarithm of optimum erfor

L L L L L L L L 2 L L L L L L L L L 5 L L L L L L L L
o W0 200 w0 400 500 600 700 800 900 1000 ] 10 20 a0 40 S0 60 700 80 w0 1000 o w0 20 w0 40 500 0 700 800
iterations. iterations.

o0 1000
iterations.

(a) function13-10D (b) function14-10D (c) function15-10D

T T T T T T T T T 65 T T T T T T

T T T 65 T T T T T

QUATRE QUATRE
—e—p.ousTRE —e—p.aUATRE —o—».
e

SunTne
i aame . S aaame
1 £ 3 Rl 5
s —ot etk \ —ebt
e reso - “e—reso 4 —e—eeso
L 55
LA
’

Logarithm of optimum error
S

Logarithm of optimum error

Logarithm of optimum error

35 P -

‘essssossgoge
28 Re,,
%

Sosot

o 0 20 w0 40 500 s 700 800 0 1000 ] 10 20 a0 40 S0 60 700 80 w0 1000 o 0 20 w0 40 50 0 700 800
iterations. iterations

o0 1000
iterations.

(d) function16-10D (e) function17-10D (f) function18-10D

T T T 74 T T T T T

GUATRE QuATRE GuATRE

—e—FaunTRE —e—FaunThe —e—raunTRE

3 72ty e QUATeE
|

Yo ey
5 .o 5

E —o—0E
PPSO

| —e—pPso

— ——
—o—pPso \ —

]

Logarithm of optimum error
—oe

Logarithm of optimum error
Logarithm of optimum error

’
teva Coos

Besssosss,
Soesessses,, .

/

.,
b g SESSS

o 0 20 w0 40 500 s 700 80 0 1000 o 10 20 00 400 S50 6o 700 800 0 1000 o 0 20 a0 40 S0 0 700 800

o0 1000
iterations. iterations

iterations.

(g) function19-10D (h) function20-10D (i) function21-10D

GUATRE QUATRE .

—e—pousTRE —e—p.QUATRE 4

—&— UM-QUATRE| —4— MIQUATRE 55
PSo

GUATRE

—e—pquarae

—4— UM-QUATRE|
P

PSO B & SO
\ —e—r 9 —e—ne -
. eeesssosese, % Peso T Peso Ll o Peso
200000 sasr |
&
K.\

Logarithm of optimur error

Logarithm of optimum error

Logarithm of optimur error

o 10 200 %0 400 500 600 700 800 90 1000 o 10 20 30 40 S0 60 700 80 90 1000 o w0 200 900

a0 S0 60 700 80 S0 1000
iterations. iteration

iterations.

(j) function22-10D (k) function23-10D (1) function24-10D

FIGURE 3. Comparison of the best of fitness for functions f;5 — ;4 with 10D optimization.

obviously better to the other four relative algorithms. The P-QUATRE and QUATRE algorithm take (f1, f5) as the fitness
performance of MM-QUATRE algorithm in benchmark these function, the same optimal value can be obtained.

functions (fio, fi1, f12, f13, fi4, fi5, fi9, fo0, f22. fos, f28) is MM-QUATRE algorithm and other Swarm algorithms
superior to that of other algorithms. When MM-QUATRE, each fitness function 51 times running results in the
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TABLE 3. The mean of error value of 51 runs of six algorithms in 28 benchmark functions of CEC2013.

10D MM-QUATRE  P-QUATRE QUATRE DE PSO P-PSO
f1 0 0 0 0.739818664  0.001206135  0.005866406
f 97179.04063 85426.85137  0.000557889  3294.711252  92638.39054  68384.17118
f3 1167.774295 100.7948122  3.455801074 102226375 34310800.78  22485901.69
fa 1384.56593 2077.745298 2.30E-07 5.63E+00 66.4480108  59.56889992
fs 0 0 0 1.318964608  0.020537998  0.030698153
fe 4.045268178 2.6863875 470439812 1.780849688  8.74276643  5.648167836
id 0.202892228 0.189106124  0.871850669  24.56850794  27.95464676  22.46067368
fs 20.36293841 20.36123257 20.460242 20.35903748  20.34202936  20.36059799
fa 1.49175654 0.977205986  2.158101512  8.975566214  4.717156373  4.74142257
f1o 0.150189455 0.154159211  0.165848518  1.007661801  0.386370943  0.440301328
fi1 0.858396049 1.290646039  3.121440179  47.24541785  20.75641012  17.36177512
fi2 9.982011525 10.32129108 12.3719477  47.24900851  26.75096215  23.35983185
fis 12.95545372 13.27536858  20.9775093  46.72612521  35.38855834  34.7133315
f14 11.20780248 21.72924653  115.1742355 1555.62719  632.7795179  634.8677794
fis 661.6747356 723.0923319  1010.954331  1497.579254  697.9260472  710.5917722
fie 0.980289899 1.026311338  1.178023141 1.14221882 0.92721363  0.456921219
fi7 9.948205327 8.694712367  11.10988824  61.60986312  26.9153558  24.04218847
fis 30.3124868 29.78515043  32.85601671  63.50124614  30.48091278  24.06704791
f19 0.389129739 0.455030829  0.602447026  3.922956861  1.038193434  0.943207523
f20 2.490615022 2.638410348  2.912626037  3.769369258  3.152868287  2.956356822
fo1 335.4271638 313.8433311  388.4177574  319.5817635  396.2759849  372.8123593
fo2 69.99601412 75.89132455  160.6812678  1788.963154  915.4123134  912.6888066
f23 727.6704769 672.3238626  1052.247758  1825.171155 1161.54102  1085.535174
foa 199.4465603 198.3984723  204.208444  185.3117496  216.4016311  211.7053517
f25 202.290113 194.4194039  204.0862553  194.9544787  212.8115209  209.0458773
fa6 120.6848264 122.091166  167.3376274  176.1076494  188.0611368 150.795882
for 309.5792775 307.7345055  356.8828837  414.6347365  389.3369444  373.633645
fos 249.0196078 268.627451  292.1568627  292.1568627  532.1037462  404.9964508
Optimal number 13 9 5 2 1 2

Wilcoxon-signed test [42], [43] values are shown and the corresponding swarm intelligent algorithm have
in TABLE 5. When the data in the table is less than 0.05, obvious performance differences under the corresponding
it can be explained that the MM-QUATRE algorithm test function. Combining TABLE 3 and TABLE 5 can
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TABLE 4. The standard deviation of error value of 51 runs of six algorithms in 28 benchmark functions of CEC2013.

10D MM-QUATRE P-QUATRE QUATRE DE PSO P-PSO
f1 0 0 0 0.553097344 0.030465436 0.064137751
fa 223.2882947 227.7023242 0.031256179 39.53077814 368.4373301 250.768226
f3 72.15042011 25.66380787 4.563251311 7036.001917 8662.037869 6589.996409
fa 25.40869758 29.61377266 0.000481097 1.566941975 5.695039596 5.581055916
s 0 0 0 0.647032457 0.084629495 0.098560686
fe 2.207977092 2.072892415 2.214146767 1.0868185870 3.261122791 2.14770591
fr 0.556510531 0.493862376 1.846909388 2.5357872 5.327796701 4.005272813
fs 0.278339135 0.253359877 0.297664348 0.272467633 0.254480119 0.271608927
fo 1.073322005 0.86829874 1.216754739 0.730037763 1.16114321 1.113794239
f1o 0.278787558 0.269126104 0.311588276 0.323387221 0.409572263 0.40479914
f11 0.85646253 1.063096457 1.180347979 2.433841846 3.163871213 2.81657347
fi2 2.024263825 1.931524269 2.350996393 2.468848614 3.312822166 2.999766956
f13 2.286321234 2.168703013 2.916181583 2.89727787 3.652889021 3.189610977
f1a 4.344373313 5.261460762 9.88606657 10.509522 14.38383149 16.0048212
fis 15.64755761 15.47987471 17.21070425 13.34707944 17.05101991 14.39697065
f16 0.529503553 0.493481027 0.532731125 0.467443422 0.485736025 0.439964197
fiv7 1.311285064 1.932611472 1.594395429 2.527430738 2.451369361 2.421130794
f1s 2.197662913 2.137044772 2.912464628 2.518495367 2.255879837 2.365670811
f19 0.312634365 0.325597517 0.422676988 0.766463163 0.571669117 0.587568243
f20 0.519096237 0.57774824 0.75640529 0.631154329 0.686037473 0.765216064
fo1 9.920935688 10.55857928 6.897329322 10.22717336 5.289606443 8.801724082
S22 7.255304549 7.681168888 9.648994865 11.92278243 16.62282517 16.63312218
f23 16.09907899 15.06915411 18.8291719 12.59161581 19.2327294 18.73009748
foa 4739746654 4.121144956 3.78336172 4329803357 3.997551501 4.619925543
fos 4.865604928 4.855596899 3.736610336 4.104771795 4.048598108 4.552686359
f26 5.754676771 5.397209641 7.370737924 4.592562559 7.937243473 6.096502176
far 6.35164002 5.726179784 9.446211786 4.32465564 9.548782232 6.026126302
fos 8.067164145 8.570764525 6.261616593 1.700352932 13.65905571 13.63953596
Optimal number 9 7 7 7 1 1
TABLE 5. Wilcoxon-signed test MM-QUATRE vs. other swarm intelligence algorithms.
n(51) P-QUATRE QUATRE DE P-PSO PSO

f1 1 1 5.15E-10 5.15E-10 5.15E-10

f2 0.192604843 5.15E-10 5.15E-10 0.001743677  0.059555935

f3 0.735781612 4.78E-06 5.15E-10 5.15E-10 5.15E-10

fa 1.04E-04 5.15E-10 5.15E-10 5.15E-10 5.15E-10

f5 1 1 5.15E-10 5.15E-10 5.15E-10

fe 0.226594765  0.128399292  0.063461193 6.68E-04 3.99E-06

fr 0.843950553  0.055852182 5.15E-10 5.15E-10 5.15E-10

fs 0.851292663 2.42E-06 0.866014996  0.866014996  0.086282096

fo 0.005854892  0.014426086 5.15E-10 9.87E-10 9.87E-10

f1o 0.076463432 0.3158797 5.15E-10 1.18E-09 1.67E-08

f11 0.033060544 1.46E-08 5.14E-10 5.15E-10 5.15E-10

f12 0.037320855  0.016412659 5.15E-10 1.87E-09 1.57E-09

f13 0.033902494 5.46E-06 5.15E-10 6.53E-10 1.18E-09

f1a 0.015190735 9.87E-10 5.15E-10 5.15E-10 5.15E-10

f1s5 0.030691918 1.18E-07 5.15E-10 0.260667003  0.728727848

fie 0.393667354  0.000131105  0.000121479 1.32E-09 0.3158797

fir 0.97009123 8.87E-06 5.15E-10 5.15E-10 5.15E-10

fis 0.693813168  0.100931022 5.15E-10 3.99E-06 0.721696977

f19 0.001800151 1.18E-07 5.15E-10 5.46E-10 5.15E-10

f20 0.023883042  0.000131105 5.15E-10 2.68E-05 1.20E-08

f21 0.345945826  0.002837545  0.189423869 2.21E-06 5.15E-10

fa2 0.015193737 7.78E-06 5.15E-10 5.15E-10 5.15E-10

fa3 0.311378182 7.45E-06 5.15E-10 2.42E-06 3.25E-07

foa 0.567470026  0.004781253 2.68E-05 7.13E-06 8.65E-09

f25 0.024472312  0.001688836  0.006943156 3.04E-06 2.53E-07

fa26 0.028526112 2.53E-06 4.17E-09 1.01E-05 9.66E-09

Jor 0.017716664  0.955149732 1.05E-09 5.23E-09 2.72E-08

fas 0.0309375 0.007385254 8.25E-08 1.34E-08 1.25E-09

confirm the performance of our proposed MM-QUATRE

algorithm.

The best one-time optimization process of six algorithms
based on 28 benchmark functions of CEC2013 is shown in

VOLUME 8, 2020

FIGURE 2 - 4. In overall 28 functions, according to the
final optimization results show that the performance of MM-
QUATRE algorithm in 14 benchmark functions (7, f3, fo, fi0,
11, f12, f13, fi4, f17, f19, 20, f22, f25, f26) is superior to other
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FIGURE 5. Convergence curve of fitness function value of SI-RSSI
algorithms.

TABLE 6. The error between the estimated distance of the positioning
algorithm and the real node position.

MM-QUATRE-RSSI
2.2827101

QUATRE-RSSI
2.571757017

PSO-RSSI RSSI
241036322 2.849474

algorithms. Among the 4 benchmark functions (fi, f5, f>1, f>7
), MM-QUATRE obtains the same optimum error compared
with other algorithms, but MM-QUATRE have slower speed
that convergence to the optimum error speed compare with
other algorithms in these benchmark functions. Only ten
functions (f2, f3, fa. fe, fis, fi6, f18, [23, f24) are inferior to
other algorithms in the optimization ability of MM-QUATRE.
When fi.fs, and f]; are used as benchmark functions, some
algorithms have achieved optimal results, so the error is 0.
After the logarithmic operation, it becomes negative infinity,
so the interruption phenomenon in the figure appears.

B. SIMULATION RESULTS OF APPLIED MM-QUATRE TO
NODE LOCALIZATION IN WSN BASED ON RSSI
This section mainly presents the simulation results of the
practical application of the proposed MM-QUATRE algo-
rithm to the localization of RSSI nodes [38], and compares
them with RSSI, QUATRE-RSSI, and PSO-RSSI localization
algorithms. The simulation results are shown in FIGURE 5
and TABLE 6. Where, FIGURE 5 shows the error variation
diagram of positioning of each unknown node, and the result
in TABLE 6 shows the error after positioning of all nodes.
The node layout area adopted in this simulation is a two-
dimensional plane of 1000m x 1000m. The total number of
nodes is 300, including 60 anchor nodes and 240 unknown
nodes. The communication radius of nodes is 200 meters.
As shown in FIGURE 5, the curve is the convergence of
global optimization of each swam intelligent algorithm with
eq.8 as a fitness function. MM-QUATRE-RSSI algorithm has
a faster localization speed and stronger convergence ability
than other algorithms. TABLE 6 is the average error of the
unknown and actual true positions of the unknown nodes
estimated by the intelligent algorithm. According to the data
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shown in TABLE 6 MM-QUATRE-RSSI algorithm performs
better than other algorithms. In conclusion, the newly pro-
posed MM-QUATRE algorithm has significant advantages in
the localization of WSN nodes based on RSSI.

V. CONCLUSION

In this paper, a new QUATRE algorithm for Multi-group and
Multi-choice bad point updating strategy is proposed. During
the implementation of MM-QUATRE algorithm, the group
was divided into four subgroups to improve the diversity
of optimization ability. Each subgroup completes iterative
evolution independently, and carries out inter-group commu-
nication for 50 times every iteration, and updates the bad point
status of each subgroup according to the communication
information, so that the bad point can regain the ability to
search for optimization. In addition, the random selection
strategy in the process of updating the bad point increases
more possibilities for finding the globally optimal position.
The CEC2013 test suite was used to confirm the ability of
the algorithm to search global optimization. The experimental
results show that MM-QUATRE algorithm is superior to other
algorithms not only in convergence speed, but also conver-
gence performance. In order to improve the accuracy of RSSI
algorithm in node localization, we combined MM-QUATRE
algorithm into RSSI algorithm. In this application, we first
refine the number of hops of anchor nodes and calculate the
distance between anchor nodes with RSSI value of signal
transmission between anchor nodes, and then estimate the
location of unknown nodes with MM-QUATRE algorithm.
Simulation results show that the proposed MM-QUATRE-
RSSI algorithm has higher accuracy than RSSI, PSO-RSSI
and QUATRE-RSSI algorithms.

In the future work, we will further modify the variation
scheme and communication strategy adopted in the progress,
so as to improve the performance of evolutionary algorithm
and swarm intelligence algorithm. We also need to apply
the subsequent improved algorithm to different types of
application scenarios, such as clustering methods in WSN
problems, hierarchical routing, and deployment and coverage
problems in WSN.
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