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ABSTRACT QUasi-Affine TRansformation Evolutionary algorithm (QUATRE) is a new optimization

algorithm based on population for complex multiple real parameter optimization problems in real world.

In this paper, a novel multi-group multi-choice communication strategy algorithm for QUasi-Affine

TRansformation Evolutionary (MM-QUATRE) algorithm is proposed to solve the disadvantage that the

original QUATRE is always easily to fall into local optimization in the strategy of updating bad nodes

with multiple groups and multiple choices. We compared it with other intelligent algorithms, the most

advanced PSO variant, parallel PSO (P-PSO) variant, native QUATRE and parallel QUATRE (P-PSO) under

CEC2013 large-scale optimization test suite. Thus, the performance of MM-QUATRE was verified. The

conclusion that the MM-QUATRE algorithm is superior to other intelligent algorithms is proved by the

experimental results. In addition, the application results of MM-QUATRE algorithm (MM-QUATRE-RSSI)

based on RSSI in WSN node localization were analyzed and studied. The results appear that this method has

higher localization accuracy than other similar algorithms.

INDEX TERMS PSO, P-PSO, QUATRE, RSSI, WSN, MM-QUATRE, bad point update.

I. INTRODUCTION

In the past decades, the problem of global optimization has

attracted the attention of many scholars. These scholars have

resarched various bionic intelligent optimization algorithms,

and evolutionary computing (EC) techniques [1]–[3]. In gen-

eral, by using the gradient of the objective function, the maxi-

mum or minimum value of the objective function is obtained,

but the multiple dimensional function is extremely time-

consuming and always trapped into the poor local optimiza-

tion. The development of evolutionary computing technology

makes it possible to solve these complex problems.Moreover,

Some functions are nondifferentiable, so evolutionary com-

puting technology comes into being. Optimization problem

not only exists in the field of science, but are also found in

our daily lives [4]. Different objective function must be used

for different optimization problems. Therefore, in the process
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of optimization designing the appropriate objective function

is the primary step. Although in some specific optimization,

the objective function usually contains a series of constraints,

the unconditional constrained optimization method plays a

fundamental role in various optimization applications, which

will affect the performance and direction of the constrained

optimization method. In this article, the main focus is on

unconstrained optimization in the search field. In addition,

there are many ways to deal with unconstrained optimiza-

tion. Computational intelligence (CI) [5]–[11] provides a

new thinking for these optimization problems, especially if

the problem is related to uncertain or noisy. Evolutionary

computing (EC) [12], [13] consists of many simple and

efficient algorithms, and proposes an evolutionary optimiza-

tion method that can be reduced to a subset of CI. It has

many other branches, such as bionic intelligent algorithm,

neural network, quantum computing, meme computing and

so on. For example, by simulating the foraging behavior of

birds in a certain area, a simple and effective particle swarm
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optimization(PSO) algorithm is generated [14]–[16]. In addi-

tion, many researchers have studied and improved the opti-

mization ability of native PSO by improving PSO algorithms

search strategies. Differential evolution (DE) is a new algo-

rithm inspired by genetic annealing algorithm, it is formed

by a mixture of genetic algorithm and simulated annealing

algorithm. By simulating the release of pheromones during

foraging, the ant optimization algorithm is generated. The

artificial bee colony (ABC) algorithm was developed by sim-

ulating the communication behavior between bee [17]–[19].

Differential Evolution Algorithm (DE) [20] is an effi-

cient global optimization algorithm. It is also a group-

based heuristic search algorithm. Each individual in the

group corresponds to a solution vector. The evolutionary

process of the differential evolution algorithm is very

similar to the genetic algorithm, including mutation,

hybridization and selection operations, but the specific def-

inition of these operations is different from the genetic

algorithm.

QUATRE [21]–[24] is a novel proposed global optimiza-

tion algorithm for evolutionary structure. It overcomes the

disadvantages of DE algorithm, such as the decrease of pop-

ulation diversity, premature convergence to the local optimal

point, or stagnation of the algorithm with the increase of the

number of evolutionary evolution iterations. QUATRE also

has the abiliy to converge very fast, even in the optimization

process of solving high-dimensional Multi-modal problems.

For purpose of enhance the global optimization performance

of QUATRE and avoid falling into the local optimal posi-

tion, we propose a new improved strategy of Multi-group

and Multi-choice in this paper. It is called MM-QUATRE.

The algorithm optimizes the performance of the native

QUATRE algorithm by selecting a random communication

strategy between subgroups to update the lower state points

in each group. Therefore, compared with other algorithms,

MM-QUATRE algorithm has obvious advantages in global

optimization.

Node location information is very important and plays a

key role in WSN [25], [26], [28], [29], navigation, tracking,

monitoring and other applications. According to whether

the distance between nodes needs to be measured or not,

the positions can be divided into those based on dis-

tance measurement and those without distance measure-

ment [30]–[32]. According to the occasion of deployment

can be divided into outdoor positioning and indoor posi-

tioning. In general, the positioning accuracy of range-based

positioning algorithm is higher than that of rangeless posi-

tioning algorithm. The common methods based on distance

measurement include angle orientation, three-face orientation

and maximum likelihood estimation [27]. Common ranging

methods include RSSI, TOA/TDOA/RTOF, phase difference,

near-field electromagnetic ranging (NFER), etc. Because

RSSI-based ranging method does not need additional equip-

ment, simple and easy to operate, in recent years, published

research results have been widely used. In recent years, many

scholars have applied intelligent algorithm to the positioning

algorithm of wireless sensor network based on distance mea-

surement [22], [30], [33], [34].

The remain of this paper deals with the following.

In Section 2, we briefly introduces QUATRE algorithm

and RSSI based wireless sensor network node location.

Section 3 the proposed MM-QUATRE algorithm is intro-

duced in detail. Section 4 shows the experimental results of

the single objective real parameter optimization under the

CEC2013 [35]–[37] test suite and compares them with other

EC algorithms and the results of application in RSSI-based

wireless sensor network. Finally, the newly proposed

MM-QUATRE algorithm is summarized in section 5.

II. RELATED WORKS

A. QUATRE ALGORITHM

In geometry, affine transformation is the transformation pro-

cess from one affine space to another affine space [21], [24].

The accurate evolutionary formula of QUATRE is shown

in eq.1.

X←M⊗ X+M⊗ B (1)

The operator ⊗ represents the multiplication by compo-

nents, and its meaning is the same as the ’.* ’operator in Mat-

lab. ThematrixX represents the positionmatrix of the particle

swarm, then X =
[

Ex1, Ex2, . . . , Exps
]T
. The vector Exi represents

the position of the ith particle in the population, which can be

expressed as Exi = [xi1, xi2, . . . , xiD]. ps represents the number

of particles in the population. Matrix B represents the muta-

tion matrix of particles between populations, which can be

generated in various ways. c represents the difference matrix

coefficient factor. Where, the difference matrix is the result of

Xr1−Xr2. TABLE 1 lists seven mutation schemes for matrix

B [22]. Xr1, Xr2, Xr3, Xr4, Xr5 represent the random matrix

generated by random permutation of the matrix X. Exgbest,G
denote the position vector of the globally optimal particle at

the Gth iteration. Xgbest,G =
[

Exgbest,G, Exgbest,G, . . . , Exgbest,G
]

global optimal particle position vector form the first iteration

to the current iteration [21], [22], [24].

X =









Ex1
Ex2
...

Exps









Xgbest,G =









Exgbest,G
Exgbest,G
...

Exgbest,G









(2)

M is the evolutionary matrix, made up of 0 and 1.

M represents a matrix of binary inverse operations about M.

Binary inversion means taking the inverse of a matrix. The

0 element inverts the contravariant to 1, 1 element inverts the

contravariant to 0 [21], [22], [24]. As shown in eq.3.

M =









1 1 0 0

1 1 0 0

1 1 1 0

0 1 1 1









M =









0 0 1 1

0 0 1 1

0 0 0 1

1 0 0 0









(3)

The evolution matrix M is diverse in QUATRE algorithm.

The generation of the evolutionary matrix M requires first
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TABLE 1. Seven schemes of mutation matrix B calculation.

initializing a Mtmp matrix of the lower triangle, and then

randomly permutation the row vectors of Mtmp [21], [22],

[24].When ps=D, the transformation formula ofM is shown

as eq.4.

Mtmp =









1 0 0 0

1 1 0 0

1 1 1 0

1 1 1 1









M =









1 1 1 0

1 1 1 1

1 1 0 0

1 0 0 0









(4)

When the total number of particle population ps is much

larger than the individual dimension D, the evolution matrix

M needs to expand according to ps. In general, when ps =
i × D + K , the first i × D rows of matrix M are composed

of i lower triangular matrices of D × D, and the last K rows

are composed of the first K rows of D × D lower triangular

matrices [21], [22], [24]. For example, when ps= 2×D+ 2,

is shown in eq.5.

Mtmp =









































1 ...

1 1 ...

1 1 1 ...

...

1 1 1 ... 1

1 ...

1 1 ...

1 1 1 ...

...

1 1 1 ... 1

1 ...

1 1 ...









































M =









































1 ... 1

1 ...

1 1 ... 1 1

...

1 ... 1

1 ... 1

1 1 ...

1 1 ...

...

1 ...

1 1 ... 1

1 1 1 ... 1









































(5)

B. NETWORK NODE LOCATION OF RSSI

Suppose there are a total of K = M + N nodes in a two-

dimensional region, with M anchor nodes and N unknown

nodes. The coordinates of anchor node are Bi(ui, vi) (i =
1, 2, ...,N ), and the coordinates of the unknown node are

St (ut , vt ) (t = 1, 2...,M ). RSSI value can be obtained when

the node communicates, and the distance dui between the

anchor node and the unknown node can be calculated by

eq.6. d̂i represents the distance from the point located using

the DV_hop method to the i-th anchor node. In wireless

sensor networks, the main purpose of the positioning problem

is to minimize the positioning error. Considering that the

distance estimation error also increases with the number of

hops. Therefore, the error function can be weighted by the

reciprocal of the hop square [22]. The fitness function of

MM-QUATRE can be defined as eq.7.

dui =
√

(u− ui)2 + (v− vi)2 (6)

f (x, y) = min(

m
∑

i=1

(
1

hopui
)2(dui − d̂i)

2) (7)

1) CALCULATION OF WEIGHTED HOPS BASED ON RSSI

Themodel of RSSI is shown in eq.8, which takes into account

the complexity of the transmission environment and the influ-

ence of noise on the ranging results in the transmission pro-

cess. In eq.8, pr (d0) represents the power received when the

distance between two nodes is d0, while pr (d) represents the

power received when the distance between two nodes is d ,

and η represents the path loss constant of the signal in the path

transmission process (the actual measured value is between

1.5 and 5) [38], [39]. xσ is an uncertainty factor determined

by multipath fading and occlusion.

Pr (d) = pr (d0)− 10η log(
d

d0
)+ Xσ (8)

When the distance between two nodes is so far, the final

positioning error is also so larger. Hence, the RSSI error

should be given according to this rule. First, RSSIj needs to

be added to the broadcast message, which contains the signal

received after the jth broadcast from the ith anchor node Bi
to the kth unknown node Sk . If the number of hops corre-

sponding to the message received is larger than the number

of hops of the previous message, the anchor node discards

the message with a larger number of hops [39]. Then find the

path proportionality coefficient λ from one anchor node Bi to

all anchor nodes, as shown in eq.9.

λi =

m
∑

j=1,j6=i

D̂i,j

di,j
, (9)

where D̂i,j represents the connection distance from the i-th

anchor node to the j-th anchor node through the relay of

multiple nodes, and di,j represents the Euclidean distance

from the i-th anchor node to the j-th anchor node.

Finally, the path scale factor λ of the i-th anchor node

obtained by eq.9 and the relay distance D̂n of the unknown

node to the anchor node i obtained by eq.8 are used to estimate

the true distance from the unknown node to the anchor node i

according to eq.10.

d =
1

λ
D̂n, (10)
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FIGURE 1. Schematic diagram of three side measurement method.

2) LOCATION NODE CALCULATION BASED ON RSSI

If the anchor node consists of more than two, the location is

conducted by the method of trilateral measurement or maxi-

mum likelihood estimation [40], as shown in FIGURE 1.

where, the coordinates of anchor nodes B1, B2 and B3 are

(u1, v1), (u2, v2) and (u3, v3), respectively. S1 represents the

unknown node, and its coordinates are assumed as (u, v).

When there are three or more anchor nodes, the coordinates

(u, v) of unknown node S1 can be obtained through the solu-

tion eq.11.



















(u1 − u)
2 + (v1 − v)

2 = d21
(u2 − u)

2 + (v2 − v)
2 = d22

...

(um − u)
2 + (vm − v)

2 = d2m

(11)

Formula (11) can be firstly expanded to formula (12), and

then each equation can be obtained by subtracting the last

equation, as shown below.















































































u21 − u
2
m + 2(u1 − um)u+ v

2
1 − v

2
m

−2(v1 − vm)v = d21 − d
2
m

u22 − u
2
m + 2(u2 − um)u+ v

2
2 − v

2
m

−2(v2 − vm)v = d22 − d
2
m

...

u2m−1 − u
2
m + 2(um−1 − um)u+ v

2
m−1

−v2m − 2(vm−1 − vm)v = d2m−1 − d
2
m

(12)

Then the eq.12 is written as a matrix form of AX = B.

Finally, the unknown anchor node position matrix X can be

expressed as eq.16.

X =

[

u

v

]

(13)

A =









2(u1 − um) 2(v1 − vm)
2(u2 − um) 2(v2 − vm)

...

2(um−1 − um) 2(vm−1 − vm)









(14)

B =









u21 + v
2
1 − u

2
m − v

2
m + d

2
m − d

2
1

u22 + v
2
2 − u

2
m − v

2
m + d

2
m − d

2
2

...

u2m−1 + v
2
m−1 − u

2
m − v

2
m + d

2
m − d

2
m−1









(15)

AX = B ⇒ X = (ATA)−1ATB (16)

III. MM-QUATRE ALGORITHM AND ITS APPLICATION IN

WSN LOCALIZATION BASED ON RSSI

A. MM-QUATRE ALGORITHM

The original QUATRE algorithm has certain limitations, that

is to say, it is very easy to fall into the local optimal,

so it is necessary to avoid all individuals of the population

falling into the local optimal solution through the idea of

group communication. MM-QUATRE algorithm divides to

multiple subgroups and enables them to communicate after

a certain number of iterations. By exchanging information

among groups and selecting different strategies, the positions

of some particles with bad states in each subgroup can be

changed, so that they have a stronger optimization ability.

The specific idea is to carry out inter-group communication

after iterating iter times. Each group selects s worst points

and uses the global optimization of other groups to evolve

these bad points. For purpose of further realizing the diversity

in the process of evolution and improve the ability of global

optimization, one of the strategies was selected randomly for

updating evolution. The evolutionary strategy is shown in

TABLE 2 (assuming there are four groups).

In TABLE 2, XbadGi,j represents the position of the jth

bad point in the ith subgroup after iterating G times.

XbadGm represents the globally optimal particle position of

the mth subgroup after iterating G times. r1,r2 and r3 are

uniformly distributed values ranging from 0 to 0.3, 0.3 to 0.7,

and 0.7 to 1, respectively.

The concrete implementation of the algorithm consists of

the following steps.

Step 1, initialize the parameters required by the algorithm,

such as the number of groups ps, the number of subgroups t

(this paper takes four groups as examples), the maximum iter-

ation times iterMax, and the step size GenCS among groups.

Step 2, initialize the positions of all particles in the four

subgroups and form the position matrix X1, X2, X3, and X4

of particles in all subgroups according to eq.2.

Step 3, generate evolution matrix M and mutation matrix

B according to eq.5 and TABLE 1.

Step 4, according to eq.1, each subgroup evolves inde-

pendently, and intergroup communication is carried out for

many of GenCS iterations and a communication strategy is

randomly selected from TABLE 2 to update the points with

poor status of each subgroup.

Step 5, repeat step 4 until the maximum number of itera-

tions is satisfied.
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TABLE 2. Three species communication strategies.

The pseudo-code of the algorithm is shown below.

Algorithm 1 Shows the Pseudo Code of MM-QUATRE

Algorithm

1: //initialization Initialize the searching space V , dimen-

sion D, Set the generation counter Gen = 1, the ps

individuals are randomly divided into four subgroupsX1,

X2, X3 and X4 on average, and evaluate fitness values of

all individuals, and intergroup communication step size

GenCS.

2: //MainLoop Four subgroups are randomly generated

and the position matrix of the particles in the four sub-

groups is initialized(X1, X2, X3, X4).

3: Evaluate fitness values of all individuals.

4: while (The number of iterations is not satisfied) do

5: Generate the evolution matrix M, mutation matrix B

and matrix M.

6: Evolve individuals in each group using Equation 1.

7: Evaluate fitness values of all individuals.

8: for (i = 1; i ≤ 4; i++) do
9: for (j = 1; j ≤ ps; j++) do
10: if f (Xi,j)≤f(Xpbesti,j) then
11: Xpbesti,j=Xi,j

12: end if

13: end for

14: end for

15: X = Xpbest,j, Xgbet = opt(Xpbesti,j).
16: while Gen % GenCS==0 do
17: Select a random strategy fromTABLE 2 to update

the bad point.

18: end while

19: end while

Output: The global optimum Xgbest , global best fitness

value f (Xgbest ).

B. OUR PROPOSED ALGORITHM APPLIED IN WSN

LOCALIZATION BASED ON RSSI

In this section, the scheme of using MM-QUATRE localiza-

tion in RSSI-based wireless sensor network node localiza-

tion [38] is introduced. We know that the hop number of two

anchor nodes is obtained by broadcasting information, and

the distance between two nodes is estimated by RSSI value.

Then the average distance of each hop between anchor nodes

is calculated and the position of unknown node is estimated

by least square method or maximum likelihood estimation.

The estimated distance between the nodes is obtained bymul-

tiplying the hop value by the average hop of the anchor node.

However, when the number of hops between anchor node and

unknown node is greater than 2, this method has the problem

of poor distance estimation, which leads to the decrease of

positioning accuracy. The main purpose of the positioning

problem is to minimize the estimation error and improve

the positioning accuracy. To reduce the estimation error,

an improved RSSI algorithm based on genetic algorithm

is proposed for MM-QUATRE node localization in WSN.

The algorithm first calculates the minimum hop number and

distance between anchor nodes through the communication

between them, and then calculates the average step length

of each hop. Then the hops received by all anchor nodes

are weighted to calculate the hops of unknown nodes [22].

Finally, the location of unknown nodes is estimated by the

proposed MM-QUATRE algorithm.

For each unknown node, we use a step optimized by a com-

pletely independent MM-QUATRE algorithm to locate. The

specific optimization process includes the following steps.

Step 1, calculate the distance between anchor nodes and

jump out through RSSI value.

Step 2, then weighted the path received by all anchor nodes

to calculate the location of unknown nodes.

Step 3, initializes the parameters used by MM-QUATRE

(For example, population number ps, dimension D, etc.).

Step 4, initialize the position matrix (X1, X2, X3, X4),

mutation matrix B and evolution matrix M for all popula-

tions. Step 5, the best individual optimal position is selected

to enter the next generation for the next evolution in each

iteration. Repeat steps 2 through 4 until the stop condition

is met.

IV. EXPERIMENTAL ANALYSIS

In this section, we verify the performance of the newly pro-

posed MM-QUATRE algorithm and its application in WSN

node localization based on RSSI respectively through two

groups of experimental data.

A. SIMULATION RESULTS ON A STANDARD BOUNDED

CONSTRAINT BENCHMARK

The following experimental results we used the CEC2013 ref-

erence function set to verify the performance of our newly

proposed MM-QUATRE algorithm. CEC2013 benchmark

set [35]–[37] contains 28 test functions, including 5 single-

peak functions (f1 − f5), 15 multi-peak functions (f6 − f20),

and 8 conforming functions (f21−f28). All of these benchmark

functions are moved to the same global minimum.

The proposed MM-QUATRE was compared with

QUATRE, PSO [14], P-PSO [41], DE, and P-QUATRE
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FIGURE 2. Comparison of the best of fitness for functions f1 − f12 with 10D optimization.

algorithms. These algorithms set the dimension as 10,

the search area as 10 dimensions [−100, 100], and the swarm
is composed of 200 particles. There are 28 test functions in

total, and each test function is run 51 times. The mean and

variance of errors are shown in TABLE 3 - 4. The bolded

value is the minimum error obtained by the six algorithms.

According to the data shown in TABLE 3 - 4, from

the perspective of optimization accuracy, MM-QUATRE is
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FIGURE 3. Comparison of the best of fitness for functions f15 − f24 with 10D optimization.

obviously better to the other four relative algorithms. The

performance ofMM-QUATRE algorithm in benchmark these

functions (f10, f11, f12, f13, f14, f15, f19, f20, f22, f26, f28) is

superior to that of other algorithms. When MM-QUATRE,

P-QUATRE andQUATRE algorithm take (f1, f5) as the fitness

function, the same optimal value can be obtained.

MM-QUATRE algorithm and other Swarm algorithms

each fitness function 51 times running results in the
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FIGURE 4. Comparison of the best of fitness for functions f25 − f28 with 10D optimization.

TABLE 3. The mean of error value of 51 runs of six algorithms in 28 benchmark functions of CEC2013.

Wilcoxon-signed test [42], [43] values are shown

in TABLE 5. When the data in the table is less than 0.05,

it can be explained that the MM-QUATRE algorithm

and the corresponding swarm intelligent algorithm have

obvious performance differences under the corresponding

test function. Combining TABLE 3 and TABLE 5 can
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TABLE 4. The standard deviation of error value of 51 runs of six algorithms in 28 benchmark functions of CEC2013.

TABLE 5. Wilcoxon-signed test MM-QUATRE vs. other swarm intelligence algorithms.

confirm the performance of our proposed MM-QUATRE

algorithm.

The best one-time optimization process of six algorithms

based on 28 benchmark functions of CEC2013 is shown in

FIGURE 2 - 4. In overall 28 functions, according to the

final optimization results show that the performance of MM-

QUATRE algorithm in 14 benchmark functions (f7, f8, f9, f10,

f11, f12, f13, f14, f17, f19, f20, f22, f25, f26) is superior to other
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FIGURE 5. Convergence curve of fitness function value of SI-RSSI
algorithms.

TABLE 6. The error between the estimated distance of the positioning
algorithm and the real node position.

algorithms. Among the 4 benchmark functions (f1, f5, f21, f27
), MM-QUATRE obtains the same optimum error compared

with other algorithms, but MM-QUATRE have slower speed

that convergence to the optimum error speed compare with

other algorithms in these benchmark functions. Only ten

functions (f2, f3, f4, f6, f15, f16, f18, f23, f24) are inferior to

other algorithms in the optimization ability ofMM-QUATRE.

When f1,f5, and f11 are used as benchmark functions, some

algorithms have achieved optimal results, so the error is 0.

After the logarithmic operation, it becomes negative infinity,

so the interruption phenomenon in the figure appears.

B. SIMULATION RESULTS OF APPLIED MM-QUATRE TO

NODE LOCALIZATION IN WSN BASED ON RSSI

This section mainly presents the simulation results of the

practical application of the proposed MM-QUATRE algo-

rithm to the localization of RSSI nodes [38], and compares

themwith RSSI, QUATRE-RSSI, and PSO-RSSI localization

algorithms. The simulation results are shown in FIGURE 5

and TABLE 6. Where, FIGURE 5 shows the error variation

diagram of positioning of each unknown node, and the result

in TABLE 6 shows the error after positioning of all nodes.

The node layout area adopted in this simulation is a two-

dimensional plane of 1000m × 1000m. The total number of

nodes is 300, including 60 anchor nodes and 240 unknown

nodes. The communication radius of nodes is 200 meters.

As shown in FIGURE 5, the curve is the convergence of

global optimization of each swam intelligent algorithm with

eq.8 as a fitness function. MM-QUATRE-RSSI algorithm has

a faster localization speed and stronger convergence ability

than other algorithms. TABLE 6 is the average error of the

unknown and actual true positions of the unknown nodes

estimated by the intelligent algorithm. According to the data

shown in TABLE 6MM-QUATRE-RSSI algorithm performs

better than other algorithms. In conclusion, the newly pro-

posed MM-QUATRE algorithm has significant advantages in

the localization of WSN nodes based on RSSI.

V. CONCLUSION

In this paper, a new QUATRE algorithm for Multi-group and

Multi-choice bad point updating strategy is proposed. During

the implementation of MM-QUATRE algorithm, the group

was divided into four subgroups to improve the diversity

of optimization ability. Each subgroup completes iterative

evolution independently, and carries out inter-group commu-

nication for 50 times every iteration, and updates the bad point

status of each subgroup according to the communication

information, so that the bad point can regain the ability to

search for optimization. In addition, the random selection

strategy in the process of updating the bad point increases

more possibilities for finding the globally optimal position.

The CEC2013 test suite was used to confirm the ability of

the algorithm to search global optimization. The experimental

results show thatMM-QUATRE algorithm is superior to other

algorithms not only in convergence speed, but also conver-

gence performance. In order to improve the accuracy of RSSI

algorithm in node localization, we combined MM-QUATRE

algorithm into RSSI algorithm. In this application, we first

refine the number of hops of anchor nodes and calculate the

distance between anchor nodes with RSSI value of signal

transmission between anchor nodes, and then estimate the

location of unknown nodes with MM-QUATRE algorithm.

Simulation results show that the proposed MM-QUATRE-

RSSI algorithm has higher accuracy than RSSI, PSO-RSSI

and QUATRE-RSSI algorithms.

In the future work, we will further modify the variation

scheme and communication strategy adopted in the progress,

so as to improve the performance of evolutionary algorithm

and swarm intelligence algorithm. We also need to apply

the subsequent improved algorithm to different types of

application scenarios, such as clustering methods in WSN

problems, hierarchical routing, and deployment and coverage

problems in WSN.
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