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Econometrica, Vol. 29, No. 4 (October 1961) 

QUASI-CONCAVE PROGRAMMING 

By KENNETH J. ARROW AND ALAIN C. ENTHOVEN 

We extend present theorems on conditions for a constrained maximum to 
the case where the maximand and the constraint functions are quasi-concave 
(e.g., utility functions). Economic applications are briefly discussed. 

1. INTRODUCTION 

OUR PROBLEM is to maximize a differentiable function, /(x), of an n-dimen- 
sional vector x = (xi,..., x"), subject to the constraints g(x) > 0, where g(x) 

is a differentiable n-dimensional vector function, gl(x),..., gm(x), and x > 0. 
H. W. Kuhn and A. W. Tucker, in their frequently quoted paper on Non- 
linear Programming [4], proved that if g(x) satisfies their Constraint Qualifi- 
cation,' the necessary conditions for xo to maximize /(x) subject to g(x) > 0 
and x > 0 (the Kuhn-Tucker-Lagrange conditions, or KTL) are 

/o + ogo < O , 

(KTL) x0(/f + 20g?) 0 
Aog(xo) = 0, 

AO0> 0, 

where, for example, /ox is the vector of partial derivatives of /(x) evaluated at 
the point xo.2 Kuhn and Tucker also proved that if /(x) and g(x) are concave 
functions, (KTL) are sufficient conditions for a constrained maximum. 

A function is concave if the chord joining any two points on any plane 
profile of its graph lies everywhere on or below the function. That is, /(x) is 
concave if 

(1.1) /[Ox + (1 - )xo] > 01(x) + (1 -0)/(xo) (0 < 0 < 1) 

for all points x and xo in the region of definition of /(x). Write (1.1) in the 
form 

(1.2) /[xO + O(x-x?)]-(xo) 
> (x)-/(xo) (o < 0 < 1) 

0 

I See [4, pp. 483-484]; also [1]. 
2 In general, we denote by subscripts partial differentiation with respect to the in- 

dicated arguments, and a superscript o means evaluation at the point xo. Then go is 

the m x n matrix of partial derivatives of the functions gJ(x) with respect to the varia- 

bles, x x,.., xn, evaluated at x = xo; lo is an m-vector of Lagrange multipliers, and 

JOg, is an n-vector. 

779 
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and take the limit of the left-hand side as 0 * 0,3 to obtain 

(1.3) tx(X xo) + t(xO) > /(x) 

which is an alternative definition of concavity for differentiable functions. 
The inequality (1.3) states that if f(x) is concave, it lies everywhere on or 
below its tangent planes. 

A function is quasi-concave if, for each real number c, the set x defined by 
the inequality 

(1.4) f(x) > C 

is convex. That is, f(x) is quasi-concave if 

(1.5) f(x) > (xo) implies t[Ox+(1O - 0)X1 > (xo) 

for O < 0 < 1. Now, for any x satisfying (1.5), let 

(1.6) F(0) /[Ox + (1 0)x0] ? /(xo) = F(O) . 

Therefore, F'(O) > 0. Thus, differentiating F(0) and setting 0 equal to zero, 
we have 

(1.7) f(X) > t(x?) implies t?(x xO) > O 

for differentiable quasi-concave functions.4 
In speaking of a quasi-concave function, some specific domain of definition, 

taken to be a convex set, is assumed. Thus, the function x1x2 is quasi-concave 
for nonnegative xi, x2, but not for all x. A function which is quasi-concave 
for a convex domain of definition cannot necessarily be extended to a quasi- 
concave function over the entire space. (In the same circumstances, a concave 

3 See [4, pp. 485-486]. A function, f(x), of several variables is differentiable if 

f (x + h) = f(x) + ch + eh, where c is a vector depending on x but not on h and e is a 
vector which goes to zero with h. If a function is differentiable, then its partial deriva- 
tives exist, and f- = c, but the existence of the partial derivatives does not necessarily 
imply differentiability; see [2, pp. 59-61]. In particular, f[xo + O(x-xo)] = f(xo) + 

f?O(x-xo) + e0, where e = e(x-xo) goes to zero with 0. Then, 

f[xo + O(x - Xo)] -f(xo) =f?(x-xo)+e + -fx(x-X ) as 0 -? 0 

Here fo(x -xo) is an inner product of the two vectors. 
4 The differentiation with respect to 0 is, in effect, taking the directional derivative 

of f(x) at xo in the direction of the point x. It is clear from the definition of quasi- 

concavity that this derivative, f0 d s where the terms x x are the direction 

cosines (d - (x[-xo)2]i), must be nonnegative. For a definition of directional deriva- 
tives, see [2, pp. 262-263]. Wold [7] defines a function to be convex towards the origin if 
(1.7) holds (his terminology is geometrically valid in the case he considers, where 

fx > 0); since (1.7) can be shown to imply quasi-concavity, the two definitions are 
equivalent. 
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function can always be so extended.) In this paper, we shall usually deal with 
functions quasi-concave over nonnegative values of the variables. 

It is clear from (1.1) that all concave functions are quasi-concave. It also 
can be shown that any monotonic nondecreasing function of a quasi-concave 
function-and therefore of a concave function-is quasi-concave.5 However, 
not every quasi-concave function can be expressed as a monotonic non- 
decreasing function of a concave function.6 Thus quasi-concavity is a generali- 
zation of the notion of concavity. 

In terms of traditional economic theory, a concave function is one that 
satisfies the second order conditions for a maximum, that is, 

n n 
(1.8) d2/ = fx_f dx dxj <?O. 

Quasi-concavity is a weaker condition; (1.8) does not have to hold for quasi- 
concave functions.7 A quasi-concave function is one that has a diminishing 
marginal rate of substitution if /f > 0, or an increasing marginal rate of 
transformation if /f < 0, between any pair of variables, or between any 
distinct composite variables. Let xo and xl be any two nonnegative vectors 
not zero and not proportional to each other. Then, if we let 

(1.9) g(u,V) =t (ux? + vxl), u > 0, v > O, 

(1.10) g2gvv- 2gugguzv + gvguu ? 0, 

if /(x) is quasi-concave and twice differentiable. It can also be shown that if 
(1.10) holds everywhere, /(x) is quasi-concave. 

Alternatively, if /(x) is quasi-concave, (-1 )rDr > 0, for r = 1,..., n and for 
all x, where Dr is the bordered determinant 

0 /XI ftr 

(I1. I 1 ) Dr / I$ Z rz1zx . . .ZrXr 

f$r fxrxl * * /rzr 

5 (1.5) can be written f[Ox + (I- O)xo] > min [f(x),f(xo)]. Let 0 be a monotonic non- 
decreasing transformation. Then 0 does not reverse rankings. That is, f(X) > f(xo) 
implies 0Sff (x)] > qSf (xo)]. Therefore, 0 {f[Ox + (1 l-O)xo] } > 0 {min [f(x), f (xo)] }. Since 

0 does not reverse rankings, b{min [U(x), [f(xo)]} = min {qff(X)], S[(xo)]} whence 

0[f1(X)] is quasi-concave. 
6 For example, f(x,y) = (x-1) + [(1 -x)2 + 4(x +y)]' is quasi-concave. Its contour 

lines are straight lines that are not parallel. See also the example at the end of Section 2, 

below. Fenchel [3, p. 134] has proved that such a function cannot be transformed into 

a concave function by a monotonic nondecreasing transformation. 
7 For example, X1X2 does not satisfy (1.8). 



782 K. J. ARROW AND A. C. ENTHOVEN 

Moreover, a sufficient condition for /(x) to be quasi-concave for x > 0 is that 

D,havethesign(- )rforallxandallr 1,..., n.8 

We seek sufficient conditions for xo > 0 to maximize /(x) subject to the 
constraints g(x) > 0 when /(x) and g(x) are differentiable quasi-concave func- 
tions. It is not true that (KTL) alone are sufficient conditions for a con- 

strained maximum, as the following examples illustrate. 
Any monotonic function of one variable is clearly quasi-concave. Let 

(1.12) /(X) = (X- 1)3, X > 0 

and maximize it subject to the constraint 

(1.13) g(x) = 2-x > 0. 

If xo = 1, Ao = 0, (KTL) is satisfied, yet clearly the constrained maximum 

occurs at x = 2, not x - 1. 

More generally, let J(x) be any quasi-concave function and xo any point, 
and let 

(1.14) /(X) = [s(X) -(XO) ]3I 

Then /(x) is quasi-concave and has the same maxima as a(x). But /o = 0, 

although xo was chosen arbitrarily. Moreover, if g(x) is any vector function 
for which g(xo) > 0, (KTL) is satisfied if x = xo and Ao - 0, although xo 
certainly need not be the constrained maximum for /(x) subject to g(x) > 0. 

We also state conditions under which (KTL) will be necessary for a con- 
strained maximum, when the constraints are quasi-concave. The following 
example makes clear the fact that (KTL) are not always necessary conditions, 
and that some additional condition must be satisfied. Maximize XlX2 subject 
to the constraints xi > 0, x2 > 0 and 

(1.15) g(x) = (1xl- X2)3 >0 . 
0 0 

The constrained maximum occurs at xl = X2 = 1/2, but there is no value of 

A for which (KTL) can be satisfied at that point. This example also illustrates 
the fact that it is the constraint functions and not the constraint set which 
must satisfy the additional condition, for (1.15) and 

(1.16) 1-xl-x2 >0 

define the same convex set. Yet (KTL) are satisfied at xo with AO = 1/2 when 
the constraint is (1.16), and, in fact, in this case (KTL) is a necessary con- 
dition for a maximum. The Kuhn-Tucker Constraint Qualification is designed 
to meet the problem. Since it is rather complicated to apply, in Section 3 
below, we present a simpler condition on quasi-concave constraints which, 

8 These propositions are frequently used in the literature on utility functions, but 

rigorous proofs starting from the concept of quasi-concavity seem to be lacking. We 

give such proofs in Section 4, below. 
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when satisfied, implies that the Constraint Qualification must be satisfied, 

and therefore that (KTL) are necessary for a constrained maximum. 

2. SUFFICIENT CONDITIONS FOR A CONSTRAINED MAXIMUM 

Let a relevant variable be one which can take on a positive value without 

necessarily violating the constraints. Or, more formally, xio is a relevant 

variable if there is some point in the constraint set, say x*, at which xjo > 0. 

Then we shall prove the following theorem: 

THEOREM 1: Let f(x) be a differentiable quasi-concave function of the 

n-dimensional vector x, and let g(x) be an rn-dimensional differentiable quasi- 

concave vector function, both defined for x > 0. Let x? and AO satisfy (KTL), and 

let one of the following conditions be satisfied: 

(a) f? < 0 for at least one variable xi 
0 

(b) f?i > 0 for some relevant variable xi1; 

(c) f? / 0 and f(x) is twice differentiable in the neighborhood of xo ;9 

(d) f(x) is concave. 

Then xo maximizes f(x) subject to the constraints g(x) > 0, x > 0. 

Only one of these four conditions-and there may be others-need be 

satisfied for xo to maximize f(x) subject to the constraints, if (KTL) is satis- 

fied at xO.10 Condition (b) will be satisfied if xo /oil > 0, if any f0iO > 0 and 

all xi0 are relevant (the usual case in economic theory), or if f/x > 0 and any 

Cio is relevant. If no xio is relevant, the problem is trivial. From (a) and (b) it 

follows that f? 7& 0 is sufficient if all xi are relevant. 

Perhaps these conditions can be better understood if we consider what 

conditions f(x) must satisfy if the theorem does not apply. First, from (d), 

f(x) must be a quasi-concave function that is not concave; from (a), f/x > 0; 

from (b), f/x. 0 for all relevant variables. Then from (c), either f/o = 0, or 

fox = 0 for all relevant variables and f(x) is not twice differentiable. Thus, 

(KTL) fails to be sufficient in the case of the cubic transforms shown in 

Section 1 because fox 0. An example in which (KTL) fails but fx : 0 

follows this proof. 

9 That is, all of the second order partial derivatives of f (x) exist at xo. However, they 
may be equal to zero. 

10 In fact, we developed a series of conditions on g(x) analogous to conditions (a) 

through (d), only to discover that the cases in which they added anything to conditions 
(a) through (d) were vacuous. 
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Proo/. We use the following identity 

(2.1) =x(x- x?) = (xl-x A AOgx x?) 

If xo satisfies (KTL) and xl is in the constraint set, the first term on the 
right-hand side is nonpositive. The second term on the right-hand side is 

also nonpositive under these conditions. If A = 0, the jth component of the 
term vanishes. If A4o > 0, gJ(xo) = 0, and the fact that xl is in the constraint 
set, that is gl(xl) > 0, implies gJ(xl) > gJ(xo) or, by (1.7), g Jo(xi xo) > 0. 
Therefore, for /(x) and g(x) quasi-concave, 

(2.2) g(xl) > 0, xl > 0 implies /XO (x1 xo) < 0 

if xo satisfies (KTL). 

(a) f1f < 0 for at least one variable xio. 

Let h be the unit vector in the io-th direction." Let x2 - xo + h. Then 

(2.3) /0(X2 x?) /xh ? <? x > 
0 

For any xl in the constraint set, let 

Xl(0) (1 O)X + OX2, xo(0) (1-0)xo + OX2 

Then 

(2.4) /$[x0(O)-x0] O/ 
(x2_x0) 

<0 for 0 >0, 

(2.5) tL[xl(O) x0(O)- (1-O)/(X x?) < 0 for 0 < 1I 

from (2.2). Adding, we find 

(2.6) f/[X1(0)- xo] < 0 for 0 < 0 S I 

and from (1.7) this is possible only if 

(2.7) /[x'(0)] < /(xo) 

As 0 approaches zero, xl(0) approaches xl, and so I(xl) < /(xO). 

(b) /f > 0 lor some relevant variable xi, . 

If we exclude case (a), xolx > 0 and (b) are equivalent. Clearly, x?fx > 0 

implies that (b) is satisfied. For the converse, note that, by (2.2), 

(2.8) /xx ?/fxx, 

11 h is the unit vector in, e.g., the direction of Z2 if h = (0, 1, 0,..., 0). 
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for all xl in the constraint set. Excluding (a), 

(2.9) /.> O. 

But (b) implies that for some x* in the constraint set and for some io, fx > 0 
and x*i > 0, which, together with (2.9) and the nonnegativity of x*, im- 
plies that /xx* > 0. If we let xl - x* in (2.8), we find that f/?xo > 0. 

If now we let x2 = 0, we see that (2.3) again holds, and the rest of the 

argument under (a) is vahd. 

(c) f$ = 0 and f(x) is twice differentiable in the neighborhood of x?. 
Partition the vector xo into two sub-vectors, yo and zo corresponding to 

the relevant and irrelevant variables respectively. Then if we exclude the 
two cases already covered, but assume / =# 0, we have 

(2.10) f0= , / >o, /0 >0 forsome zf. 

By the definition of an irrelevant variable, zo = 0 and z' = 0 for all xl 

(y', zl) in the constraint set. Therefore, to prove the theorem it is sufficient 
to prove that f(yo, 0) > f(y', 0) for ally' > 0. 

Define the function 

(2.11) 0(u, v) = f [(lu)yo + ty', v2] f(yo, 0) 

forO S uX < 1, andv > 0, foranyy' > Oandforany 2> Osuch that z,o > 0. 

Because it is essentially f(x) with the range of variation of x restricted to a 

convex subset of the nonnegative orthant, 0(u, v) is quasi-concave. Then we 

have 

(2.12) 00?t) = 0, 

(2.13) u (0, 0) = fy(y -y 0) o, 

and 

(2.14) qo(0,0) -f z>0. 

We want to prove 0q(1,0) < 0, or to disprove qS(1,0) > 0. To do so, first 

we shall establish the fact that within a sufficiently small neighborhood of 

zero, 0(u, 0) is either positive, zero, or negative (but not more than one of the 

three). Then we shall show that 0b(u, 0) = 0 and 0(u, 0) < 0 in a neighborhood 
of zero are incompatible with 0q(1, 0) > 0 while 01(u, 0) > 0 contradicts the 

hypotheses of the theorem. 
First, if for some a > 0, 0 (a, 0) > 0, then by quasi-concavity, (1.5), and 

(2.12), 0(u, 0) > 0 for all u such that 0 < u < i7. Thus, either S(u, 0) > 0 or 

0(u,0) < 0 for all u in the interval. If 0(u,0) > 0, either there exists some 
sequence of points un approaching zero on which 0q(u, 0) > 0, or there does 
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not. If there does not, 0 (u, 0) = 0 for u > 0 sufficiently small. If there does, 
then, by quasi-concavity and (1.5), 0 (u, 0) > 0 in the intervals between the 
points in the sequence, and therefore 0(u, 0) > 0 for u > 0 sufficiently small. 
Therefore, either 0S(u, 0) > 0, or 0q(u, 0) = 0, or 0S(u, 0) < Oin a neighborhood 

of u = 0. 
Clearly, if 0q(1,0) > 0, by (1.5), 0S(u,O) ) 0 for all u in the interval 

O < u < 1, and 0(u, O) cannot be negative. 

Now, suppose 0q(u, 0) = 0 in the neighborhood of 0. If 0 (1,0) >0, we 
must have 

(2.15) O(?@, ) ( 0)O, O<u <U*; 

O(U, O) > O, ?4* < u < I ; 

where u* > 0. Since, by (2.14), 0b,(O,O) > 0, there is a solution, u(v), to the 
equation 

(2.16) 0[(U), O] =Ov) 

with u(v) > u*, for v sufficiently small. The solution may not be unique, but 
this does not matter. In any case, 

(2.17) lim u(V) - *. 
v-0 

Let 0 = 1 -u*/u(v), and form a combination of the points [u(v), 0] and (0, v) 
with the weights 1 -0 and 0 respectively. Then, (2.16) and (1.5) imply 

(2.18) [ (1 -0) u(v), Ov] = O(U*, Ov) > 0(O, v) . 

By Rolle's Theorem (the law of the mean), 

(2.19) qSv(u*, v*) = 0W(*, Ov)0-(*, O) 
Ov 

for some v* in the interval 0 < v* < Ov. But 0(u*,0) = 0, by (2.15), so that 
(2.18) and (2.19) imply 

(2.20) Av(U*,V*) 10 q(O,v) 

Now take the limits of both sides as v approaches zero. By (2.17), 0 approaches 
zero as v does. 0q(O, v)/v approaches qvS(O, 0) which is positive. Therefore, the 
right-hand side approaches infinity. Since qv is differentiable by hypothesis, 
it is continuous, so that the left-hand side approaches ov(u*, 0) which is 
finite. Therefore, the hypotheses lead to a contradiction, and q(u, 0) = 0 
for u > 0 and 0q(1, 0) > 0 are incompatible. 

Finally, suppose 04(u, 0) > 0 for u > 0 sufficiently small. Define u(v) as in 
(2.16). Now 

(2.21) lim u (v) = 0. 
v>O 
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Consider 0(u,v) on the line connecting the points (0,v) and [u(v),0]. Since 

&(u,v) is quasi-concave, its value along this line must be greater than or 

equal to its value at the end points. Therefore, the directional derivative of 

0(u, v) at (0, v) in the direction of [u(v), 0] must be nonnegative. That is 

(2.22) "(v)qu2(0,v)-vqEv(0,v) > 0 .1 

This can be written as 

(2.23) "(v) MO4(?' ) 
v 

sEq(0 v) . 

Taking limits as v, and therefore u(v), approach zero, we obtain 5Sv(0, 0) > 0 
on the right-hand side. On the left-hand side, the limit of qu(0,v)/v as v 

approaches zero is O.v(0, 0). The existence of this derivative is, of course, one 

of the hypotheses of the theorem. The limit of the left-hand side is zero, 
which is a contradiction. Therefore, 01(u, 0) > 0 for u > 0 sufficiently small 

contradicts the hypotheses of the theorem, and part (c) of the theorem is 
proved. 

(d) /(x) is concave.13 

(1.3) and (2.2) imply /(XO) > f(xl) for all x1 > 0, g(xl) > 0. This completes 
the proof of Theorem 1. 

Now we shall construct implicitly a differentiable (in fact, continuously 
differentiable) quasi-concave function that satisfies (KTL) at a point xo with 

?/ # 0, but which does not have a constrained maximum at that point. The 
example is designed to show that although the condition of twice differentia- 
bility, condition (c) of the theorem, can be weakened, it cannot be dispensed 
with altogether. 

From the proof, it is clear that such an example must be found in a func- 

tion /(x,y) with /x(0,0) = 0, /(x,0) positive in a right-hand neighborhood, 

andfy(O,O) >0. 

The example will be chosen so that /(0,y) - y, /x(x, 0) = -1/log x for 

x < 1/2, and 1/log 2 for x > 1/2. Given the definition of /(x,y) on the two 

axes, we complete the definition by requiring that all the level curves be 

straight lines, which insures the quasi-concavity of the example. Formally, 

for any fixed value of /(x,y), say z, we define X(z) as the solution of the 

equation, /(x, 0) = z. Then the level curve /(x,y) = z intersects the x-axis at 

x = X(z) and the y-axis at y - z. If the level curve is to be a straight line, 
and (x,y) is any point on it, we have 

(2.24) X() + = 1 . 

12 This is an application of (1.7) to qS(u, v). 
13 This is more general than the Kuhn-Tucker Theorem because the components of 

g(x) are assumed to be quasi-concave rather than concave. See [4]. 
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For fixed x and y, then, /(x,y) is the unique positive value of z for which 
(2.24) is satisfied (except that /(x,y) = 0 for x = y = 0). 

Since /f(O, 0) = 0, /y(O, 0) = 1, (KTL) is satisfied at the origin for the 

constraint, -y > 0, with )0 = 1. But the origin is not a constrained maximum. 
It remains only to show that /$, and /y are continuously differentiable. The 

construction makes clear, and it can be shown analytically, that no difficulty 

could arise except possibly at the origin. The functions /f and /y can be 

evaluated from (2.24) by implicit differentiation, and careful passage to the 
limit as x and y both approach zero shows that both are continuous, with /' 

approaching zero and /y approaching 1. 

Remark.'4 The hypothesis that the constraint function g(x) be quasi-con- 
cave was used only to establish that, for all xl in the constraint set, 

(2.25) g10(x ,x) > 0, 

for all constraints for which gJ(xo) = 0. But for this purpose it suffices that 
the constraint set be a convex set. For then 

(1- 0)xo + Ox' 

belongs to the constraint set for 0 < 0 < 1. By definition of the constraint 
set, 

gi[(l 0)xo + Oxl] > ? for O < 0 < 1. 

Further, for 0 = 0, the left-hand side becomes gJ(xo) = 0, so that the 

derivative with respect to 0 at 0 = 0 must be nonnegative. By the chain rule, 
this statement is equiv~alent to (2.25). 

3. NECESSARY CONDITIONS FOR A CONSTRAINED MAXIMUM 

Kuhn and Tucker [4] showed that (KTL) are necessary conditions for a 
constrained maximum provided the constraint functions g(x) satisfy a condi- 
tion termed by them the Constraint Qualification. To state the condition, we 

define a contained path in the direction e = (,1,. . ., &') to be a vector function 
?p(O), defined for the real variable 0 > 0 in an interval beginning at 0 = 0, 
whose values are points in the constraint set, and differentiable at 0 = 0 with 

'(0) = 6. The Constraint Qualification then requires that for any xo in the 

constraint set, there is a contained path with yp(O) = xo in any direction & 

satisfying the conditions 

(3.1) if gl(xo) = 0, then gO g > O, 

(3.2) if x = O, then 9?. >0 O.1 

14 We are indebted for this remark to Hirofumi Uzawa. 
15 Kuhn and Tucker [4, p. 483], require the path to be differentiable but a careful 

reading of their proof (p. 484) shows that only differentiability at 0 = 0 is used. 
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To grasp the meaning of these conditions, consider any constraint, gl(x) > 0, 
effective at xo. The tangent hyperplane, g>7(x-xo) = 0, then divides the 
space into two half-spaces (provided g = #0), one of which contains the 
constraint set. Then the directions satisfying (3.1) must point into or along 
the boundary of that half-space. A similar remark applies to the effective 
nonnegativity constraints. Then the Constraint Qualification requires that 
for every direction from xo which points into or along the boundaries of the 
appropriate half-spaces for each effective constraint, there is some path that 
begins at xo in the direction g all of whose points in some neighborhood of xo 
are in the constraint set. As Kuhn and Tucker point out, the Constraint 
Qualification is designed to rule out such singularities as outward pointing 
cusps at the boundary of the constraint set at which A's satisfying (KTL) 
may not exist. 

In [1], some simpler conditions which, when satisfied, imply that the 
Constraint Qualification is satisfied were studied. One such condition is that 
g(x) be linear. Another is that g(x) be concave and that for some x* > 0, 
g(x*) > 0 (that is, each coordinate is positive).16 If the constraints g(x) arise 
from a problem in activity analysis, then this condition means that it is 
possible to reduce all initial availabilities of primary commodities to some 
extent and still produce a positive amount of each intermediate and final 
good. 

Since we are interested here in quasi-concave constraints, we shall state a 
generalization of the latter condition.17 

THEOREM 2: Let g(x) be an m-dimensional differentiable quasi-concave vector 
function. Let g(x*) > 0 for some x* > 0, and for each j let either 

(a) gl(x) be concave, or 
(b) for each xo in the constraint set, gJ # 0. 

Then g(x) satisfies the Constraint Qualification. 

Therefore, if xo maximizes any differentiable function f(x) subject to 
g(x) > 0, (KTL) must be satisfied. 

If the hypotheses of Theorems 1 and 2 both hold, (KTL) are necessary and 
sufficient for a constrained maximum. 

16 This condition was used by M. Slater [6] in the case in which f (x) is also assumed 
concave. 

17 This is a special case of Theorem 3, Corollary 5 in [1]. A proof of Theorem 2 above 
appeared in the present manuscript as accepted for publication, but a simpler treatment 
was subsequently developed in [1]. 
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4. EXTENSIONS OF THE THEOREMS 

(1) Dropping the Nonnegativity Constraints. 
If /(x) and g(x) are defined for all x, and not just for those values in the 

nonnegative orthant, the conditions (a), (b), and (c) of Section 2 become 
merely /f = 0, for, in effect, all variables become relevant. That is, in the 
proof of condition (b), we choose x* so that /ox* > 0. If /f 0 0, this can 
always be done when x is not restricted to be nonnegative. Thus we can say 
that (KTL) is sufficient for xo to maximize /(x) subject to g(x) > 0, where 
/(x) and g(x) are differentiable quasi-concave functions provided that either 
(a) lo = 0, or (b) /(x) is concave. 

In this case, the first two lines of (KTL) become simply /f + Aogo = 0. 
Actually, the most important consideration is the domain of definition of 

the functions f(x), g(x) and not the presence or absence of nonnegativity 
constraints. In the most general case, we may suppose /(x),g(x) defined over 
a closed convex set D. Then, if we can find any point x2 satisfying (2.3), with 
the condition X2 > 0 replaced by the condition that x2 belong to D, the 
conclusion that xo maximizes f(x) follows as in part (a) of the proof of Theo- 
rem 1. The statement of (KTL) must be altered to read, 

(/xo + AOgx) (xl xo) < 0 for all xl in D, 

(KTLD) )og(xo) = 0, 

Ao > 0. 

An analogue of (c) remains valid. In the context of a general domain of 
definition, D, the condition /o x 0 should be altered to read 

(4.1) /X(x2 x?) #0 for somex2in D . 

(If D has the full dimensionality of the space, as in the case of the non- 
negative orthant, this reduces to the condition, /o 0 0.) If the generalized 
form (2.3) does not hold, then for all x2 in D, 

(4.2) /t(X2_ x?) > 0 . 

In view of (4.1), we can write 

(4.3) fx(x xo) > 0 for some x2 in D . 

On the other hand, from (2.2) (with xl > 0 replaced by the condition, xl 
in D) and (4.2), 

(4.4) /x(x' - xO) - 0 for all xl in the constraint set. 

Then, for any xl in the constraint set, define 

qs(u,v) = /[(I U v)xO+Uxl+vx2] -(xo) 
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Then it may easily be verified that (2.12-14) still hold, and we seek to prove 
that b(1l, 0) S 0. The rest of the argument under (c) proceeds without change. 

Finally, it is obvious that the argument for (d) of Theorem 1 requires no 
change. We can therefore state the following general theorem, which also 
incorporates the Remark to Theorem 1. 

THEOREM 3: Let f(x) be a differentiable quasi-concave function of the n- 
dimensional vector x, and let g(x) be an m-dimensional differentiable vector 
function, both defined for x in a closed convex domain D. Let the set of vectors x 
in D for which g(x) > 0 be convex, let xo and AO satisfy (KTLD), and let one 
of the following conditions be satisfied: 

(a) f?(x2- x) < O forsomeX2inD; 
(b) f2(x -x) = 0 for some x2 in D and f(x) is twice differentiable in some 

neighborhood of xo; 

(c) f(x) is concave. 
Then xo maximizes f(x) subject to the constraints, g(x) > 0, x in D. 

The analogue of Theorem 2 also holds. If g(x*) > 0 for some x* in D and 
for each], gJ(x) is concave or quasi-concave and g? # 0 for all xo in the con- 
straint set, (KTLD) are necessary for a constrained maximum. 

(2) Equality Constraints. 
The constraint g(x) = 0 can be expressed by the two inequality constraints 

g(x) > 0 and -g(x) > 0. Thus, if g(x) and -g(x) are both quasi-concave, as 
they will be, for example, if g(x) is linear, Theorem I can be applied. 

In this case, the last two lines of (KTL) become simply g(xo) = 0. 
There is no analogue of Theorem 2 here. However, we have already pointed 

out that if g(x) is linear, (KTL) is necessary for a maximum. 

(3) Unconstrained Maxima. 
First, suppose that all variables must be nonnegative, but that there are 

no other constraints. Since all variables are relevant, conditions (a), (b), and 
(c) of Section 2 become f/o 0 0 as in (1) above. (KTL) becomes f/ < 0, 

xofx = 0. These statements together imply that xo maximizes the quasi- 
concave function f(x) for x > 0 if either (a) f? < 0, f/o # 0, and xo*f? 0, or 
(b) 'f - 0 and f(x) is concave. The first condition requires that the usual 
first-order conditions for a maximum be satisfied with at least one corner 
variable. In effect, the existence of the corner variable rules out such possi- 
bilities as that the apparent maximum was produced by a cubic transfor- 
mation. 

The Constraint Qualification is automatically satisfied in this case. Hence, 
for nonnegative variables, /f < O,xof0 = O is necessary for an unconstrained 
maximum for any differentiable f(x). 
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If the variables are unrestricted, (KTL) becomes /0 = 0. As the examples 
at the end of Section 1 show, no conclusion can be drawn in general from 
(KTL) unless /(x) is concave in which case the condition is clearly sufficient 

for a maximum. 
If the variables are restricted to a general convex domain D, then (KTLD) 

becomes 

/*(x1-x?) ? 0 for all xl in D. 

This condition will be sufficient for a maximum if one of (a), (b), or (c) of 

Theorem 3 holds. 

5. ECONOMIC APPLICATIONS 

(1) Consumer Demand. 
The fundamental property of the utility function in the theory of consumer 

demand is that the indifference curves define convex sets or a diminishing 
marginal rate of substitution. Thus, the minimal property of all utility func- 
tions is quasi-concavity. The propositions of consumer demand theory such 
as the basic Weak Axiom of Revealed Preference follow directly from quasi- 
concavity without appeal to bordered determinants of partial derivatives, 
monotonic transformations and the like. 

Let the utility function u(x) be quasi-concave and assume non-satiation, 
that is uo?* > 0 for some xi. Then the usual first order conditions are necessary 
and sufficient for a constrained maximum. Let xo satisfy the conditions 

0 

ux?-Afix, < ? (i1..n), 

(5.1) x?(u,- ) 0 (i=l,...,n) 

A?(B - 1 x?$fi,) 
= 0 (i= 1,...,n), 

where fix > 0 is the price of a unit of xi and B is the consumer's budget. 
Then xo maximizes u(x) subject to the constraints B-E; xYf. > 0 and x > 0. 
Moreover, if AO > 0, and the assumption of non-satiation assures that it will 
be, xo minimizes the cost of attaining u(xo), for it maximizes - Exi 

subject to the constraints u(x) u(xo) > 0 and x > 0.18 

8 
0 

18 z > 0, Px$ > 0, and uxo - Ap0P S 0 imply A0 > 0. The first two lines of 
0 0 0 0~~~~~~~~~~~~~~~ 

(KTL) for the second maximum problem are -pf + , < 0, and x,(-p$g + 8 ux.) 

-0, or (5.1) with go 1/A0. 

The sufficiency of (5.1) for consumers' demand theory is widely assumed; however, 

the only rigorous proof, under rather severe regularity conditions, is that of Wold [7, 
Theorem 6, p. 87]. 
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(2) Production. 
The theory of efficient production can now be extended to include pro- 

duction functions that are quasi-concave but not concave, that is to those 
cases in which there are increasing returns to scale but a diminishing marginal 
rate of substitution. 

Suppose, for example, that an enterprise carries on production in a set of 
independent processes which transform purchased inputs into intermediate 
goods which are not traded on the market, and both into outputs. Let the 
scale or intensity of the ith process be measured by the variable xi. Let the 
jth output or input into the ith process be a monotonic function gij(xi) that 
is positive if the commodity in question is an output of the process, negative 
if it is an input. Number the final outputs j 1,..., ml, the purchased in- 
puts, j= ml + 1, . . ., m2, the intermediate goods, j M2+ 1,..., m, and let 
there be n processes. Then the net output or input of the jth commodity 
will be 

n 

(5.2) g1(x) = g (xi) 

Now, consider the problem of deriving the minimum cost method of pro- 
ducing a fixed set of outputs at given input prices. Let the price of the jth 
commodity be pg. Then the problem is to maximize =m2+1 p;gg(x), subject 

to the output-level constraints gg(x)-gg(x0) > 0, j= 1,..., ml, and the con- 
straints that the net outputs of the intermediate goods not be negative, or 
if we let 4'; represent initial stocks, that the net consumption of intermediate 
goods not exceed the initial stocks, that is gg(x) + 4'g > 0, j= M2 + 1..., M. 

Under what conditions will this problem satisfy the hypotheses of Theo- 
rem 1? Since any monotonic function of one variable is quasi-concave, the 
functions gi;(xi) are quasi-concave. But here we encounter a difference be- 
tween concave and quasi-concave functions which is important from the 
point of view of applications to economic theory. While nonnegative linear 
combinations of concave functions are also concave, nonnegative linear com- 

binations of quasi-concave functions are not necessarily quasi-concave. As 

a consequence, the hypothesis of quasi-concavity cannot replace the stronger 
hypothesis of concavity in many parts of economic theory. 

Consider one of the output constraints, gg(x) -g;(xo) > 0, or 
IZ 

(5.3) gi gf(xi) -gg (x?) > O 

For outputs, we have gi4(xi) > 0. If gsj (xi) < 0, gqg(xi) is concave, and there. 

fore, so is g;(xi). If g" (xi) > 0 for one process, with gi'(xi) < 0 for all the 
others, gg(x) can be, though is not necessarily, quasi-concave. If gi;(xi) > 0 

for two or more activities, gg(x) cannot be quasi-concave. For, if gg(x) is 



794 K. J. ARROW AND A. C. ENTHOVEN 

quasi-concave, the marginal rate of substitution between any pair of inputs 
must be diminishing, all other inputs held constant. That is, from (1.10), 
holding, for example, X3,..., xn constant, 

(5.4) (g2j) 2glj + (gl&)2g'l < 0 .19 

Thus, it is possible for either gi" or g" to be positive without violating (1 . 10), 
but clearly both cannot be positive, and similarly for every other pair of 
processes. Therefore, g" (xi) > 0 for at most one process if gj(x) is to be 
quasi-concave. The same is true for the constraints on the use of intermediate 
goods. 

What about the maximand, =m'+ip1jg;(x)? If the functions g;(x) are 
concave, their linear combination will be also. But if any are quasi-concave 
and not concave, the quasi-concavity of E 2 1+ipjgj(x) cannot be guaranteed 

independently of the prices. Thus, the only way for Theorem 1 to be applica- 
ble for all sets of prices is for there to be diminishing or constant returns to 
scale in the use of the inputs. For any given set of prices we may, however, 
have a limited amount of increasing returns in the use of inputs measured in 

money terms. 

On the other hand, to apply Theorem 1 to profit maximization, we 

maximize E m' 
p,g1(x) subject to the constraints gj(x) + 5'; > 0, j-m2 - 1, 

m. Now there can be a limited amount of increasing returns with regard 

to intermediate goods, but not, in general, with regard to outputs or to inputs 

purchased on the market (unless there is just one output and no purchased 

inputs). Again, for any given set of prices, a certain amount of increasing 

returns in outputs or purchased inputs measured in money can be tolerated. 

Alternatively, let a firm's production function be 

(5.5) Y= KGL,a (L >0, >O) . 

This function will be quasi-concave but not concave when x + 4f > 1. Then, 
Theorem 1 will apply to the problem of determining the efficient combination 

of inputs, given any specified output, but it will not be applicable to the 

profit maximization problem. That is, the problem of minimizing rK + wL, 
or of maximizing -(rK + wL), where r and w are the cost of a unit of K and 

L respectively, subject to the constraints Y Yo > 0, L > 0, K > 0, satisfies 

the hypotheses of Theorem 1. But the problem of maximizing ii (K, L) 
pKaL -rK-wL, subject to K > 0, L > 0 does not satisfy the hypotheses 

of Theorem 1 because H (K, L) is not quasi-concave. 

(3) Welfare Economics. 
Suppose that society's over-all production possibility function is quasi- 

19 The inequality (5.4) is a necessary condition for (5.3) to be quasi-concave but it is 
not sufficient. For the corresponding sufficient condition, see Section 6, below. 
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concave. The problem of determining an efficient allocation of resources (a 
Pareto optimum) can then be formulated as the problem of maximizing the 
utility of one household (a quasi-concave function) subject to the constraints 
(also quasi-concave) that total output is within society's production possibi- 
lities and that the utilities of all other households are at least equal to speci- 
fied levels. 

6. PROPERTIES OF QUASI-CONCAVE FUNCTIONS 

In Section 1, we gave several alternative definitions of quasi-concavity. 
Although the equivalence of these definitions, or their relationships when 
they are not strictly equivalent, seems to be rather generally understood, 
we have been unable to find in the literature either a proof of the equivalence 
of quasi-concavity and diminishing marginal rates of substitution (or in- 
creasing marginal rates of transformation), or a statement of the relationship 
between quasi-concavity and the signs of the bordered determinants of 
partial derivatives of quasi-concave functions.20 Therefore, we provide both 
here. 

Let /(x) be a twice differentiable quasi-concave function, and let xo and 
xl be any two nonnegative vectors, not zero and not proportional to each 
other. Let 

(6.1) g(u, v) /(uX0+ VXl) , Uv > O. 

Then f(x) is quasi-concave if and only if g(u, v) is quasi-concave for all xo and 
xl. Clearly the quasi-concavity of /(x) implies that of g(u, v). On the other 
hand, if g(u, v) is quasi-concave, then, in particular, for 0 < 0 < 1, we have 

(6.2) /[Oxo+ ( 1-)xl] =g(0, -0) > min [g(O, 1),g(l,0)] min[/(x),/(Xl)]. 

If (6.2) holds for all xo and xl, we have the quasi-concavity of /(x) by defini- 
tion. 

Consider any locus of points on which g(u, v) is constant. Along this locus, 
du/dv = -gv/gu. If f, > 0 everywhere, as is normally the case in utility 
theory, gu > 0 and gv > 0, and gv/gu is known as the marginal rate of sub- 

stitution between the composite commodities xo and xl. If /(x) is quasi- 
concave, the marginal rate of substitution is diminishing. That is, d (gv/gqg)/dv 
< 0. If /ox < 0 everywhere, as is normally assumed in production theory 
(-/, being interpreted as marginal costs), gu < 0 and gv < 0, and gv,/g. is 
known as the marginal rate of transformation between the composite commodi- 

20 Wold [7, Theorem 5, pp. 85-86] states the relation between the signs of the bor- 
dered determinants and convexity of indifference surfaces to the origin, which is equiv- 
alent to quasi-concavity (see Theorem 4), under conditions more restrictive than 
those studied here. 
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ties xo and xl, and if /(x) is quasi-concave, the marginal rate of transformation 
is increasing. That is, d (g,,/g.)/ldv >, 0. 

In order to prove these statements, observe that 

(6.3) d(ig, 2v - 12gvu + g 2u1 
dv gu 

Thus, if gu, > 0, we have a diminishing marginal rate of substitution, or if 

gu, < 0, we have an increasing marginal rate of transformation, if the ex- 

pression in brackets in (6.3) is less than or equal to zero. Therefore, to prove 
our propositions, we shall prove the following theorem. 

THEOREm 4: The twice differentiable function g(u, v) with gu > 0 and gv > 0 

everywhere, or gu, < 0 and gv < 0 everywhere, is quasi-concave if and only if 
2 

v2gggv+2 <0 

Proof. Since gu and gv are both positive or both negative, the implicit rela- 
tion g(u, v) = c defines u as a function of v. Let the function be 

(6.4) u = h(v) . 

Consider the case in which gu > 0 and gv > 0. By hypothesis, d2u/dV2 > OSo 

that h(v) is a convex function. 
Let (uo, vo) and (u', v') be any two points on the level curve g(u, v) = c. 

Then 
(6.5) u0 = h(vo), ul = h(v') . 

Let (u2, V2) = (I1-0) (u0, vo0) + 0(u'1,v'), for 0 ?0 < 1. Then, from (6.5), and 
the convexity of h(v), 

(6.6) h(V2) < (1 - 0)h(vo) + 0h(v1) = (1 O0)uo + Ou' = u2. 

If g,, > 0, it follows from the definition of h(v) that 

(6.7) C = g[h (V2), V2] ? (2,2 

so that g(uo, vo) = g(u', v') implies 

(6.8) g[(1-0) (uO, vO) + 0(u', v')] > g(uo, vo) (<0 ?6 I 1 

Quasi-concavity follows immediately. Suppose g(u', v') > g(uo, vo). Let 0' be 

the largest value of 0 for which 

g[(1 - 0) (uo, vo) + O(u', v')] = g(uo, vo) 

Now, let (u2, V2) = (I1- ')(uO, Vo) +0'l(ul, V1). If 0 < 0 < 0', we can write 

(1 -0)(Uo,vo) + 0(u1'v1) = (1 t)(uo,vo) + t(u2,v2) where t 0/0'. Since g(u2,v2) 
=g(uo, vo), we have shown that 

(.)g[(l - 0) (Uo, vo) + 0(ul, V1)] =g[(l t(uo, VO) + t(U2, V2)]>g(ov) 
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for 0 < 0 S 0'. On the other hand, by continuity and the definition of 0', 

(6.10) g[(l -0) (Ho, Vo) + 0(ul, V')] > g(uo, vo) 

for 0' < 0 < 1. Thus g satisfies (1.5) and is therefore quasi-concave. The 

theorem can be proved in a similar manner in the case in which g. < 0 and 

gv < 0 and there is an increasing marginal rate of transformation. 
Finally, we shall prove that the quasi-concavity of g(u, v) implies 

(6.11) ~~~2 -2u2 0 

(6. 1 1 ) ~gugvv ggvguv + gvguu < 0. 

Consider any pair of points (uo, vo) and (ul, vl) such that g(uo, vo) - g(ul, vl). 

From (1.7) we have 

(6.12) (- )g6 + (v v > 0, 

(? -O )gu + (v?-vi)gl > 0, 

which, when added, imply 

(6.13) (gu-g )(u-0) + (goe glv)(vl vo) > . 

Let k = ul_UO. In the limit, for k small enough, vlivo = -k g0/ge. Sub- 

stituting these relationships into (6.13) and dividing through by k2, we 

obtain 
( )g( + k, v- k(go/go)) -gu(u0, vo) 

(6.1) 
g 

k 

gugv(uo+ k,vo-k(gu./go)) -gv(u0, vo) 
? k '- S . 

gv 

Taking limits as k approaches zero, and multiplying both sides by g2, we 

obtain (6.1 1). 

Now consider the bordered determinant Dr defined by (1.1 1). The relation- 

ship between the property of quasi-concavity and the signs of Dr is given by 

the following theorem. 

THEOREM 5: A sufficient condition for f(x) to be quasi-concave for x > 0 is 

that the sign of Dr be the same sign of (-1)r for all x and all r = 1,.. n. A 

necessary condition for f(x) to be quasi-concave is that (-1 )rDr > 0, for 

r = ...,n,forallx. 

Proof. We shall begin by proving the sufficient condition. If (-1)rDr > 0 
for all r for any point xo, then, by the usual second-order conditions for a 

constrained maximum, xo is a strict local maximum of f(x) subject to the 

constraint f?x x= fXo.21 Let xl > 0 be any point xl for which 

(6.15) fIxx< fox,. 
21 See, for example, [5, pp. 376-379]. 
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We shall prove that 1(x') < f(xO), that is, that xo is a global constrained 

maximum subject to (6.15). Let 

(6.16) x(0) = (1 0)xo + Oxl, 

and 

(6.17) F(0) = f[x(0)] 

Then let 00 be the largest value of 0 for which F(0) takes its minimum in the 
interval [0, 1]. We shall show that 00 < 1 leads to a contradiction. 

If 0 < Oo < 1, then F'(00) = 0 because F(0o) is a minimum. If 00 = 0, then 

F'(O) > 0, so that /ox(xlxo) > 0. But from (6.15), F'(O) < 0, so that 

F'(O) - 0. Hence, in either case, F'(00) = 0, or 

(6.18) /0(xl1xo) = 0 if 0<00< 1 

Since x(00o+h) -x(0O) = h(x1 x0), it follows from (6.18) that 

(6.19) I90 [X(0o + h) x(0O)] = . 

But, by assumption, (6.19) implies that x(0O) is a strict local maximum of 
f(x) subject to /'ox /xoX(0o), so that /[x(0o + h)] </[x(0o)], forhpositive and 
sufficiently small. This contradicts the definition of Oo as the minimum of 
F(0). It follows that we cannot have Oo < 1, so that Oo = 1 and in particular, 
F(1) < F(O), or /(x1) < /(XO). 

We have thus shown that any point xo is a global constrained maximum of 
f(x) subject to the constraints x > 0 and 

(6.20) /xX < fxX 

Now, let xo and xl be any two points, and let x2 be a convex combination 
(that is, an internal weighted average) of them. Since /xX2 is an internal 
average of / xo and / 2x, it must be at least as great as the lesser. That is, we 
must have either ./ xo < / xl or /2X1 < /2 X2. Since x2 maximizes f(x) subject 
to /f,x ? /xX2, we must then have either/(x2) > /(xO) or/(x2) ' /(x'), and, in 
either case 

(6.21) /(X2) > min [(XO), /(xl)] 

so that /(x) is quasi-concave. 

To prove the necessity condition, first consider any xo > 0. If / ?0, 

Dr = 0 and the necessity condition is automatically satisfied. If /ox 0, 
consider the maximization of /(x) subject to the constraint (6.20). Since all 
variables are relevant and (KTL) is satisfied at xo with Ao = 1, it follows 
from Theorem 1 that xo is the constrained maximum. Therefore, xo certainly 
is a local constrained maximum of f(x) subject to /x x= /fxo, for which the 
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conditions (- 1)rDr > 0 are necessary.22 By continuity, this condition also 
holds when xo has one or more components that are equal to zero.23 

In Section V, we discussed a necessary condition for the quasi-concavity of 
a function of the form 

n 

(6.22) g(x) = E g(xi). 

We now apply Theorem 5 to obtain a necessary and sufficient condition. In 
this case, g =f x -0 for i #j. Let g=i g', and g =i x gi', and let 

(6.23) Pr = rI gi 

Then, by expansion of Dr, it is easy to see that 

(6.24) Dr - -(g)2Pr-l ? grDr-. 

If we assume, for simplicity, that gi' 0 0 for all i, then Dr/Pr = (gr)2/gr' ? 

(Dr_i/Pr_i). 
Since D1/P1 = -(g')2/gl', it easily follows by induction that, 

r 

(6.25) ( 1)rDr/(-1)rPr- = (g i t 

If gi' < 0 for all i, then (-l1)rPr > 0 for all r and the right-hand side of 
(6.25) is positive, from which it follows that (-1 )rDr > 0 for all r, and g(x) 
is quasi-concave, indeed, concave. 

Suppose g" > 0 for two or more values of i. By renumbering, we may 
suppose that gi' > 0, g2 > 0. Then P2 > 0. From (6.25), with r = 2, we 
will have D2 < 0, so that g(x) is not quasi-concave. 

In the remaining case, g"' > 0 for exactly one value of i; we may suppose, 

(6.26) gY<0(i< s),g >0. 

Then, 

(6.27) ( 1)rPr >0 (r < n), (-1)nPn < 0 

The right-hand side of (6.25) is positive for r < n; with the aid of (6.27) we 
have that (-1) rDr > 0 for r < n. To insure quasi-concavity, it is sufficient 
that (- 1)nDD > 0. In view of (6.27) and (6.25), this is equivalent to 

n 
(6.28) z (g')2/gj' >0. 

22 See [5], ibid. 

23 Let x1 > 0 and x(t) = (1 -t)xo + txK. Then x(t) > 0 for t > 0, whence (-1)rDr(t) 

> 0 for t > 0, where Dr(t) is D, evaluated at the point x(t). From this it follows that 

(-I )rDr (0) > 0 
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Since the first n- I terms are negative, this means that the last term must 
outweigh them all, or that gn' must be sufficiently small relative to (gn)2 This 
places an upper limit on the permissible rate of increasing returns in the nth 
process. The stronger the rate of diminishing returns in the other processes, 

the greater is the permissible rate of increasing returns in the nth process. 

Stanford University and 
the RAND Corporation 
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