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QUASI-CONTINUOUS FUNCTIONS
ASSOCIATED WITH A HUNT PROCESS

YVES LE JAN

ABSTRACT. A stochastic characterization is given for quasi-continuous func-

tions associated with Hunt processes.

Introduction. Quasi-continuous functions have been studied in various frame-

works of potential theory, especially Dirichlet spaces (cf. [1, 4, 5]). The main

object of this paper is to establish the relation between the quasi-continuity and

the quasi left continuity of processes. Under rather strong duality assumptions, it

also appears that the quasi-continuous functions are the functions which are finely

and cofinely continuous.

1. Definitions. Let Xt be a Hunt process defined on a compact space E containing

a cemetery A with a reference measure m we may assume to be bounded. In the

sequel we shall use mostly the notations of [2], and all functions and sets will be

implicitly assumed nearly Borel.

A bounded sequence of functions /„ is said to be converging quasi-uniformly

towards / iff for some a > 0 there exists a sequence gn of a-excessive functions

decreasing to 0 m a.s. (and therefore quasi everywhere (cf. [2, Proposition 3.2, p.

280])), such that \f — fn\ is smaller than gn-

This definition is independent of a. Indeed, for any ß > 0, gn + [a — ß)Ußgn is

ß excessive, decreases to 0 q.e. and dominates \f — fn\.

One can give an alternate and more intuitive definition of the quasi-uniform

convergence.

PROPOSITION 1. A bounded sequence fn converges quasi-uniformly iff there

exists a sequence Gm of open sets such that

(a) /„ converges uniformly on every set E — Gm',

(b) the capacitary potentials egm = Ex(e~aT°™) are decreasing toO m a.s. (and

therefore quasi everywhere), for a > 0.

REMARK. The property (b) is independent of a and equivalent to

(b') the stopping times Tcm increase to +00 PM a.s. for every initial distribution

p charging no polar set.

PROOF.   The sufficiency is easy to check.  If /„ is uniformly bounded by M,

for each m, |/n — f\ < 2~m + 2Megm for n large enough, and the sequence of a

excessive functions 2~m + 2Meg    decreases a.s. to 0.

Received by the editors May 9, 1980 and, in revised form, November 18, 1980 and November

1, 1981.

1980 Mathematics Subject Classification. Primary 60J40; Secondary 60J45.

Key words and phrases. Hunt processes, capacity, quasi-continuity, quasi left continuity.

©  1982 American Mathematical Society

0002-9939/81/0000-0282/$02.25

133

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



134 YVES LE JAN

To prove the converse, it is sufficient to construct a sequence of finely open sets

Gm (cf. [2, Theorem 11.2, p. 62]). Set n5 = inf(n,m(gn) < 2~2>) and Fk =

n^fciiK < 2-'}.   ff A,- = {gn, > %7?b 2Jgnj > \Aj and so Vgn. > e%.

Hence m(e%.) < 2+^m(gnj) < 2~i. Thus, m(e%_Fk) < Zj>k^%:) < ^"'^

and therefore e%_Fk decreases to 0 q.e. as k tends to +00. Clearly /„ converges

uniformly on each Fk.

We shall say that a bounded function / is quasi-continuous iff it is a quasi-uniform

limit of continuous functions. One checks easily that a quasi-uniform limit / of

quasi-continuous functions /„ is quasi-continuous. (Find f'n continuous and hn ct-

excessive such that |/n — f'n\ < hn and m(hn) < 2~n. \f — f'n\ < ¿Zm>n hm +

|/ — /n| decreases to 0 quasi-uniformly.)

We shall say that a stochastic process is quasi-continuous iff it is right continuous

and quasi left continuous (i.e. continuous on strictly increasing sequences of stopping

times, i.e. such that its predictable projection is left continuous). In particular, if

/ is a function on E, the process f(Xt), t > 0, is quasi-continuous iff it is right

continuous and the process f(Xt—) (which is the predictable projection of f(Xt)

by [7]) is left continuous.

2. Stochastic characterisation of quasi-continuous functions. The main purpose

of this paper is to prove the following:

THEOREM 1.  For a bounded function f, the following properties are equivalent

(A) / is quasi-continuous,

(B) f(Xt) is a.s. quasi-continuous on (0 + 00),

(C) ctUaf converges towards f quasi-uniformly as a] +00.

REMARK. The assumption that m is a reference measure can be removed if the

initial distributions are restricted to those which do not charge m-polar sets. This

applies in particular to the case of processes associated to Dirichlet spaces, where

the probabilities Pß are canonically defined only for such initial measures (cf. [6,

8]).

Equivalence of C andB.

(a) Necessity. It is well known that Uaf(Xt) is quasi-continuous. We only have

to prove that the stochastic quasi-continuity is conserved in a quasi-uniform limit.

With the notations of the definition, if Tm is a sequence of stopping time converging

towards a stopping time T > 0, we have to prove that f(Xrm) — /(^r) converges

to 0 a.s.

By truncation, we can suppose that the stopping times are in some compact

interval of (0 + 00). Then it is clear that Zm = supm>M\f(Xrm) — f(Xr)\ is, for

all n, dominated by

sup \fn(XTm)-fn(XT)\ + gn(XT)+  sup   gn(XTJ.
m>M m>M

E(ZM >e)<E[   sup   \fn(XTm) - fn(XT)\ > e )
\m>M J

+ E\gn(XT)+  sup   gn(XTJ>e).
\ m>M I
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QUASI-CONTINUOUS FUNCTIONS 135

The second term can be made arbitrarily small by choosing n large enough, using

the maximal inequality for the supermartingale e~atgn(Xt). Then the second term

can be made arbitrarily small by choosing M, using the quasi-continuity of fn(Xt).

(b) Sufficiency, (i) Assuming f(Xt), t > 0, stochastically quasi-continuous, let

us show that aUaf -* f quasi-uniformly. We shall in fact prove that Ptf —*■ f

quasi-uniformly.

sup |/(i) - Puf(x)\ < sup Ex(\f(X0) - f(Xu)\)
«<t u<t

<Ex(snp\f(Xu)-f(X0)\
\u<t

We shall denote this latter function by <pt(x). We have to prove that <j>t(x) | 0

quasi-uniformly as t { 0.

(ii) Let us show that 4>t{Xs) is quasi-continuous Pß a.s. for any initial distribution

p. As a first step, let us prove that the process

A\=      sup     \f(Xu)-f(Xs)\
s<u<t-(-a

is quasi-continuous in s. If T and S are two stopping times, with T < S on {S <

oo}, one easily checks that

|A*,-A^|<inf(    sup    \f(Xu)-f(XT)\,        sup        \f(Xu)-f(XT+t)\
\T<u<S T+t<u<S+t

Therefore, since f(Xt) is quasi-continuous, |Aj. —A^| converges to zero as T f S or

as S i T.

(iii) Let us prove the quasi-continuity of 4>t(Xs) on (0, u). For a sequence Tn of

stopping times increasing or decreasing towards T,

hm (<At(X)T„ = lim E(AtTJ = E(AtT) = E(4>t(X)T).
n—»oo

By Theorem 28 of Chapter IV of [3], this proves the right continuity and the

existence of left limits. If T is predictable, E(<pt(X)T_) = E(<j>t(X)T)- For any

A E 7t, Ta is also predictable (since 7t— = ?t)- ff Sn is an announcing sequence

for TA and S'n = SnAu, lim«^«, $t{X)s>n = *t(X)T_lA + Qt(Xu)lAc Therefore

applying the result to TA A u, we get that ¿($t(X)r— 1a) = ¿'(^í(X)tIa), which

allows us to conclude:

(iv) As t i 0, 4>t(x) { 0 quasi everywhere.

We can now complete the proof with the following "Dini lemma" :

LEMMA. // a bounded sequence fn decreases to 0 quasi everywhere, and if each

process fn(Xt) is quasi-continuous, then the convergence is quasi-uniform.

Set Fn = {fn > 2~k}. It is enough to prove that limn_00m(e£") = 0 for

some a > 0. Indeed, if m(e^N^) < 2~k, fN(k) < 2~k + e^w and a fortiori,

ÎN(k) < 9k, with gk = Y^k>(eaNl'') "r~ 2—p). But gk is a sequence of a excessive

functions decreasing to 0 a.s. since m(gk) < 2—fc+2. Define Tn = Tpn; since f(Xt)

is right continuous and /„ decreasing, clearly fn(XTp) > 2"k almost surely on

{Tp < oo} for all p > n. Set T = linin-Kx, Î Tn- By the quasi left continuity, it is
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136 YVES LE JAN

clear that fn(XT) > 2~k a.s. on {T < oo}, for all n. Therefore lim^oo Tn = +00

almost surely. It follows that m(e£n) = lim J. Em(e~aTn) s^ 0.

REMARK. It is easy to verify on the second part of the proof that a function /

is quasi-continuous as soon as f(Xt) is quasi-continuous on (0 + 00) Pm a.s.

Equivalence of A and B. The stochastic quasi-continuity of continuous functions

is obvious (since Xt is quasi left continuous) and it has been observed that this

property is stable under quasi-uniform limit.

Let B be the Banach space obtained by completion of the space of stochastic

quasi-continuous functions with respect to the norm ||/|| = inf(m(g), g 1-excessive,

9 > l/D- & is contained in L^to) and the quasi-uniform convergence in E implies

the convergence in norm.

Since l/l < \g\ implies ||/|| < \\g\\, any continuous linear form on B is the

difference of two positive linear forms. By Lemma 1 and Daniell's theorem any

positive linear form on B extends into a positive measure on E, charging no polar

sets. Therefore, it is null as soon as it is orthogonal to all continuous functions,

and by the Hahn Banach theorem, any quasi-continuous function g is limit in norm

of a sequence of continuous functions gn- A fortiori it is the limit in norm of the

sequence gn, gn being the truncation of gn by the upper and lower bounds of g.

Taking a subsequence n^ such that ¿~2 \\g — 9nK\\ < °°i one checks easily that gnK

converges towards g quasi-uniformly.

REMARK. In the case of the deterministic translation process on the real

line, quasi-continuous functions appear to be the continuous functions, as finely

continuous functions are the right continuous functions.

3. Various properties.

3.1. We shall say that a function / is quasi finely continuous iff it is finely

continuous except on a polar set. An equivalent definition is that f(Xt) is almost

surely right continuous on (0 -+- 00) and this property needs only to be checked

Pm a.s. (If / is finely continuous except on a polar set B, and if f(Xt) is not

Pfj. a.s. right continuous on (0 + 00) Pß a.s. for some p, by the section theorem

there is stopping time T such that f(X)r+- 5^ /(Xt) and by the strong Markov

property Xt E B Pß a.s., which yields a contradiction. Conversely, if / is finely

discontinuous on a nonpolar closed set A, by the strong Markov property, f(Xt)

is not Pm a.s. right continuous at TA. TA cannot be Pm a.s. infinite, since A is

nonpolar, and therefore m(eA) is positive.)

We shall say that a set is quasi finely open iff it is finely open except for a polar

set, and quasi-open iff it is quasi finely open, and for any sequence Tn announcing

any predictable stopping time T, {Xt E U} Ç lim inf{Xrn E U}. A quasi closed

set will be the complementary of a quasi open set.

Proposition 2. A bounded function f is quasi-continuous iff, for any open

interval (a b), the set {x, a < f(x) < 6} is quasi-open.

PROOF. The necessity is clear. To prove the sufficiency we may use reductio ad

absurdum. Suppose a predictable time T > 0 and an announcing sequence Tn such

that limn sup |/(Xr) — /(Xrn)| > e > 0 on a set A of positive probability. (We fix

an initial measure.) There is at least an interval / of the form (r — e/3 r -|- e/3),

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



QUASI-CONTINUOUS FUNCTIONS 137

r rational, such that the set B = A fl {/(Xr) E 1} has positive probability. Since

{x, f(x) E 1} is quasi-open, /(Xr„) E I for n large enough and w E B. But then,

\f(XT) - f(XTn)\ < 2e/3

and we get a contradiction.

COROLLARY.   The following properties are equivalent

(a) Every quasi finely continuous function is quasi-continuous.

(b) Every quasi finely open set is quasi-open.

(c) Every bounded a-excessive function f is regular, i.e. such that f(Xt) is quasi

left continuous.

PROOF. Clearly (a) follows from (b) by the proposition and (c) follows from (a),

(b) follows from (c) by Theorem 4.5, p. 86 in [2]. In particular, this corollary applies

to the case of classical potential theory and Brownian motion. It also applies to the

case of Dirichlet spaces.

REMARK. With the argument given in Lemma 1, one easily checks that if

the intersection of a decreasing family of quasi-closed sets is polar, they decrease

quasi-uniformly to 0.

3.2. Proposition 3 (Balayage on regular quasi-closed sets). //
M is a regular and quasi-closed set and f a quasi-continuous function, then PtmÍ

is quasi-continuous. In particular, M is a projective set.

PROOF. One easily checks that the process f(XT* ) (with T%u = Tm o6t-\-t)

is quasi-continuous on (0 + oo).

Its optional projection PTMf(Xt) is therefore quasi-continuous (cf. step (iii) in

the proof of the first equivalence).

3.3 Quasi-continuity and cofine continuity. In this section, we shall assume the

existence of a Hunt process Xt, with reference measure m, such that Ua and Ua

are in duality with respect to m. (Recall that m is assumed to be bounded.)

Theorem 2. A function is quasi-continuous iff it is quasi finely and quasi cofinely

continuous.

PROOF. Let pt be the time reversal operator defined on {w, c(uj) > t} by

Xs(ptu) = X(t_s)_(w) if s <t.

Xa(pt(jj) = 6   if s > t.

One checks easily on cylindric sets that, for any measurable set of paths A in ft

Em(p^(A)l{i>t}) = Êm(Al{(>t}).

Taking A = {w, f(Xu(u>)) is right continuous on (Oí)} and letting t take all positive

values, it is clear that f(Xu) is Pm a.s. right continuous iff /(Xu_) is Pm a.s. left

continuous.
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