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Introduction. The purpose of this paper is the determination of necessary
and sufficient conditions for the lower semi-continuity, under various kinds of
convergence, of integrals of the form

I(u;ñ)= f /(x,«(x),-,D'u(x))dx.
Ja

Here x = (x1, ■•-, x"),u = (u1, ■■-,u"'), Í2 is a bounded domain and the integrand
fix,p°,---,p') is a continuous function of its arguments.

In 1952 Morrey studied the case I = 1 and introduced the concept of quasi-
convexity (see [3]). Extending this concept to the cases I = 1, we say that an
integrand /(p') is quasi-convex if each polynomial of degree g / minimizes the
integral, J"n/(D'n(x))dx, among all functions whose derivatives of order I—I
satisfy a Lipschitz condition on Í2 (we denote this function space by ^''""(Q))
and assume the same Dirichlet data on dQ as the polynomial. The reason for the
term quasi-convexity becomes clear when one sees that convexity implies quasi-
convexity and quasi-convexity in turn implies the Legendre condition (at least
for smooth integrands) which contains within it various convexities. Hence,
quasi-convexity is a condition which falls between convexity and a weaker kind
of convexity.

In Theorems 1 and 2 of §2,1 extend Morrey's results by showing that the necessary
and sufficient condition for lower semi-continuity of 7(w;Q) in "^''"(fi), under
uniform convergence of derivatives of order z% I — 1 and uniform boundedness
of derivatives of order /,is that/(x,p0,-..,p') be quasi-convex in p'for each fixed
value of the variables (x,p°, •■-,p'-1). The proof is a straightforward extension of
Morrey's for the case 1=1. However, it contains the added feature that the
necessity is derived asssuming only that the admissible functions satisfy fixed
Dirichlet boundary conditions.

I then go on to consider lower semi-continuity under weak convergence in a
space Wl,'(Cl) (1 -g r < oo ), the space of functions with strong derivatives up to the
order / which are in f£r(Q). Two cases are considered, though they do not require
separate treatment: first, the case where the admissible functions satisfy a fixed
Dirichlet boundary condition, and second, the case of no boundary condition.
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In addition to quasi-convexity, a new condition, too involved to state here, enters
the picture. In Theorem 4 of §4, I show that quasi-convexity and this second
condition are necessary and sufficient for lower semi-continuity when the integrand
has certain reasonable growth properties. This second condition, though hard to
get at in general, is easily seen to be satisfied in many important cases; for example
it is satisfied if the integrand is bounded below by a constant. Moreover, it can
usually be eliminated when /= 1 and the admissible functions satisfy fixed Dirichlet
boundary conditions (see Theorem 5 in §4). I have not been able to derive a com-
parable result for / > 1 but believe that it is true (see the conjecture following the
proof of Theorem 5).

The results of §4 are somewhat more general than Morrey's, who restricts
himself to integrands bounded below and demands that the functions converge
uniformly. The outline of the method of proof is Morrey's. However, I wish to
emphasize that the extension of Morrey's method to the case I > 1 is not im-
mediate since certain serious technical problems arise. The crux of the proof is
Morrey's ingenious idea of using an auxiliary strongly convergent sequence.

Although the construction of the strongly convergent sequence is an elementary
matter in the case / = 1, it does not appear to be so for />1. I carry out the
construction in a series of lemmas contained in §3. It is based on the results of
Agmon, Doughs and Nirenberg concerning Poisson kernels for elliptic equations
(see [1]). Curiously enough, the estimates given in [1] for solutions of elliptic
boundary problems are not adequate, so that we cannot construct the sequence
simply by taking solutions of elliptic boundary problems, whose existence is
known, and applying the a priori estimates.

The paper also contains some results for integrands which grow more rapidly,
given in Theorem 6 of §4, and in §5 closes with the derivation of the Legendre
condition from quasi-convexity.

1. NotatiDn and preliminary definitions. ¿M" will denote the real «-dimensional
space of vectors (points) x = (x1, ■■■,x") with norm of x = | xl =( S"=1(x')2)1/2.
u = u(x) = (u1(x),---,um(x)) will denote a function defined on some subset of
ai" which assumes values in âê'". For i = 1, —,n and j = 1,2, ■••, D-u will be
the vector-valued function dJul(dx')J, while D?u = u. For a equal to a multi-
index (<Xy,---,an) having nonnegative integral components, D"u = D\l ■■■ D*"u.
Setting |a| = ax + ••• + a„ and / = 0,1, •••,£>'« will stand for the vector-valued
function whose components are all the components of the D"u for | a | = / and Dlu
will stand for the vector-valued function whose components are all the compo-
nents of the D"u for I a | ^ /.

Let Q be a domain (open connected set) in 3in. For Z = 0, •••, oo we define
#'(0.) to be the linear space of functions u(x) all of whose derivatives of order ^ I
exist and are continuous on Q. ^¿(fi) will be the subspace of£'(Q) consisting of
functions with compact support contained in Q. &'{&) will be the subspace of
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ii'(Q) consisting of functions whose derivatives of order z% I have continuous
extensions to Q. Of course, the above spaces depend on the value of m but this
is omitted from the notation since it will be clear what is meant in any given case,
and we adopt the same policy throughout the paper.

As usual, ^r(Q) (I = r < co ) is the Banach space of Lebesgue measurable
functions w(x) defined almost everywhere in Q for which

H*'«»- (fj«(*)|rd*)l/,<«>.

For / = 0,1, ••• and 1 :£ r < co, we define #"''r(i2) to be the Banach space of
functions u(x) with strong derivatives D'u in ^r(Q) with the norm

|| U || iVl'r(Sl) —   \\L> U ||jfr(Q).

ir!¿r(Q) is the closure of íQíi) in Wl'\Çi).
We now extend the definition of the "^-spaces to the case r = oo. Wl,œ(ÇÏ) is

the linear space of functions w(x) with strong derivatives Dlu such that
|d'u |Lqo(SJ) = essn sup|D'u | < co. Instead of norming this space we define
convergence of sequences in W,,co(Cl), which makes it a complete linear topolog-
ical space. We say

uk - m in ir'-co(Q)
*-»GO

if
\\D'~luk-D'-1u ¡^»(jd^O as k-»oo

and
|| Dluk |^w(n) g M < oo for all k.

In analogy with the case of finite r, we take #"o°°(Q) to be the closure of ^oi®)
under convergence in #"',00(£2).

When Q is a bounded domain, it is clear that #'"''C°(Q) consists of those functions
in (ël~1(Q) for which D'~lu satisfies a Lipschitz condition on Q and one can easily
show that #^'0,co(n) consists precisely of those functions in WI,X(Q) for which
D'~1u(x) = 0 on oil. Therefore, to say that Dl~1u =D'~1v on <9Q is the same as
saying u — v is in #"o°°(Q). In general we shall say that u(x) and v(x) in Wl'r(Q)
assume the same Dirichlet data on oil in the sense ofWl'\Çï) if u — v is in Wl¿r(Q)
and we shall call any translate of if^X®) a Dirichlet class of Wl'r(Çï).

We shall use the notation -+ and ^* which mean "converges strongly to"
and "converges weakly to" respectively.

2. Lower semi-continuity with respect to convergence in Wl,co(ÇÏ). It is clear that
when Q is a bounded domain, #"''°°(Q) c #w,r(fi), and because weak convergence
in ifl,'(Q) (r < oo ) is equivalent to weak convergence of the respective derivatives
in -S?r(n), convergence in Wl,Cß(Q) implies weak convergence in W''r(ÇÏ) but does
not imply strong convergence. Therefore, any condition which is necessary for
lower semicontinuity in W'^ÇÏ) is also necessary for lower semi-continuity under
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weak convergence in W''r{Q). In this section we show that quasi-convexity of the
integrand is necessary and sufficient for lower semi-continuity in Wl,co(ÇÏ). This
is the first step in establishing similar conditions in the case of finite values ofr.

Let/==/(x, pl) denote a real-valued integrand with the independent vector
variable p' corresponding toD'w. Similarly p°, •••, p' denote variables corresponding
to D°u,---,Dlu respectively. If D. is a bounded domain in 01" and u(x) is a function
in an appropriate space, ifl'r{fï), then the functional, \af(x,Dlu(x))dx, will be
denoted variously by / = I(u) = I(u; Í2). If we wish to consider the functional /
only on a subset 3> of irl,r(Q) we indicate its restriction to 2 by I\3>. If we wish
to consider the integral only over T, a measurable subset of Q, we write
I(u;T).

Definition 1 (Quasi-convexity). Let f=f(pl) be a continuous real-valued
integrand defined for all values of pl. Let Q. be an arbitrary bounded domain in 0t".
Set

(1) f(u;Q)= j   f{Dlu{x))dx   for u(x) in #^i>œ(iî).
Ja

We say that f(p') is quasi-convex if

(2) I(w + z;Q)^I(w;Ci)

for every polynomial w(x) of degree ^ I, every function z(x) in W'ô^Q.) and every
n.

Inequality (2) states that I(u; Q) assumes an absolute minimum, among all u(x)
in the Dirichlet class of w(x), at u = w. Since Dlw is an arbitrary constant vector c,
the inequality (2) can be rewritten in the form

(3) \   f(c + Dlz(x)) dx ^f(c) ■ meas Q.
Ja

In verifying quasi-convexity it is sufficient to fix the domain Q. For let us suppose
that (2) or equivalently (3) has been verified for ÍÍ and let 0.' be some other bounded
domain. Then for the proper choice of the scalar constant a ^ 0 and the point x0,
the transformation x = ax' + x0 maps Q' onto Q", a subdomain of Q, and

(4) f f(c + D'x.z(x')) dx' = \a\-" f  fie + Dlxzi-—^\ ■ a1 \ dx.

Since z((x — x0)/ a) can be considered to vanish identically outside of Q" and as
such is in W'^iOi), the second term in (4)

-  |«|~" Í f(c + Dlxz[?—^\ ■ a1 \ dx-/(c)|a|-"meas(n-Q").(I)

(') Here we use the fact that Dlxz((x—xo)la) = 0 a.e. on dQ." which might have positive
measure. Tn general it can be shown thatstrong derivatives vanish a.e. on a set where a function
is constant.
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Figure 1. (The case n = 2, k = 2.)

=lf(c) \a\~" meas O" = f(c) meas Q'.

Secondly, it is sufficient to verify (2) or (3) only for z(x) in ^o(^)- F°r if
z(x) is in W'¿X(C1) it is easy to show that there exists a sequence zk(x) in ^(ü)
such that

I D'zk(x) I ̂  M < 00
and

Dlzk(x)-^->Dlz(x).

Therefore, if (3) holds for zk(x), it must also hold for z(x) by the Lebesgue bounded
convergence theorem.

Theorem 1 (Necessity of quasi-convexity). Let f=f(x,pl) be a continuous
integrand defined for all x in a bounded domain Q and all values of p', which is
furthermore bounded on bounded sets of (x,pl)-space. Define

l(u;0) = f f(x,Dlu(x)) dx for u(x) in Wl'm(Çï).
Ja

If 2 is any Dirichlet class in #^''C0(Q) and If2 is lower semi-continuous
relative to convergence in ifl'œ(Q) then f(x,pl~1,p') is quasi-convex in pl for
each fixed value of(x,pl~1).

Proof. Let xt be an arbitrary point in Q and let Qh be the cube xi ^ x' g x\ + lfh
(i = l,--,n). Let z = z(x) be an arbitrary function in ^(int 6i)and extend z(x)
to all of ÛI" as a "^-function with period equal to 1 in each of the x. Then define

zh,k(x) = (hk)~'z(hk(x - Xy) + xt) for x in Qh,

= 0 for x not in Qh
(5)

where h,k = 1,2,•••. zhk(x) is in ^ (int Qh) and is periodic in Qh with Qhk as a
period cube. Number the period cubes in Qh in some manner and denote them by
Qhkj (j — 1) •••>fc") with 6**, 1 = 6a*- Denote the corner of QhkJ nearest to Xy by
x,- (see Figure 1).

We now let u(x) be a function in 2 which is a fé**3-function in some neighborhood
of Xy and for which (D'~1u(x ), Dlu(xy)) = (c,_1, c'), c'_1 and c' being arbitrarily
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chosen constant vectors. For sufficiently large values of h, Qh c Q, so that
I(u + zhk; Qh) is defined and

/(« + z»,*;Ô*)=2    f       {fix,D'uix)+Dlzh,kix))
j = l JQhk,j

(6) - f(xj,Dl- luixj), D'uixj) + Dlzhtkix))} dx

+   I    f       fix^D'-iuix^D'uixJ + D'z^ixVdx.
7 = 1   JQhk.j

It is clear that zÄjk(x) -* 0 in W,,c°iiï) as k -* oo . Further, if /i is sufficiently large,
¡<(x) is in ^(ö/,) and it follows by an obvious argument, using the continuity off
and Dlu and the uniform convergence to zero of the Dl~lzhk, that the first sum
in (6) tends to 0 as k -* oo.

To handle the second sum in (6), perform the change of variables y = nk(x — xf)
+ Xy in the j'th integral. This maps the cube Qhkj onto the cube ßi m eacn case
and recalling the definition of the zh t(x) in (5) and the periodicity of z(x), the
second sum is seen to reduce to

(7) Z   ihk) -" f fixj,D'-'uixf,, Dluixj) + Dlziy)) dy.
J-Í JQi

il) being a Riemann sum, tends, as k -> oo, to

(8) lim  Iiu + zM; Qh) =   f   f   ñx^-'uix^D'uix) + D'ziy)) dydx.
t-»oo JQhJQi*

Since we are assuming the lower semi-continuity of I¡3¡, it follows that

lim  Iiu + zh>k; SÏ) =  lim  7(u + zM; ßft) + 7(m; £2 - QA)

^7(M;ßA) + 7(M;£2-ß/l).

Hence from (8)

(9) f   Í /(x,D'_1i,(x), D'w(x) + D'ziy)) dydx = f /(x,D'«(x)) dx.
JQhJQi JQh

Multiplying both sides of (9) by h" and letting h -> oo yields

(10) f /(x^c'-V + D'ziy)) dy ̂ fixy,c'-l,c'),
JQi

from which we infer the quasi-convexity.

Lemma 1. Let I be defined as in Theorem 1 and let S> be a Dirichlet class in
Wl,œiÇÏ). If' I\3i achieves an absolute minimum at w(x), then I is lower semi-
continuous at w(x).
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Proof. Let z*(x)-+0 in iT'-œ(CÏ) as fc->oo. Let <b(x) be in <C(G) with
0 g <p(x) S 1. Then

I(w + zk) = I(w + zk) - I(w + <bzk) + I(w + 4>zk)

= I(w + zk;T) - I(w + <pzk;T)

(11) +I(w + zk;iï-T)-I(w + <bzk;Sl-T)

+ I(w + <pzk)
=    Jy+J2+J3.

In (11), r is the largest open subset of Í2 on which 4>(x) = 1. Hence Jy = 0. Since
Dl~1zk-*0 uniformly and the D'zk axe uniformly bounded independent of k, it
follows easily that

lim sup J2 ^ C meas (Q — T),
k-*oo

where C is a constant independent of the choice of <b(x). Finally by hypothesis

J3 = I(w).

Therefore if e > 0, by the proper choice of <b(x), it follows that

lim inf I(w + zk) ̂  I(w) — e
t-»00

and the required result is proved.

Theorem 2 (Sufficiency of quasi-convexity). If f=f(x,p') as defined in
Theorem 1, is quasi-convex in pl for each fixed value of (x,pl~x) then I(u) is
lower semi-continuous relative to convergence in ^''"(il).

Proof. Let Gv (v = 1,2, • • • ) be the cubic lattice containing the cube 0 ^ x' ^ 2 ~v
and let Tv be the union of those cubes in Gv which are contained in £1. Now let
u(x),zk(x) (k = l,2,-) be functions in ^''"(fi) and let zk(x)-*0 in Wl-™(Çl).
If e > 0 then for some sufficiently large value of v = v', which depends only on e,

(12) |/(« + zk; fi - rV)|, \l(u; Í2 - rv,)| < e

for all values of k. If v > v' then Tv. = Ua^iÔa where the Qh axe the cubes of Gv
which are contained in rv..  Now

I(u + zk;Tv.)

(13) =  f   {/(x,D'M(x)+D'zt(x))-/(x,D'~1u(x),D'M(x) + D'zt(x))}dx
Jrv'

+  f    f(x,D,-1u(x),D'u(x)-rD'zk(x))dx.

Obviously the first integral in (13) tends to 0 as k -* oo. We rewrite the second
integral in the form
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f   {/(x,D,-1«(x), D'u(x) + D'zk(x)) -f(x,Dl-lu(x),D'u(x) + D'zk(x))}dx
Jr..,

JVv     i» -. - -

+   I        {f(x,D'-1u(x),D'u(x) + Dlzk(x))-f(x,D'u(x))}dx
(14) *"•> JQh

+       f(x,Dhi(x)\dx

=   Jy+J2+ J3.

Referring to (14), if v(x) is an ^'-function then v(x) is a new function (depending
on the value of v) defined by

v(x) = (meas Qh)~l      v(y) dy for x in int Qh.
JQh

It is well known that v(x) —> v(x) a.e. as v-> oo, so it is a simple consequence of
the continuity off, the boundedness of D'u, the uniform boundedness of the Dlzk
and the Lebesgue bounded convergence theorem that

(15) Jy -» 0 and J3 -> I(u ; Tv) as v -* oo,

the convergence in the first case being uniform in k. Since we are assuming quasi-
convexity it follows immediately from Lemma 1 that for each value of v — v'

(16) liminf J2 = 0.
t-»oo

From (15) and (16) one concludes that lim infí._o07(u + zk; r„.) — Iiu; Tv) and
thus from (12),

lim inf Iiu + zk;Cl) = 7(w; Í2) - 2e,
t-»oo

from which the lower semi-continuity follows.

3. Construction of appropriate functions with assigned Dirichlet data. Before
discussing lower semi-continuity in the spaces Wl,r(Q) for finite values of r, we
give a set of preliminary lemmas culminating in Lemma 4, which is of crucial
importance to the following work. It leads directly to Lemma 5 of §4, which plays
the same role in the case of finite r as Lemma 1 in the case of infinite r.

The problem to be dealt with is essentially the following: to find a transformation
S which maps Dirichlet data <Ù(x) = {eb0(x),---,cbl_y(x)} given on ÔQ into
functions <3(d>) defined on Q such that S(3>) assumes the data O on dQ. and such
that if <bk is a sequence bounded in Wl'r(dQ) X ••• X W1,r(ôQ) and strongly
convergent to zero in W'~1,r(8Q)x ••• X W°'r(dQ) (these spaces will be defined in
this section) then ©(«¡P*) is strongly convergent to zero in Wl,r(ÇÏ). The
particular construction I give is based on the Poisson kernels for elliptic boundary
problems introduced by Agmon, Doughs and Nirenberg [1]. However, since we
do not care if the constructed function S(d>) satisfies a differential equation, it is
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easy to see there is wide latitude in the choice of possible kernels. It is not clear
that the constructed functions can be chosen to satisfy an elliptic equation since
the estimates given in [1] are not adequate.

In order to avoid technical questions concerning traces of discontinuous functions
on lower dimensional manifolds, which are not necessary for the purposes of
this paper, we deal with ^""-functions and domains with ^ "-boundaries, except
when it is no more difficult to give the proof in a wider context. The interested
reader can easily generalize these results.

For simplicity of notation we now work in the space ¿%n+1(n ̂  1) whose points
we designate by (x,i) where x = (x1, •••,x"). J""/1 denotes the upper half-space
í > 0. Now consider a single elliptic equation, let us say, A!ti =0, in the half-space
â$"+ * together with Dirichlet boundary conditions given on t = 0. Let Kj = Kj(x, t)
(j = 0, •••, I — 1) be the set of Poisson kernels for this problem given in §2 of [1].
(In their notation the kernels are numbered from 1 to m.) Let Kjf9 = KJq(x, t),
where n and q have the same parity, be auxiliary kernels as defined in §2 of [1].
The relevant properties of these kernels follow.

Lemma 2. (i) The kernels Kjq(x,t) are ^^-functions in ¿ftlf1 except at
x = t = 0.

(ii) Ajn+")/2KM(x,t) = KJ{x,t)

except possibly at x = t = 0.

(iii) \D~Kj,Jx,t)\ Í C(\x\2 + t2r+"-'")'2(í + |log(|x|2 + r2)|)

and if m ^ / + q + 1 then the logarithmic term in the above inequality can be
omitted. The constant C depends only on m and q.

(iv) Ifcbj = <pj(x) is in <áfo°(¿0 then

UÀX> 0=1   Kj(x - y, t) <bj(y) dy = Kj * cbj

is in <£œ(i%n++1) and D¡Uj(x,0) = <50<£/x) for all i = 0, •••, / - 1.

Uj(x, t) also solves the differential equation but we do not care about that here.
The proofs of (i)-(iv) can be found in §2 of [1] and are of an elementary character,
unlike the proofs of the deeper properties of these kernels which rely on the
Calderón-Zygmund inequality. These deeper properties are unnecessary, for our
purposes.

In Lemma 3 we carry out our construction in a half-space. The rest then follows
by more or less standard techniques.

Lemma 3 (Construction in a half-space). // 4>(x) = {<b0(x),---,<pl-y(x)} is a
set of functions in ifrl'T(âi")x ••• x')F1'r(^',)(l ^ r < oo) having compact support
in 0t" define
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i-l
51(4)) =   2   K}*cbj.

j = o

Let Q' and Í2 be bounded subdomains of 3C and 9ln+l respectively. Then
(i) i\ is a linear transformation oftfoi^") into <it0(âlt\ti) and ft(4>) assumes

the Dirichlet data 4>(x) on t = 0.
(ii) 5\ is a linear transformation of iTl¿r(íl')x ■■■ x #/"¿'r(íi') into ^x(âi"++1)

and a compact linear transformation of W'¿r(£i')x ■■• x#^J'r(£î') into Wl,r(íl).
(iii) There is a function C(e) defined for all e > 0 and depending only on r, il'

and   Q   such   that
i-i

|| #(<->) Ww'^m = S   {8||^|^-^(n') + C(e)|^||^o,-y-,;,„,,}
j = o

for all <D(x) in W¿r(Sl') x ••• x 7r¿'r(£í').

Proof. Statement (i) and the first part of (ii) follow immediately from (i) and
(iv) of Lemma 2. We now turn to the second part of (ii). We compute the derivatives
of .ft(<J>) at points in ^++1 by considering the derivatives DmK}*cbj, O^m^l.
Three cases are considered.

Case 1.   m — j < 0. We then have

(17) Dm(Kj*cbj) = (DmKJ)*cbJ.

Case 2.    m — j = 0 and even. For suitably large values of q we can write

(18) Dm{Kj*ebJ} - (firá****i-*táf-»2KJ^+J
= iDmAx(n+q+J-my2Kj>q)*Ax{m-J),2cbj.

Case 3.   m — j > 0 and odd. For suitably large values of q we can write

Dm{Kj*ebj} = (DmAx(n+î+J'-n,-1)/2A;c(m--''+1)/2iç:j.i4)*^

(19) -it   DmDxlAxn+q+í-m-íy2Dx,tirJ~l)l2KJ¡q\ *cbj

=   2   {iDmDxlAx(n+q+i-m-1)'2KJ¡í)*DxAxn-J-1V2 cbj}.
i = l

Letting K'x, t) denote the kernels in the resultant convolutions in Cases 1-3,
we see that in Case 1

(20) |X(x,0| Ú C(\x\2 - r*)«--V*(l + |log(|x|2 + t2)|),

while in Cases 2 and 3

(21) |7í(x,í)|áC(|x|2 + í2)-»/2,

So in any case we may say that on each bounded subset of ^.+ 1, K(x,t) satisfies
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(22) |/C(x,0|^C(|x|2 + <2)-"/2

where C depends on the subset under consideration.
Before proceeding further we here adopt the convention that £Cr(R'), where

R' is a positive number, stands for the space ££r over the domain {|x| < R',
0 < í < R'} if the domain is in 3$"+ 1 and stands for the space .SP' over {| x | < ¿%'}
if the domain is in ffl". The proper interpretation will be clear from the context.
Also we introduce the norm

|||K||U'(*'):*'(H">= (j      ( Í       \K(x,t)\dx\ dt J    .
Now consider a convolution of the form

(23) K*\f/ = v(x,t)

where K(x, t) is a ^""-function in &"+ ' except at x = t = 0 and satisfies the
condition set forth in (22). if/ = \f/(x) is assumed to be a function in ¿¿"(¡M") with
supp if/ cz {|x| < R}. Using inequality (22) and setting y = xft we get

f |X(x,í)|dx = cí (l + |y|2)-n/2¿y.
J|x|<2R J|y|g2R/f

Restricting t to the interval 0 < t < R we see that the right hand integral is of the
order log (2Rff). Thus

(24) \ \K(x,t)\ dxziC log (—)       (0<t<R)
J \x\<2R \   '    /

where C depends only on R. Therefore we conclude that |||^|||ä'1(2R);ä"-(r) ¡s
finite. An elementary calculation using the Holder inequality now shows

(25) || r||^(R)^ HI K 11 |jSf »(2R);JSf(R)|| "A ||ä"-(R)>

so that

(26) |p||^(Jl)gC|^|^w

where C depends only on R.
Let (£,t) be an arbitrary point of the cylinder {|{| < 1; x 2: 0}. Then by the

same calculation that gave (25) we get

\V(X + ^,t + T) - V(X,t)\3,rIR)

=Í     \\\K(X   +   ̂ ,t  + T)  -  K(X,t)\\\^H2R+yyä,r(R)   •    |"/'||^(R).

By breaking the ¿-integration into two parts, one over a small interval 0 < t ^ R'
and the second over R' <t < R, one sees from (24) with 2R replaced by 2R + 1
and from the continuity of K, that
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|||K(x + £,r + T)-,K(x,i)|||*.(2Ä + i)!^(R)->rj as (£,t) -»0

for each fixed R. Therefore there is a modulus of continuity p, depending on R
such that

(27) || i>(x + {J +1) - vLx, t) |^(R) z% p(| H | + t) • || i¡i \ym

for t ^ 0 and | £ | < 1. Therefore from (25) and (27) we see that the transformation
\p -> K*ip maps every set of functions which is bounded in S\Mn) and whose
supports lie in a fixed compact subset of 3%", into a compact subset of.S?r(R) for
every R. Returning now to the original situation it follows that the transformation
i\ must map bounded subsets of Wl¿\Q')x ■■■ x Hr\¡'r(fa') into compact subsets
of #"''r(Q). This completes the proof of (ii).

Before proving statement (iii) let us note a further property of the transformation
5\. It is an obvious consequence of (iii) but we need it to prove (iii).

If a sequence <&k(x) converges strongly to zero in

(28) W'o'Ur(D.') X ■•• x ir°0-r(Çl') and is bounded in #"'0,r(Q') x ••■

X 'Wo'XQ.') then &(4v) converges to zero strongly in Wl,r(Q).

The proof is simple. Using formulas (17)—(19) and (26) it follows that R(<bk)
converges to zero strongly in W'~1,r(Q)'. Since 5\ is compact Sti<I>k) has a limit
point in iVl'\ÇÏ). But then the only possible limit point can be zero, thus proving
(28).

Let us now suppose that (iii) is false. In that case there must exist an £ > 0 and a
sequence 4>..(x) such that

(29) 21  ¡^,^,-^ = 1 for all k

and

,k\\lr-'0-J'W) '
j=0

hm   —ü-ü-—- =   +  oo .
(3U) f;-»CO     l-l

2     || (¡>j,k\\nr¿-J- i-(íí')
j=0

The only possible way that (30) can hold, in view of the fact that the sequence
|| &(®k) |*""-(fi) is certainly bounded, is if the denominator tends to zero. This is
equivalent to saying that 4>t tends to zero strongly in #"ó"1,r(Q') x •■■ x#^'r(CF)
which by (28) implies that | il(C»t) |^i.r(n) tends to zero. But in this case the
numerator will be negative for large values of k so that (30) can not possibly hold.
This completes the proof of Lemma 3.

The next step is to extend the construction to 'smooth' bounded domains.
In order to do this we must first introduce some new terminology.
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Definition 3. Let Q be a bounded domain in ¿%n+1. Q is called a bounded
'¿¡""-domain if for every point x0 on ÔQ. there is a neighborhood of x0 in which d£l
can be represented in the form x'=/(x1,•••, x'_1, x' + 1,---,xn+1) for some value
of i, where / is a C°°-function. We may assume without loss of generality that
i = n + 1 and define variables (y, t) by the equations

y1  = cV - x0)
t

(31) y" = c"(x"-x0)

t    = c" + 1{xn+1-f(x\-,x")}

where the c's are nonzero constants. Taking c1 = c2 = ••• = c"+1 = 1, the inverse
function theorem tells us that on some neighborhood of x0, //, the equations (31)
define a 1-1 ̂ ""-mapping which has a ^"-inverse. For a suitable choice of the
constants c ,—,en+ there will then exist a neighborhood G of x0 such that
GczH, and the mapping (31) carries Gnfi onto {|y[2 + f2 < 1 ; t > 0} and
G n 3f2 onto {| y\ < 1 ; t = 0}. Furthermore there will exist another neighborhood
\G czG such that the mapping (31) carries \G n Q onto {|y|2 + i2<i;f>0} and
\G n Sfl onto {| y \ < \: t = 0}.

We assume that a fixed finite collection of such neighborhoods GX,--,GN has
been chosen such that the smaller neighborhoods \GX,---,}2GN cover dQ. The
corresponding transformations TX,---,TN axe also assumed to be chosen and
fixed.

If <b = <b(x) is a function defined on dQ then for x in G¡ n c)Q we may form
<b(Ti~1y). We now define the space ^œ(ôCÏ) to be the space of all functions <b(x)
such that (^(Tr^) is in ^°°(| y| < 1) for all /. We define the spaces ¿?r(dO.) and
"#w'r(dO.) to be the spaces of all functions <b(x) such that the respective norms

¡v
|| 0 ||if(8m =   ¿-   || $(Ti   >')||ä"-(|ji|<i)

and i=1
¡V

|| 4>  nr'"-(an) =   ¿-    || <K?¡    J') ||-r'"-(|y|<i)
¡ = i

make sense and are finite.

Lemma 4 (Construction in a bounded domain). Let Q be a bounded e£™-
domain. Let í>(x) = {(¡>0(x), ■•■,(bl-x(x)} be a set of functions defined on dû. and
in the space i^',r(dQ) x ••• x ^1,r(3Q) (1 ^ r < oo). Then there exists a
transformation S such that

(i) S is a linear transformation ofëœ(dÇÎ) into ^°°(Í2) and <3(<ï>) then assumes
the Dirkhlet data <P(x) on dQ i.e. D{u(x) = (b(x) on d£l, where Ds denotes dif-
ferentiation along the inner normal to dQ.
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(ii) S is a linear transformation of Wl-'(dÇÎ) x ■■• x #",,r(30_) into «""(fi)
and a compact linear transformation ofWl,r(dQ) x ••• x i^1,r(diï) into ^'-"(Q).

(iii) There is a function C(e) defined for all e >0 and depending only on r
such that

i-i
Il SOD) ||#-'"-(îî) =    ¿<    {e| 0J ||ir'-j"-(afi) + C(£) || <^7   ir<-./-<»-(Mi)}

j = o

/or a// <S(x) in WUr(dü) x ■•• x W^Xdiï).
(iv) //Ot(x) is a sequence which is bounded in Wl,r(ôÇÏ) x ••• x iT1,r{dQ) and

strongly convergent to zero in Wl~l,\dO) x •■• x W0,r{dQ) then (S(<S>k) is
strongly convergent to zero in Wl,r(Q).

Proof. Let tyx(x),---,\¡/M(x) be a "^"-partition of unity chosen so that
£f=i>/'¡(x) = 1 on Í2 and if supp if/, C^dQ.^ Z (empty set) then supp i/^ cz \Gk

for some value of k. For the sake of computation we introduce a fictitious function
v = v(x) which 'assumes' the Dirichlet data <6(x) on ÔSÎ. We rewrite v(x) as
v(x) = H^=yil/i(x)v(x). If (supp if)i n dQ) ^ Z then supp \¡/¡vcz\Gkl. If we now
apply the mapping Tk¡, ifj¡v becomes a function of (y, t) with support in {| y|2
+ t2<i} and Dirichlet data 0>; on t = 0.

Let C = C(y, 0 be a function in <#œ(i%n+1) such that Ç(y, t) = 1 for | y \2 + t2 ^ 1.
We then form

f ■ «(*,),
Si being the transformation given in Lemma 3. For functions <£' with support
in {|.y |2 + i2 < i} the transformation £ • 5\ has all the properties of 51 and in
addition maps 4>' into a function which vanishes for |y|2 + r2 2; 1, t > 0. In
particular we have

1-1

^   £   {e||0/.i|nr'->■-(«») +C(e)||</'j,¡||^'-J-"--(ai")}-
y=o

Furthermore it is clear that

I <¡>'j, i 1 #■«»•(«-) = c   £    1 «Mir; + «--»"(an)       (0^a^/-j)
m = 0

where C can be chosen to depend only on / and r. Mapping back via T^1
transforms the function £i\(fl>;) into a function u¡(x) defined on Gk. n £1. If we
extend u¡(x) to all of £2 by defining «¡(x) = 0 for x not in Gki we then have u, in
•¡r'-r(£2) and

|| »i ||nr'»-(0) = Hi £ft($í) ||Tri»-(a(» + i)-

We have defined the function u¡(x) in case supp \f/¡ n 5Í2 / Z. If supp ^, n ¿5Í2 = Z
we simply set u¡(x) s 0. Now define
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Af

S(«) =  2   ut(x).
¡ = i

Careful checking through the steps of the construction shows that statements (i)
and (ii) hold, (iii) follows from the above inequalities while (iv) is an immediate
consequence of (iii).

I now give an application of Lemma 4 to the estimation of solutions of partial
differential systems arising from variational problems. To state the result we give
a definition of how a function assumes boundary data <P(x) defined on cil. The
definition is somewhat artificial and raises some questions which we do not go
into here.

Let SI be a bounded "tf^-domain. Let S be a fixed transformation of the type
guaranteed by Lemma 4. Let <J>(x) be in Wl'\dCl) x ••• x W^'XdSl). We say
a function u — u(x) in #"''r(Q) assumes the Dirichlet data 4>(x) if u — S(<5) is in
W¿(CÍ).

Theorem 3. Let f = f(p') be a continuously differentiable convex integrand
such that

Ky\p'\r - K'y ífip') Í K2\p'\' + K'2       (l^r<co)

where Ky is a positive constant. Let Fiu) = 0 be the Eider equation for the
variational problem

Min     f/(D'u(x))dx.

We conclude that ¡/u(x) is in Wl'r(Q) and is a weak solution of F(u) =0 assuming
Dirichlet data i>(x) on dSl in the sense given above then

(IK  \ll'\}~1
1 + 1^1    I £   {e|| <t>j \in-**tm + C(8)|l &J Ik'"-'- Ur(s»)}

+ c (Kl^K'2)1,r   (measfi)1",

where C(e) and C depend only on I and r. In particular if K'y = K'2 = 0
and ukix) is a sequence of solutions with Dirichlet data ®kix) such that <l>t(x) is
bounded in i^'Xôfyx ■■- x W1,ridQ) and strongly convergent to zero in
itrl~1'XdSÏ)x---xiir0,riôiï) then ut(x) is strongly convergent to zero in Wl'XSï).

Proof. Since t/(x) solves the Euler equations and since the integrand f(Pl) is
convex it easily follows that u(x) is a solution of the variational problem

Min i  f(D'u(x)) dx
u in SI J SI
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where Si is the Dirichlet class of W''XSl) containing S(4>). Letting 3(d)) = v and
denoting the above variational integral by 7 we then have

Ky I D'u ¡¿,(0) - K'y meas SI = I(u) z% I(v) z% K2\\ D'v ||¿,(£2) + K'2 measSl.

Therefore

(32) I D'u y.m = (I2-)1'"! D'v |^(0) + (^t^fmeasQ)1''.

Since u(x) — v(x) = w(x) is in W'^XSi) it is well known that

||w|i1r>--.'-(0)aC||l>'w||i?r(o).
Therefore

(33) || w l^i-i^n) úC{\v \if„riCl) + I D'u \\#rIQ)}.

From (32) and (33) we then have

|| u ||^(Q) z%c(l + (|¿)1/r) || v \\^(Q) + (^f^)Ur (meas Q)1".

Since f(x) satisfies (iii) of Lemma 4, the desired inequality easily follows. The last
statement is an immediate consequence of the inequality.

4. Lower semi-continuity with respect to weak convergence in ^"ir(Q)
(I zir < co). We first define the basic class of integrands/(x,p') to be covered
by the theory.

Definition 4. Let SI be a bounded domain in 0t". A continuous integrand
f(x,p') is said to be in the class Tr(ST) (I z% r < co) if

(i)/(x,p')^c{i + |p'ir
where C is a constant,

(ii)l/(x,p,+(2,)-/(x,pi)|ác{i + |p,| + |»ii|rí-|í,l7
where C is a constant and y is a constant, 0 < y z% I,

(iii) |/(x + y,p') -f(x,p')\ ^ {1 + |pf|}r • n(\y\)
where n is a continuous increasing function with n(0) = 0.

Lemma 5. Let SI be a bounded C^-domain, f(x,p') an integrand in 3~r(ySV)
and I(u) its corresponding integral defined for all u(x) in "^''XSl). Let zk(x) be a
sequence of functions in ^(Q) which is weakly convergent in if''XSl) and whose
Dirichlet data, $k(x), on dSl satisfy:

(i) the set of % is bounded in iTl'XdSl)x ••• x Wl'XdSl),
(ii) OtA0 in ■W'~í'\dSÍ) x ••• x W°'XdSl).

If Qi is a Dirichlet class ofWl'XSÏ) and if'I\3> attains an absolute maximum at
w(x) then

lim inf I(w + zk) — I(w).
It-» 00
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Proof. According to Lemma 4 there exists a sequence uk(x) in Cœ(Q) such
that u^(x) - zk(x) is in ifl0'r(Q) and such that uk(x) ¿* 0 in Wl,'(Q) as k-> oo . Rewrite

/(w + zj - /i» = [l(w + zk) - l(w + zk- uk)} + {I(w + zk- uk) - I(w)}

= Jy+ J2.

Using property (ii) of Definition 4 and the Holder inequality we get

J y ^ C{1 +  || W + Zk ||^l.r(i2) +  || Uk \\ir¡.ryn)Y    ? || "fc ||íri"-(íi).

Since the sequence zk(x) is weakly convergent the quantity in the brackets is
bounded independent of k and from the strong convergence of uk(x) we have

(34) Jy -* 0.
Jk-»oo

From the assumptions of the lemma

(35) J2 = 0,

and the result follows immediately from (34) and (35).

Lemma 6. Let I = I(u) be a real-valued functional defined on a normed
linear space ilr and let I(u) be continuous relative to strong convergence. Let A
be a dense subset (in the strong topology) of the linear space such that 0 is in
A. Then, ////A is lower semi-continuous at 0 relative to weak convergence, it is
also true of I.

Proof. Let uk be a sequence in if such that uk -* 0 as k -» co. Let vk be a
corresponding sequence in A chosen so that

uk — vk A 0 as k -> oo
and

I(uk) — I(vk) 2: —— for each k.
K,

This is certainly possible under our assumptions. Hence vk ̂ * 0 as k -> oo so that

lim inf I(vk) 2: 1(0),
t-»oo

and it follows easily from the above that lim inf I(uk) 2:1(0) as k -» oo .
Lemma 6 permits us to use dense sets of elements when testing for lower semi-

continuity. Lemma 7 which follows, will permit us to use 'smooth' functions in
W,,r(Q) when testing for lower semi-continuity. A proof of Lemma 7 which was
recently given by Professor James Serrín and myself can be found in [2].

Lemma 7. The subspace ^"(iî) n ifl'r(ÇÏ) (l^r<co) is dense (in the
strong topology) in if''r(Q).

Theorem 4.    Let ilbe a bounded domain in 0tn and letf(x, pl) be an integrand
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in the class 3~ri£L) (1 5¡ r < oo) and I(u) its corresponding integral which is
defined for all u(x) in iTl,r{Si). Let S> be either a Dirichlet class in Wu\Si) or
Wl,r(Si) itself. Then IfS> is lower semi-continuous relative to weak convergence
in ^-'(Si) if and only if

if) f(x,p'_1,pl) is quasi-convex in p1 for each fixed value of(s,p,_1),
(ii) lim infj^oo I(uk; Si') — — p (meas Si') for every subdomain Si' and every

sequence uk(x) in S¿ such that uk(x) = u(x) on Si —Si' and uk(x) ^* u(x) in
if''r(SÏ); p is a continuous increasing function with p(0) = 0 and depends only
on  the function  u(x) and on  lim supt-,œ| uk ||^-i.r(n).(2)

Proof. (Necessity) We first prove the necessity of (i), the quasi-convexity
condition. Let X! be an arbitrary point in Si and let B be an open ball with center
x, such that B czSl. Let ^(x) be a function in ^(Si) which is identically equal to 1
on B. Lastly, let v(x) be a fixed function in 3) and uk(x), u(x) functions in
HT'^iB) such that

uk -* u in Wl'x(B).
lc-»oo

The functions ij/uk + (1 — i//)v and \fiu + (1 — ip)v axe in 9> and \f/uk + (1 — \fi)v
-5 if/u + (1 - if<)v in iTUr(Sl).  Hence

(36) lim inf I(\¡iuk + (1 - if/)v) 2:1(ifju + (1 - if>)v).

Since I(\f>uk + (1 - i]/)v) - I(\fju + (1 - \¡i)v) = I(uk; B) - I(u;B), it follows from
(36) that I(u; B)fWlôco(B) IS lower semi-continuous with respect to convergence
in Whcc(B). Therefore from Theorem 1 we have that f(x1,pl~1,pl) is quasi-
convex in p' for each fixed value of p'_1 and since Xy is arbitrary (i) is
proved.

We next prove the necessity of condition (ii). Using the notation of the statement
of (ii), we know

lim inf I(uk;SÏ)^I(u;SÏ).
k -»oo

Since uk(x) = u(x) on SI — SI', this implies

(37) lim inf I(uk; SI') 2:1(u;Sl').
fc-»°0

Now I(u ; Si') is an absolutely continuous set function, so the result follows from
(37). In fact we have proved a stronger necessary condition than (ii) in that p
does not depend on lim sup^..^, || uk ||^-i.r(n) and Si' can be replaced by any
measurable subset of Si.

(2) If we change the assumption in (ii) to uk(x) is bounded in W'-r{SÏ) and u. (x) -* u(x)
in Hri~1'r(Sï), inspection of the proofs will show that IjS) is lower semi-continuous undei
this type of convergence. In case 1 < r < oo this is equivalent to weak convergence due to
the reflexivity of the space; but if 1 = rit is weaker than weak convergence. Note that this
mode of convergence is also the direct analog of the convergence we considered for r =oo .

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1965] MULTIPLE VARIATIONAL INTEGRALS 143

iSufficiency) Let w(x) be a function in S>. We wish to test for the lower semi-
continuity of 7 / 3> at u(x). We therefore consider a sequence u(x) + zt(x), where
zk(x) is in If'úXSl) if ^ is a Dirichlet class and zt(x) is merely in Wl'XSi) if
9 = W'-XSl), and in either case zkix) ̂  0 in Wl,XSl). If we set J(z) = 7(u + z)
and apply Lemmas 6 and 7 to the functional J, it becomes clear that it suffices to
take zt(x) in ^^(£2) if S is a Dirichlet class and zA(x) in if°(£2) if 0 = ->T'"r(Q).

As in the proof of Theorem 2, let Cv (v = 1,2, • • • ) be the cubic lattice containing
the cube 0 *S x' z% 2_v and let Tv be the union of those cubes which are contained
in SI. If ô > 0 then for some sufficiently large value of v = v'

(38) meas (Q - Tv.) < «5.

Let v ^ v' and corresponding to each such v choose a finite set of open n-balls
Bv y,--,Bv w such that

(39) for each v the Bv , have disjoint closures and each Bv ¡ is contained in a
lattice cube of Gv which is contained in r„. and

(40) meas (T,. - Bv) < Ö

where Bv = 2r=iBVj¡. Since the functions zk(x)^- 0 in ^''XSl), it follows by
standard procedures, that after a possibly arbitrarily small decrease in the radii
(the centers are left fixed) of some of the balls Bv ¡ one can in addition to (39) and
(40) satisfy the condition, some subsequence of the zk(x) exists (call it zkh(x) with
Dirichlet data fl^fx) on Bv) such that

OJx) is bounded in iT'-r(dB^t)x ■■■ xiT^XdB^),

<t>kh(x)  ±>  OiniT'-^XôB^) x - x lf0-XdBv)
ft-» 00

for each v and i. (For a proof see the Appendix.) Now

7(i/ + zk;Bv)-7(M;Bv)

= 2 {f(x,D'u(x) + D'zk(x)) -f(x,D'u(x) + Dlzk(x))} dx
( = 1    Jbv,i

+   2V   f    {f(x,D'u(x))-f(x,D'u(x))}dx
1=1   J «v.l

f {f(x,D'u(x) +D'zk(x)) -f(x,D'u(x)+D'zk(x))}dx
J  By,

[ {f(x,W~u(x)) -fix,D'uix))}dx
Jflv

+   2"   f    {/(x,DT!i(x)+D'zt(x))-/(x,T7I.(x))}dx
¡ = 1   JBv.I

(42)
+

+

=    Jy  +  -  +J¡
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Here, as in the proof of Theorem 2, if ¡;(x) is in Jtfr(Tv,) then v(x) is a new function
defined by

v(x) = (meas Q)~1    v (x) dx
Jq

for x in the interior of the cube Q of the lattice Gv (v 2t v'). It is well known and not
hard to prove that

(43) | v fjyrrr,,) á I v |^(rv')
and

(44) ¡J4 uin £"(Tr) as v-» oo.

Returning to the proof, we see that from condition (iii) of Definition 4 and the
weak convergence of the zk(x) that

(45) Jj -» 0 and J2 -> 0 uniformly in k.
V-* oo V-* oo

As for J3 note that

J3 ig   f   \f(x,Dlu(x) + D'zk(x)) - f(x,Dh,(x) + Dlzk(x)) | dx,
Jrvi

which from condition (ii) of Definition 4, leads to

J3 ̂  C{\ + I u ||^(£2) + I zk |^,W(Q) + ||D'u||^(rv.)}r-y|D'u -D'^fll^r,,,).
From the weak convergence of the zk(x) and from (43), (44) we easily deduce

(46) J3 ->■ 0 uniformly in k,
v-*oo

and since the same argument applies equally to J4,

(47) J4 -> 0 uniformly in k.
v-*oo

Now we turn to the all important integral J5. Recalling that at least for some
subsequence of the zk(x) condition (41) holds, it follows from the quasi-convexity
assumption and from Lemma 8 that

(48) lim inf J5 = 0 for each v 2: v'
A-*oo

where the lim inf in (48) is taken over the subsequence of (41). Hence from (45)-(48),
for each e > 0 there exists a value of v such that

(49) inf lim I(u - zkh ; Bv) 2:1(u ;By)-e
A-»oo

for the subsequence satisfying (41).
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We have still not used condition (ii) of the theorem. We now use it.
Fixing v at a value for which (49) holds, construct auxiliary functions vh(x) in
t°°(fi - Bv) such that

(i')   zkh - v„ ¡* 0 in W'-XSl - By) as h -> co .
(ii') D'~\(x) = 0 on dBY.
(iii') zkh(x) = vh(x) in some fixed neighborhood of cSl independent of ft.

The existence of the vh(x) follows from Lemma 4 by a simple argument. Now
extend the functions vh(x) to all of SI by defining them to be identically zero on Bv.
Then vh(x) is in 3>. From (i') above and (ii) of Definition 4 we have

(50) lim {7(w + zkh; SI - Bv) -I(u + v„;Sl- Bv)} = 0.
A-»oo

From condition (ii) of this theorem and (38), (40)

(51) lim Iiu + vh;Sl- Bv) ̂  - p(2S).
fc-»oo

By combining (49)-(51) we conclude

lim inf Iiu + zkh; SÏ) £ 7(w; Si) - /(«; SI - Bv) - e - p(2<5).
A-»oo

Since 6 and «5 are arbitrary and 7(u ; T) is an absolutely continuous set function
it follows that

(52) lim inf I(u + zkh ; SÏ) ̂  7(u ; SI).
fc-»oo

Because the sequence zt(x) was arbitrary it follows by an obvious argument that
(52) holds for the entire sequence zk(x), which concludes the proof.

Remarks on Theorem 4. The condition of quasi-convexity is by its very
nature difficult to verify in general. However it is well known that there is a more
tractable condition of reasonably wide scope which implies quasi-convexity,
namely convexity (in p'). In fact, in the special case m = 1, / = 1 the two con-
ditions are equivalent, though this is definitely not the case for higher values of m
and /, as witness the quadratic variational theory.

Unlike the condition of quasi-convexity which has nothing to do with the
function class 2i that one considers, condition (ii) definitely depends on Si. For
if we again take quadratic variational theory as an example, we see that even under
quasi-convexity, (ii) can hold for 3i = #"Ó,r(fi) without holding for S = ^'''(ii).
This also illustrates independence of (i) and (ii). One should think of (ii) as deter-
mining the proper boundary condition. Like quasi-convexity it is hard to see how
to go about verifying condition (ii). However again reasonably broad sufficient
conditions exist. For example if/^ C (a constant) then (ii) holds with S=Wl,XSl).
More generally, if / ^ g where the integral for g is known to be a lower semi-
continuous functional on Qi then (ii) holds for 3¡. In fact we need only know the

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



146 N. G. MEYERS [July

definitely weaker inequality, integral for / 2: integral for g on 3. So, for example,
If 2 2: 0 is sufficient. Another important case in which (ii) must hold is given in
the following theorem where one proves lower semi-continuity without using (ii)
explicitly.

Theorem 5. Let I = 1 and let Q be a bounded open cube in 3tn. Let
/ = /(x,p°,p1) be in the class ¿?~r(Q) (Ifkr < co) and quasi-convex in px. If Si
is a subdomain of Q and 3 is a Dirichlet class of W,,r(Si) which contains a
function in i^''r(Q), then I¡3 is lower semi-continuous with respect to weak
convergence in W,r(Si).

Proof. We shall only outline the proof since the main ideas have already been
covered and occur also in [3]. We first prove the theorem in the special case
Si = Q. As before it suffices to consider the case u(x) + zk(x) A u(x) in W1,r(Q)
where zk(x) is in ^o(Q) and w(x) is an arbitrary element of 3. Let Gv (v = 1,2, • • • )
be a sequence of cubic lattices on Q whose meshes (diameter of the cubes composing
Gv) -» 0 as v -> oo . Moreover, let the Gv be chosen so that for some subsequence
z*„(x)

Dzkh(x) is bounded in =Sfr(S),

zkh(x) 4 0 in <?r(S),
A-»oo

where S is any (n — l)-dimensional face of any cube in Gv. One now uses the fact
that if (53) holds on each face of an open cube Q' then there is an auxiliary sequence
vk(x) such that

vh(x) = zkh(x) on 3Q',

vh(x) A Oimr1,r(ß').

This fact can be proved using the same ideas as before, that is Poisson kernels,
or in a much more direct and elementary fashion as is done in [3]. The proof now
proceeds as in Theorem 3 except that the open balls Bv X,---,BV N axe replaced by
the cubes of the lattice Gv.

If Si cz Q then again consider u(x) + zk(x) A u(x) in Wl,r(Si) where u(x) is
in 3 and zk(x) sis now in W'ôr(SÏ). Thus zk(x) can be considered in ^¿r(Q) by
defining it to be identically zero outside Q and from our assumption on 3, u(x)
has an extension to Q which is in Wl,r(Q). Since

I(u + zk; Si) - I(u;Si) = I(u + zk; Q) - I(u; Q)

the result follows.
In view of Theorem 5 we are led to the following conjecture.

Conjecture. // condition (ii) is dropped from Theorem 4, the theorem is still
true provided 3 is a Dirichlet class containing a suitably 'smooth' function or
dSi is suitably 'smooth'.
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Less restrictive growth conditions on the integrand. In a large number of cases
it is possible to broaden the class of integrands to which Theorem 4 applies to a
new class $~*(Sl) (1 :§ r < oo ). To define this class let

J = max ( largest integer < /
*-')■

For j = J + 1,•••,/ define r¡ by

— = — +- for / > /-
r

and

Tj = any number in the range 1 ^ r} < oo for j = I-.

Set
sJJt = min (r},rk) for j,k = J + I, •••,/.

In the following, any function indicated by the generic letter 7< is a growth modulus
at infinity, i.e., K is some continuous increasing function of its argument. Any
function indicated by n is a modulus of continuity, i.e., n is some continuous
increasing function with n(0) — 0. We further adopt the convention that | p-1| =1.
We say that a continuous integrand f = f(x,p') is in the class ^"*(Q)if it is defined
for all x in SI and all values of p' and satisfies

(o |/ix,p')|^Kfly|)fi- 2 |p<r*|.
\ k = J+l I

|/(*,p'+ <,')-/(*, P)'|

(ii)   ^l(jpVk|)(i+   ¿ (|pt| + |ít|),fc)-iK|f,I)
\ k=J+í )

+  i  Ky(\p'\ + \q>\)li+ 2  (\pk\ + \qk\r-k-r)UÁy
j'=J+l l k^J+l I

(0 < y £ 1).

(iii)     \fix + y;p')-fix,p')\èK2i\pJ\)[l+   2     |pfc| 1 • ̂ (^1).

Theorem 6. The conclusion of Theorem 4 remains true if the integrand
fix,p') is in the class S~?(Sl) provided that dSl is a 'smooth'1 surface (a ^'-surface
is certainly sufficient) or S is a Dirichlet class containing a function u(x) in
-W'-XSH) where SlczSl' (e.g. S = #"'0'r(í2)).

Proof. The proof is the same as that of Theorem 4 except that one now takes
into account the well-known Sobolev inequalities which in the above circumstances

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



148 N. G. MEYERS [July

imply that if u(x) is in 3 then u(x) is also in ifJ'rJ(Q) for j = J + 1, •••, / and in
^(Sï). We leave the details of proof to the reader.

5.   The  Legendre  condition.   Denote the components of p' by p"'* where
|oc| = /   and   i = 1, —,m.   Let   ¡; = (t,1,■■■,£")   and   n = (n1,•■■,nm)   and   set
c=(er-(iy.

Theorem 7.   // the integrand f = f(pl) is twice continuously differentiable
and quasi-convex then it satisfies the Legendre condition

H-iM-uu-i.-.- dr-'dpt-J

Proof.   Let Q be the cube 0 < x' < 1 and let z(x) be any function in #o°(8).
Choosing p' arbitrarily, set

m = Í {f(Pl + eO'zW) -f(pl)}dx.
Jo

We know that 1(e) attains an absolute minimum at e = 0 and therefore d2I(0)fde2
2: 0. Carrying out the differentiation we get

(54) f I fñf] . El'ziix)Dtz1ix) dx 2: 0.
JQ      W = m=l;l,j = l,-,m    Op«-*]?.!

But it is well known that the necessary and sufficient condition for the inequality
(54) to hold for all z(x) in ^o(Q) is tnat f(p') satisfy the Legendre condition
(see [5]).

For necessary conditions (Weierstrass condition) for quasi-convexity when/(p')
is not twice continuously differentiable see [3], which can all be carried over
directly  to   the  case   / > 1.

This paper was written with the support of the Office of Naval Research under
project Nonr. 710 (54) NR-053-041.

APPENDIX

Proof of (41). We first consider the following situation. Let B be the open
ball {|x| < 1}, let gk(x) be a sequence of functions such that

(Al) Í gk(x) dx ^ M < oo for all jfe

and let S be a subset of (0,1) with linear measure equal to 1. We prove that for
each e, 0 < e < 1, there exists a sphere ap = {| x | = p} such that 1 — e<p<l, p
is in S and for some subsequence
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gkhix) dap ^ M' < oo for all n,I
dop being the area element on erp.

For n = 1,2, •■• define Skt„ to be the set of numbers p such that

(A2) j   gkix) dcrp ̂  nM

Then from (Al) we see that

(A3) meas Skt„ ;> 1-.

Thus

(A4) meas j lim sup Sk „ I ^ 1-.
\    *-»oo ' / n

Therefore, if n > 1/a

(lim sup  SMnSn(l-6,l)
\     lt-»00 ' /

has positive measure and is thus nonempty, which completes the proof.
To prove (41) take Bvi = B. From Rellich's Lemma

(A5) D'k-Jœzkix) U 0 in JSPTB).

Using the fact that a convergent sequence in JSP' has a subsequence which is
convergent a.e.,(A5) implies

(A6) D^ZnZ^ix) A 0 in J2Pr(erp) for almost every p.

We define S to be the set on which (A6) holds and apply our preliminary result
with gh(x) = \Dlzkhix)\r. (41) then follows.
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