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Abstract: This work derives a closed-form dynamic model for a two rotational and one translational
degrees-of-freedom (2R1T) parallel kinematic mechanism (PKM) with a hybrid rigid–flexible structure
for force-control applications. Based on the three-prismatic-prismatic-spherical (3PPS) kinematic
configuration of the 2R1T PKM and its zero-torsion motion characteristics, a symbolic formulation
approach is proposed to establish closed-form kinematic models for both forward and inverse
kinematics analysis. As the moving platform pose of the 2R1T 3PPS PKM can be readily determined
by the three active prismatic joint variables and the three passive prismatic joint variables, these six
joint variables are selected as the quasi-coordinates so as to systematically develop the closed-form
dynamic model with a Lagrangian formulation, in which the stiffness and deformation of the three
flexure-based passive prismatic joints are uniformly taken into consideration. Through eliminating
the three passive prismatic joint variables based on the principle of virtual work and the relationships
between the active and passive prismatic joint variables, a closed-form dynamic model for the 2R1T
3PPS PKM with a rigid–flexible structure is finally obtained. The correctness of the closed-form
dynamic model was validated with the commercial dynamic simulation software. Utilizing the
closed-form dynamic model, the effects of different flexure stiffness in driving directions on the
required active joint force were investigated, which indicated that little flexure stiffness in driving
directions is desired.

Keywords: 2R1T parallel kinematic mechanism; rigid–flexible structure; closed-form dynamic model;
quasi-coordinates; Lagrangian formulation; principle of virtual work

1. Introduction

A parallel kinematic mechanism (PKM) offers the advantages of high stiffness, high
payload capacity, high precision, and low moving mass at the expense of a small workspace
and a complex mechanical structure. Among various PKMs, the 3DOF 2R1T PKMs are one
class of lower-mobility PKMs which have drawn increasing attention due to their simpler
mechanical structures and lower fabrication costs compared with 6DOF PKMs [1–3]. The
3DOF 2R1T PKMs have been employed in many industrial applications, e.g., in a tool
head [4], a rehabilitation device [5], and a force-controlled end-effector [6]. Dynamic
modeling of such PKMs is essential and important for their design optimization and
development of model-based control algorithms.

To formulate the equations of motion of conventional rigid PKMs, two fundamental
approaches have been established, namely, the vectorial mechanics approach and the
analytical mechanics approach. The former is based on the Newton–Euler laws for deriving
equations of motion using Cartesian coordinates and kinematic constraints [7,8], and
the latter is based on the Lagrangian formulation involving kinetic energy and potential
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energy [9–11]. In addition, Kane’s method [12,13] and the principle of virtual work [14–16]
are also widely-used methods. The Newton–Euler formulation requires the computations
of all the internal constraint forces and moments between adjacent joints. The modeling
procedure is straightforward but leads to a large number of recursive equations. As
such, the Newton–Euler formulation is not an attractive choice for model-based control
of PKMs. The Lagrangian formulation offers the advantages of deriving the closed-form
dynamic models for serial manipulators. However, for multi-closed-chain PKMs, it involves
with rather complex mathematical manipulations to deal with the unknown passive joint
variables which are dependent on the active joint variables. Kane’s method employs
Lagrange’s form of the d’Alembert principle and can automatically eliminate “no-working”
internal constraint forces, and the concept of partial velocity was introduced for it.

The principle of virtual work is an energy-based formulation with a relatively simple
symbolic description that allows elimination of all reaction forces and moments. Similarly
to the Lagrangian formulation, both Kane’s method and the principle of the virtual work
method encounter difficulties in formulating the closed-form dynamic models for PKMs.

With respect to the dynamic formulation of flexible PKMs, the analytical approach for
complex flexible PKMs is almost impossible. Many discretization strategies, including the
lumped parameter method [17], assumed mode method [18], finite element method [19],
and finite segment method [20], have been investigated to transform a full-order system
to a reduced-order system. There are trade-offs between accuracy and efficiency among
these methods. The studies about the dynamic performance of fully flexure-based PKMs
mainly focus on the resonance frequencies and harmonic response [21,22]. The majority of
publications referring to the flexible PKM dynamics mainly focus on the link flexibility [23–25],
e.g., the PKMs designed with lightweight and slim links to achieve high-speed motion in
pick-and-place applications [26]. The movable links are modeled by beam elements or finite
segments, so that the coupling effects of rigid motions and flexible motions can be analyzed
by kineto-elasto dynamics and flexible multibody dynamics [27]. Still, the dynamics of
PKM with flexure-based joints are less addressed, and the conventional kinematic and
dynamic analysis methods encounter difficulties with obtaining the closed-form kinematic
and dynamic models for a PKM with a rigid–flexible structure. Moreover, the coupling
effects of flexure-based joints on the system dynamic behavior have not been investigated
thoroughly. The systematic investigation of dynamic modeling and analysis of the PKM
with a rigid–flexible structure is still an open problem.

Among the previous studies related to the 2R1T 3-legged prismatic-prismatic-spherical
(3PPS) PKMs with flexure-based joints, a flexure-based 2R1T 3PPS PKM for nano-positioning
applications was proposed in [28,29], and a 2R1T 3PPS PKM with a rigid–flexible structure
was proposed as a force-controlled robot end-effector, in which the three flexure-based
passive prismatic joints are employed [30,31]. However, the dynamic modeling on such
PKM rigid–flexible configurations has not been carried out. We developed a simplified
systematic modeling method to formulate the closed-form dynamic model for the 2R1T
3PPS PKM with a rigid–flexible structure. Based on the zero-torsion motion characteristic
of the 2R1T 3PPS PKM, the homogeneous transformation matrix describing the moving
platform pose can be described with linear polynomials of both active and passive prismatic
joint variables. The closed-form model for both forward and inverse kinematic analysis
was then obtained. To simplify the dynamic modeling procedure, these six prismatic joint
variables were selected as the quasi-coordinates for Lagrangian formulation. By virtue of
the quasi-coordinates, the kinetic energy and potential energy of the 2R1T 3PPS PKM can
be readily obtained, which makes the overall derivation of closed-form dynamic model in
terms of the six quasi-coordinates significantly simplified. Then, three passive prismatic
joint variables were eliminated based on the principle of virtual work and the relationships
between the active and passive prismatic joint variables. As such, a closed-form dynamic
model for the 2R1T 3PPS PKM with a rigid–flexible structure in terms of the three active
prismatic joint variables was obtained. The correctness of the derived closed-form dynamic
model was validated with the commercial dynamic simulation software. The coupling



Machines 2023, 11, 260 3 of 19

effects of the flexure-based passive prismatic joints on the required active joint forces were
investigated and are discussed.

The rest of this paper is organized as follows. In Section 2, the closed-form kinematic
model of the 2R1T 3PPS PKM is briefly revisited. In Section 3, the quasi-coordinates
are introduced. Then, a closed-form dynamics modeling approach using the Lagrangian
formulation and the principle of virtual work is proposed and validated. In Section 4,
the effects of the flexure-based passive prismatic joints on the required active joint forces
are presented based on the derived closed-form dynamic model. In Section 5, the results
presented in Sections 3 and 4 are discussed. Finally, Section 6 summarizes this paper.

2. Kinematic Modeling of the 2R1T 3PPS PKM

The proposed 2R1T PKM has a 3PPS (P stands for prismatic joint and S stands for
spherical joint) configuration, which is employed as a robotic force-controlled end-effector
for continuous contact operations, as shown in Figure 1. It has a symmetric structure with
three identical PPS legs placed 120◦ apart. Each leg consists of a vertical active prismatic
joint driven by a voice coil motor (VCM), a horizontal flexure-based passive prismatic joint
with high off-axis stiffness ratio, and a passive spherical joint [30].

Prismatic joints 

actuated by VCM

Flexure-based 

prismatic joints
Spherical joints

Moving platform

Base plate

Figure 1. The prototype of the 2R1T 3PPS PKM as a force-controlled end-effector.

2.1. Displacement Modeling

The kinematic diagram of the 2R1T 3PPS PKM is shown in Figure 2. The base frame
B is attached to the center of the base plate with its z axis perpendicular to the base plate
and the x axis parallel to B2B3. The moving platform frame M is attached to the center
of ∆P1P2P3, its z axis is perpendicular to ∆P1P2P3, and the x axis is parallel to P2P3. The
positive direction of each active prismatic joint displacement is along the +z direction of
the base frame, and the positive direction of each passive prismatic joint displacement is
along the +y direction of its body frame.
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qp2

{B}

{M}
r

X

X

Y

Y

Z

Z

qa1

qp1

B1

B2

B3

P3

P1

P2

qa3

qa2

qp3

Figure 2. Kinematic diagram of the proposed 2R1T 3PPS PKM.

For the zero-torsion 3PPS parallel mechanism, our previous work [30] proposed two
parameters (ux, uy) to describe the orientation of the moving platform, as shown in Figure 3.
Parameters ux and uy represent the x and y coordinates of the unit z axis vector of the
moving platform with respect to frame M0, respectively. It is noted that frame M0 is
attached to the origin of moving platform frame M with the same orientation as the base
frame B. The proposed orientation description is intuitive, as the orientation of the moving
platform is equivalent to rotation about a unit axis k parallel to the base plate.

X

Y

Z

k  (kx ,  ky ,  0)

ez' (ux,  uy,  uz)

ez (0,  0,  1)
Z'

O

{M0}

Figure 3. Equivalent rotation about a unit axis k parallel to the base plate.

Based on the zero-torsion motion characteristic of the 3PPS PKM, the rotation matrix
is simplified as follows:

BRM =

 R11 −R21 −R31
R21 R22 −R32
R31 R32 R11 + R22 − 1

 (1)

where Rij denotes the entry in the ith row and jth column of the rotation matrix.
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Based on the structure characteristics and joint configurations of the 3PPS PKM, the
homogeneous transformation matrix can also be derived in terms of active and passive
prismatic joint coordinates.

BRM =


qp2+qp3+2r

2r
qp2−qp3

2
√

3r
qp3(qa2−qa1)+qp2(qa1−qa3)+(qa2−qa3)(2qp1+3r)

3
√

3r2

qp2−qp3

2
√

3r
4qp1+qp2+qp3+6r

6r
qa1(−qp2−qp3−2r)+qa2(qp3+r)+qa3(qp2+r)

3r2

qa3−qa2√
3r

2qa1−qa2−qa3
3r

qp1(qp2+qp3+2r)+qp2(qp3+2r)+r(2qp3+3r)
3r2

 (2)

BPM =
(

qp3−qp2

2
√

3
2qp1−qp2−qp3

6
3HBM+qa1+qa2+qa3

3

)>
(3)

where qai and qpi denote the active and passive prismatic joint coordinates of the ith leg,
respectively.

From Equations (1)–(3) can be further simplified as

BRM =


qp2+qp3+2r

2r
qp2−qp3

2
√

3r
−qa3+qa2√

3r
qp2−qp3

2
√

3r
4qp1+qp2+qp3+6r

6r
−2qa1+qa2+qa3

3r
qa3−qa2√

3r
2qa1−qa2−qa3

3r
2(qp1+qp2+qp3)+3r

3r

 (4)

BPM =
(
−r · R21

r(R22−R11)
2 Mz

)>
(5)

According to the Rodrigues formula and the two-parameter orientation description
(ux, uy), such a rotation in Equation (4) can be determined as

BRM =



u2
xuz + u2

y

u2
x + u2

y

uxuy(uz − 1)
u2

x + u2
y

ux

uxuy(uz − 1)
u2

x + u2
y

u2
x + u2

yuz

u2
x + u2

y
uy

−ux −uy uz


(6)

where uz =
√

1− u2
x − u2

y.
According to Equations (3)–(6), the closed-form forward displacement solution is

derived as [30]

ux =
qa2 − qa3√

3r
(7)

uy =
−2qa1 + qa2 + qa3

3r
(8)

Mz = HBM +
qa1 + qa2 + qa3

3
(9)

where Mz is the z-coordinate of the origin of the moving platform frame M with respect
to the base frame B, qai is the active joint variables in the ith leg, r is the radius of the
circumcircle passing through three centers of the sphere joints, and HBM is the distance
between the origins of frames B and M when all three active joints are at the minimal
strokes, i.e., home positions.

Based on Equations (4)–(9), the homogeneous transformation matrix can be described
with linear polynomials of both active and passive prismatic joint variables.

The inverse displacement solution is derived readily from the closed-form forward
displacement solution, i.e., Equations (7)–(9), as follows:
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qa1 = Mz − HBM − r · uy (10)

qa2 = Mz − HBM +
r
2

(√
3ux + uy

)
(11)

qa3 = Mz − HBM +
r
2

(
−
√

3ux + uy

)
(12)

2.2. Velocity and Acceleration Analysis

The Cartesian velocity vectors of the moving platform and active joint velocities are
related as follows:

q̇a = J−1VM =


q̇a1

q̇a2

q̇a3

 = J−1


ωx

ωy

vz

 (13)

where VM ∈ <3×1 is the Cartesian velocity vector of the moving platform, and J is the
kinematic Jacobian matrix of the PKM.

Differentiating Equation (13) with respect to time yields the acceleration mapping
relationships:

q̈a = J−1V̇M + J̇−1VM (14)

3. Dynamic Modeling of the 2R1T 3PPS PKM with a Rigid–Flexible Structure

For a general PKM, dynamic modeling with Lagrangian formulation is considered to
be a nontrivial task due to the closed-chain structures of the system. In such a derivation,
the number of independent generalized coordinates is equal to that of degrees of freedom.
As such, in order to obtain the Lagrange’s equations of motion, a significant amount of
mathematical manipulation is required to describe complex and nonlinear relations in
terms of independent generalized coordinates. When it comes to the rigid and flexible
multi-body dynamics, finite element analysis (FEA) is usually involved, with which is
time-consuming to achieve enough accuracy and unlikely to be possible perform real-time
dynamics computations in the controller. As for a given PKM, the symbolic closed-form
equations are likely to be the most efficient formulations of dynamics [32].

In this section, a closed-form dynamic model of the 2R1T 3PPS PKM with a rigid–
flexible structure is developed, which can be utilized as the basis of robot design, trajectory
planning, and model-based control algorithms. The formulation procedure of the proposed
dynamic modeling approach is presented, in which the quasi-coordinates are introduced
and the stiffness in driving direction of three flexure-based passive prismatic joints is taken
into consideration. A virtual prototype is developed, and the correctness of the closed-form
dynamic model is validated with the results of commercial dynamic simulation software.

3.1. Closed-Form Dynamic Model

The Lagrangian formulation allows the equations of motion to be obtained based on
scalar quantities, namely, kinetic energy and potential energy.

Based on the kinematic model in Section 2, the constraints between qa and qp can be
simplified as

qp1 = 0.5r(−R11 + 3R22 − 2) (15)

qp2 = r
(

R11 +
√

3R12 − 1
)

(16)

qp3 = r
(

R11 −
√

3R12 − 1
)

(17)



Machines 2023, 11, 260 7 of 19

For this specific 2R1T 3PPS PKM, the constraints are functions of active joint coordi-
nates which show high non-linearity and introduce complex mathematical manipulations
in the dynamic modeling. Rather than directly deriving the closed-form dynamics in
terms of the generalized coordinates (three active prismatic joint variables), a closed-form
dynamics modeling approach based on the Lagrangian formulation and the principle of
virtual work is proposed, as shown in Figure 4. There are eight steps to obtaining the
closed-form dynamic model for the 2R1T 3PPS PKM with a rigid–flexible structure in terms
of three active prismatic joint variables. Firstly, both active and passive prismatic joint
variables are selected as the quasi-coordinates. The closed-chain kinematic structures of
the 2R1T 3PPS PKM are disassembled virtually at each joint, and seven isolated moving
bodies are obtained. The overall kinetic energy and potential energy are calculated, for
which the stiffness in driving direction of three flexure-based passive prismatic joints is
taken into consideration. Based on the Lagrangian formulation, the closed-form dynamics
in terms of the quasi-coordinates is established. Then, the principle of virtual work and
the relationships between the active and passive prismatic joint variables are employed
to eliminate the dependent coordinates (three passive prismatic joint variables). Finally,
the closed-form dynamic model for the 2R1T 3PPS PKM with a rigid–flexible structure in
terms of the three active prismatic joint variables is established.

Disassemble the PKM at 

each joint virtually to 

form 7 isolated moving 

bodies 

Select quasi-coordinates: 

q=(qa1, qa2, qa3, qp1, qp2, qp3)
T

in Eq. (18)

Calculate the kinetic 

energy T and the 

potential energy U  in 

Eqs. (21)–(26)

Formulate the 

Lagrangian: L = T − U in 

Eqs. (27)–(31)

Determine each body's 

inertial matrix and 

quasi-velocities in the 

base frame in 

Eqs. (19)–(20)

Establish a closed-form 

dynamic model in terms 

of six quasi-coordinates 

in Eqs. (32)–(36)

Establish a closed-form 

dynamic model in terms of 

three active joint variables 

in Eqs. (47)–(51)

Employ Eqs. (15)–(17), 

(37) and (40) to eliminate 

three passive prismatic 

joint variables

Figure 4. The derivation process of the proposed dynamic modeling approach.

As shown in Figure 5, body frames fixed at center of mass (COM) of the three active
prismatic joints are numbered from 1 to 3, body frames fixed at COM of the three passive
prismatic joints are numbered from 4 to 6, body frame 7 is fixed at the COM of the moving
platform with the same orientation as the frame M, and the fixed base frame B of the 2R1T
3PPS PKM is labeled as frame 0.
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{0}

X

Y

Z
B1

B2

B3

{7}

P3

P1
P2

{1}
{4}

Figure 5. The sketch representing the body frames of the virtual isolated bodies.

The quasi-coordinates q ∈ <6×1 are represented by

q =



qa1

qa2

qa3

qp1

qp2

qp3


=



q1

q2

q3

q4

q5

q6


(18)

The kinetic energy and potential energy of each body are expressed in the base frame.
The inertia tensor Iicom of the ith body expressed in its body frame is constant and indepen-
dent of motion. The corresponding inertia tensor I i of the ith body is transformed to the
base frame through a transformation defined as follows:

I i =
0Ri Iicom

0R>i =

Iixx Iixy Iixz
Iiyz Iiyy Iiyz
Iizx Iizy Iizz

 (19)

After the quasi-coordinates are introduced, the angular and linear velocities of the ith
body can be described as

Vi =

(
ωi

vi

)
6×1

= JViq̇ (20)

where JVi ∈ <6×6 is the Jacobian matrix mapping the quasi-velocity to the Cartesian
velocity. Since the motion axes of the active and passive prismatic joint on each leg of the
2R1T 3PPS PKM are perpendicular to each other, the Jacobian matrices JVi(i = 1, 2, ..., 6)
are all constant matrices which can simplify the derivation process.

The kinetic energy of body i is derived as

Ti =
1
2

ω>i I iωi +
1
2

miv>i vi (21)

The overall kinetic energy of the 3PPS PKM equals

T =
1
2

7

∑
i=1

(
ω>i I iωi + miv>i vi

)
=

1
2

7

∑
i=1

(
q̇>Diq̇

)
(22)
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Di = J>Vi Mi JVi (23)

The inertia matrix Mi of the ith body is a 6×6 configuration-dependent matrix.

Mi(q) =
(

I i 03×3
03×3 miE3×3

)
(24)

The gravitational potential energy of the 3PPS PKM with respect to q is given by

Ug =
7

∑
i=1

(
mig>ri

)
(25)

As the flexure-based passive prismatic joints have high off-axis stiffness ratios, only
the stiffness in driving directions of the flexure-based passive prismatic joints is considered
in the rigid–flexible integrated dynamics. The elastic potential energy of the three flexure-
based passive prismatic joints (bodies 4, 5, and 6) with respect to q is

Us =
6

∑
i=4

(
1
2

ksiq2
i

)
(26)

The Lagrangian of the 3PPS PKM is defined as

L = T −U (27)

where the kinetic energy is denoted as T and the potential energy is denoted as
U = Ug + Us.

The Lagrange equation of motion is derived as

d
dt

∂L
∂q̇k
− ∂L

∂qk
= τk, k = 1, 2, · · · , 6 (28)

where τk is the kth term of quasi-generalized force vector.
The partial derivatives of the Lagrangian with respect to the kth joint velocity are

given by

∂L
∂q̇k

=
7

∑
i=1

(
∂q̇>

∂q̇k
Diq̇

)
=

7

∑
i=1

(
∂q̇>

∂q̇k
J>Vi Mi JViq̇

)
(29)

The first term on the left side of Equation (29) is derived as

d
dt

∂L
∂q̇k

=
7

∑
i=1

(
∂q̇>

∂q̇k
Ḋiq̇ +

∂q̇>

∂q̇k
Diq̈

)
(30)

The second term on the left side of Equation (29) is derived as

− ∂L
∂qk

= −
[

1
2

7

∑
i=1

(
q̇>

∂Di
∂qk

q̇
)
−

7

∑
i=1

(
mig>

∂ri
∂qk

)
− ∂Us

∂qk

]
(31)

The Lagrangian formulation to derive the dynamics of isolated bodies with respect to
the quasi-coordinates yields

M(q)q̈ + C(q, q̇)q̇ + N(q) = τ (32)

where M is the inertia matrix, C is the coefficient matrix of the centrifugal force and Coriolis
force, N is the gravity and stiffness-related term, and τ is the quasi-generalized force with
respect to the quasi-coordinates.
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M(q) =



m1 + m4
m2 + m5
m3 + m6

m4
m5
m6

E6×6 + D7(q) ∈ <6×6 (33)

C(q, q̇) = Ḋ7(q)−
1
2



q̇> ∂D7
∂q1

q̇> ∂D7
∂q2

q̇> ∂D7
∂q3

q̇> ∂D7
∂q4

q̇> ∂D7
∂q5

q̇> ∂D7
∂q6


∈ <6×6 (34)

N(q) = NG(q) + NK(q) =



(m1 + m4)gz + m7gz
∂r7
∂q1

(m2 + m5)gz + m7gz
∂r7
∂q2

(m3 + m6)gz + m7gz
∂r7
∂q3

m7gz
∂r7
∂q4

+ ks4q4

m7gz
∂r7
∂q5

+ ks5q5

m7gz
∂r7
∂q6

+ ks6q6


∈ <6×1 (35)

NK(q) =



0
0
0

ks4q4
ks5q5
ks6q6

 ∈ <
6×1 (36)

In order to obtain the closed-form dynamic model of the 2R1T 3PPS PKM with respect
to the active prismatic joint variables, the items related to the passive prismatic joint
variables need to be described with the active prismatic joint variables. The relationship
between the quasi-velocity and the active joint velocity is given by

q̇ = Jqaq̇a (37)

Jqa =

(
E3×3
Jqa2p

)
∈ <6×3 (38)

The Jacobian matrix relating the active and passive joint variables is given by

Jqa2p =


∂q4
∂q1

∂q4
∂q2

∂q4
∂q3

∂q5
∂q1

∂q5
∂q2

∂q5
∂q3

∂q6
∂q1

∂q6
∂q2

∂q6
∂q3

 (39)

Differentiating Equation (37) with respect to time yields

q̈ = J̇qaq̇a + Jqaq̈a (40)

J̇qa =

(
03×3
J̇qa2p

)
∈ <6×3 (41)
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J̇qa2p =

q̇>a H1
q̇>a H2
q̇>a H3

 ∈ <3×3 (42)

where Hi ∈ <n×n is the Hessian matrix with respect to the active joint variables

Hi =


∂2q3+i

∂q2
1

∂2q3+i
∂q2∂q1

∂2q3+i
∂q3∂q1

∂2q3+i
∂q1∂q2

∂2q3+i
∂q2

2

∂2q3+i
∂q3∂q2

∂2q3+i
∂q1∂q3

∂2q3+i
∂q2∂q3

∂2q3+i
∂q2

3

, i = 1, 2, 3 (43)

According to the principle of virtual work, the power generated by all constraint forces
and torques is zero.

τ>δq = τ>a δqa (44)

δq = Jqaδqa (45)

τa = J>qaτ (46)

By substituting Equations (37)–(46) into Equation (32), the closed-form dynamics with
respect to the active joint variables is obtained

M̃(qa)q̈a + C̃(qa, q̇a)q̇a + Ñ(qa) = τa (47)

where M̃ is the inertia matrix, C̃ is the coefficient matrix of the centrifugal force and Coriolis
force, and Ñ are the gravity and stiffness-related forces.

M̃(qa) = J>qa M(q)Jqa (48)

C̃(qa, q̇a) = J>qa M(q) J̇qa + J>qaC(q, q̇)Jqa (49)

Ñ(qa) = J>qaN(q) (50)

ÑK(qa) = J>qaNK(q) = J>qa2p

ks4q4
ks5q5
ks6q6

 (51)

3.2. Simulation Validation

In order to validate the proposed dynamic model, a CAD model of the 2R1T 3PPS PKM
prototype with a rigid–flexible structure was developed, and inverse dynamic computation
was conducted based on the proposed dynamic model and the commercial dynamic
simulation software (SOLIDWORKS software). For inverse dynamic computation of the
PKM, a predetermined trajectory of the moving platform is given to determine the required
active joint forces in the joint space. The results of required active joint forces obtained from
the proposed dynamic model and those from the SOLIDWORKS software are compared. It
was assumed that except for three flexure-based passive prismatic joints, each component
of the 2R1T 3PPS PKM is a rigid body. The time duration of each trajectory was 4 s with 1
millisecond time step. The direction of gravitational acceleration was along the +Z direction
of the base frame. According to the virtual prototype, the key parameters of the 2R1T 3PPS
PKM used for dynamic model validation are shown in Table 1.
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Table 1. Simulation parameters of the 3PPS PKM for dynamic model’s validation.

Parameter Value Unit

Acceleration of gravity g 9.80665 m/s2

Mass of active joints m1,2,3 1264.25865111 g
Mass of passive joints m4,5,6 140.13865914 g
Mass of moving platform m7 2066.84394668 g

Moment of inertia I7comxx 7.003898473× 10−3 kg ·m2

Moment of inertia I7comyy 7.004407761× 10−3 kg ·m2

Moment of inertia I7comzz 3.256238466× 10−3 kg ·m2

Moment of inertia I7comxy 0.701× 10−9 kg ·m2

Moment of inertia I7comxz 3.111× 10−9 kg ·m2

Moment of inertia I7comyz 0.439× 10−9 kg ·m2

Local coordinates of body
7 COM (0, 0, 64.81) mm

Circumcircle radius r 64 mm
Initial distance HBM 183.5 mm
Flexure stiffness ksi 10 N/mm

In our design, the proposed 2R1T 3PPS PKM is employed as a robotic force-controlled
end-effector for continuous contact operations. Take typical robotic polishing application
for curved surfaces as an example: the required tilting angle of PKM moving platform
is larger than 5◦, and the required translational range of motion is less than 5 mm. In
order to fully cover the designed 2R1T motion DOF of the proposed 2R1T 3PPS PKM, the
predetermined trajectory of the moving platform is cone-swing motions for 2R DOF and a
cosine motion for 1T DOF which can be described as

ux = cos(πt) sin(8◦) (52)

uy = sin(πt) sin(8◦) (53)

Mz = 2× 10−3 cos(2πt) + 195.5× 10−3 (54)

The predetermined trajectory of the moving platform is shown in Figure 6, for which
the frequency of cone swing motions is 0.5 Hz, the tilting angle of the PKM moving platform
is 8◦, and the frequency and the amplitude of the translational motion are 1 Hz and 4 mm,
respectively. The corresponding active and passive prismatic joint displacements are shown
in Figures 7 and 8, respectively. The ranges of motion of active prismatic joints are within
25 mm, and the ranges of motion of passive prismatic joints are smaller than 1 mm.

As shown in Figure 9, the required active joint forces for the predetermined trajectory
were computed based on the derived dynamic model in Equation (47). The periods of
three required active joint forces are the same, but the phases are different. The mean
values of the required active joint forces are quite close. Figure 10 shows the errors of
required active joint forces between computation results from the closed-form dynamic
model and SOLIDWORKS software. The results show that they have the same periods but
with different patterns. The mean absolute errors (MAEs) of the required active joint forces
were 7.7003× 10−4 N, 7.6048× 10−4 N, and 8.3248× 10−4 N, respectively.



Machines 2023, 11, 260 13 of 19

0 1 2 3 4
 time (s)

−0.2

−0.1

0

0.1

0.2

 o
ri

en
ta

ti
on

 (
m

m
)

190

192

194

196

198

200

 Z
-a

xi
s 

po
si

ti
on

 (
m

m
)

u
x

u
y

M
z

Figure 6. Desired motion for the moving platform of the 2R1T 3PPS PKM.

0 1 2 3 4
 time (s)

0

5

10

15

20

25

30

 a
ct

iv
e 

jo
in

t 
po

si
ti

on
s 

(m
m

)

q
a1

q
a2

q
a3

Figure 7. Desired motion for the active joints of the 2R1T 3PPS PKM.
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Figure 8. Desired motion for the passive joints of the 2R1T 3PPS PKM.
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Figure 9. Required active joint forces computed from the proposed dynamic model.
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Figure 10. The errors of required active joint forces between model computation and software
simulation.

4. Coupling-Effects Analysis of the Flexure-Based Passive Prismatic Joints

In the proposed 2R1T 3PPS PKM, as the required displacements of the three passive
prismatic joints are as small as few millimeters, the double compound rectilinear flexure
mechanisms are employed for the three passive prismatic joints. These flexure-based
prismatic joints have the advantages of low moving mass and zero friction. However, the
coupling effects of their stiffness and elastic deformation on the PKM’s dynamic behaviors
need to be further investigated.

4.1. Stiffness Model

The proposed 2R1T 3PPS PKM is employed as a robotic force-controlled end-effector.
The required operation speed is relatively low compared to that of pick-and-place appli-
cation. The flexure-based passive prismatic joints employ double compound rectilinear
flexures, which are designed with large enough ranges of motion and high off-axis stiffness
ratios. As such, only the stiffness and deformation in driving directions of the flexure-based
passive prismatic joints are uniformly taken into consideration. The stiffness in driving
directions (x-axis) of the double compound rectilinear flexure is determined by
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Kx =
2Ebh3

L3 (55)

where E is the Young’s modulus of the material, L is the leaf length, h is the leaf width, and
b is the thickness of the plate.

The stiffness model of the flexure was verified through FEA and shows good agree-
ment with the simulation results. In the allowed range of motion, the stiffness in driving
directions (x axis) of the double compound rectilinear flexure is constant with proper design.

4.2. Coupling Effects on Dynamic Behavior

Based on the closed-form dynamic model, the active joint force can be readily analyzed
and interpreted from a physical point of view, which is hardly possible with commercial
dynamic analysis software. The inertial forces, the Coriolis and centrifugal forces, the
gravitational forces, and the stiffness-related forces can be determined from Equation (47).

In order to investigate the coupling effects of different flexure stiffness on the required
active joint force, a simulation computation was conducted. The stiffness range was set to
be between 0 N/mm and 20 N/mm. Figure 11 shows the required active joint forces of the
same predetermined trajectory change under different flexure stiffness levels. As the flexure
stiffness increases from 0 N/mm to 20 N/mm, the trends of required active forces remain
the same while the maximum absolute active force changes from 21.95 N to 24.57 N, which
indicates that smaller flexure stiffness in driving directions will can reduce the required
actuating forces. The simulation results are necessary for the design optimization of the
proposed 2R1T 3PPS PKM with a rigid–flexible structure.
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Figure 11. Required active joint forces of the same predetermined trajectory with different flexure
stiffness levels.

5. Discussion

As shown in Figure 10, the results obtained from the closed-form dynamic model
show good agreement with those obtained from simulation software, which validates
the correctness of the derived closed-form dynamic model. It is observed that small
errors still exist in the results of the derived dynamic model, which are mainly due to the
truncation errors of parameter values and the cumulative errors during the computation.
The derived closed-form dynamic model can be utilized as a fundamental tool for robot
design, trajectory planning, and model-based control algorithms.

For the trajectory of the moving platform described in Equations (52)–(54), the result
shown in Figure 11 shows that the use of flexure-based passive prismatic joints results in
a slight increase in the required active joint force, which also indicates that less flexure
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stiffness in driving directions is desired. Moreover, the stiffness in driving directions can
be adjusted according to various applications without having a severe influence on the
required actuator forces.

Based on the closed-form dynamic model, the stiffness-related forces can be extracted
from the total required active joint forces. Figures 12–14 show the stiffness-related force
components of a single active force and the corresponding flexure-based passive pris-
matic joint displacement. For this specific trajectory described in Equations (52)–(54), the
frequency of stiffness-related force component is half of that of the corresponding flexure-
based passive prismatic joint displacement which shares the same pattern, as shown in
Figures 7 and 8. The amplitudes of the stiffness-related force components are relatively low,
which indicates only small influences are introduced on the required active forces.
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Figure 12. Stiffness-related component, FK1, of the required active force, and the corresponding
flexure-based passive prismatic joint displacement qp1.
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Figure 13. Stiffness-related component, FK2, of the required active force, and the corresponding
flexure-based passive prismatic joint displacement qp2.
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Figure 14. Stiffness-related component, FK3, of the required active force, and the corresponding
flexure-based passive prismatic joint displacement qp3.

6. Conclusions

This work proposes a systematic and structured method for formulating the closed-
form dynamic model of the 2R1T 3PPS PKM with a rigid–flexible structure. Based on the
unique zero-torsion motion characteristic of the 2R1T 3PPS PKM, a symbolic formulation
approach was employed to derive the moving platform pose, which is described with linear
polynomials of both active and passive prismatic joint variables. Therefore, in order to
simplify the formation of a closed-form dynamic model, both active and passive prismatic
joint variables were chosen as the quasi-coordinates. Firstly, a closed-form dynamic model
in terms of quasi-coordinates was established with a Lagrangian formulation, in which the
stiffness and deformation of the three flexure-based passive prismatic joints are uniformly
taken into consideration. Then, the principle of virtual work and the relationships between
the active and passive prismatic joint variables were employed to eliminate the passive
prismatic joint variables. The closed-form dynamic model in terms of active prismatic joint
variables was finally obtained. The derived closed-form dynamic model was validated by
the comparison with the simulation results obtained from commercial dynamic simulation
software. The mean absolute errors of the three required active joint forces between
the proposed dynamic model and commercial software are as small as 7.7003× 10−4 ,
7.6048× 10−4 , and 8.3248× 10−4 N. Based on the derived closed-form dynamic model,
the effects of different flexure stiffness in driving directions on the required active joint
force were investigated, which indicate that a smaller flexure stiffness in driving directions
is desired. Future work will be focused on the experimental validation of proposed closed-
form dynamic model and development of dynamic model-based force control algorithms.
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